[go: up one dir, main page]

CN111420032A - 用于治疗肿瘤的方法 - Google Patents

用于治疗肿瘤的方法 Download PDF

Info

Publication number
CN111420032A
CN111420032A CN202010255455.3A CN202010255455A CN111420032A CN 111420032 A CN111420032 A CN 111420032A CN 202010255455 A CN202010255455 A CN 202010255455A CN 111420032 A CN111420032 A CN 111420032A
Authority
CN
China
Prior art keywords
cancer
cells
tumor
mice
bladder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010255455.3A
Other languages
English (en)
Inventor
J·闻
W·徐
P·罗德
H·C·黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immunitybio Inc
Original Assignee
Altor Bioscience Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altor Bioscience Corp filed Critical Altor Bioscience Corp
Publication of CN111420032A publication Critical patent/CN111420032A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1774Immunoglobulin superfamily (e.g. CD2, CD4, CD8, ICAM molecules, B7 molecules, Fc-receptors, MHC-molecules)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2013IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/212IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/32Fusion polypeptide fusions with soluble part of a cell surface receptor, "decoy receptors"

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及用于治疗肿瘤的方法。具体地,本申请提供通过给药IL‑2融合蛋白和一种或多种治疗剂而治疗肿瘤(例如,膀胱癌)的方法,其中所述IL‑2融合蛋白不需要以所述肿瘤为目标。

Description

用于治疗肿瘤的方法
本申请是申请号为201380028390.7、申请日为2013年3月15日、发明名称为“用于治疗肿瘤的方法”的中国专利申请的分案申请。
联邦政府赞助的研究下进行的发明的权利声明
此成果是由以下美国国家卫生研究院的补助款(补助款编号:CA097550)所支持。政府对本发明具有一定权利。
技术领域
本发明有关不以肿瘤形成为目标,而通过给药IL-2融合蛋白和一种或多种治疗剂治疗所述肿瘤形成的方法。
背景技术
在美国,膀胱癌(本文中亦称为尿道上皮细胞癌)为男性中第四最常见的癌症类型和女性中第九最常见癌症,而且每年估计有70,500个新案例(52,760位男性和17,770女性)和14,680位死亡(10,410位男人和4,270位女人)(Jemal,A.et al.,CA Cancer J Clin,60:277-300,2010)。局部疾病通常是使用免疫疗法(Bacillus Calmette-Guerin)、连接至膀胱镜的电灼装置或通过囊肿切除术治疗。晚期疾病通常是以化学疗法或化学疗法与辐射的组合而治疗。对于以传统的单一药剂化学疗法治疗的转移性肌肉-侵入性膀胱癌患者而言,存活中位数为大约7至8个月(Raghavan,D.et al.,N Engl J Med,322:1129-1138,1990)。在将包含甲氨蝶呤(methotrexate)、长春花碱(vinblastine)、多柔比星(doxorubicin)以及顺铂(cisplatin)(MVAC)以及吉西他滨(gemcitabine)和顺铂(GC)的组合细胞毒性疗方导入转移性膀胱癌的处理,存活中位数已几乎增加两倍至超过13个月,而且3年存活率为大约20%至25%(Loehrer,P.J.et al.,J Clin Oncol,10:1066-1073,1992;von der Maase,H.et al.,J Clin Oncol,18:3068-3077,2000)。然而,彼等案例中因癌症而最终发生死亡者超过90%,而且在过去20年没有核准晚期/转移性膀胱癌的新药物。在目前的治疗选择的有限功效的情况下,需要额外的治疗方针。
发明内容
如下述,本发明的特征为治疗癌症的方法。于优选的具体实施例中,本发明的特征为对有癌症的受试者给药有效量的IL-2融合蛋白与一种或多种治疗剂的组合,以治疗所述癌症。
于一个态样中,本发明通常的特征为一种改善受试者的癌症的方法,其涉及对有需要的受试者给药有效量的IL-2融合蛋白与一种或多种治疗剂,藉此改善所述癌症。
于另一个态样中,本发明的特征为一种减少受试者中的肿瘤负担的方法,其涉及对有需要的受试者给药有效量的IL-2融合蛋白和治疗剂,藉此减少所述肿瘤的体积。
于又另一个态样中,本发明的特征为一种治疗受试者的化学抗性癌症的方法,其涉及对有需要的受试者给药有效量的IL-2融合蛋白和治疗剂,藉此治疗所述化学抗性癌症。
于进一步的态样中,本发明的特征为一种在受试者中诱发针对癌症的耐久性免疫记忆反应的方法,其涉及对有需要的受试者给药有效量的IL-2融合蛋白和治疗剂,藉此诱发所述针对癌症的耐久性免疫记忆反应。
于又另一个态样中,本发明的特征为一种增加具有癌症的受试者的存活的方法,其涉及对有需要的受试者给药有效量的IL-2融合蛋白和治疗剂,藉此增加所述受试者的存活。
于另一个态样中,本发明的特征为一种用于治疗膀胱癌的套组,其含有IL-2融合蛋白和一种或多种治疗剂。
任何以上态样或本文描述的发明的任何其它态样的多个具体实施例中,IL-2融合蛋白不特异性地以癌症为目标或结合癌症。于另一个具体实施例中,IL-2融合蛋白包括T细胞受体(TCR)结构域。于又另一个具体实施例中,T细胞受体结构域为单链T细胞受体。于进一步具体实施例中,一种或多种治疗剂是选自由下列各者所组成群组:乙酸阿比特龙酯(abiraterone)、六甲密胺(altretamine)、脱水长春花碱(anhydrovinblastine)、欧瑞斯他汀(auristatin)、阿扎胞苷(azacitidin)、AZD 8477、苯达莫司汀(bendamustin)、贝伐单抗(bevacizumab)、蓓萨罗丁(bexarotene)、比卡鲁胺(bicalutamide)、BMS184476、2,3,4,5,6-五氟-N-(3-氟-4-甲氧基苯基)苯磺酰胺、博来霉素(bleomycin)、硼替佐米(bortezomib)、N,N-二甲基-L-缬氨酰基-L-缬氨酰基-N-甲基-L-缬氨酰基-L-脯氨酰基-l-L-脯氨酸-第三丁基酰胺、恶病质素(cachectin)、卡培拉滨(capecitabin)、西马多丁(cemadotin)、西妥昔单抗(cetuximab)、瘤可宁(chlorambucil)、环磷酰胺,3',4'-二去氢-4'-二氧基-8'-诺文(norvin)-长春碱(caleukoblastine)、多西他赛(docetaxol)、多烯紫杉醇(doxetaxel)、环磷酰胺、卡铂(carboplatin)、卡莫司汀(carmustine)(BCNU)、顺铂、念珠藻环肽(cryptophycin)、环磷酰胺、阿糖胞苷(cytarabine)、达卡巴嗪(dacarbazine)(DTIC)、更生霉素(dactinomycin)、达沙替尼(dasatinib)、柔红霉素(daunorubicin)、多拉斯他丁(dolastatin)、多韦替尼(dovitinib)、多柔比星(阿霉素)(adriamycin)、表阿霉素(epirubicin)、埃坡霉素B(epothilone B)、埃罗替尼(erlotinib)、艾瑞布尔(eribulin)、依托泊苷(etoposide)、依维莫司(everolimus)、5-氟尿嘧啶、非那利得(finasteride)、氟他胺(flutamide),吉非替尼(gefitinib)、吉西他滨(gemcitabine)、羟基脲和羟基脲紫杉烷类、宜佛斯酰胺(ifostamide)、干扰素α、伊马替尼(imatinib)、伊匹单抗(ipilimumab)、依利诺替康(irinotecan)、拉钩它索(largotaxel)、拉帕替尼(lapatinib)、来那度胺(lenalidomid)、利阿唑(liarozole)、洛那法尼(lonafarnib)、氯尼达明(lonidamine)、洛莫司汀(lomustine)(CCNU)、二氯甲基二乙胺(mechlorethamine)(氮芥)、美法仑(melphalan)、羟乙基磺酸米伏布尔(mivobulin isethionate)、利索新(rhizoxin)、什汀尼夫(sertenef)、链脲霉素(streptozocin)、丝裂霉素(mitomycin)、甲氨蝶呤、5-氟尿嘧啶、尼鲁米特(nilutamide)、奥那司酮(onapristone)、草酸铂(oxaliplatin)、他克唑(paclitaxel)、帕尼单抗(panitumumab),帕唑帕尼(pazopanib),普拉曲沙(pralatrexate)、泼尼莫司汀(prednimustine)、吡曲克辛(piritrexim)、丙卡巴肼(procarbazine)、吡唑啉吖啶(pyrazoloacridine)、利妥昔单抗(rituximab)、RPR109881、罗米地辛(romidepsin)、索拉非尼(sorafinib)、磷酸雌莫司汀(stramustine磷酸酯)、舒尼替尼(sunitinib)、它莫西芬(tamoxifen)、他索尔明(tasonermin)、紫杉醇(taxol)、替莫唑胺(temozolomide)、拓扑替康(topotecan)、曲妥珠单抗(transtuzumab)、维A酸(tretinoin),三甲曲沙(trimetrexate)、威罗菲尼(vemurafenib)、长春花碱、长春新碱(vincristine)、硫酸长春地辛(vindesine sulfate)、长春氟宁(vinflunine)以及伏立诺他(vorinostat)。在其它具体实施例中,一种或多种治疗剂是选自由吉西他滨和以铂为主的化合物(包含顺铂)所组成群组。于又另一具体实施例中,癌症是选自由膀胱癌、尿道、输尿管以及肾盂的尿道上皮细胞癌、肾脏癌、乳癌、结肠癌、头颈癌、肺癌、前列腺癌、神经胶母细胞瘤、骨肉瘤、脂肪肉瘤、软组织肉瘤、卵巢癌、黑色素瘤、肝癌、食道癌、胰脏癌以及胃癌所组成群组。在进一步具体实施例中,癌症是膀胱或尿道上皮细胞癌。在又进一步具体实施例中,癌症有化学抗性。在其它具体实施例中,IL-2融合蛋白和一种或多种治疗剂在约7至14天内给药。在又其它具体实施例中,IL-2融合蛋白和一种或多种治疗剂是在约3至5天内给药或同时给药。在额外的具体实施例中,IL-2融合蛋白是ALT-801,而且一种或多种治疗剂是顺铂。于进一步具体实施例中,一种或多种治疗剂是吉西他滨。在又额外的具体实施例中,IL-2融合蛋白特异性地以癌症细胞为目标。于一些具体实施例中,IL-2融合蛋白特异性地以癌症细胞表面上的p53胜肽/HLA络合物为目标。
本发明所定义的组成物和物件是单独的,或相反地是与根据以下提供的实施例有关而制造。将从具体实施方式和从权力要求书清楚了解所述发明的其它特征和优点。
定义
所谓“肿瘤负担”(亦称为“肿瘤负荷”)意指身体中的癌症细胞的数目、肿瘤的尺寸或癌症的量。
所谓“IL-2融合蛋白”意指含有与第二多肽融合的整个全长IL-2蛋白质或其生物上有活性的片段的多肽。第二多肽可为目标多肽,亦即,抗体或其抗原结合片段;T细胞受体(TCR)或其胜肽结合片段;受体或其配位体结合结构域等,其中所述第二多肽特异性地以IL-2融合蛋白为目标或将IL-2融合蛋白导向癌症细胞。或者,第二多肽可为非目标多肽,亦即,不特异地以IL-2融合蛋白为目标或将IL-2融合蛋白导向癌症细胞的多肽。
所谓“T细胞受体(TCR)结构域”意指包括需要结合呈现于适当的MHC或HLA分子中的同族胜肽的T细胞受体的所有部分的多肽。TCR结构域的非限制性实例是描述于美国专利第7,456,263号;美国专利第6,534,633号;美国专利申请公开案第US2003/0144474号;以及美国专利申请公开案第US2011/0070191号,其等全文是以参考方式纳入本文中。
所谓“ALT-801”意指能结合人类p53胜肽(氨基酸264至272)HLA-A*0201(c264scTCR-IL-2)的IL-2和TCR结构域之间的融合物。一个ALT-801的阐释性氨基酸序列包含以下信号序列:
Metdtlllwvlllwvpgstgqsvtqpdarvtvsegaslqlrckysysgtpylfwyvqyprqglqlllkyysgdpvvqgvngfeaefsksnssfhlrkasvhwsdsavyfcvlsedsnyqliwgsgtkliikpdtsggggsggggsggggsggggsssnskviqtprylvkgqgqkakmrcipekghpvvfwyqqnknnefkflinfqnqevlqqidmtekrfsaecpsnspcsleiqsseagdsalylcasslsgggtevffgkgtrltvvedlnkvfppevavfepseaeishtqkatlvclatgffpdhvelswwvngkevhsgvstdpqplkeqpalndsryclssrlrvsatfwqnprnhfrcqvqfyglsendewtqdrakpvtqivsaeawgradvnakttapsvyplapvsgaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevlnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistlt
一个成熟ALT-801(但没有信号序列)的阐释性氨基酸序列为:
qsvtqpdarvtvsegaslqlrckysysgtpylfwyvqyprqglqlllkyysgdpvvqgvngfeaefsksnssfhlrkasvhwsdsavyfcvlsedsnyqliwgsgtkliikpdtsggggsggggsggggsggggsssnskviqtprylvkgqgqkakmrcipekghpvvfwyqqnknnefkflinfqnqevlqqidmtekrfsaecpsnspcsleiqsseagdsalylcasslsgggtevffgkgtrltvvedlnkvfppevavfepseaeishtqkatlvclatgffpdhvelswwvngkevhsgvstdpqplkeqpalndsryclssrlrvsatfwqnprnhfrcqvqfyglsendewtqdrakpvtqivsaeawgradvnakttapsvyplapvsgaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevlnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistlt
一个编码ALT-801的阐释性核酸为:
atggagacagacacactcctgttatgggtactgctgctctgggttccaggttccaccggtcagtcagtgacgcagcccgatgctcgcgtcactgtctctgaaggagcctctctgcagctgagatgcaagtattcctactctgggacaccttatctgttctggtatgtccagtacccgcggcaggggctgcagctgctcctcaagtactattcaggagacccagtggttcaaggagtgaatggcttcgaggctgagttcagcaagagtaactcttccttccacctgcggaaagcctctgtgcactggagcgactctgctgtgtacttctgtgttttgagcgaggatagcaactatcagttgatctggggctctgggaccaagctaattataaagccagacactagtggtggcggtggcagcggcggtggtggttccggtggcggcggttctggcggtggcggttcctcgagcaattcaaaagtcattcagactccaagatatctggtgaaagggcaaggacaaaaagcaaagatgaggtgtatccctgaaaagggacatccagttgtattctggtatcaacaaaataagaacaatgagtttaaatttttgattaactttcagaatcaagaagttcttcagcaaatagacatgactgaaaaacgattctctgctgagtgtccttcaaactcaccttgcagcctagaaattcagtcctctgaggcaggagactcagcactgtacctctgtgccagcagtctgtcagggggcggcacagaagttttctttggtaaaggaaccagactcacagttgtagaggacctgaacaaggtgttcccacccgaggtcgctgtgtttgagccatcagaagcagagatctcccacacccaaaaggccacactggtgtgcctggccacaggcttcttccctgaccacgtggagctgagctggtgggtgaatgggaaggaggtgcacagtggggtcagcacggacccgcagcccctcaaggagcagcccgccctcaatgactccagatactgcctgagcagccgcctgagggtctcggccaccttctggcagaacccccgcaaccacttccgctgtcaagtccagttctacgggctctcggagaatgacgagtggacccaggatagggccaaacccgtcacccagatcgtcagcgccgaggcctggggtagagcagacgttaacgcaaagacaaccgccccttcagtatatccactagcgcccgtttccggagcacctacttcaagttctacaaagaaaacacagctacaactggagcatttactgctggatttacagatgattttgaatggaattaataattacaagaatcccaaactcaccaggatgctcacatttaagttttacatgcccaagaaggccacagaactgaaacatcttcagtgtctagaagaagaactcaaacctctggaggaagtgctaaatttagctcaaagcaaaaactttcacttaagacccagggacttaatcagcaatatcaacgtaatagttctggaactaaagggatctgaaacaacattcatgtgtgaatatgctgatgagacagcaaccattgtagaatttctgaacagatggattaccttttgtcaaagcatcatctcaacactaacttaa
所谓“MART-1scTCR/IL-2”意指能结合呈现于HLA-A*0201内容中的MART-1胜肽(氨基酸27至35)的IL-2和TCR结构域之间的融合物。一个MART-1scTCR/IL-2(包含信号序列)的阐释性氨基酸序列为:
Metdtlllwvlllwvpgstgqkeveqnsgplsvpegaiaslnctysdrgsqsffwyrqysgkspelimfiysngdkedgrftaqlnkasqyvsllirdsqpsdsatylcavnfgggklifgqgtelsvkpdtsggggsgggasggggsggggsssiagitqaptsqilaagrrmtlrctqdmrhnamywyrqdlglglrlihysntagttgkgevpdgysvsrantddfpltlasavpsqtsvyfcasslsfgteaffgqgtrltvvedlnkvfppevavfepseaeishtqkatlvclatgffpdhvelswwvngkevhsgvstdpqplkeqpalndsryclssrlrvsatfwqnprnhfrcqvqfyglsendewtqdrakpvtqivsaeawgradvnakttapsvyplapvsgaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevlnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistlt
一个成熟MART-1scTCR/IL-2(但没有信号序列)的阐释性氨基酸序列为:
Qkeveqnsgplsvpegaiaslnctysdrgsqsffwyrqysgkspelimfiysngdkedgrftaqlnkasqyvsllirdsqpsdsatylcavnfgggklifgqgtelsvkpdtsggggsgggasggggsggggsssiagitqaptsqilaagrrmtlrctqdmrhnamywyrqdlglglrlihysntagttgkgevpdgysvsrantddfpltlasavpsqtsvyfcasslsfgteaffgqgtrltvvedlnkvfppevavfepseaeishtqkatlvclatgffpdhvelswwvngkevhsgvstdpqplkeqpalndsryclssrlrvsatfwqnprnhfrcqvqfyglsendewtqdrakpvtqivsaeawgradvnakttapsvyplapvsgaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevlnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistlt
一个编码MART-1scTCR/IL-2的阐释性核酸的为:
atggagacagacacactcctgttatgggtactgctgctctgggttccaggttccaccggtcagaaggaggtggagcagaattctggacccctcagtgttccagagggagccattgcctctctcaactgcacttacagtgaccgaggttcccagtccttcttctggtacagacaatattctgggaaaagccctgagttgataatgttcatatactccaatggtgacaaagaagatggaaggtttacagcacagctcaataaagccagccagtatgtttctctgctcatcagagactcccagcccagtgattcagccacctacctctgtgccgtgaacttcggaggaggaaagcttatcttcggacagggaacggagttatctgtgaaacccgacactagtggtgggggtgggagcgggggtggtgctagcggtggcggcggttctggcggtggcggttcctccagcattgcagggatcacccaggcaccaacatctcagatcctggcagcaggacggcgcatgacactgagatgtacccaggatatgagacataatgccatgtactggtatagacaagatctaggactggggctaaggctcatccattattcaaatactgcaggtaccactggcaaaggagaagtccctgatggttatagtgtctccagagcaaacacagatgatttccccctcacgttggcgtctgctgtaccctctcagacatctgtgtacttctgtgccagcagcctaagtttcggcactgaagctttctttggacaaggcaccagactcacagttgtagaggacctgaacaaggtgttcccacccgaggtcgctgtgtttgagccatcagaagcagagatctcccacacccaaaaggccacactggtgtgcctggccacaggcttcttccctgaccacgtggagctgagctggtgggtgaatgggaaggaggtgcacagtggggtcagcacggacccgcagcccctcaaggagcagcccgccctcaatgactccagatactgcctgagcagccgcctgagggtctcggccaccttctggcagaacccccgcaaccacttccgctgtcaagtccagttctacgggctctcggagaatgacgagtggacccaggatagggccaaacccgtcacccagatcgtcagcgccgaggcctggggtagagcagacgttaacgcaaagacaaccgccccttcagtatatccactagcgcccgtttccggagcacctacttcaagttctacaaagaaaacacagctacaactggagcatttactgctggatttacagatgattttgaatggaattaataattacaagaatcccaaactcaccaggatgctcacatttaagttttacatgcccaagaaggccacagaactgaaacatcttcagtgtctagaagaagaactcaaacctctggaggaagtgctaaatttagctcaaagcaaaaactttcacttaagacccagggacttaatcagcaatatcaacgtaatagttctggaactaaagggatctgaaacaacattcatgtgtgaatatgctgatgagacagcaaccattgtagaatttctgaacagatggattaccttttgtcaaagcatcatctcaacactaactta。
所谓“剂”意指任何小分子化学化合物、抗体、核酸分子或多肽或其片段。
所谓“治疗剂”意指用于癌症治疗的任何化学治疗或生物治疗剂。治疗剂的非限制性阐释实例包含乙酸阿比特龙、六甲密胺、脱水长春花碱、欧瑞斯他汀、阿扎胞苷、AZD8477、苯达莫司汀、贝伐单抗、蓓萨罗丁、比卡鲁胺、BMS184476、2,3,4,5,6-五氟-N-(3-氟-4-甲氧基苯基)苯磺酰胺、博来霉素、硼替佐米、N,N-二甲基-L-缬氨酰基-L-缬氨酰基-N-甲基-L-缬氨酰基-L-脯氨酰基-l-L脯氨酸-第三丁基酰胺、恶病质素、卡培拉滨、西马多丁、西妥昔单抗、瘤可宁、环磷酰胺、3',4'-二去氢-4'-二氧基-8'-诺文-长春碱、多西他赛、多烯紫杉醇、环磷酰胺、卡铂、卡莫司汀(BCNU)、顺铂、念珠藻环肽、环磷酰胺、阿糖胞苷、达卡巴嗪(DTIC)、更生霉素、达沙替尼、柔红霉素、多拉斯他丁、多韦替尼、多柔比星、表阿霉素、埃坡霉素B、埃罗替尼、艾瑞布尔、依托泊苷、依维莫司、5-氟尿嘧啶、非那利得、氟他胺、吉非替尼、吉西他滨、羟基脲以及羟基脲紫杉烷类、宜佛斯酰胺、干扰素α、伊马替尼、伊匹单抗、依利诺替康、拉钩它索、拉帕替尼、来那度胺、利阿唑、洛那法尼、氯尼达明、洛莫司汀(CCNU)、二氯甲基二乙胺(氮芥)、美法仑、羟乙基磺酸米伏布尔、利索新、什汀尼夫、链脲霉素、丝裂霉素、甲氨蝶呤、5-氟尿嘧啶、尼鲁米特、奥那司酮、草酸铂、他克唑、帕尼单抗、帕唑帕尼、普拉曲沙、泼尼莫司汀、吡曲克辛、丙卡巴肼、吡唑啉吖啶、利妥昔单抗、RPR109881、罗米地辛、索拉非尼、磷酸雌莫司汀、舒尼替尼、它莫西芬、他索尔明、紫杉醇、替莫唑胺、拓扑替康、曲妥珠单抗、维A酸、三甲曲沙、威罗菲尼、长春花碱、长春新碱、硫酸长春地辛、长春氟宁以及伏立诺他。
所谓“化学抗性”意指已变成对一种或多种治疗剂有抗性的癌症或癌症细胞。
所谓“改善”意指减少、抑制、衰减、缩减、遏止、或稳定疾病的发展或恶化。
所谓“诱发针对肿瘤的耐久性免疫记忆反应”意指对后续激发或肿瘤再生长或癌性生长的治疗诱发的抗性。
所谓“变化"意指如以标准领域中已知的方法(诸如描述于本文者)所侦测的表达水平或基因或多肽活性的变化(增加或减少)。如本文中使用,变化包含表达水平的10%变化,优选为表达水平的25%变化,更优选为40%变化,以及最优选为50%或更大的变化。
所谓“类似物"意指非相同,但具有类似功能性或结构性特征的分子。例如,多肽类似物保留相应的自然产生多肽的生物活性,同时具有增强类似物相对于自然产生多肽的功能的某种生物化学改性。此生物化学改性可增加类似物的蛋白酶抗性、膜渗透率或半衰期,但没有改变,例如,配位体结合。类似物可包含非天然氨基酸。
于这揭示内容中,“包括(comprises)”、“包括(comprising)”、“含有(containing)”以及“具有(having)”等可具有将彼等归结于美国专利法中的意思,而且可意指“包含(includes)”、“包含(including)"等;“基本上由…所组成(consistingessentially)”或“基本上由…组成(consists essentially)"同样具有归结于美国专利法中的意思,而且所述术语为开放式,只要所叙述的基本或新颖特征并非通过存在超过所叙述者而改变,允许存在超过所叙述者,但排除前案的具体实施例。
“侦测”意指辨别欲侦测的分析物的存在、不存在或量。
所谓“可侦测的标记”意指当组成物键合至感兴趣的分子时,使得后者可经由光谱、光化学、生物化学、免疫化学或化学方式侦测。例如,有用的标记包含放射性同位素、磁性珠、金属珠、胶体粒子、荧光染料、电子密集试剂、酵素(例如,如ELISA中常用者)、生物素、地高辛配体(digoxigenin)或半抗原。
所谓“疾病”意指任何破坏或干扰细胞、组织或器官的正常功能的病症或异常。疾病的实例包含癌症。
所谓”有效量"或“治疗量”意指相对于未经治疗的患者,需要治疗、预防或改善疾病症状的量。用以实践本发明以治疗性处理疾病的一种或多种活性化合物的有效量是依据受试者的给药方式、年龄、体重以及一般健康而改变。最终,主治医师或兽医将决定适当的量及剂量疗方。此量被称为“有效”量。
所谓“片段”意指多肽或核酸分子的一部分。优选地,这部分含有参考核酸分子或多肽的整个长度的至少10%、20%、30%、40%、50%、60%、70%、80%或90%。片段可含有10、20、30、40、50、60、70、80、90,或100、200、300、400、500、600、700、800、900或1000个核苷酸或氨基酸。
“杂交”意指氢键结,其可为互补核碱基之间的瓦特生-克里克(Watson-Crick)、胡格斯丁(Hoogsteen)或反向胡格斯丁氢键结。例如,腺嘌呤和胸腺嘧啶为通过形成氢键而配对的互补核碱基。
所谓“单离的多核苷酸”意指核酸(例如,DNA),其不含在衍生本发明的核酸分子的生物体的自然产生基因组中会在所述基因侧面的基因。因此,所述术语包含,例如,并入质体、并入自发性复制的质体或病毒、或并入原核生物或真核生物的基因组DNA的重组DNA;或存在为无关其它序列的个别分子者(例如,通过PCR或限制性内切酶酶切而产生的cDNA或基因组或cDNA片段)。此外,所述术语包含从DNA分子转录的RNA分子,以及为编码额外多肽序列的杂合基因的一部分的重组DNA。
所谓”单离的多肽"意指已自天然伴随的组分分离的本发明的多肽。典型地,当多肽至少60重量%自与其天然联结的蛋白质和自然产生的有机分子游离时,所述多肽为单离的。优选地,制备本发明的多肽的至少75%,更优选为至少90%,以及最优选为至少99重量%。本发明的单离多肽可,例如,通过萃取自天然来源;通过表达编码此多肽的重组核酸;或通过化学合成蛋白质而获得。纯度可通过任何适当的方法,例如,柱色谱法、聚丙烯酰胺凝胶电泳法而测量,或通过HPLC分析。
所谓“标志”意指任何具有联结疾病或异常的表达水平或活性变化的蛋白质或多核苷酸。
如本文中所使用,“获得一剂”中的“获得”包含合成、购买或取得所述剂。
“引物组”意指一组可使用于如PCR的寡核苷酸。引物组会由至少2、4、6、8、10、12、14、16、18、20、30、40、50、60、80、100、200、250、300、400、500、600或更多个引物所组成。
如本文中所使用,“重组”包含参考使用表达编码多肽的异源多核苷酸的细胞而产生的多肽。细胞产生重组多肽,因为彼等已通过导入适当的单离的核酸序列而被基因上地改变。所述术语亦包含参考细胞或核酸或质体,其是已通过导入异源核酸或将天然核酸改变成对所述细胞而言非天然形式而改性,或所述细胞是衍生自因此改性的细胞。因此,例如,重组细胞表达非发现于细胞的天然(非重组)形式内的基因、表达发现于天然形式内的基因的突变体、或表达不正常地表达、表达不足或完全不表达的天然基因。
所谓“减少”意指至少10%、5%、50%、75%,或100%的负向变化。
所谓“参考品”意指标准或控制条件。
“参考序列”是定义为用作序列比较的基准序列。参考序列可为指定序列的子集或全部;例如,全长cDNA或基因序列的节段或完整的cDNA或基因序列。至于多肽,参考多肽序列长度将通常是至少约16个氨基酸,优选为至少约20个氨基酸,更优选为至少约25个氨基酸,以及甚至更优选为约35个氨基酸、约50个氨基酸或约100个氨基酸。至于核酸,参考核酸序列的长度将通常是至少约50个核苷酸,优选为至少约60个核苷酸,更优选为至少约75个核苷酸,以及甚至更优选为约100个核苷酸或约300个核苷酸或周围或之间的任何整数。
所谓“特异性地结合”意指识别和结合表达特定标志的癌症细胞,但实质上不会识别和结合样本中的其它细胞的融合蛋白。
所谓“实质上相同”意指对参考氨基酸序列(例如,本文所述氨基酸序列的任何一者)或核酸序列(例如,本文所述核酸序列的任何一者)展现至少50%同一性的多肽或核酸分子。优选地,此序列与用于比较的序列在氨基酸浓度或核酸方面有至少60%,更优选为80%或85%,以及更优选为90%、95%或甚至99%相同。
序列一致性典型地是使用序列分析软件(例如,Sequence Analysis SoftwarePackage of the Genetics Computer Group,University of Wisconsin BiotechnologyCenter,1710 University Avenue,Madison,Wis.53705,BLAST,BESTFIT,GAP或PILEUP/PRETTYBOX程序)测量。此软件通过分配多个取代、缺失及/或其它改性的同源性程度而比对相同或相似的序列。保守性取代典型地包含内以下群组内的取代:甘氨酸、丙氨酸;缬氨酸、异亮氨酸、亮氨酸;天冬氨酸、谷氨酸、天冬酰胺、谷氨酰胺;丝氨酸、苏氨酸;赖氨酸、精氨酸;以及苯丙氨酸、酪氨酸。在测定一致性程度的例示性方法中,可为使用BLAST程序,其中e-3和e-100之间的概率分数表示有密切相关的序列。
所谓“受试者”意指哺乳动物,包含,但非限制于,人类或非人类的哺乳动物,诸如,牛、马、犬、绵羊或猫。
本文中所使用的“肿瘤”意指所有无论是恶性或良性的肿瘤细胞生长和增殖,而且意指所有癌性前期和癌性的细胞和组织。
应了解本文提供的范围为范围内所有值的速记。例如,应了解1至50的范围包含任何数字、数字的组合或由1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50所组成群组的次范围。
如本文中所使用,术语“治疗(treat)”、“治疗(treating)”、“治疗(treatment)”等意指减少或改善与所述治疗联结的异常及/或症状。应将了解虽然未排除,治疗异常或病症不需要完全移除与其联结的异常、病症或症状。
除非具体地注明或从前后文显而易见,如本文中所使用,应了解术语“或”包含边值。除非具体地注明或从前后文显而易见,如本文中所使用,应了解术语“一(a)”、“一(an)”以及“所述”为单数或复数。
除非具体地注明或从前后文显而易见,如本文中所使用,应了解术语“约”是技术领域中的正常公差范围内,例如,平均值的2个标准差内。应了解“约”是在注明的值的10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%或0.01%内。除非前后文清楚显示,否则本文提供的所有数值是由术语“约”改变。
本文变量的任何定义中的化学群组列表的叙述包含将变数定义成任何单一群组或所列群组的组合。本文的变数或态样的具体实施例的叙述包含那具体实施例作为任何单一具体实施例或与任何其它具体实施例或其部分的组合。
本文提供的任何组成物或方法可与本文提供的一种或多种任何其它组成物和方法组合。
附图说明
图1是显示于40天进行吉西他滨+顺铂;ALT-801;或吉西他滨+顺铂+ALT-801的两个治疗循环后,裸鼠中的皮下人类UMUC-14膀胱肿瘤异体移植物的肿瘤体积平均值变化的图表。
图2是显示48天进行以11天休息隔开的吉西他滨+顺铂;吉西他滨+MART-1scTCR/IL-2;ALT-801;或吉西他滨+ALT-801的两个治疗循环后,裸鼠中的皮下人类UMUC-14膀胱肿瘤异体移植物的肿瘤体积平均值变化的图表。
图3是显示ALT-801和MART-1scTCR/IL-2与化学疗法疗方的组合对裸鼠中的皮下人类膀胱UMUC-14异体移植物的生长效果的图表。
图4是显示ALT-801和MART-1scTCR/IL-2与化学疗法疗方的组合对小鼠体重效果的图表。
图5是显示ALT-801和MART-1scTCR/IL-2与化学疗法疗方的组合对裸鼠中的皮下人类膀胱KU7P异体移植物的生长效果的图表。
图6是显示ALT-801和MART-1scTCR/IL-2与化学疗法疗方的组合对小鼠体重效果的图表。
图7是显示吉西他滨、ALT-801以及MART-1scTCR/IL-2对裸鼠中的皮下人类膀胱KU7P异体移植物的生长效果的图表。
图8是显示以ALT-801或PBS(对照组)治疗得到原位MB49luc肿瘤的白子C57BL/6小鼠的存活率的图表。
图9A是显示以ALT-801或PBS(对照组)治疗得到原位MB49luc肿瘤的C57BL/6小鼠的存活率的图表。图9B为显示未接受治疗或以ALT-801治疗的C57BL/6小鼠的原位MB49luc肿瘤的生物发光的影像。
图10是显示以ALT-801或PBS(对照组)治疗得到原位MB49luc肿瘤的C57BL/6小鼠的存活率的图表。
图11是显示以ALT-801治疗具有MB49luc浅表性膀胱肿瘤的C57BL/6小鼠的存活率的图表。
图12A和12B是显示以ALT-801每周治疗一次(“1X4”)(图12A)或每周治疗两次(“2X4”)(图12B)(为期四周)具有MB49luc浅表性膀胱肿瘤的C57BL/6小鼠,的存活率的图表。
图13是来自以PBS或ALT-801治疗后的正常和带有MB49luc肿瘤的C57BL/6小鼠的经H&E-染色的膀胱组织剖面影像。
图14A和14B是显示来自以PBS或ALT-801治疗后的正常和带有MB49luc肿瘤的C57BL/6小鼠的PMBC(图14A)和脾脏(图14B)中的免疫细胞群体的图表。
图15是显示来自以PBS或ALT-801治疗后在研究第10天的带有MB49luc肿瘤的C57BL/6小鼠的膀胱组织剖面的经染色的巨噬细胞的影像。
图16A和16B是显示来自以PBS或ALT-801治疗后的正常(图16A)和带有MB49luc肿瘤的C57BL/6小鼠(图16B)的膀胱中的巨噬细胞的浓度变化的图表。
图17A和17B是显示以PBS或ALT-801治疗后的正常和带有MB49luc肿瘤的C57BL/6小鼠的尿中IFNγ(图17A)和TNFα(图17B)的变化的图表。
图18是显示以ALT-801而非IL-2治疗延长带有原位MB49luc膀胱肿瘤的小鼠的存活率的图表。在研究第0天,以聚赖氨酸预处理膀胱后,对C57BL/6小鼠(10至11周龄)膀胱内滴注MB49luc细胞(3x 104个细胞/膀胱)。在MB49luc肿瘤细胞滴注后第7、10、14以及17天,静脉内给药ALT-801(1.6mg/kg,n=8),rIL2(0.42mg/kg,n=8)或PBS(100μL,n=8)。显示比较研究组的卡普兰-迈耶(Kaplan-Meier)存活曲线。
图19A至19D描述
Figure BDA0002437135000000111
NK、CD4以及CD8细胞耗尽对带有小鼠MB49luc原位膀胱肿瘤的C57BL/6小鼠中的ALT-801功效的效果。图19A是描述给药ALT-801的小鼠相较于给药PBS的小鼠的存活率的图表。图19B是描述给药ALT-801和通过于研究第2、3、6、9、13以及16天腹腔内注射抗NK抗体(Ab)(克隆PK136,100μL中有250μg)而使NK细胞耗尽的小鼠相较于给药PBS的小鼠的存活率的图表。图19C是描述给药ALT-801和通过于研究第6、9、13以及16天腹腔内注射氟弗松(Clophosome)(150μL/剂量)而使
Figure BDA0002437135000000121
耗尽的小鼠相较于给药PBS的小鼠存活率的图表。图19D是描述给药ALT-801和通过于研究第2、3、6、9、13以及16天腹腔内注射抗CD4 Ab(克隆GK1.5,100μL中有250μg)和抗CD8Ab(克隆53-6.72,100μL中有250μg)而使CD4和CD8细胞耗尽的小鼠相较于给药PBS的小鼠的存活率的图表。展示卡普兰-迈耶存活绘图。P值≤0.05被认为是显著的。
图20是描述带有小鼠MB49luc原位膀胱肿瘤的C57BL/6小鼠的血液MDSC浓度的变化的图表。条状物表示平均值±SEM。*与对照组比较为P≤0.05。
图21是带有MB49luc原位膀胱肿瘤的小鼠膀胱中的巨噬细胞的免疫组织化学染色影像。于研究第0天,小鼠接收MB49luc滴注,而且11天后静脉内接收PBS或ALT-801(1.6mg/kg)治疗。治疗之后24小时牺牲小鼠,并且收集膀胱以染色。将膀胱剖面以抗iNOS(M1巨噬细胞标志)及抗MMP-9(M2巨噬细胞标志)及抗F4/80(巨噬细胞pan标志)Abs染色。显示代表性组织剖面。放大率为200x。
图22是描述免疫细胞子集在C57BL/6小鼠中的血清IFN-γ浓度的ALT-801介导诱发中的角色的图表。将C57BL/6雌性小鼠腹腔内注射抗CD4(GK1.5)、抗CD8(53-6.72)及/或抗NK1.1(PK136)Abs,以耗尽免疫细胞子集。接着,将小鼠静脉内注射1.2mg/kg ALT-801,并于24小时后以ELISA测定血清IFN-γ浓度。条状物表示平均值±标准误差(n=5/群组)。
图23是描述IFN-γ对MB49luc细胞体外生长的效果的图表。MB49luc细胞(2x 105/孔)是在有1ng/mL或10ng/mL IFN-γ的RPMI-10中培养2天。MB49luc细胞的凋亡是于膜联蛋白V染色后以流式细胞仪测定。
图24是描述ALT-801诱发的针对MB49luc肿瘤细胞的LAK细胞细胞毒性的图表。淋巴激素活化杀手细胞(LAK)是从小鼠脾细胞制备,接着以20nM ALT-801进行体外活化3天。LAK细胞(4x 106/孔)与PKH67标示的MB49luc(4x 105/孔)在有0至50nM ALT-801的RPMI-10中培养。24小时后采收培养细胞,并且以0.001mg/mL PI标示。死PI+MB49luc细胞的百分比是以流式细胞仪测定。
图25是描述吉西他滨减少带有MB49luc肿瘤的小鼠中的脾细胞MDSC浓度的图表。将雌性C57BL/6小鼠静脉内注射MB49luc细胞(1x 106/小鼠)。10天之后,将一个群组的小鼠以40mg/kg吉西他滨静脉内治疗。3天后牺牲小鼠,并且将脾细胞单离。脾脏Gr1+CD11b+MDSCs的百分比是以流式细胞仪测定。
图26描述磁性分选后MDSC纯度的流式细胞仪分析。以MACS柱正向选择的细胞是以抗CD11b-PE和抗Gr1-FITC抗体染色。稍后进行过继转移(adoptive transfer)的CD11b+Gr1+细胞具有96%的纯度。
图27是描述ALT-801以MDSC过继转移后的免疫细胞而诱发肿瘤细胞杀死的图表。收集来自MDSC接收方小鼠(黑色)或载体对照组的小鼠(白色)的脾细胞,并且通过与50nMALT-801培育而活化成LAK细胞。接着将LAK效应细胞与MB49luc目标细胞混合,以评估彼等的细胞溶解活性。亦标绘来自没有ALT-801活化的新鲜脾细胞的数据以及杀死期期间添加ALT-801后所评估的细胞溶解活性。***:P<0.001。n=2。
图28描述针对临床试验第I/II期的尿道上皮细胞癌中ALT-801与吉西他滨和顺铂的组合给药的研究设计和治疗方案。
图29描述针对临床试验第I/II期的尿道上皮细胞癌中ALT-801与吉西他滨和顺铂的组合给药的研究设计和治疗方案。
图30描述在尿道上皮细胞癌中ALT-801与吉西他滨和顺铂的组合给药的临床试验第I/II期的患者人口统计变量和疾病状态。
图31描述在尿道上皮细胞癌中ALT-801与吉西他滨和顺铂的组合给药的临床试验第I/II期中的肿瘤评估。
图32描述在尿道上皮细胞癌中ALT-801与吉西他滨和顺铂组合给药的临床试验第I/II期中,给药ALT-801的患者的客观反应。
图33描述在尿道上皮细胞癌中ALT-801与吉西他滨和顺铂组合给药的临床试验第I/II期中,给药ALT-801的患者的无恶化存活期。
图34是描述给药ALT-801的患者中增加的血清IFN-γ浓度(左区块:0.04mg/kgALT-801;右区块:0.06mg/kg ALT-801)的图表。
具体实施方式
本发明提供治疗癌症或其症状的方法,包括对受试者(例如,哺乳动物,诸如,人类)给药治疗有效量的包括IL-2融合蛋白和一种或多种治疗剂的医药组成物。因此,一个具体实施例为治疗患有或易得到癌症或其症状的受试者的方法。所述方法包含在治疗癌症的条件下,对哺乳动物给药足以治疗癌症或其症状的治疗量的IL-2融合蛋白和一种或多种治疗剂的步骤。本发明亦提供治疗癌症或其症状的方法,包括对受试者(例如,哺乳动物,诸如,人类)单独给药治疗有效量的IL-2融合蛋白。
本发明至少部分是基于对具有膀胱癌(本文亦称为尿道上皮细胞癌)的受试者给药IL-2融合蛋白与一种或多种治疗剂的组合1)改善了癌症,2)减少了肿瘤负担,3)增加了受试者的存活,以及4)诱发针对癌症的耐久性免疫记忆反应的发现。此外,发现IL-2融合蛋白与一种或多种治疗剂的组合对于治疗化学抗性膀胱癌是有效的。再者,发现不特异性地以癌症细胞或组织为目标的IL-2融合蛋白,如特异性地以癌症细胞为目标的IL-2融合蛋白,对治疗膀胱癌上是有效的,。在某些具体实施例中,发现IL-2融合蛋白单一疗法对于治疗膀胱癌(包含化学抗性的癌症)是有效的。
已充分认知免疫治疗,包含IL-2,为用于增强针对某种癌症类型的抗肿瘤免疫力的有效方法。IL-2对包含T和B细胞、单核细胞、巨噬细胞、淋巴激素活化杀手细胞(LAK)以及NK细胞的一些免疫细胞类型具有刺激效果(Waldmann,T.A.,Nat Rev Immunol,6:595-601,2006)。基于其提供耐久性且有冶愈性的抗肿瘤反应的能力,重组人类IL-2
Figure BDA0002437135000000141
的全身性给药已核准治疗转移性黑色素瘤或肾脏细胞癌瘤患者(Rosenberg,S.A.等人,AnnSurg,210:474-484;讨论484-475,1989;Fyfe,G.等人,J Clin Oncol,13:688-696,1995;以及Atkins,M.B.等人,J Clin Oncol,17:2105-2116,1999)。不幸地,与这治疗联结的可观毒性使在肿瘤的位置达到有效剂量是困难的,且限制了可治疗的群体。例如,忍受剂量的IL-2的全身性治疗在实际上所有治疗患者中诱发淋巴性活化,但只有在少数的这些个体中观察到抗肿瘤反应(Rosenberg,S.A.等人,Ann Surg,210:474-484;讨论484-475,1989)。结果,高剂量IL-2的使用局限于有经验的人员与专业的程序,而且其通常提供给有反应和具有优异的器官功能的患者(Tarhini,A.A.等人,Curr Opin Investig Drugs,6:1234-1239,2005)。较低剂量的IL-2治疗同时具有较少毒性和更多的方便性,产生较低反应速率且似乎是对于治疗转移性肿瘤无效(Yang,J.C.等人,J Clin Oncol,21:3127-3132,2003)。已显示以IL-2进行浅表性膀胱癌患者的局部治疗(膀胱内)提供肿瘤退化,并且在一些临床研究中延长的无退化时间(Den Otter,W.等人,J Urol,159:1183-1186,1998;and Den Otter,W.等人,Cancer Immunol Immuotherher,57:931-950,2008)。在第2期研究中,相较使用单剂或组合救援性化学疗法所观察到的6至7个月,对顺铂有抗性的晚期/转移性尿道上皮癌瘤(其中65%为膀胱癌)的患者全身性IL-2给药提供超过10个月的存活中位数,暗示对IL-2疗法的膀胱癌瘤敏感性的进一步证据(Kim,J.等人,Urol Oncol,21:21-26,2003;以及Gallagher,D.J.等人,Cancer,113:1284-1293,2008)。然而,这些患者中的IL-2诱发毒性是显著的,并且限制了治疗疗方(Kim,J.等人,Urol Oncol,21:21-26,2003)。因此,对于增强IL-2的冶愈效果,减少其毒性,且在没有危害临床益助和扩张其效用超过目前核准的条件上的创新策略有迫切需要。
亦已显示特异性地以恶性肿瘤为目标的治疗策略是有效的。然而,虽然用于膀胱癌的分子和基因标志已明显特征化,仍有使用针对膀胱癌的分子目标剂的少数临床试验。使用针对HER-2/neu或VEGF的治疗抗体(Abs)或口服EGFR拮抗剂的晚期/转移性膀胱癌的患者的最近临床研究已显示相较于标准化学疗法无改善的功效/毒性剖面(Vaughn,D.J.,JClin Oncol,25:2162-2163,2007;Hussain,M.H.等人,J Clin Oncol,25:2218-2224,2007;1Hahn,N.M.等人,J Clin Oncol,27:5018,2009;and Philips,G.K.等人,BJU Int,101:20-25,2008),表示这些目标不适用于膀胱癌。有趣地,基因研究说明膀胱癌肿瘤的发病机理主要是由两个分歧但重迭的途径所组成(Wu,X.R.,Nat Rev Cancer,5:713-725,2005)。非肌肉侵入性膀胱肿瘤被认为是从简单和结节性增生发生,而且得到成纤维细胞生长因子受体3、Ha-Ras以及PIK3CA基因中的频繁突变。肌肉侵入性膀胱癌肿瘤被认为是源自原位扁平腺癌、重度言语障碍症或重生(de novo)。这些肿瘤的至少50%在肿瘤抑制物p53及/或成视网膜细胞瘤基因中含有缺陷(Rosser,C.J.等人,Expert Rev Anticancer Ther,1:531-539,2001)。与这发现一致,提升的p53的肿瘤过度表达与膀胱癌患者中的转移性疾病的恶化相关(van Rhijn,B.W.G.等人,Cancer Research,64:1911-1914,2004)。这亦由膀胱癌的转基因小鼠模式所支持。尿道上皮中表达SV40大T抗原(其结合并且灭活p53蛋白质)的小鼠发展原位癌瘤和随机的肌肉侵入性癌瘤,而过度表达Ha-ras的小鼠发展增生和浅表性疾病(Zhang,Z.T.等人,Onco基因,20:1973-1980,2001;and Zhang,Z.T.等人,Cancer Res,59:3512-3517,1999)。
申请人辨识出肿瘤细胞中的p53蛋白以作为治疗干预的目标。肿瘤细胞中的p53基因中的错义突变的非常高频率出现和后续p53蛋白的过度表达创造晚期或转移性膀胱癌瘤的患者中以p53作为肿瘤抗原而为目标的机会。p53为作用以遏止细胞增殖的细胞内肿瘤抑制蛋白(Levine,A.J.等人,Nature,351:453-456,1991;and Vousden,K.H.and Prives,C.,Cell,120:7-10,2005)。当突变时,其丧失抑制不正常增殖的能力,并且在肿瘤细胞中发生(Levine,A.J.等人,Nature,351:453-456,1991;以及Vousden,K.H.and Prives,C.,Cell,120:7-10,2005)。结果,p53突变/过度表达与肿瘤扩散和复发与相关,而且与整体较低存活率和对各式各样的癌症类型(包含膀胱癌)中化学治疗干预的抗性联结(van Rhijn,B.W.G.等人,Cancer Research,64:1911-1914,2004;Strano,S.等人,Oncogene,26:2212-2219,2007;and Goebell,P.J.等人,Urol Oncol,28:377-388,2010)。超过3,400位膀胱癌患者的最近分析揭示肿瘤试样中可侦测的p53过度表达相对于肿瘤分级和肿瘤期之间的高度显著相关(Goebell,P.J.等人,Urol Oncol,28:377-388,2010)。肿瘤中的p53的过度表达亦与肿瘤恶化和晚期膀胱癌患者的差存活率显著相关。由于正常组织中仅可侦测到低量的天然p53,肿瘤相对于正常组织中所展示的p53的差别创造出治疗性地以这蛋白为目标的机会。然而,p53为细胞内蛋白质,而且非展示于细胞表面上,因此无法以Ab为主的剂接近。如同其它细胞内蛋白质,p53被处理,而且p53胜肽是以HLA分子的形式呈现在细胞表面上。申请人辨识出HLA-A*0201呈现的p53的胜肽表位(氨基酸264至272)以高浓度展示在不同人类肿瘤细胞和组织的表面上,而正常组织不呈现可侦测浓度的此络合物。由于这表位是在p53中很少突变的区域内,其细胞表面展示作为过度表达p53的肿瘤的广泛目标。申请人请求保护的方法部分是基于人类肿瘤细胞的表面上的p53胜肽表位的展示。
如本文中所使用,术语“治疗(treat)”、“治疗(treating)”、“治疗(treatment)”、“疗法(therapy)”等意指减少或改善与所述治疗联结的异常及/或症状。应将了解虽然未排除,治疗异常或病症不需要完全移除与其联结的异常、病症或症状。
如本文中所使用,术语“预防(prevent)”、“预防(preventing)”“预防(prevention)”、“预防治疗(prophylactic treatment)”等意指减少在不具有但有风险或易于发展异常或病症的受试者中发展异常或病症的概率。
如本文中所使用,术语“有效(effective)”、“功效(efficacy)”、“有效的(effective)”等意指治疗、预防或改善与联结的疾病、异常及/或症状的能力。
本发明的治疗方法(其包含预防治疗)中通常包括对有需要的受试者(例如,动物、人类),包含哺乳动物,特别是人类,给药治疗有效量的IL-2融合蛋白与一种或多种治疗剂的组合。此治疗将适合对患有、具有、易有癌症或有癌症的风险,特别是膀胱(或尿道上皮)癌症的受试者(特别人类)给药。彼等“有风险”的受试者的测定可通过受试者或健康照护提供者的诊断试验或意见的任何客观或主观测定而进行(例如,基因试验、酵素或蛋白质标志、标志(如本文中所定义)、家族历史等)。
于一个具体实施例中,本发明提供一种监控治疗进度的方法。所述方法包含测定患有或易有与癌症(特别是膀胱癌)联结的异常或其症状的受试者中的诊断标志(Marker)(例如,其蛋白质或指示剂等)的水平或诊断测量(例如,扫描、测定法、用于肿瘤尺寸评估的扫描、手术移除的组织/活组织检查中的病理组织学评估等)的步骤,其中已对所述受试者给药足以治疗疾病或其症状的治疗量的本文化合物。方法中的标志水平或测量的测定可与健康正常控制者或其它饱受疾病所苦的患者中的标志的已知水平或测量比较,以建立受试者的疾病状态。于优选的具体实施例中,受试者中的标志或测量的第二浓度是于测定第一浓度后的时间点测试,而且比较两个浓度以监控疗法的病程或功效。在某些优选的具体实施例中,受试者中的标志的预处理水平或测量是在根据本发明的开始处理之预定;这标志的预处理水平或测量可接着与处理开始后受试者中的标志水平或测量比较,以测定处理的功效。在某些优选的具体实施例中,治疗功效的监控是基于使用固体肿瘤委员会中的反应评估标准(Response Evaluation Criteria in Solid Tumors Committee,RECIST)1.1建议的新国际标准评估癌症的客观反应而完成。在其它具体实施例中,治疗功效是基于受试者的整体存活或无恶化存活时间或存活率评估。
医药组成物
本文描述的方法仰赖于单独给药IL-2融合蛋白或随着一种或多种治疗剂给药。本发明的IL-2融合蛋白包括与第二多肽融合的整个成熟IL-2多肽或其生物上有活性的片段。在某些具体实施例中,第二多肽具有目标性功能,因为其特异性地结合癌症细胞上的表位、胜肽、配位体或特征。据此,目标多肽的非限制性实例包含抗体和其抗原结合片段、T细胞受体和其胜肽结合片段、以及受体和其配位体结合片段。能特异性地结合癌症细胞的任何多肽可作为目标的IL-12融合蛋白的第二多肽。
令人惊讶地,本发明提供有效作为所述方法中的目标IL-12融合蛋白的非目标性IL-2融合蛋白。非目标IL-2融合蛋白的第二多肽包含抗体和其抗原结合片段、T细胞受体和其胜肽结合片段、以及受体和其配位体结合片段。然而,这些案例中,第二多肽不特异性地结合欲治疗的癌症细胞。于优选的具体实施例中,第二多肽为T细胞受体(TCR),而且最优选为单链T细胞受体(scTCR)。适合用于第二多肽的TCR分子的实例是描述于美国专利第7,456,263号;美国专利第6,534,633号;美国专利申请公开案第US2003/0144474号;以及美国专利申请公开案第US2011/0070191号,其等全文是以参考方式纳入本文中。
特别地,已产生具有显著地增加作为治疗分子的利用的TCR融合和接合络合物。具体地,已创造融合分子的新类别,其增加细胞表面驻留时间,并且改善药物动力学剖面,例如,这些分子具有较长的血浆半衰期。本发明亦提供编码此包括共价地连结生物上有活性的多肽或分子的TCR分子的络合物的表达质体,以及制造方法和此融合和接合络合物及表达质体和接合络合物的用途。
T细胞通过在细胞表面上表达T细胞受体的方式而识别呈现在细胞表面上的抗原。TCR是双硫链接的异二聚体,大部分是由α和β链醣蛋白质所组成。相似于在B细胞中所操作用于产生抗体多样性的机转,T细胞使用机转以产生彼等受体分子的多样性(Janeway andTravers;Immunobiology 1997)。与免疫球蛋白基因相似,TCR基因是由在T细胞的发展期间重新排列的节段所构成。TCR多肽是由氨基终端可变和羧基终端恒定区域所组成。羧基终端区域作用为跨膜固定区且当受体被占用时参予细胞内信号传送的同时,可变区域负责识别抗原。TCRα链含有仅由V和D节段所编码的可变区域,同时β链含有额外的连结(J)节段。这些节段的重新排列和可变区域的突变和成熟造成能识别令人难以置信的大数量的不同TCR分子中展示的不同抗原的TCR的多样谱型(repertoire)。
先前已发展技术以产生识别特定抗原的高度特异性T细胞受体(TCR)。例如,待审查的美国专利申请案U.S.S.N.08/813,781和美国专利第6,534633号,其等全文是通过参考方式纳入本文中;以及国际公开案PCT/US98/04274和PCT/US99/24645,而且其中讨论的参考文献揭露制备和使用特异性TCR的方法。额外地,特定特异性TCR已通过重组方法而产生成为可溶性、单链TCR(scTCR)。已揭露用于产生和scTCRs的方法和用途,而且描述于国际申请案PCT/US98/20263,其是以参考方式并入本文中。可改变此TCR和scTCR,以便创造融合物或接合物以产生有用于作为治疗剂的TCR和scTCR。本发明的TCR络合物可产生通过将重组地产生的TCR或scTCR编码区基因上稠合编码生物上有活性的多肽或分子的基因,而产生TCR融合接合物。或者,TCR或scTCRs亦可将生物上有活性的分子化学地结合,以产生TCR接合络合物。
本文所使用的术语“融合分子”意指通过重组、化学或其它适合的方法共价地连结(亦即,稠合)的IL-2和第二多肽,诸如,TCR结构域。若有需要,融合分子可通过胜肽连接子序列于一个或多个位置融合。或者,胜肽连接子可用以协助融合分子的构筑。本发明的融合分子展现使其等作为较佳的治疗分子的改善特征。
本文所使用的术语“增加的细胞表面驻留时间”说明请求保护的融合分子与细胞表面上的蛋白质联结比单独融合分子的任何组分更长的时期。在某些具体实施例中,细胞表面驻留时间增加20%、30%、40%、50%、60%、70%、80%、90%、100%或更高。
本文所使用的术语“血清半衰期”或“血浆半衰期”意欲说明当本发明的融合分子的浓度或量在身体中减少至特定浓度或量的切确二分之一时所需的时间。本发明的融合分子展示比当IL-2未于融合分子中时显著更长的衰期。例如,当非为融合蛋白一部分时,至于请求保护分子的组分的血清半衰期,所揭露的分子的血清半衰期可增加20%、30%、40%、50%、60%、70%、80%、90%、100%、200%、300%、400%、500%、750%、1000%、1250%、1500%、1750%、2000%或更高。
“多肽”意指无论其尺寸,优选的基本上由20个天然氨基酸的任何者所组成的任何聚合物。虽然术语“蛋白质”通常是参考相对大的蛋白质使用,“胜肽”通常是参考小多肽使用,这些术语的使用通常在本领域中重迭。除非注明,否则术语“多肽”通常意指蛋白质、多肽以及胜肽。如由标准分子测尺寸技术诸如离心或SDS-聚丙烯酰胺凝胶电泳法所判断,根据本发明有用的胜肽通常将在约0.1和100KD或更高达1000KD之间,优选在约0.1、0.2、0.5、1、2、5、10、20、30以及50KD之间。
额外地,IL-2融合蛋白可为适合用于诊断或成像研究,诸如,荧光标记,诸如,绿色荧光蛋白质、藻红蛋白、细胞色素或德州红;或放射性核素,例如,碘-131、钇-90、铼-188或铋-212的可侦测地标示分子。参见,例如,Moskaug,等人J.Biol.Chem.264,15709(1989);Pastan,I.等人.Cells 47,641,1986;Pastan等人,Recombinant Toxins as NovelTherapeutic,Ann.Rev.Biochem.61,331,(1992);"Chimeric Toxins"Olsnes and Phil,Pharmac.Ther.,25,355(1982);公开PCT申请案第WO 94/29350号;公开PCT申请案第WO 94/04689号;以及美国专利5,620,939的有关制造和使用包括效应物或标志的蛋白质的揭示内容。
一个IL-2融合蛋白的具体实例如下:sc-TCR,诸如,融合IL-2的c264sc-TCR(ALT-801)可通过转染哺乳动物细胞而产生。融合络合物的c264scTCR/IL-2蛋白识别来自以人类HLA抗原;HLA-2.1形式呈现的人类野生型p53肿瘤抑制蛋白的处理的胜肽片段。c264scTCR和其胜肽配位体已描述于Card等人,Cancer Immunoll Immuother(2004)53:345,Belmont,等人Clin Immunol.(2006)121:29,and Wen,等人Cancer Immunother.(2008)57:1781。c264scTCR识别的人类p53(氨基酸264至氨基酸272)胜肽序列(本文中称为264胜肽或p264)为LLGRNSFEV。肿瘤抑制蛋白p53的表达在恶性细胞上向上调节。在本发明的特定具体实施例中,由c264scTCR/IL-2蛋白融合辨别在其表面上呈现p53(氨基酸264至氨基酸272)胜肽/HLA-A2络合物的肿瘤细胞促进针对肿瘤细胞的免疫活性,特此提供抗癌症治疗活性。这目标识别可有益于治疗具有过度表达p53的肿瘤(包含膀胱肿瘤)的受试者。
本发明的其它融合分子包括融合对联结的肿瘤或病毒胜肽抗原(包含衍生自MART-1、gp100、MAGE、HIV、甲、乙以及丙型肝炎、CMV、氨基酸V、LCMV、JCV、流行性感冒、HTLV以及其它病毒者)有特异性的其它scTCR的IL-2,其中,所述scTCR直接或通过连接子连结IL-2。
此外,IL-2融合蛋白可进一步包括额外的多肽标志。例如,一个标志是在生理pH,诸如,例如,6xHIS,带有电荷的多肽。在这种情况下,TCR融合物或接合络合物可通过可商购的金属-琼脂糖凝胶基质(诸如,Ni-琼脂糖凝胶,其能在约pH 6至9特异性地结合6xHIS标志)而纯化。EE表位和myc表位为适合的蛋白质标志的进一步实例,而且表位可以一种或多种可商购单克隆抗体特异性地结合。
如所注明,本文揭露的融合蛋白的组分,例如,IL-2和第二多肽,可以几乎任何方式组织,前提为IL-2融合蛋白具有意欲功能。特别地,若有需要,融合蛋白的各组分可以至少一个适合的胜肽连接子序列隔开另一种组分。再者,组分可通过连接子以定位,致使IL-2可结合其受体,并且提供最佳免疫刺激活化性及/或第二多肽可结合其受体/配位体和介导其活性。额外地,例如,融合蛋白可包含标志,以利于辨识及/或纯化融合蛋白。
本发明的IL-2融合蛋白具有令人惊讶的增加IL-2的血浆半衰期(超过单独IL-2的血浆半衰期)或结合细胞表面蛋白质(例如,细胞表面受体)的融合分子的表面驻留时间(超过单独IL-2的表面驻留时间)的能力。本发明的IL-2融合蛋白可具有增加分子的血浆半衰期和增加分子的表面驻留时间的能力,藉此导致请求保护的分子的功效的显著增加。
通常,本发明的IL-2融合蛋白的制备可通过本文所揭露的程序和通过涉及识别重组DNA技术而达成,例如,聚合酶链式扩增反应(PCR)、质体DNA的制备、以限制酶断裂DNA、寡核苷酸的制备、DNA的连接、mRNA的单离、将DNA引入适合的细胞、宿主的转化或转染、宿主的培养。额外地,融合分子可用离散剂和公知的电泳、离心以及色谱方法纯化单离和纯化。通常,参见Sambrook等人,Molecular Cloning:A Laboratoty Manual(2nd ed.(1989);andAusubel等人,Current Protocols in Molecular Biology,John Wiley&Sons,New York(1989)的有关这些方法的揭示内容。
本发明进一步提供编码本发明的融合蛋白的核酸序列且特别为DNA序列。优选地,DNA序列是由适合染色体外复制的质体所携带,诸如,噬菌体、病毒、质体、噬菌粒、黏粒、YAC或附加体。特别地,编码期望的融合蛋白的DNA质体可用以促进本文描述的制备性方法,而且获得显著量的融合蛋白。DNA序列可插入适当的表达质体,亦即,含有用于插入的蛋白质编码的序列的转录和翻译所需要的组件的质体。各式各样的宿主-质体系统可用以表达蛋白质编码的序列。这些包含感染病毒(例如,牛痘病毒、腺病毒等)的哺乳动物细胞系统;感染病毒(例如,杆状病毒)的昆虫细胞系统;微生物体,诸如,酵母含有酵母质体,或以细菌噬菌体DNA、质体DNA或黏粒DNA转化细菌。取决于所利用的宿主-质体系统,可使用一些适合的转录和翻译组件的任何一者。通常,参见前述的Sambrook等人,以及前述的Ausubel等人。
通常,根据本发明的优选的DNA质体包括以磷酸二酯键连结的核苷酸序列,其包括5'至3'方向的第一克隆位置以引入编码TCR链的第一核苷酸序列,其操作性连结编码IL-2的序列。
在大部分的情况下,优选为DNA质体编码的各融合蛋白组分是以“盒(cassette)”形式提供。所谓术语“盒”意指各组分可轻易地以标准重组方法取代另一种组分。
为了制造编码TCR融合络合物的质体,编码TCR分子的序列通过使用适合的连接酶连结编码IL-2的序列。编码呈现的胜肽的DNA可通过从天然来源(诸如,适合的细胞系)单离DNA或通过已知的合成方法,例如,磷酸酯三酯方法而获得。参见,例如,OligonucleotideSynthesis,IRL Press(M.J.Gait,ed.,1984)。合成的寡核苷酸亦可使用可商购的自动化的寡核苷酸合成器制备。一旦单离,编码TCR分子的基因可通过聚合酶链式反应(PCR)或其它技术领域中已知的手段扩增。扩增TCR胜肽基因的适合的PCR引物的可给PCR产物添加限制位点。PCR产物优选地包含IL-2多肽的剪接位点,而且TCR-IL-2融合络合物的适当的表达和分泌所需的前导序列。PCR产物亦优选为包含编码连接子的序列,或用于连接此序列的限制酶位置的序列。
本文描述的融合蛋白优选地是通过标准重组DNA技术而产生。例如,一旦单离编码TCR蛋白的DNA分子,序列可连接编码IL-2多肽的另一种DNA分子。编码TCR分子的核苷酸序列可直接连结编码IL-2胜肽的DNA序列,或更典型地,本文讨论的编码连接子序列的DNA序列可插入编码TCR分子的序列和编码IL-2胜肽的序列之间,并且使用适合的连接酶连结。产生的杂合DNA分子可于适合的宿主细胞中表达,以产生IL-2融合蛋白。DNA分子以5'至3'定向彼此连接,致使于连结后,编码多肽的翻译框未改变(亦即,DNA分子于框内彼此连接)。产生的DNA分子编码框内融合蛋白。
其它核苷酸序列亦可包含于基因构筑物中。例如,控制编码与IL-2胜肽融合的TCR胜肽的序列的表达的启动子序列,或将IL-2融合蛋白导向细胞表面或培养基的前导序列可包含构筑物中或存在于于其中插入构筑物的表达质体中。特别优选为免疫球蛋白或CMV启动子。
融合蛋白的组分可以几乎任何顺序组织,前提为各者能进行其所欲功能。例如,在一个具体实施例中,TCR是位于IL-2分子的C或N终端。
如所注明,根据本发明的融合分子或结合分子可以许多方式组织。在例示性构型中,TCR的C-端操作性地连结IL-2分子的N-端。若有需要,此连结可以重组方法达成。然而,在另一个构型中,TCR的N-端连结IL-2分子的C-端。
连接子序列优选地包括约1至20个氨基酸,更优选包括约1至16个氨基酸。优选地,连接子序列有弹性,故能不以单一不期望的构象拉牢IL-2。连接子序列可用以,例如,将识别位置与融合分子隔开。具体地,胜肽连接子序列可位于TCR链和IL-2胜肽之间,例如,以相同地化学交联且提供分子弹性。优选地,连接子主要包括具有小侧链的氨基酸,诸如,甘氨酸、丙氨酸以及丝氨酸,以提供弹性。优选地,约80或90百分比或更高的连接子序列包括甘氨酸、丙氨酸或丝氨酸残基,特别是甘氨酸和丝氨酸残基。至于含有异二聚体的TCR IL-2融合蛋白,连接子序列适合地连结TCR分子的β链,虽然连接子序列亦可附接TCR分子的α链。或者,连接子序列可连结至TCR分子的α和β链两者,以创造单链分子。适合的连接子序列是SGGGGSGGG(亦即,Ser Gly Gly Gly Gly Ser Gly Gly Gly)、TSGGGGSGGGGSGGGGSGGGGSS以及VNAKTTAPSVYPLAPVSQ。可使用不同的连接子序列包含任何数目的已成功地使用将抗体可变区域连接在一起的弹性连接子设计,参见Whitlow,M.等人,(1991)方法:A Companion toMethods in Enzymology 2:97-105。适合的连接子序列可轻易地依经验辨识。额外地,连接子序列的适合的尺寸和序列亦可通过基于TCR分子的预测尺寸和形状的传统计算器模拟技术而测定。
可采用一些策略以表达本发明的IL-2融合蛋白。例如,上述IL-2基因融合构筑物可以已知手段(诸如,通过限制酶的使用而在用于插入构筑物的质体中造成切口,接着连接)并入适合的质体。接着将含有基因构筑物的质体引入适合的宿主以表达IL-2融合胜肽。通常,参见前述的Sambrook等人。基于有关克隆化实验计划的因素,可实验地进行适合的质体的选择。例如,质体应与被采用宿主的兼容,而且具有适合被采用宿主的复制子。又,质体必须能容纳编码欲表达的IL-2融合蛋白的DNA序列。适合的宿主细胞包含真核和原核细胞,优选为彼等可在培养基中轻易地转化和展现快速生长的细胞。特定优选的宿主细胞包含原核生物,诸如,大肠杆菌(E.coli)、枯草杆菌(Bacillus subtillus)等以及真核生物,诸如,动物细胞和酵母菌株,例如,酿酒酵母(S.cerevisiae)。哺乳动物细胞通常为优选的,特别是J558、NSO、SP2-O或CHO。其它适合的宿主包含,例如,昆虫细胞诸如Sf9。采用传统的培养条件。参见前述的Sambrook。接着,可选择安定的转化或转染的细胞系。表达本发明的TCR融合络合物的细胞可以已知的程序测定。例如,连结免疫球蛋白的TCR融合络合物的表达可以对连结免疫球蛋白有特异性的ELISA及/或免疫印渍测定。
如上述通常,宿主细胞可用于制备性目的,以扩增编码期望的融合蛋白的核酸。因此,宿主细胞可包含其中具体意欲产生融合蛋白的原核或真核细胞。因此,宿主细胞具体地包含能扩增编码融合物的核酸的酵母菌、蝇、蠕虫、植物、青蛙、哺乳动物细胞以及器官。可使用的哺乳动物细胞系的非限制性实例包含CHO dhfr-细胞(Urlaub and Chasm,Proc.Natl.Acad.Sci.USA,77:4216(1980))、293细胞(Graham等人,J Gen.Virol.,36:59(1977))或类骨髓瘤细胞SP2或NSO(Galfre and Milstein,Meth.Enzymol.,73(B):3(1981))。
能扩增编码期望的融合蛋白的核酸的宿主细胞涵盖非哺乳动物真核细胞,包含昆虫(例如,秋夜盗蛾(Sp.frugiperda))、酵母(例如,酿酒酵母、粟酒裂殖酵母(S.pombe)、毕赤酵母(P.pastoris.),乳酸克鲁维酵母(K.lactis)、多形汉森酵母(H.polymorpha);如Fleer,R.,Current Opinion in Biotechnology,3(5):486496(1992))一般性评论、真菌以及植物细胞。亦预期某种原核生物,诸如大肠杆菌和杆菌(Bacillus)。
编码期望的融合蛋白的核酸可以用于转染细胞的标准技术引入宿主细胞。术语“转染(transfecting)”或“转染(transfection)”意欲涵盖用于将核酸引入宿主细胞的所有传统的技术,包含磷酸钙共沉淀、DEAE-葡聚糖介导的转染、脂质转染、电穿孔、显微注射、病毒转导及/或整合。用于转染宿主细胞的适合的方法可发现于前述的Sambrook等人,以及其它实验室教科书。
本发明进一步提供用于单离IL-2的感兴趣的融合蛋白的产生过程。在过程中,已引入编码操作性地连结调控序列的感兴趣的蛋白质的核酸的宿主细胞(例如,酵母菌、真菌、昆虫、细菌或动物细胞)在培养基中和融合蛋白的存在下以生产规模生长,以刺激编码感兴趣的融合蛋白的核苷酸序列的转录。随后,从采收的宿主细胞或从培养基单离感兴趣的融合蛋白。标准蛋白质纯化技术可用以从培养基或从采收的细胞单离感兴趣的蛋白质。特别地,纯化技术可用以表达和纯化来自各式各样的器具,包含轧辊瓶、旋转器烧瓶、组织培养盘、生物反应器或发酵器的大规模(亦即,以至少数毫克量计)的期望的融合蛋白的纯度。
表达的IL-2融合蛋白可通过已知方法单离和纯化。典型地,将培养基离心,并且接着以亲和性或免疫亲和性色谱法,例如,蛋白质-A或蛋白质-G亲和性色谱法或免疫亲和性实验计划(包括使用结合表达的融合络合物(诸如,连结的TCR或其免疫球蛋白区域)的单克隆抗体)纯化上清液。本发明融合蛋白可通过已知技术的适当组合而分离和纯化。这些方法包含,例如,利用溶解度诸如盐沉淀和溶剂沉淀的方法、利用分子重量的差异的方法诸如透析、超过滤、凝胶过滤以及SDS-聚丙烯酰胺凝胶电泳法、利用电荷差异的方法诸如离子交换柱色谱法、利用特定亲和性的方法诸如亲和性色谱法、利用疏水性差异的方法诸如反相高效液相色谱法以及利用等电点差异方法诸如等电聚焦电泳、金属亲和性柱诸如Ni-NTA。通常,参见前述的Sambrook等人以及前述的Ausubel等人的有关这些方法的揭示内容。
优选地,本发明IL-2融合蛋白是实质上纯的。亦即,融合蛋白已从天然伴随的细胞取代物单离,致使融合蛋白优选地以至少80%或90%至95%同构型(重量/重量)存在。对于许多医药、临床以及研究应用而言,融合蛋白最优选具有至少98至99%同构型(重量/重量)。一旦实质上地纯化,融合蛋白应实质上不含污染物已用于治疗应用。一旦部分地纯化或有实质纯度,可治疗地使用可溶性融合蛋白,或以本文揭露的体外或体内测定法中进行。实质纯度可以各式各样的标准技术诸如色谱法和凝胶电泳法测定。
本发明的截断的IL-2融合蛋白含有足以截断的TCR分子,使得TCR融合络合物于表达之后可分泌入培养基。因此,截断的IL-2融合蛋白将不包含富含疏水性残基的区域,典型为TCR分子的跨膜和细胞质结构域。因此,例如,至于本发明的优选的截断TCR分子,优选为TCR分子的β链的残基约199至237和α链的残基约193至230不包含于截断的TCR融合络合物中。
有关融合蛋白的术语“错误折迭”意指部分地或完整未折叠(亦即,变性)的蛋白质。融合蛋白可通过接触以下讨论的一种或多种离散剂而部分地或完整错误折迭。更通常地,本文揭露的错误折迭融合蛋白为相应的天然蛋白质的高吉布斯自由能(ΔG)形式的代表。优选为通常为正确折迭的天然融合蛋白,其可完全溶于水溶液,而且具有相对低ΔG。据此,天然融合蛋白在大部分情况下是安定的。
通过传统的策略或传统的策略的组合而侦测融合蛋白错误折迭是可能的。例如,错误折迭可通过各式各样的传统的生物物理技术,包含使用天然(对照组)和错误折迭分子的旋光度测量而侦测。
所谓术语“可溶性”或相似术语意指融合分子,特别是在低G力离心下(例如,标准离心中每分钟少于约30,000旋转)不轻易地从缓冲水溶液(例如,细胞培养基)沉降的融合蛋白。再者,若融合分子于在低浓度或无浓度的阴离子性或非离子性的清洁剂的存在下,在大于约5至37℃的温度及在或几乎中性pH中的水溶液中残留,则其是可溶的。在这些条件下,可溶性蛋白质将通常具有低沉降值,例如,少于约10至50斯维德伯格单位。
本文参考的水溶液典型地具有缓冲化合物以建立pH,典型地在约5至9的pH范围内,以及在约2mM和500mM之间的阴离子性强度范围。有时添加蛋白酶抑制剂或温和非离子性清洁剂。额外地,若有需要,可添加载体蛋白,诸如,少许mg/ml的牛血清白蛋白(BSA)。例示性缓冲水溶液包含标准磷酸盐缓冲的生理盐水、Tris缓冲生理盐水或其它公知的缓冲剂和细胞培养基调配物。
医药治疗
本发明包含有用于治疗肿瘤形成的IL-2融合蛋白。在一个特定具体实施例中,本发明的IL-2融合蛋白有用于预防或减少肿瘤生长或用于减少肿瘤形成细胞入侵周边组织或肿瘤转移的倾向。至于治疗用途,本文揭露的IL-2融合蛋白可全身性地给药,例如,在医药上可接受的缓冲剂(诸如,生理条件的生理盐水)中的调配。优选的给药路径,包含,例如,在患者中提供连续性、持续浓度的药物的皮下、静脉内、腹腔间地、肌内、或皮内注射。人类患者或其它动物的治疗将使用治疗有效量的于生理上可接受的载体的本文辨识的治疗剂进行。描述适合的载体和其调配物,例如,于Remington’s Pharmaceutical Sciences byE.W.Martin。治疗剂的量取决于给药方式、患者的年龄和体重以及肿瘤形成的临床症状而改变给药。通常,虽然因为化合物增加的特异性,在某些情况下将需要较低量,但量将在彼等用于与治疗与肿瘤形成有联结的其它疾病中使用的其它剂的范围中。
治疗方法
本发明的IL-2融合蛋白是有用于预防或改善肿瘤形成疾病。在一种治疗方式中,对可能的或实际受到疾病影响的组织的位置给药或全身性地给药本文辨识或描述的剂。给药的剂的剂量是取决于一些因素,包含各别患者的尺寸和健康。至于任何特定受试者,特定剂量疗法应根据各别需求和个人给药或监督组成物给药的专业判断而随着时间调整。
医药组成物的调配物
用于治疗肿瘤形成的治疗剂的给药可为造成治疗剂与其它组分的组合有效于改善、减少或稳定化肿瘤形成的浓度的任何适合手段。化合物可以任何适当的量和以任何适合的载体物质包含,而且通常是以组成物的总重量的1至95重量%的量存在。组成物可适合用于非经口的(例如,皮下地、静脉内地、肌内地、膀胱内地或腹膜内地)给药路径的剂量形式提供。一种给药的有利的方法是静脉内输注。医药治疗剂可根据传统的医药实践调配(参见,例如,Remington:The Science and Practice of Pharmacy(20th ed.),ed.A.R.Gennaro,Lippincott Williams&Wilkins,2000and Encyclopedia ofPharmacology Technology,eds.J.Swarbrick and J.C.Boylan,1988-1999,MarcelDekker,New York)。
可调配根据本发明的医药组成物,以在实质上刚给药时即释放IL-2融合蛋白或在任何预测定的时间或给药之后的时期释放IL-2融合蛋白。已知后者类型的组成物通常作为控制释放的调配物,其包含(i)在延长的时期在身体内创造实质上恒定浓度的药物的调配物;(ii)预定的延迟时间后在体内创造实质上恒定浓度的药物延长的期间的调配物;(iii)通过维持身体中的相对、恒定及有效浓度和同时与活性物质的血浆浓度中的波动联结的非所欲的副作用(锯齿动力图案)的最小化,而于预定时期持续作用的调配物;(iv)局部化作用的调配物,所述局部化作用是通过,例如,相邻或接触胸腺的控制释放组成物的空间布置;(v)允许方便用剂,致使例如每周或每两周一次给药剂量的调配物;以及(vi)通过使用载体或化学衍生物将治疗剂传递至特别的细胞类型(例如,肿瘤形成细胞)而形成肿瘤的调配物。至于一些应用,控制释放调配物避免白天频繁用剂的需求,以持续治疗水平的血浆浓度。
可探求任何数目的策略,以获得其中释放的速率胜过有问题的化合物的代谢速率的控制释放。在一个实施例中,控制释放是通过适当选择多个调配物参数和成分,包含,例如,多种类型的控制释放组成物和涂层而获得。因此,治疗剂是以适当的赋形剂调配成医药组成物,其在给药时,以控制的方式释放治疗剂。实例包含单一单位或多单位的锭剂或囊剂组成物、油性溶液、悬浮液、乳剂、微囊剂、微球体、分子络合物、奈米粒子、贴片剂以及脂质体。
非经口的组成物
医药组成物可通过非经口地注射、渗入或植入(皮下、静脉内、肌内、腹膜内、膀胱内或类似者)的剂量形式、调配物或经由适合的传递装置或含有传统的、非毒性医药上可接受的载体和佐剂植入物而给药。此组成物的调配和制备为彼等医药调配物领域中公知者。调配物科发现于前述的Remington:The Science and Practice of Pharmacy。
非经口的用途的组成物可以单位剂量形式提供(例如,于单一剂量安瓿)或于含有许多剂量且其中可添加适合的防腐剂的小玻璃瓶(参见以下)。组成物可以溶液、悬浮液、乳剂、渗入装置或植入用传递装置的形式,或其可以为使用之前以水或另一种适合的载体复原的干燥粉剂呈现。除了减少或改善肿瘤形成活性剂之外,组成物可包含适合的非经口地可接受的载体及/或赋形剂。一种或多种活性治疗剂可并入用于控制释放的微球体、微囊剂、奈米粒子、脂质体或类似者。再者,组成物可包含悬浮、溶解、安定、pH调节剂、张力调节剂及/或分散剂。
如上所述,根据本发明的医药组成物可为适合用于无菌注射的形式。为了制备此组成物,将一种或多种适合的治疗剂溶解或悬浮于非经口地可接受的液体载体。可接受的载体和溶剂中可采用水、通过添加适当量的氢氯酸、氢氧化钠或适合的缓冲剂、1,3-丁二醇、林格式溶液(Ringer’s solution)以及等张氯化钠溶液和右旋糖溶液而调整至适合的pH的水。水性调配物亦可含有一种或多种防腐剂(例如,对羟基苯甲酸甲酯、对羟基苯甲酸乙酯或对羟基苯甲酸正丙酯)。在其中一种化合物仅是不太或稍可溶于水中的情况下,可添加溶解增强或溶解剂,或溶剂可包含10至60%重量/重量的丙二醇或类似者。
控制释放非经口的组成物
控制释放非经口的组成物可为水性悬浮液、微球体、微囊剂、磁性微球体、油性溶液、油性悬浮液或乳剂的形式。或者,抗体可并入生物兼容的载体、脂质体、奈米粒子、植入物或渗入装置。
用于制备微球体及/或微囊剂的材料为,例如,生物能降解的/生物可腐蚀的聚合物,诸如聚泌乳素、聚-(氰基丙烯酸异丁酯)、聚(2-羟基乙基-L-谷氨酰胺)以及聚(乳酸)。当调配控制释放的非经口的调配物时,可使用的生物兼容的载体为碳水化合物(例如,葡聚糖)、蛋白质(例如,白蛋白)、脂蛋白或抗体。用于植入物的材料可为非生物能降解的(例如,聚二甲基硅氧烷)或生物生物能降解的(例如,聚(己内酯)、聚(乳酸)、聚(乙醇酸)或聚(原酸酯)或其组合)。
用于口服使用的固体剂量形式
用于口服使用的调配物包含含有一种与多种活性成份混合的非毒性医药上可接受的赋形剂的锭剂。此调配物对熟练的技术人员而言是已知的。赋形剂可为,例如,惰性稀释剂或填充剂(例如,蔗糖、山梨糖醇、糖、甘露糖醇、微晶纤维素、包含马铃薯淀粉的淀粉、碳酸钙、氯化钠、乳糖、磷酸钙、硫酸钙或磷酸钠);造粒和崩解剂(例如,包含微晶纤维素的纤维素衍生物、包含马铃薯淀粉的淀粉、交联羧甲基纤维素钠、海藻酸盐或海藻酸);结合剂(例如,蔗糖、葡萄糖、山梨糖醇、金合欢属、海藻酸、海藻酸钠、明胶、淀粉、预糊化淀粉、微晶纤维素、硅酸镁铝、羧甲基纤维素钠、甲基纤维素、羟丙基甲基纤维素、乙基纤维素、聚乙烯基吡咯烷酮或聚乙二醇);以及润滑剂、助流剂以及抗粘着剂(例如,硬脂酸镁、硬脂酸锌、硬脂酸、二氧化硅、氢化蔬菜油或滑石)。其它医药上可接受的赋形剂可为着色剂、调味剂、增塑剂、湿润剂、缓冲剂等。
锭剂可为未经涂怖或牠们可通过已知技术涂布,视需要地延迟胃肠道中的崩解和吸收,藉此于较长期间提供持续的作用。涂层可经调整以释放预定图案中的活性药物(例如,为了达成控制释放调配物),或其可经调整成直到穿过胃(肠涂层)之后才释放活性药物。涂层可为糖涂层、膜涂层(例如,基于羟丙基甲基纤维素、甲基纤维素、甲基羟乙基纤维素、羟丙基纤维素、羧甲基纤维素、丙烯酸酯共聚物、聚乙二醇及/或聚乙烯基吡咯烷酮)或肠涂层(例如,基于甲基丙烯酸共聚物、乙酸酞酸纤维素、酞酸羟丙基甲基纤维素、乙酸琥珀酸羟丙基甲基纤维素、聚乙烯基乙酸酯酞酸酯、紫胶及/或乙基纤维素)。再者,可采用时间延迟材料,诸如,例如,单硬脂酸甘油酯或二硬脂酸甘油酯。
固体锭剂组成物可包含经调整以保护组成物免于不要的化学变化(例如,释放嵌合抗体之前的化学分解)的涂层。涂层可以前述的Encyclopedia of PharmaceuticalTechnology中所述相似方式施用于固体剂量形式上。
口服使用的调配物亦可以可咀嚼锭剂、或其中活性成份与惰性固体稀释剂(例如,马铃薯淀粉、乳糖、微晶纤维素、碳酸钙、磷酸钙或高岭土)混合的硬明胶囊剂、或其中活性成份与水或油性培养基,例如,花生油、液体石蜡或橄榄油混合的软明胶囊剂呈现。可以使用,例如,混合器、液床式仪器或喷雾干燥设备的传统方式,在上述锭剂和囊剂下使用成分以制备粉体和颗粒。
控制释放口服剂量形式
口服使用的控制释放组成物可为,例如,经构筑成通过控制活性物质的溶解及/或扩散而释放嵌合抗体治疗剂。溶解或扩散控制释放可通过化合物的锭剂、囊剂、丸剂以及颗粒调配物的适当涂层,或将化合物并入适当的基质而达成。控制释放涂层可包含上述一种或多种涂层物质及/或,例如,紫胶、蜂蜡、糖蜡、蓖麻蜡、棕榈蜡、硬脂醇、单硬脂酸甘油酯、二硬脂酸甘油酯、硬脂酸棕榈酸甘油酯、乙基纤维素、丙烯酸树脂、dl-聚乳酸、乙酸丁酸纤维素、氯化聚乙烯、乙酸聚乙烯酯、乙烯基吡咯啶酮、聚乙烯、聚丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸2-羟基甲酯、甲基丙烯酸酯水凝胶、1,3丁二醇、乙二醇甲基丙烯酸酯、及/或聚乙二醇。在控制释放基质调配物中,基质材料亦可包含,例如,水合甲基纤维素、棕榈蜡以及硬脂醇、卡波姆(carbopol)934、聚硅氧烷、三硬脂酸甘油酯、丙烯酸甲酯-甲基丙烯酸甲酯、聚乙烯基氯化物、聚乙烯及/或卤代氟碳。
含有一种或多种治疗化合物的控制释放组成物亦可为易浮的锭剂或囊剂的形式(亦即,口服给药时在胃内容物的顶部浮动特定时期的锭剂或囊剂)。一种或多种化合物的易浮的锭剂调配物可通过将一种或多种化合物与赋形剂和20至75%重量/重量的水胶体(诸如,羟乙基纤维素、羟丙基纤维素或羟丙基甲基纤维素)的混合物造粒而制备。接着,可将所获得颗粒体可压缩成锭剂。与接触胃液时,锭剂在其表面周围形成实质上不透水的凝胶屏障。这凝胶屏障参予维持密度少于一,藉此允许锭剂在胃液中保持浮的。
组合疗法
本发明提供IL-2融合蛋白和一种或多种治疗剂的组合给药。IL-2融合蛋白可在给药治疗剂之前、同时或之后给药。此外,若超过使用一种治疗剂,则这些剂可同时或分别给药。另外,IL-2融合蛋白和一种或多种治疗剂的给药可以多个剂量方案给药。在特定具体实施例中,IL-2融合蛋白和一种或多种治疗剂可通过一种或多种以休息期隔开的多种用剂方案给药。
取决于患者的疾病阶段,新佐剂设定中的本发明的IL-2融合蛋白和一种或多种治疗剂的组合是在额外的疗法或手术之前,或作为第一线、第二线或后线疗法。于优选的具体实施例中,组合疗法对囊肿切除术之前的膀胱癌受试者有特异性。此疗法可根除微肿瘤转移,降期肿瘤,减少循环肿瘤细胞手术后的植入以及增进存活。在其它具体实施例中,本发明的组合疗法是对晚期或转移性膀胱癌受试者有特异性的第一线或第二线疗法。此治疗可提供有抗性或不适合标准疗法的受试者。IL-2融合蛋白作为单一疗法的用途亦可有效地用于这些治疗设定。
本发明的IL-2融合蛋白和一种或多种治疗剂的组合可较以各别剂的治疗有利地提供更有效的疗法。在某些优选的具体实施例中,组合疗法包括ALT-801作为IL-2融合蛋白,和顺铂及/或吉西他滨作为治疗剂。额外地,本发明的具体实施例包含膀胱(或尿道上皮)癌症受试者的治疗,其中所述癌症可为转移性细胞癌瘤、癌瘤(或肿瘤)原位、非肌肉-侵入性、肌肉-侵入性、局部晚期、肿瘤转移、第I至IV期或低或高恶性。
于优选具体实施例中,IL-2融合蛋白和一种或多种治疗剂的组合给药较以治疗剂的单独治疗更有效地治疗或预防受试者的癌症。使用IL-2融合蛋白和一种或多种治疗剂的组合治疗成效可在预期或回推的基准上以与治疗剂的单独治疗比较,使用相似研究组或交叉研究的历史功效手段。可良好建立用于癌症治疗的功效测量,而且其可包含整体肿瘤反应(亦即,基于RECIST、WHO或其它标准的恶化疾病的速率、安定的疾病、部分反应或完整反应的速率)、无恶化存活、恶化的时间、整体存活或存活率、风险比、复发率或时间、肿瘤生物标志分析、生活质量测量、额外的治疗的速率或时间等。使用IL-2融合蛋白和一种或多种治疗剂的组合治疗的相较于治疗剂的单独治疗的较佳的功效是典型地定义为统计学上地显著的功效手段的改善(亦即,P值<0.10或优选为<0.05),或可为定义为周、月或年测量的事件的时间增加1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、100%、200%、300%、400%、500%、750%、1000%、1250%、1500%、1750%、2000%或更高的改善速率测量。在非限制性实例中,使用本发明的ALT-801和吉西他滨+顺铂组合给药治疗晚期或转移性膀胱癌受试者提供较先前报导的以吉西他滨+顺铂或其它以顺铂为主的化学疗法疗方治疗的晚期/转移性膀胱癌受试者为更佳的抗肿瘤功效。具体地,von der Maase等人(J.Clin.Oncol.(2000)17:3068)报导在晚期或转移性膀胱癌患者的第III期临床研究中,以独立辐射学复查,以吉西他滨+顺铂的治疗造成49.4%(182位评估患者中有81位)的整体肿瘤反应速率(亦即,部分反应和完整反应的速率)和12.2%的完整反应速率。这研究亦报导以甲氨蝶呤、长春花碱、多柔比星以及顺铂治疗的患者中有相似的整体反应速率(45.7%,181位评估患者中有69位)和完整反应速率(11.9%)。其它化学疗法疗方(亦即,单剂、双重峰、三重峰)的后续研究中,这报导的患者群体有类似或低劣的反应速率(Yafi等人的评论Curr.Oncol.(2011)18:e25)。令人惊讶地,对晚期/转移性膀胱(尿道上皮)癌症患者组合给药本发明的ALT-801和吉西他滨+顺铂,提供了较von der Maase等人或其它人报导的吉西他滨+顺铂或其它以顺铂为主的化学疗法疗方更佳的整体反应和完整反应速率。
额外地,IL-2融合蛋白和一种或多种治疗剂的组合给药对治疗或预防对化学疗法有抗性的受试者的癌症有效。在特定具体实施例中,本发明的组合治疗包含让癌症有抗性的一种或多种治疗剂。在其它具体实施例中,本发明的组合治疗包含不同于让癌症有抗性的一种或多种治疗剂。在非限制性实例中,ALT-801和吉西他滨+顺铂的组合给药对于在先前吉西他滨+顺铂疗法中恶化的膀胱癌患者提供完整反应(CR)是有效的。在370位以顺铂为主的疗法后恶化的晚期尿道上皮细胞癌患者的第III期研究中无CR被报导的事实下,这结果是高度未预料到的(Bellmunt等人J.Clin.Oncol.(2009)27:4454)。
本发明的IL-2融合蛋白和一种或多种治疗剂的组合可通过各式各样的机转提供更有效的疗法。IL-2融合蛋白和细胞毒性治疗剂疗方可通过这些剂的组合对癌症的直接效果而提供功效。在一些情况中,这些效果的时序可提供改善的结果。例如,针对巨瘤症的细胞毒性治疗剂的快速活性与针对残余疾病的IL-2融合蛋白的耐久性长期活性的组合可提供较单独剂更佳的功效。或者,治疗剂不仅对肿瘤细胞有直接细胞毒性效果,但亦可经由所谓偏离目标效果(off-target effect)增效免疫系统,以与本发明IL-2融合蛋白的组合达到有效率的抗癌症免疫力(Galluzzi,L.等人,Nat Rev药物Discov,11:215-233)。例如,以治疗剂的治疗可增加癌症细胞表面上的抗原目标的表达,藉此允许IL-2融合蛋白诱发更有效的抗肿瘤免疫反应。于一些具体实施例中,通过IL-2融合蛋白的组分和免疫反应识别的抗原目标是IL-2融合蛋白交互作用导向针对肿瘤细胞。在一个实例中,治疗剂增加肿瘤细胞表面上的HLA或HLA/胜肽络合物浓度,并且增强TCR-IL2融合蛋白的识别。在其它具体实例中,以铂为主的化合物(包含顺铂、草酸铂以及卡铂)不仅诱发第I类HLA表达,也明显地减少人类肿瘤细胞上T细胞抑制分子PD-L2的表达(Lesterhuis,W.J.等人,J Clin Invest,121:3100-3108)。PD-L2的向下调节可造成IL-2融合蛋白刺激的T细胞的增强的抗肿瘤的效果。多种治疗剂(包含顺铂、他克唑以及多柔比星)具有通过增加肿瘤细胞对颗粒酶的渗透率,而将肿瘤细胞敏化成细胞毒性T淋巴球(CTL)的能力,藉此使得牠们易受CTL介导的溶胞,甚至若牠们不表达识别的CTL抗原(Ramakrishnan,R.等人,J Clin Invest,120:1111-1124)。在本发明的其它具体实施例中,由于吉西他滨的活性增加肿瘤细胞上第I类HLA的表达和增强对IL-2融合蛋白活化的CD8+ T细胞交叉呈现肿瘤抗原,IL-2融合蛋白与吉西他滨的组合可造成更有效的疗法(Liu,W.M.等人,Br J Cancer,102:115-123;Nowak,A.K.等人,J Immunoll,170:4905-4913,2003;and Nowak,A.K.等人,Cancer Res,63:4490-4496,2003)。在本发明中的组合疗法中,吉西他滨的使用亦可选择性地杀死负责抑制抗原特异性的T-细胞反应的衍生自骨髓的抑制细胞(MDSC)(Mundy-Bosse,B.L.等人,Cancer Res,71:5101-5110;Vincent,J.等人,Cancer Res,70:3052-3061;Suzuki,E.等人,Clin CancerRes,11:6713-6721,2005;and Ko,H.J.等人,Cancer Res,67:7477-7486,2007),藉此提供IL-2融合蛋白介导的抗肿瘤免疫活性的较佳环境。化学疗法亦可诱发肿瘤自我吞噬,导致腺苷5’-三磷酸酯的释放,能吸引和刺激抗肿瘤免疫反应(Michaud,M.等人,Science,334:1573-1577)。整体上,本发明的组合治疗的抗肿瘤作用机转可不仰赖于治疗剂的直接细胞毒性活性。因此,组合治疗可对于其肿瘤对治疗剂组分有抗性的受试者是有效的。
套组
本发明提供用于治疗或预防肿瘤形成的套组。在一个具体实施例中,套组包含含有治疗有效量的单位剂量形式的IL-2融合蛋白和一种或多种治疗剂的治疗或预防组成物。于优选具体实施例中,IL-2融合蛋白为ALT-801,而且一种或多种治疗剂为顺铂及/或吉西他滨。于一些具体实施例中,套组包括含有治疗或预防细胞组成物的无菌容器;此容器可为盒、安瓿、瓶、小玻璃瓶、管、袋、囊、泡罩包装或其它技术领域中已知的适合的容器形式。此容器可由塑料、玻璃、层压纸、金属箔或适合用于保持药剂的其它材料所制。
若有需要,本发明的IL-2融合蛋白和一种或多种治疗剂与用于对具有癌症或有发展癌症的风险(例如,膀胱癌)的受试者给药IL-2融合蛋白和一种或多种治疗剂的指令一起提供。指令将通常包含关于将组成物用于治疗或预防肿瘤形成的信息。在其它具体实施例中,指令包含以下至少一者:治疗剂的描述;用于治疗或预防其局部缺血或症状的剂量方案和给药;预防措施;警告;适应症;禁忌症;过量信息;不良反应;动物药理学;临床研究;及/或参考文献。指令可打印直接到容器上(当存在时)或为作为标签而施用于容器的,或作为个别片、小册子、卡片或夹子而存在容器中或与容器一起供应。
重组多肽表达
除非另行说明,本发明的实践采用分子生物学(包含重组技术)、微生物学、细胞生物学、生物化学以及免疫学,其是在熟练的技术人员的良好理解范围内的传统的技术。此技术在文献,诸如,“Molecular Cloning:A Laboratory Manual”,第二版(Sambrook,1989);“Oligonucleotide Synthesis”(Gait,1984);“Animal Cell Culture”(Freshney,1987);“Methods in Enzymology”(31)“Handbook of Experimental Immunology”(Weir,1996);“Gene Transfer Vectors for Mammalian Cells”(Miller and Calos,1987);“CurrentProtocols in Molecular Biology”(Ausubel,1987);“PCR:The Polymerase ChainReaction”,(Mullis,1994);“Current Protocols in Immunology”(Coligan,1991)中完全解释。这些技术可应用于本发明的多核苷酸和多肽的产生,诸如,可在本发明的制造和实践中考虑。用于特定具体实施例的特别有用的技术将在以下段落讨论。
提出以下实施例,以便提供彼等技术领域中具有通常知识者和如何制造和使用测定法、筛选以及本发明的治疗方法的完整揭示内容和描述,而非意欲限制发明人视为他们发明的范畴。
实施例
实施例1:静脉内给药新颖IL-2融合蛋白ALT-801抑制小鼠模式中的膀胱癌。
ALT-801是白介素-2和能识别呈现人类p53胜肽(氨基酸264-272)/HLA-A*0201络合物的肿瘤的T细胞受体(TCR)结构域之间的融合蛋白。当时与PBS治疗比较时,静脉内给药ALT-801显著地延长带有MB49luc原位肌肉侵入性和浅表性膀胱癌的C57BL/6小鼠的存活。以ALT-801治疗的小鼠亦存活以MB49luc肿瘤细胞的再激发(rechallenge),表示长效免疫反应和长期记忆。额外地,裸鼠中,ALT-801展现针对人类膀胱癌HLA-A*0201+/p53+UMUC-14和HLA-A*0201-阴性/p53+KU7异体移植的强效抗肿瘤活性,证实ALT-801的TCR结构域目标活性对于功效是不需要的。UMUC-14和KU7异体移植模式中,ALT-801与吉西他滨的组合显示较吉西他滨+顺铂(GC)化学疗法更佳的抗肿瘤效果和更低毒性,尽管这些肿瘤细胞对GC有不同敏感性。
实施例2:ALT-801与吉西他滨和顺铂的组合对裸鼠中人类膀胱癌UMUC-14的原发肿瘤生长的效果。
单独c264scTCR-IL2(ALT-801)和其与吉西他滨和顺铂的组合的多发性剂量给药的抗肿瘤功效是在带有人类膀胱UMUC-14和KU7P细胞的无胸腺裸鼠中的原发肿瘤评估。用吉西他滨和顺铂疗方的治疗是转移性膀胱癌患者的照护标准。为了评估这些化学治疗剂对人类膀胱癌细胞的体外效果,以单独吉西他滨和顺铂和其组合治疗HLA-A2+p53+UMUC-14细胞。24小时培育之后,由于G0/G1细胞周期遏止,吉西他滨、顺铂以及吉西他滨+顺铂造成UMUC-14细胞增殖的剂量依赖性减少。此等结果与此等药剂在细胞生长的作用机转一致。与吉西他滨+顺铂的组合在体外培育亦诱发在UMUC-14肿瘤细胞表面上呈现p53胜肽(氨基酸264至272)/HLA-A*0201络合物,表示通过这治疗提升ALT-801的抗原目标。
使用细胞增殖测定法进一步评估人类膀胱肿瘤细胞系对吉西他滨和顺铂的敏感性。将UMUC-14和KU7P细胞平铺于含有多种量的吉西他滨和顺铂的培养基,并且在24小时后使用WST-1试剂测定细胞增殖。经发现吉西他滨以2030μM的IC50抑制UMUC-14细胞生长,而以0.05μM的IC50抑制KU7P细胞生长。顺铂亦显示对KU7P细胞(IC50,1.4μM)有较UMUC-14细胞(IC50,9.2μM)更大的抑制。整体上,这些结果说明UMUC-14细胞生长对化学治疗剂相对有抗性,KU7P细胞生长则对化学治疗剂敏感。
接着,评估吉西他滨、顺铂以及ALT-801治疗在带有皮下UMUC-14人类膀胱肿瘤的裸鼠中的抗肿瘤效果。在这研究中,四组带有UMUC-14肿瘤的小鼠(5只小鼠/群组)进行研究药物治疗的两个周期,各周期持续3周。至于ALT-801与吉西他滨及顺铂(Gem+Cis+ALT-801)的组合,顺铂(Cis)(3mg/kg)是在研究第1天(SD1)和SD22静脉内给药,吉西他滨(Gem)(40mg/kg)是在SD1、SD8、SD22以及SD29静脉内给药,以及ALT-801(1.6mg/kg)是在SD3、SD5、SD8、SD10、SD24、SD26、SD29以及SD31(图1)静脉内给药。其它研究实验组包含ALT-801单一疗法、Gem+Cis组合疗法或PBS依适当的预定表给予。与以PBS治疗的小鼠中所观察到者比较,三种测试的治疗疗方(Gem+Cis+ALT-801;ALT-801;Gem+Cis)各造成统计学上显著地减少皮下UMUC-14人类膀胱肿瘤的生长(图1)。三个实验组之间,Gem+Cis+ALT-801显示最佳功效,其中肿瘤生长抑制(TGI)(相对于以PBS治疗的小鼠中的肿瘤)为87%,接着ALT-801(77%TGI)和Gem+Cis(52%TGI)。以Gem+Cis治疗看见的肿瘤体积的减少仅在治疗的第二周期的期间观察到,而且可已部分归因于大肿瘤的断裂或坏死,而不是导向抗肿瘤活性。ALT-801与吉西他滨和顺铂治疗的组合无显著地减少小鼠体重,而且无观察到死亡率或毒性的治疗后征兆,暗示治疗疗方是安全的。
实施例3:ALT-801或MART-1scTCR/IL-2融合蛋白与吉西他滨的组合对裸鼠中UMUC-14人类膀胱癌的原发肿瘤生长的效果。
进行这作为追踪的研究评估ALT-801(c264scTCR-IL2)加上吉西他滨和非目标性的cTCR/IL-2融合蛋白(MART-1scTCR/IL-2)加上吉西他滨的多发性剂量给药对带有人类膀胱UMUC-14细胞的无胸腺裸鼠的原发肿瘤生长的抗肿瘤功效。ALT-801(c264scTCR/IL-2)识别展示p53(氨基酸264至272)/HLA-A*0201络合物的肿瘤细胞,而且已证实抑制无胸腺裸鼠中的HLA-A*0201+/p53+皮下肿瘤的生长(Belmont,等人2006Clin Immunoll.121:29,Wen,等人2008Cancer Immunol Immuother.57:1781)。MART-1scTCR/IL-2为一种不同的scTCR/IL-2融合蛋白,识别以HLA-A*0201的形式呈现的MART-1(氨基酸27至35)胜肽,但非p53(氨基酸264至272)/HLA-A*0201。这蛋白质已在与HLA-A*0201+/p53+皮下肿瘤的研究中作为非目标性的控制试剂。ALT-801和MART-1scTCR/IL-2展现相当的结合细胞表面IL-2受体和刺激NK细胞反应的能力。然而,针对小鼠模式中的皮下HLA-A*0201+/p53+A375人类黑色素瘤肿瘤,ALT-801展现较MART-1scTCR/IL-2更佳的抗肿瘤活性(Wen,等人2008Cancer ImmunolImmunother.57:1781)。此效果可能是由于ALT-801蛋白质的肿瘤特异性识别。
评估ALT-801和MART-1scTCR/IL-2与吉西他滨的组合的功效,以测定肿瘤对scTCR/IL-2融合蛋白的抗肿瘤活性的贡献,接收吉西他滨加上顺铂的带有肿瘤的小鼠作为这研究的对照组。
带有皮下UMUC-14肿瘤(平均体积为80mm3)的无胸腺裸鼠(4只动物/群组)是以吉西他滨(40mg/kg)(Gem)加上顺铂(3mg/kg)(Cis)、ALT-801(1.6mg/kg)加上Gem(40mg/kg)或MART-1scTCR/IL-2(2.4mg/kg,ALT-801的剂量相当活性)加上Gem(40mg/kg)静脉内治疗(i.v.),给两次治疗周期。第一治疗周期是由在第一周期中的研究第1天(SD1)的Cis注射,SD 1和SD 8的两次Gem注射,以及SD 3、SD 5、SD 8以及SD 10的ALT-801或MART-1scTCR/IL-2的四次注射所组成。11天休息期(SD 15至SD 21)之后,使用与第一周期中的相同疗方进行此研究的第二治疗周期,接着进行6天追踪期(SD42至SD47)。
相较于以Gem+Cis治疗的小鼠中所观察到者,使用ALT-801+Gem或MART-1scTCR/IL-2+Gem的治疗造成皮下UMUC-14人类膀胱肿瘤的生长的统计学上显著的减少(图2)。整体上,无发现ALT-801+Gem和MART-1scTCR/IL-2+Gem治疗之间的抗肿瘤活性有显著的差异,虽然ALT-801+Gem显示疗程期间有较佳抗肿瘤功效的趋势。这些结果确认先前结果证实这模式中的ALT-801治疗疗方的强效抗肿瘤活性。额外地,从非目标性的MART-1scTCR/IL-2融合蛋白所观察到的功效说明了UMUC-14人类膀胱异体移植亦对以IL-2为主的疗法高度敏感。因此,这数据证实ALT-801的c264scTCR组分的目标活性对于其针对UMUC-14膀胱肿瘤细胞的强效功效是必要的。与实施例2一起,结果清楚说明IL-2融合蛋白与化学疗法(吉西他滨+顺铂或吉西他滨)的组合造成针对人类膀胱肿瘤的有效治疗,包含对化学治疗剂有抗性的肿瘤细胞。
治疗疗方的期间无观察到死亡或毒性的治疗后征兆。在疗程期间的数个时间点,相较于以Gem+C治疗的动物,ALT-801+Gem和MART-1scTCR/IL-2+Gem实验组中观察到显著的体重流失。然而,ALT-801+Gem和MART-1scTCR/IL-2+Gem实验组两者的小鼠体重平均值在11天休息期和一周追踪期的期间快速复原。这些发现证实此模式中充分忍受有短暂毒性的ALT-801+Gem和MART-1scTCR/IL-2+Gem治疗疗方。
实施例4:ALT-801或MART-1scTCR/IL-2融合蛋白与吉西他滨的组合对裸鼠中的UMUC-14和KU7人类膀胱癌的原发肿瘤生长的效果。
进行这些研究以评估ALT-801(c264scTCR/IL-2)与吉西他滨的组合或吉西他滨和顺铂及非目标性的scTCR/IL-2融合蛋白(MART-1scTCR/IL-2)与吉西他滨的组合对带有人类膀胱UMUC-14或KU7P细胞的无胸腺裸鼠中的原发肿瘤生长的多发性剂量给药的抗肿瘤功效。带有肿瘤的小鼠接收PBS或Gem加上Cis作为这研究的对照组。Gem和Cis为转移性膀胱癌患者的照护标准化学疗法。
带有皮下UMUC-14肿瘤(平均体积为84mm3)的无胸腺裸鼠(5只动物/群组)是以PBS、Gem(40mg/kg)加上Cis(3mg/kg)、MART-1scTCR/IL-2(2.19mg/kg,ALT-801的剂量相当活性)加上Gem(40mg/kg)、ALT-801(1.6mg/kg)加上Gem(40mg/kg)或ALT-801(1.6mg/kg)加上Gem(40mg/kg)和Cis(3mg/kg)治疗,给两次周期的治疗。第一治疗周期是由第一周期的研究第9天(SD9)的Cis注射,SD 9和SD 16的两次Gem注射,以及SD 11、SD 13、SD 16以及SD 18的ALT-801或MART-1scTCR/IL-2的四次注射。11天休息期(SD 19至SD 30)之后,使用与第一周期中相同的疗法进行这研究的治疗的第二周期,接着进行10天休息期(SD40至SD49)。
相较于以PBS治疗的小鼠中所观察到者,使用MART-1scTCR/IL-2+Gem、ALT-801+Gem或ALT-801+Gem+Cis的治疗造成皮下UMUC-14人类膀胱肿瘤的生长有统计学上显著的减少(图3)。观察到统计学上显著减少的生长,即使肿瘤的一些表面破裂明显地影响PBS(从SD38开始)和Gem+Cis(从SD29开始)组中的肿瘤体积测量的精确度。实验组MART-1scTCR/IL-2+Gem、ALT-801+Gem以及ALT-801+Gem+Cis之间没发现抗肿瘤活性有显著差异,虽然ALT-801+Gem+Cis显示目前研究的疗程期间有较佳抗肿瘤功效的趋势。这些结果证实于先前结果所显现的此动物模式中的ALT-801治疗疗方的强效抗肿瘤活性。额外地,所观察到的非目标性的MART-1scTCR/IL-2融合蛋白功效说明UMUC-14人类膀胱异体移植亦对以IL-2为主的疗法高度敏感。因此,这数据进一步证实ALT-801的264scTCR组分的目标活性对其针对UMUC-14膀胱肿瘤细胞的强效功效是不需要的。
治疗疗方期间无观察到死亡。然而,在疗程期间的数个时间点,相较于未以Cis治疗的动物,Gem+Cis和ALT-801+Gem+Cis实验组中无观察到显著的体重流失(图4)。通过使用Cis和从体重流失缓慢恢复表示这模式中的Cis的更高毒性,无发现抗肿瘤活性的显著差异。这些结果显示在此治疗中Cis不提供治疗益助。当与PBS群组比较时,ALT-801+Gem和MART-1scTCR/IL-2+Gem实验组两者中亦发现体重流失,然而,ALT-801+Gem和MART-1scTCR/IL-2+Gem实验组两者中的小鼠体重平均值在11天休息期和13天追踪期的期间快速复原。这些发现证实这模式中充分忍受ALT-801+Gem和MART-1scTCR/IL-2+Gem治疗疗方的短暂毒性。
随着后续追踪,使用不同的人类膀胱肿瘤细胞系KU7P以进一步评估ALT-801和MART-1scTCR/IL-2与Gem或Gem+Cis的组合的功效。细胞系是HLA-A*0201阴性和过度表达p53的细胞系,而且不展示ALT-801或MART-1scTCR/IL-2分子识别的抗原。因此,这模式的结果可提供进一步scTCR/IL-2融合物与Gem的组合的“非目标性”的抗肿瘤活性的证据针对裸鼠中的原发人类膀胱肿瘤异体移植是有效的。接收PBS或Gem+Cis的带有肿瘤的小鼠作为这研究的对照组。带有皮下KU7P肿瘤(除了PBS群组[约70mm3]之外,平均体积为81mm3)的无胸腺裸鼠(5只动物/群组)是以PBS、Gem(40mg/kg)加上Cis(3mg/kg)、MART-1scTCR/IL-2(2.19mg/kg,ALT-801的剂量相当活性)加上Gem(40mg/kg)、ALT-801(1.6mg/kg)加上Gem(40mg/kg)或ALT-801(1.6mg/kg)加上Gem(40mg/kg)和Cis(3mg/kg)治疗,给两次治疗周期。第一治疗周期是由第一周期中的研究的第7天(SD 7)的Cis注射所组成的,SD 7和SD 14的两次Gem注射,以及SD 9、SD 11、SD 14以及SD 16的ALT-801或MART-1scTCR/IL-2的四次注射所组成。11天休息期(SD 17至SD 27)之后,使用与第一周期中相同的疗方进行这研究的第二治疗周期,接着进行6天追踪期(SD37至SD45)。
相较于以PBS治疗的小鼠中所观察到者,使用Gem+Cis、MART-1scTCR/IL-2+Gem、ALT-801+Gem或ALT-801+Gem+Cis的治疗造成皮下KU7P人类膀胱肿瘤的生长的统计学上显著的减少(图5)。整体上,虽然ALT-801+Gem+Cis显示较佳的抗肿瘤功效的趋势走向,疗程期间无发现实验组Gem+Cis、MART-1scTCR/IL-2+Gem、ALT-801+Gem以及ALT-801+Gem+Cis之间的抗肿瘤活性有统计学上显著的差异(亦即,相较于Gem+Cis)。这些结果与以上参考的研究结果一致,所述研究结果证实于UMUC-14膀胱肿瘤异体移植模式中ALT-801和MART-1scTCR/IL-2治疗疗方的强效抗肿瘤活性。额外地,观察到的ALT-801和MART-1scTCR/IL-2与Gem的组合对裸鼠中的HLA-A*0201-阴性/过度表达p53的KU7P的人类膀胱肿瘤的非目标性的功效说明KU7P人类膀胱异体移植对以Gem+IL-2为主的疗法高度敏感。因此,这数据进一步证实ALT-801的264scTCR组分的目标活性对于与Gem的组合对于针对KU7P膀胱肿瘤细胞的强效功效是不需要的。这研究的结果亦说明Gem+Cis疗方对于抑制KU7P膀胱肿瘤的生长较UMUC-14膀胱肿瘤模式中更有效,而且ALT-801针对这些膀胱癌细胞是有效的,但不论其对Gem+Cis疗方的敏感性。这些结果与上述KU7P细胞的体外敏感性和UMUC-14细胞对吉西他滨和顺铂的抗性一致。发现单独以IL-2融合蛋白ALT-801或MART-1scTCR/IL-2或其与Gem+Cis的组合治疗针对化学疗法敏感和有抗性膀胱肿瘤两者是有效。
治疗疗方期间无观察到死亡。然而,与以上参考的研究一致,相较于无以Cis治疗的动物,Gem+Cis和ALT-801+Gem+Cis实验组中观察到显著的体重流失(图6)。以上说明,KU7P膀胱肿瘤对Cis敏感,并且在当给药ALT-801+Gem的组合时展现稍微较佳的抗肿瘤活性。然而,从Cis实验组中流失的体重的缓慢恢复表示Cis的较高毒性,因此,这模式中有不理想的治疗指数。当与PBS组比较时,ALT-801+Gem和MART-1scTCR/IL-2+Gem实验组两者中亦发现体重流失,尤其是在第2治疗周期中,然而,ALT-801+Gem和MART-1scTCR/IL-2+Gem实验组两者的小鼠体重平均值在11天休息期和8天追踪期的期间快速复原。这些发现暗示这模式中充分忍受ALT-801+Gem和MART-1scTCR/IL-2+Gem治疗疗方的短暂毒性。
皮下KU7P膀胱肿瘤异体移植模式中进行相似研究,以使用上述相同治疗方案检验以Gem(40mg/kg)、MART-1scTCR/IL-2(2.19mg/kg,ALT-801的剂量相当活性)或ALT-801(1.6mg/kg)的单一疗法的抗肿瘤的效果。如图7中显示,相较于以PBS治疗的小鼠中所观察到者,以Gem、MART-1scTCR/IL-2或ALT-801治疗造成皮下KU7P人类膀胱肿瘤生长的统计学上显著减少。这效果显示较低的耐久性,相较于从Gem+MART-1scTCR/IL-2及Gem+ALT-801组合中所观察到的其中连续治疗后看见少或无的肿瘤再生长(图3和5)。因此,IL-2融合蛋白和化学疗法(在这情况下是吉西他滨)的组合治疗显示提供针对人类膀胱肿瘤的最有效抗肿瘤活性。
实施例5:ALT-801对带有MB49luc原位肌肉侵入性膀胱肿瘤的C57BL/6和白子C57BL/6小鼠的存活的效果。ALT-801的TCR结构域的目标活性对于抗肿瘤活性是不需要的。
评估ALT-801(c264scTCR-IL2)的多重剂量给药对带有同源MB49luc原位肌肉侵入性膀胱肿瘤的免疫活性C57BL/6和白子C57BL/6小鼠的存活的效果。因为这些肿瘤缺乏ALT-801所辨识的p53(氨基酸264至272)/HLA-A*0201络合物,这研究是设计成评估ALT-801针对膀胱癌的“非目标性”的抗肿瘤活性。
使用免疫活性白子C57BL/6小鼠中的相关和可繁殖的小鼠膀胱癌模式(鼠胱癌细胞系MB49luc)以评估ALT-801的功效。MB49luc细胞系表达萤光素酶,允许其使用生物发光测定法侦测。在研究第0天,膀胱的胰蛋白酶-EDTA预处理后,对白子C57BL/6小鼠(17周龄)的膀胱内滴注入MB49luc(1x 106个细胞/膀胱)。MB49luc肿瘤细胞滴注后第9、16、23以及30天,静脉内给药PBS(n=5)或ALT-801(1.6mg/kg,n=4)。维持小鼠以评估肿瘤滴注之后实验组之间的存活率作为功效端点。相较于PBS,ALT-801显著地延长带有MB49luc的小鼠的存活率(P=0.0171)(图8)。ALT-801实验组中存活的动物于最初滴注之后第84天以膀胱内滴注MB49luc细胞(1x 106个细胞每小鼠)而再激发。额外地,将首次接受试验的C57BL/6对照小鼠于同日滴注肿瘤细胞,以作为对照组。于以MB49luc细胞再激发之后第16天,进行以萤光素酶为主的成像侦测MB49luc细胞。先前以ALT-801治疗的群组的肿瘤细胞再激发的小鼠无显示生物发光肿瘤信号,而首次滴注MB49luc的小鼠显示肿瘤细胞信号的证据,证实先前以ALT-801治疗的群组的小鼠对MB49luc肿瘤细胞的再植入有抗性。卡普兰-迈耶存活曲线显示先前以ALT-801治疗的群组再激发的小鼠的存活较首次滴注MB49luc的小鼠为显著更长(P=0.0246)。
同样地,于另一种实验中,膀胱的聚赖氨酸预处理之后,在研究第0天,对C57BL/6小鼠(9至10周龄)的膀胱内滴注MB49luc(0.075x 106个细胞/膀胱)。在MB49luc肿瘤细胞滴注之后第7、14、21以及28天,静脉内给药PBS(n=6)或ALT-801(1.6mg/kg,n=6)。维持小鼠,以评估实验组之间的存活率作为功效端点。相较于以PBS,ALT-801显著地延长带有MB49luc的小鼠的存活率(P=0.007)(图9A)。最初滴注之后第62天,对ALT-801治疗的存活者以膀胱内滴注MB49luc细胞(每只小鼠0.075x 106个细胞)而再激发。额外地,将首次接受试验的C57BL/6对照的小鼠(n=2)于同日滴注肿瘤细胞以作为对照。接着,于以MB49luc细胞再激发之后第16天进行成像。先前以ALT-801治疗的群组的肿瘤细胞再激发的小鼠无显示生物发光肿瘤信号,而首次滴注MB49luc的小鼠显示肿瘤细胞信号的证据,暗示先前以ALT-801治疗的小鼠对MB49luc肿瘤细胞的再植入有抗性(图9B)。比起首次接受试验的小鼠,先前以ALT-801治疗的小鼠在再激发之后存活更长,虽然使用卡普兰-迈耶分析显示两个群组之间的存活时间无统计学上的显著性(P=0.0896),但可能是由于每群组中使用小数目的小鼠。
在额外的研究中,进一步评估免疫活性C57BL/6小鼠中的原位MB49luc肌肉侵入性膀胱癌模式中的ALT-801静脉内给药的功效。膀胱的聚赖氨酸预处理之后,在研究第0天,将MB49luc(100μL中为0.075x 106个细胞/膀胱)膀胱内滴注入C57BL/6小鼠(10至11周龄)的膀胱。在MB49luc肿瘤细胞滴注后第7、14、21以及28天,将PBS(n=10)或ALT-801(1.6mg/kg,n=10)静脉内给药。维持小鼠,以评估肿瘤滴注之后实验组之间的存活率作为功效端点。相较于PBS,ALT-801显著地延长带有MB49luc的小鼠的存活率(P=0.0201)(图10)。与这模式的先前研究一致,观察到的针对原位MB49luc肌肉侵入性膀胱肿瘤的ALT-801抗肿瘤效果与ALT-801融合蛋白的抗原目标活性无关。
总而言之,这些结果证实ALT-801静脉内治疗对于延长带有同源性MB49luc原位肌肉侵入性膀胱肿瘤的免疫活性小鼠的存活时间是有效的。ALT-801治疗亦提供针对彼等先前暴露的肿瘤的耐久性免疫记忆反应。这些效果与ALT-801融合蛋白的目标活性无关。
实施例6:ALT-801的静脉内给药延长带有MB49luc的C57BL/6原位浅表性膀胱肿瘤的小鼠的存活。
进行这研究以评估当以多重剂量疗方经由静脉内(i.v.)注射给药时,ALT-801对带有鼠MB49luc原位浅表性膀胱肿瘤的C57BL/6小鼠的存活的效果。这研究采用先前实施例中描述的免疫活性C57BL/6小鼠中的相关和可繁殖的鼠MB49luc膀胱癌模式。已证实滴注后1至2天,将MB49luc细胞膀胱内滴注入C57BL/6小鼠的膀胱造成膀胱癌的浅表性形式。滴注后第7至9天恶化成肌肉侵入性形式的肿瘤,而且在第2至3周后观察到肿瘤介导的死亡。在本研究中,在带有衍生自MB49luc细胞的鼠原位浅表性膀胱癌的C57BL/6小鼠中检验静脉内给药ALT-801的存活益助。由于这些肿瘤缺乏ALT-801识别的人类p53(氨基酸264至272)/HLA-A*0201络合物,此研究是设计成评估ALT-801针对小鼠原位浅表性膀胱癌的“非目标性”的抗肿瘤活性。
聚赖氨酸预处理膀胱之后,在研究第0天,将MB49luc(100μL中的0.075x 106细胞/膀胱)膀胱内滴注入C57BL/6小鼠(9至11周龄)的膀胱。在肿瘤细胞滴注后第1、8、15、20、23以及27天,静脉内给药PBS(n=8)或ALT-801(1.6mg/kg,n=20)。当与PBS对照比较时,ALT-801的静脉内给药显著地延长小鼠的存活(P=0.0497)(图11)。
在另一种实验中,聚赖氨酸预处理膀胱后,在研究第0天,对C57BL/6小鼠(9至11周龄)膀胱内滴注MB49luc细胞(0.075x 106个细胞/膀胱)。肿瘤滴注之后,一组小鼠(ALT-801“1x 4”,n=9)在SD1、SD8、SD15以及SD22经由侧尾静脉以静脉内注射1.6mg/kg ALT-801每周四次而治疗,第二组小鼠(ALT-801“2x 4”,n=9)在SD1、SD4、SD8、SD12、SD15、SD19、SD22以及SD26以1.6mg/kg ALT-801注射八次(每周两次,共四周)而治疗,以及对照组(n=8)在SD1、SD4、SD8、SD12、SD15、SD19、SD22以及SD26以PBS(100μL)治疗。当与PBS对照组比较时,1.6mg/kgALT-801的“1x 4”和“2x 4”治疗疗方两者显著地延长小鼠的存活(分别为P=0.0413和P=0.0010)。PBS、ALT-801“1x 4”(图12A)和ALT-801“2x 4”(图12B)组的存活时间中位数分别为15.5、19以及22天。结果暗示ALT-801的每周两次给药提供针对鼠MB49luc原位浅表性膀胱癌的最佳抗肿瘤活性。观察到的试验对象的抗肿瘤效果与ALT-801融合蛋白的抗原目标活性无关。
实施例7:带有MB49luc原位膀胱肿瘤的C57BL/6小鼠的ALT-801治疗诱发免疫细胞。
进行这研究以评估带有鼠MB49luc原位膀胱肿的C57BL/6小鼠瘤的ALT-801治疗的以免疫细胞为主的机转作用。如上述,在聚赖氨酸预处理膀胱后,在研究(SD)第0天,对C57BL/6小鼠膀胱内滴注MB49luc细胞(0.075x 106个细胞/膀胱)。没有肿瘤滴注的小鼠作为对照。接着,在SD 7、10、14以及17,将小鼠(6只/群组)以PBS或ALT-801(1.6mg/kg)静脉内治疗。各治疗之后三天(亦即,SD 10、13、17、20),牺牲小鼠群组,检验膀胱的肿瘤恶化(血尿、膀胱尺寸、外观、新血管形成以及形态学),并且收集血液、脾脏以及膀胱以进行免疫细胞分析。从血液制备PBMC,从脾脏制备细胞悬浮液,并且将膀胱固定且切割成区块以进行免疫组织化学染色。将PMBC中的免疫细胞(CD3、NK以及CD8阳性细胞)及脾细胞以单克隆抗体染色,并且以流式细胞仪分析。以IHC评估膀胱剖面中的免疫细胞(巨噬细胞、NK以及CD3阳性细胞),并且以H&E染色检验肿瘤细胞。额外地,在整个研究中,从动物收集尿,以ELISA评估尿中细胞活素浓度(IFNγ和TNFα)。
与先前研究相似,MB49luc细胞的膀胱内滴注造成膀胱中的原位肿瘤建立和造成此等肿瘤在7至20天内快速发展成肌肉层(图13)。这些变化通过增加血尿、膀胱的新血管形成以及膀胱尺寸和其它外观的变化增加反映。如先前研究中,以ALT-801治疗逆转这些变化,造成在SD20的正常外观的膀胱(图13)。然而,值得一提的是带有MB49luc肿瘤或正常小鼠的ALT-801治疗造成浸透入膀胱的免疫细胞增加。PBMC和脾脏中亦反映这些变化,其中ALT-801治疗造成带有MB49luc肿瘤或正常的小鼠两者中的CD3、CD8以及NK细胞的增加(图14A和14B)。伴随连续的ALT-801治疗,经诱发的免疫细胞(除了PBMC CD8细胞)在SD20回复正常水平。在膀胱中,ALT-801治疗最明显地影响巨噬细胞水平,特别是SD10的带有动物的肿瘤中(图15)。将膀胱剖面中的染色的巨噬细胞水平定量,并且在图16中显示绘制的数据。结果说明ALT-801治疗在正常小鼠(图16A)和带有MB49luc-肿瘤的小鼠(图16B)两者中造成膀胱巨噬细胞水平显著的增加。在带有小鼠的肿瘤中,膀胱形态学恢复正常时,经诱发的巨噬细胞水平在SD20恢复几乎正常的水平。以ALT-801治疗的小鼠中亦见到NK和CD3阳性细胞的相似但较不显著的变化。这些结果暗示膀胱中的巨噬细胞和其它免疫细胞亚型的ALT-801诱发负责于此模式中所观察到的抗膀胱肿瘤效果。
尿中的细胞活素水平分析亦说明ALT-801治疗造成免疫反应的刺激。各剂量的ALT-801之后,从带有MB49luc肿瘤的小鼠的尿中侦测到增加的IFNγ浓度(图17A)。ALT-801治疗无诱发这些动物的尿中的TNFα浓度(图17B)。然而,以PBS治疗的带有肿瘤的小鼠的TNFα浓度随着时间增加,暗示肿瘤生长和尿TNFα浓度之间的因果关系。在癌症患者中观察到ALT-801介导的血清IFNγ的诱发和血清TNFα水平的治疗效果的缺乏(Fishman等人(2011)Clin Cancer Research 17:7765),表示这是对ALT-80治疗的常见免疫反应。这些观察共同支持产生IFNγ的免疫细胞(可能为巨噬细胞)在ALT-801治疗后所观察到的抗肿瘤活性的角色。
实施例8:多发性骨髓瘤的鼠模式中的小鼠的ALT-801增加的存活。
为了调查融合蛋白ALT-801(c264scTCR-IL2)的效果和作用机转,对多发性骨髓瘤的免疫活性C57BL/6小鼠模式以多发性剂量疗方给药。使用5T33P细胞(5T33骨髓瘤细胞系的衍生物)发展人类多发性骨髓瘤的可繁殖的鼠模式。相较于PBS,ALT-801显著延长带有5T33P骨髓瘤的小鼠的存活,且比起首次滴注5T33P的小鼠,ALT-801组的再激发小鼠的存活显著更长。这些效果与ALT-801融合蛋白的目标活性无关,而且说明ALT-801提供针对牠们先前暴露的肿瘤有耐久性免疫记忆反应的小鼠。
如上说明,多个研究已显示ALT-801展现针对缺乏T细胞的免疫缺陷小鼠的异体移植模式中的HLA-A*0201+/p53过度表达(p53+)的人类黑色素瘤、哺乳动物腺癌、膀胱癌以及胰脏癌瘤的强效活性。由于CD8效应物T细胞可贡献ALT-801的抗肿瘤活性,发展免疫活性小鼠中的额外合成的肿瘤模式以进一步评估ALT-801的功效。这些肿瘤缺乏p53胜肽(氨基酸264至272)/HLA-A*0201络合物的表达。因此,这些模式中检验的ALT-801效果与以scTCR为目标无关。基于免疫调节性分子对多发性骨髓瘤的已知抗癌症效果,发展免疫活性小鼠中的鼠骨髓瘤模式,并且使用以评估ALT-801的功效和作用机转。
鼠5T33骨髓瘤细胞,C57BL/KaLwRij小鼠中自发性地产生的一系列的可移植鼠骨髓瘤中的一者,在C57BL/KaLwRij小鼠中是高度致瘤性,少至500个细胞即诱发瘫痪且早在肿瘤植入后第36天死亡。5T33衍生细胞系,5T33P,是单离自先前已滴注1x 107个亲代5T33细胞系而瘫痪的C57BL/6小鼠。在这模式中,需要给予至少1x 107个5T33P细胞以造成C57BL/6小鼠瘫痪的接受率为大约100%。通常,注射1x 107个5T33P细胞的小鼠显示肿瘤接种后SD20和SD30之间的后腿瘫痪征兆。除了瘫痪以外,亦可使用BM细胞表达5T33产生的IgG2b副蛋白质,以评估这模式中的肿瘤恶化状态。
在最初研究中,体外评估ALT-801对5T33P细胞生长的直接效果。细胞凋亡分析说明500nM的ALT-801不影响5T33P细胞增殖,并且诱发细胞凋亡。基于先前非临床研究,预期这ALT-801水平是在治疗范围内。因此,ALT-801不出现对5T33P细胞具有直接的细胞毒性效果。
接着,检验带有鼠5T33P骨髓瘤肿瘤的免疫活性C57BL/6小鼠中的ALT-801的体内抗骨髓瘤活性。研究天=0(SD0)时,将雌性C57BL/6小鼠(5只小鼠/群组)经由侧尾静脉以静脉内注射5T33P肿瘤细胞(1x 107/小鼠)。肿瘤细胞注射之后,接着开始1天(ALT-801-SD1实验组)或4天(ALT-801-SD4实验组)多重剂量ALT-801治疗。至于ALT-801-SD1实验组,在SD1、SD4、SD8以及SD11,静脉内给药1.6mg/kg的ALT-801(亦即,4剂量)。同日,带有5T33P肿瘤的小鼠接收PBS(剂量相当的体积)以作为对照。至于ALT-801-SD4实验组,在SD4、SD8、SD11以及SD15ALT-801,以1.6mg/kg静脉内给药。监控小鼠的瘫痪或肿瘤生长和存活的临床征兆。展现后腿瘫痪的小鼠被认为是垂死。PBS组的所有小鼠在SD22和SD34之间显示瘫痪征兆,而且这群组在肿瘤细胞给药后具有29天的存活中位数。相反地,ALT-801-SD1和ALT-801-SD4组的所有小鼠在SD73(ALT-801-SD1组的观察期结束)存活,表示这些小鼠的5T33P肿瘤被治愈。因此,当时与PBS对照组比较时,发现在SD1或SD4开始的多重剂量ALT-80治疗显著地延长带有5T33P骨髓瘤的小鼠的存活(ALT-801-SD1相对PBS,P<0.002;ALT-801-SD4相对PBS,P<0.002)。ALT-801-SD4组和ALT-801-SD1组之间无观察到明显差异(P>0.05)。这些结果说明ALT-801治疗对这免疫活性小鼠模式的5T33P骨髓瘤细胞是高度有效。
为了评估ALT-801治疗是否提供长期抗肿瘤效果,对以骨髓瘤细胞先前挑战后存活的以ALT-801治疗的小鼠再给药5T33P骨髓瘤细胞。将ALT-801-SD1实验组的小鼠(n=5)在SD73(最初肿瘤细胞挑战后)以1x 107个5T33P细胞再激发,以及将ALT-801-SD4实验组的小鼠(n=5)在SD106以1x 107 5T33P个细胞再激发。在各个情况下,亦将五个未接受治疗的小鼠注射1x 107个5T33P细胞,以作为肿瘤恶化的对照。无对任何的研究组进一步给药ALT-801研究药物治疗。肿瘤细胞再激发之后,所有五只ALT-801-SD1小鼠存活,直到SD192实验终止,而所有五只在SD73接收5T33P细胞的首次接受试验的小鼠显示在SD89和SD107之间瘫痪和在肿瘤细胞给药后有16天的存活中位数。同样地,所有五只ALT-801-SD4小鼠存活直到SD192,而五只在SD106接收5T33P细胞的首次接受试验的小鼠中有四只显示在SD124和SD138之间瘫痪和在肿瘤细胞给药后有32天的存活中位数。总体上,5T33P骨髓瘤细胞再激发之前给100天的ALT-801治疗显著地保护小鼠免于瘫痪和死亡。共同地,这些结果展现不仅是ALT-801针对5T33P骨髓瘤的功效,也有其诱发长效免疫记忆的能力。以上数据亦说明T细胞及/或NK细胞子集的活化效应物和记忆细胞可在ALT-801针对5T33P肿瘤细胞的抗肿瘤活性中扮演了至关重要的作用,而且这些免疫细胞可能可作用至少三个月来保护C57BL/6小鼠免于肿瘤再激发。
治疗疗方期间无观察到死亡。在大部分情况下,在PBS和首次接受试验的实验组中的小鼠展现后腿瘫痪之前,即观察到连续显著的体重流失,其是这模式中的典型征兆。ALT-801实验组中无发现显著的体重流失,与使用ALT-801的其它同基因小鼠模式中所观察到者一致。这些发现显示这模式中充分忍受有短暂毒性的ALT-801治疗疗法。无论是患者的HLA-A*0201基因背景,应考虑患者的多发性骨髓瘤中ALT-801治疗的临床评估。
相较于PBS,单一剂量ALT-801治疗显著地延长带有5T33P的小鼠的存活。这些效果与体外副蛋白质产生测定法所评估的与研究药物减少骨髓中的骨髓瘤细胞相关的能力。相较于PBS群组,以一种或两种ALT-801剂量治疗的带有5T33P肿瘤的小鼠造成血液中CD8+ T细胞和NK细胞的数目及/或百分比的显著增加。免疫细胞耗尽研究证实ALT-801的抗骨髓瘤活性主要是由于CD8+ T细胞,和部分是由于NK细胞。其它免疫细胞亦可在ALT-801介导的抗骨髓瘤效果中扮演角色。
进一步评估ALT-801对C57BL/6小鼠模式中的小鼠5T33P骨髓瘤细胞生长的效果和功能性机转。在这研究的第一部分中,在这模式中评估抗单一剂量ALT-801的肿瘤活性。将雌性C57BL/6小鼠(5只小鼠/群组)静脉内注射5T33P骨髓瘤细胞。四天之后,对带有5T33P肿瘤小鼠给药单一静脉注射的ALT-801(1.6mg/kg)或PBS(剂量相当的体积)。监控小鼠的存活作为研究端点,而当小鼠展现后腿瘫痪的被认为是垂死。PBS组中的所有五只小鼠在肿瘤细胞注射后第35天观察到死亡,而且存活中位数为24天。相反地,以ALT-801治疗的小鼠的死亡显著地延迟,且存活中位数为49天(相对PBS组,P=0.013)。ALT-801群组的5只小鼠中的一者在整个120天观察期间的维持活着。
在这研究的第二部分中,评估5T33P模式中单一剂量ALT-801对骨髓中的骨髓瘤细胞的短期效果。以ALT-801(1.6mg/kg)或PBS治疗带有肿瘤的小鼠,和在治疗后第1、4以及8天收集骨髓细胞。接着将细胞体外培养6天,并且通过ELISA分析培养上清液中的产生副蛋白质的5T33P细胞(小鼠IgG2b)。当与PBS组比较时,ALT-801体内治疗造成后续骨髓培养物中的显著地较低水平的副蛋白质(P<0.05)。来自ALT-801实验组的培养物中看见副蛋白质浓度减少高达30倍。在研究药物治疗后采集骨髓的所有三个时间点观察到这效果。因此,单一剂量ALT-801治疗减少骨髓5T33P骨髓瘤细胞(如由副蛋白质产生所测量)的能力是与ALT-801对延长这模式的延长效果一致。
设计进一步的研究以调查效应物免疫细胞在ALT-801针对免疫活性C57BL/6小鼠中的小鼠5T33P骨髓瘤细胞的抗骨髓瘤效果中扮演的角色。与先前造成其它非临床研究一致,相较于PBS对照组中所观察到者,以一种或两种1.2mg/kg剂量进行的ALT-801治疗带有5T33P肿瘤的小鼠造成血液中的CD8+ T细胞和NK细胞的数目及/或百分比的显著增加。ALT-801治疗亦增加血液CD4+CD25+FoxP3+Treg细胞的百分比。然而,这变化显著地少于效应物CD8+ T细胞和NK细胞子集所见者,表示其非ALT-801治疗的优势效果。
如使用骨髓细胞培养测定法侦测衍生自5T33P的副蛋白质所评估,治疗后4天,以一种或两种1.2mg/kg剂量进行的ALT-801治疗亦对于减少骨髓中的5T33P骨髓瘤细胞数目有效。免疫细胞耗尽研究证实ALT-801的抗骨髓瘤活性是主要由于CD8+ T细胞和部分由于NK细胞。由于CD8+和NK-细胞耗尽无法完整消除对C57BL/6小鼠中的5T33P肿瘤细胞的抗肿瘤效果,其它免疫细胞可在ALT-801介导的抗骨髓瘤效果中扮演角色。这些研究的结果是与证实ALT-801治疗对于延长带有骨髓瘤的免疫活性小鼠的存活是高度有效的先前研究一致。
实施例9:ALT-801显著地延长带有MB49luc肿瘤的小鼠的存活。
将静脉内给药ALT-801的功效与免疫活性C57BL/6小鼠的原位MB49luc肌肉侵入性膀胱癌模式中的IL-2的功效比较。前临床动物研究已说明ALT-801在裸鼠中展现针对皮下HLA-A*0201+p53过度表达(p53+)UMUC-14和HLA-A*0201-阴性p53过度表达(p53+)的KU7人类膀胱肿瘤异体移植中有相似的抗肿瘤活性,表示肿瘤细胞上的目标HLA-A*0201/p53胜肽络合物对于ALT-801治疗效力好像不是必要的。对ALT-801针对免疫活性C57BL/6小鼠中的鼠MB49luc原位肌肉侵入性膀胱肿瘤的效果的额外调查亦隐含ALT-801的“非目标性”的抗肿瘤活性。已知鼠MB49luc肿瘤细胞缺乏ALT-801所识别的人类HLA-A*0201/p53胜肽络合物。临床研究已显示膀胱癌展现对以IL-2为主的疗法的适当敏感性。为了了解ALT-801的抗肿瘤活性,比较膀胱肿瘤模式中的IL-2和ALT-801的抗肿瘤活性是令人感兴趣的。
在免疫活性C57BL/6小鼠的小鼠膀胱原位模式中评估ALT-801和IL-2静脉内治疗的抗肿瘤效果。聚赖氨酸预处理膀胱后,在第0天,对C57BL/6小鼠(10至11周龄)膀胱内滴注MB49luc细胞(100μL中有3x 104个细胞/膀胱)。在肿瘤细胞滴注后第7、10、14以及17天,静脉内给药ALT-801(1.6mg/kg,n=8)、IL-2(0.42mg/kg,n=8)或PBS(100μL,n=8)。当与IL-2和PBS对照比较时,ALT-801的四种静脉内剂量显著地延长小鼠的存活(P≤0.0002)(图18)。IL-2和PBS对照组之间无观察到统计学上显著差异(P=0.84),显示IL-2无抗肿瘤效果。这些结果说明每周两次的ALT-801治疗较针对MB49luc膀胱肿瘤的重组人类IL-2展现更大的效力。亦从重复研究获得相似的结果。
实施例10:ALT-801在
Figure BDA0002437135000000421
NK或CD4以及CD8细胞耗尽后增加带有MB49luc肿瘤的小鼠的存活。
如上述,ALT-801的治疗增加带有MB49luc的小鼠的脾脏和血液中的CD3+ T细胞、CD8+ T细胞以及NK细胞百分比。事实上,血液CD8+ T细胞在整个四种剂量的ALT-801疗程保持显著地提升。带有MB49luc肿瘤的小鼠中重复用剂ALT-801后,亦观察到膀胱中有增加的CD3+ T细胞和NK细胞渗透。相反地,无论ALT-801治疗,膀胱巨噬细胞水平随着原位MB49luc肿瘤恶化而增加。这些结果说明这些免疫细胞子集中的一种或多种在这ALT-801模式中的抗肿瘤活性中有扮演角色。
带有小鼠MB49luc原位膀胱肿瘤的C57BL/6小鼠中的
Figure BDA0002437135000000422
NK或CD4以及CD8细胞耗尽后,评估ALT-801静脉内注射的抗肿瘤效果。小鼠在SD 0接收MB49luc滴注,并且接着在SD7、10、14以及17接收静脉PBS或ALT-801(1.6mg/kg)治疗。ALT-801或PBS治疗之前,小鼠群组通过在SD 6、9、13以及16腹腔内注射Clophosome(150μL/剂量)的接收
Figure BDA0002437135000000423
耗尽;通过在SD2、3、6、9、13以及16NK腹腔内注射抗Ab的NK细胞耗尽(100μL中有克隆PK136,250μg);或通过在SD 2、3、6、9、13以及16腹腔内注射抗CD4 Ab(100μL中有克隆GK1.5,250μg)和抗CD8 Ab(100μL中有克隆53-6.72,250μg)的CD4和CD8细胞耗尽。维持小鼠,以评估研究组之间的存活率以作为功效端点。
相较于PBS控制的小鼠,静脉内给药ALT-801显著地延长小鼠存活(P=0.0014)(图19A)。当比较PBS对照的小鼠时,在已耗尽NK细胞的以ALT-801治疗的小鼠中获得相似的结果(P=0.0068)(图19B)。在
Figure BDA0002437135000000431
耗尽后废除的ALT-801治疗后(P=0.1435)(图19C)或在CD4/CD8细胞耗损后废除的ALT-801治疗后(P=0.5993)(图19D)后观察到存活的抗肿瘤效果。
结果说明
Figure BDA0002437135000000432
及/或CD4/CD8细胞在ALT-801对带有小鼠MB49luc原位膀胱肿瘤的C57BL/6小鼠的抗肿瘤效果中扮演重要的角色。带有MB49luc肿瘤小鼠中的NK细胞的耗尽无显现对ALT-801的功效有任何效果,暗示NK细胞是不需要的或其它细胞类型补偿ALT-801介导的抗肿瘤反应中的NK细胞活性。
有大量文献显示衍生自骨髓的抑制或细胞(MDSC)在广大排列的肿瘤模式中扩张。MDSC作用以通过各式各样机转抑制NK和T细胞。不受限于特定理论,带有原位MB49luc肿瘤的小鼠中存在的MDSC可提供免疫抑制性机转导致肿瘤发展的证据。
为了评估这模式中的MDSC浓度,如上述对C57BL/6小鼠膀胱内滴注MB49luc肿瘤细胞(0.03x 106个细胞/小鼠)。对照的小鼠无接收肿瘤细胞。在肿瘤细胞滴注后第3、5、7、10以及13天从对照和带有肿瘤的C57BL/6小鼠(每组5只)收集血液。以流式细胞仪评估血液中的GR-1+/CD11b+MDSC水平。带有肿瘤的小鼠中的血液MDSC水平早在肿瘤细胞滴注后3天提高,并且进一步增加这些动物中的时间(图20)。MB49luc细胞滴注之后13天,相较于对照的小鼠,带有肿瘤的小鼠的血液MDSC水平显著地增加。
这些发现暗示MDSC可在抑制免疫系统中扮演角色,以促进原位MB49luc肿瘤模式中的肿瘤生长。进行此研究以评估不同类型的免疫细胞在肿瘤恶化上扮演的角色和ALT-801在带有MB49luc原位膀胱肿瘤的C57BL/6小鼠中的抗肿瘤活性。
实施例11:静脉内给药ALT-801增加带有MB49luc原位膀胱肿瘤的C57BL/6小鼠的膀胱中的M1-类型巨噬细胞。
在先前的临床动物研究中,静脉内给药ALT-801延长带有MB49luc原位小鼠膀胱癌的C57BL/6小鼠的存活。来自带有MB49luc肿瘤的小鼠的膀胱的IHC染色在重复用剂ALT-801之后较以PBS对照治疗的小鼠的膀胱中所见者展现更高水平的CD3和NK细胞渗透。以F4/80pan巨噬细胞标志侦测巨噬细胞说明,无论治疗,肿瘤生长恶化时,更多巨噬细胞渗入膀胱。进行这研究,以特征化对带有MB49luc的小鼠的膀胱中的巨噬细胞的功能性表型的ALT-801介导的效果。
由于其丰度、可塑性以及多样性,巨噬细胞在固体肿瘤中扮演重要的角色。识别巨噬细胞的两个相异的活化状态:传统活化的(M1)表型和另外活化的(M2)表型。各类型的巨噬细胞具有其本身用于辨识的标志。M1巨噬细胞的特征包含iNOS的表达、ROS以及IL-12的产生。M2巨噬细胞是与IL-10、IL-1b、VEGF以及基质金属蛋白酶(MMP)的大量产生联结。
这研究包含两组实验组PBS和ALT-801(3只小鼠/群组)。聚赖氨酸预处理后10分钟之后,在研究(SD)的第0天,将MB49luc细胞(0.06x 106个细胞/小鼠)膀胱内滴注入膀胱。在SD 11,将100μL的ALT-801(1.6mg/kg)或PBS通过尾静脉以静脉内注射。治疗的24小时内,牺牲小鼠,并且将其膀胱以液态氮在OCT中急冻。进行IHC染色,以检查膀胱中的巨噬细胞的活化状态。使用iNOS和MMP-9以分别辨识M1和M2巨噬细胞。
IHC结果说明相较于以PBS治疗的带有肿瘤的小鼠的膀胱,ALT-801的静脉注射增加带有MB49luc肿瘤的小鼠的膀胱中的M1类型巨噬细胞(图21)。除了ALT-801组中的一只小鼠,可在PBS和ALT-801组两者的所有小鼠中侦测到MMP-9阳性细胞。那只特定的小鼠在ALT-801治疗之后似乎无肿瘤,而且即使可侦测到F4/80pan标志无显示任何iNOS或MMP-9的阳性染色。这些结果说明由于iNOS和MMP-9是巨噬细胞活化标志,无肿瘤的环境中不激发巨噬细胞。F4/80抗体染色显示相较于非带有肿瘤的小鼠,带有MB49luc原位肿瘤的小鼠的膀胱中有实质数目的巨噬细胞。就膀胱巨噬细胞的F4/80抗体染色水平而论,PBS和ALT-80实验组之间无显著差异。总结,带有MB49luc小鼠进行静脉内ALT-801治疗之后,将膀胱中的更高的巨噬细胞百分比再极化成M1表型。与ALT-801功效是取决于带有MB49luc肿瘤的小鼠中的巨噬细胞的发现一致,这些结果暗示再极化的M1巨噬细胞可贡献ALT-801发挥的抗肿瘤效果。
实施例12:ALT-801诱发C57BL/6小鼠中的产生IFN-γ的细胞。
先前研究已证实在免疫活性C57BL/6小鼠中的原位MB49luc肌肉侵入性膀胱癌模式中的静脉内ALT-801给药的抗肿瘤活性。小鼠MB49luc细胞不表达由ALT-801所识别的人类p53(氨基酸264至272)/HLA-A*0201络合物。因此,假设ALT-801针对MB49luc肿瘤有“非目标性”的抗肿瘤活性。评估ALT-801针对鼠MB49luc膀胱肿瘤细胞的作用机转。
先前显示ALT-801治疗增加动物模式和癌症患者中的IFN-γ血清水平(Fishman等人,Clin Cancer Res,17:7765-7775,2011;Wen等人,Cancer Immunol Immuother,57:1781-1794,2008)。IFN-γ通过抑制各种肿瘤细胞生长、向上调节肿瘤细胞上的MHC分子的表达、多种免疫细胞的活化以及抗血管新生而在抗肿瘤免疫力中扮演重要的角色。活化之后,可由免疫细胞,例如,CD4+ T细胞、CD8+ T细胞以及NK细胞的多个子集产生IFN-γ。在这报告中,评估以1.6mg/kg静脉内给药ALT-801后24小时,来自C57CL/6小鼠的血液中的IFN-γ水平。对照的小鼠(n=5)的血清中的IFN-γ不可侦测,但在给药ALT-801之后达成196(±44)pg/mL的浓度(n=5)(图22)。为了调查ALT-801治疗之后哪些细胞类型为IFN-γ的主要产生者,将针对小鼠CD4、CD8以及NK细胞的单克隆抗体腹腔地注射入C57BL/6雌性小鼠,以耗尽相对应的免疫细胞子集。ALT-801注射24小时之后,测定耗尽免疫细胞的小鼠中的血清IFN-γ水平。结果显示ALT-801给药之后,CD4、NK以及三重CD4、CD8以及NK细胞耗尽的小鼠(n=5/群组)的血清中的IFN-γ浓度分别达到75(±58)pg/mL、74(±25)pg/mL以及82(±52)pg/mL(图22)。相反地,CD8T细胞耗尽的小鼠(n=5)的血清IFN-γ浓度达到257(±60)pg/mL。结果说明CD4+ T细胞和NK细胞是ALT-801诱发的IFN-γ的主要产生者,但CD8+ T细胞则否。血清IFN-γ的显著诱发仍可在进行ALT-801治疗具有CD4+、CD8+ T细胞以及NK细胞的三重耗尽的小鼠后侦测。此发现说明了除了CD4+ T细胞和NK细胞以外,其它类型细胞亦贡献以ALT-801治疗的小鼠中的IFN-γ产生。
在这研究的第二部分中,调查IFN-γ对MB49luc细胞生长的效果。在具有1或10ng/mL的IFN-γ的RPMI-10中培养MB49luc细胞(2x 105/孔)。采收以IFN-γ治疗的MB49luc细胞,并将其以FITC标示的膜联蛋白V染色。以流式细胞仪测定膜联蛋白V阳性细胞凋亡MB49luc细胞。IFN-γ治疗不直接造成针对MB49luc细胞的可侦测的细胞毒性(图23)。
在具有20nM ALT-801的RPMI-10中培养小鼠细胞3天,接着在细胞毒性测定法中用作针对PKH67标示的MB49luc目标细胞的效应物LAK细胞。在含有0至50nM ALT-801的RPMI-10中,于37℃培养效应细胞(4x 106/孔)和目标细胞(4x 105/孔)24小时。基于用碘化丙啶染色,以流式细胞仪,评估LAK细胞针对MB49luc细胞的细胞毒性。ALT-801活化的细胞是取决于细胞毒性测定法期间存在的ALT-80的浓度的方式,有效地溶解MB49luc细胞(图24)。
吉西他滨是用于肌肉侵入性膀胱癌的标准组合化学疗法的药物中的一者。已报导吉西他滨减少带有肿瘤的小鼠中的衍生自骨髓的抑制细胞(MDSC)。在此报告中,吾等研究吉西他滨对小鼠中的MB49luc细胞所诱发的MDSC的效果。将带有MB49luc肿瘤的小鼠以40mg/kg的吉西他滨静脉内地治疗。天吉西他滨治疗后三天,单离脾细胞,并且以流式细胞仪测定Gr1+CD11b+MDSC的百分比。没有MB49luc肿瘤的正常对照的小鼠中,MDSC负责1.19(±0.25)百分比的细胞。带有MB49luc肿瘤的小鼠中,这些MDSC增加至4.29(±1.32)百分比的脾细胞。相反地,以吉西他滨治疗带有肿瘤的小鼠造成脾脏中的MDSC减少至1.83(±0.92)百分比(图25)。这些结果证实吉西他滨显著地减少带有肿瘤MB49luc的小鼠中的脾脏中的MDSC水平。
先前显示ALT-801和IL-2具有相同活性,以刺激活化体外人类T细胞和NK细胞。展示针对多种肿瘤细胞的细胞毒性的IL-2活化的免疫细胞被称为LAK(淋巴因子活化的杀伤)细胞。LAK细胞活性是将效应细胞ALT-801预活化的小鼠脾细胞用作效应细胞和将MB49luc肿瘤用作目标细胞调查。这研究的结果显示ALT-801活化的细胞是取决于ALT-801在杀死期的浓度的方式,有效地溶解MB49luc细胞。此发现说明ALT-801能活化效应物免疫细胞和增大它们针对膀胱肿瘤细胞的细胞毒性活性。额外地,吉西他滨治疗显著地减少带有MB49luc肿瘤的小鼠的脾脏中的MDSC浓度。
实施例13:MDSC过继转移之后ALT-801诱发免疫细胞杀死肿瘤细胞。
在C57BL/6小鼠中静脉内或皮下注射MB49luc膀胱肿瘤细胞后建立肿瘤造成血液和脾脏中的MDSC水平显著增加。MDSC是由骨髓前体细胞、不成熟巨噬细胞、不成熟树突状细胞以及不成熟粒细胞所组成的不成熟骨髓细胞的异质群体。大量文献显示在宽排列的肿瘤模式中的MDSC扩增。MDSC作用以抑制NK和T细胞通过直接细胞接触、细胞因子以及代谢途径的副产物、控制Tregs的扩增和活化以及支持肿瘤细胞的新生血管形成和转移性扩散。在小鼠中,MDSC是由CD11b和Gr1的细胞表面表达所界定。正常小鼠仅具有一小部分(2至4%)的脾脏细胞为CD11b+Gr1+,但具有这表型的细胞可在一些小鼠肿瘤模式中达到20至40%。为了调查这些细胞的活性,从带有皮下MB49G肿瘤的C57BL/6小鼠采收脾脏,并且以抗Gr1和抗Ly6G Ab珠磁性分选而单离MBSC。通过这程序,从各动物收集纯度为96%的1×107MDSC(图26)。
接着,将纯化的MDSC转移入同基因的正常小鼠,以允许评估它们对正常免疫效应细胞的免疫抑制活性。过继转移后四十小时,收集接收方小鼠的脾脏细胞,并且通过以50nMALT-801培养两天而活化。将产生的LAK效应细胞与以PKH67标示的MB49luc肿瘤细胞目标共培养隔夜,以评估肿瘤细胞杀死。与先前对ALT-801的抗肿瘤效果的非临床研究一致,发现来自正常C57BL/6小鼠的ALT-801活化的LAK细胞有效地杀死MB49luc肿瘤细胞,而没有ALT-801活化的新鲜脾细胞展现微弱的细胞溶解活性(图27)。更重要地,以ALT-801体外刺激后,MDSC转移后从小鼠单离的脾细胞显示显著减少的作为具有抗肿瘤细胞溶解活性的LAK细胞的可能性。不受限于特定理论,这些发现说明体内肿瘤诱发的MDSC的存在损害脾脏效应细胞对后续ALT-801活化反应的能力。因此,此研究结果支持膀胱肿瘤诱发的MDSC活性不利于ALT-801的抗肿瘤效果的假说。
至于多种免疫细胞功能的强效抑制剂,MDSC是用于抗癌症治疗的可能治疗目标。例如,吉西他滨为广泛使用的化学治疗,可选择性地消除带有肿瘤的动物中的MDSC,并且增强肿瘤-抑制性免疫活性(Suzuki等人,Clin Cancer Res,11:6713-6721,2005)。在小鼠膀胱肿瘤模式中的非临床研究中,发现与吉西他滨和ALT-801的组合疗法较使用任一剂的单一疗法更为有效。例如,以ALT-801(0.8mg/kg,次佳剂量)与吉西他滨(40mg/kg)的组合治疗带有吉西他滨有抗性皮下MB49G肿瘤的小鼠造成较以PBS治疗的小鼠显著更慢的肿瘤生长,而单独以ALT-801(0.8mg/kg)和吉西他滨(40mg/kg)治疗的小鼠中的肿瘤恶化与PBS组并无显著的不同。这些结果暗示吉西他滨治疗减少MDSC的免疫抑制活性,允许ALT-801更有效地活化抗肿瘤免疫反应,而不是直接作用在肿瘤生长上。
实施例14:ALT-801的抗肿瘤机转作用的模式。
已进行广泛的努力来揭示使用多种动物模式、免疫耗尽研究、免疫组织化学、细胞活素测定法、基因剔除小鼠、细胞介导的杀死方法以及流式细胞仪所分析的ALT-801针对癌症的作用机转。不受限于特定理论,这些研究活动的结果是与以下观察一致:
·ALT-801活化CD4+和NK细胞以分泌IFN-γ。
·IFN-γ活化巨噬细胞,将肿瘤联结的巨噬细胞(TAM)从肿瘤-促进M2再极化成肿瘤-破坏性M1期,以及诱发针对肿瘤细胞的TH1免疫反应。
·ALT-801单独刺激记忆CD8+ T细胞以增殖和向上调节内生类型的杀伤受体。
·这些活化的CD8+记忆细胞展示针对肿瘤的强效,但无抗原特异性的细胞杀死免疫反应。
·IFN-γ依赖途径和非特定CD8+记忆细胞两者对于ALT-801的体内抗肿瘤效力是必要的。
IFN-γ和肿瘤联结的巨噬细胞的再极化
正常和带有肿瘤的小鼠中渗入时,ALT-801治疗诱发IFN-γ的分泌。ALT-801静脉内渗入后大约4至6小时,血清和尿两者中的有高浓度的IFN-γ(Fishman等人,Clin CancerRes,2011.17:7765)。基于免疫耗尽研究,CD4+和NK细胞为血清IFN-γ的主要来源,显示ALT-801给药诱发的IFN-γ的血清水平是通过消除小鼠中的CD4+ T细胞和NK细胞而实质上减少(实施例12)。膀胱癌细胞中,IFN-γ无抑制膀胱癌细胞生长或诱发细胞凋亡。然而,在IFN-γ基因剔除(KO)的C57BL/6小鼠中,ALT-801丧失其针对膀胱内植入MB49luc膀胱肿瘤的抗膀胱癌活性。不受限于特定理论,免疫组织化学染色结果说明这可能因为需要IFN-γ来将M2 TAM再极化成M1 TAM(实施例11)。这些M1 TAM展示针对肿瘤的快速和强效的抗肿瘤反应。
IFN-γ为单核细胞和巨噬细胞的最强效刺激剂(Schroder等人,J Leukoc Biol,2004.75:163)。显示使用脂质体的单核细胞的耗尽移除ALT-801针对原位MB49luc膀胱肿瘤的功效的研究结果所证实单核细胞/巨噬细胞在ALT-801介导的抗肿瘤活性中的关键角色(实施例10)。因此,IFN-γ(来自ALT-801活化的CD4+和NK细胞)具有活化循环单核细胞和巨噬细胞(诸如,肝脏中的Kupffer细胞)以渗入细胞介导的肿瘤杀死的肿瘤病变(Seki等人,Clin Dev Immunol,2011,2011:868345)的可能性。除了再极化TAM和活化单核细胞和巨噬细胞以外,亦已知INF-γ(其为一种多效性细胞活素)展现多种抗肿瘤功能(Schroder等人,J Leukoc Biol,2004,75:163;Zaidi等人,Clin Cancer Res,2011,17:6118)。亦可想到从以ALT-801活化的CD4+和NK细胞分泌的INF-γ经由大量次级反应基因的活化而直接影响肿瘤生长(Boehm等人,Annu Rev Immunol,1997,15:749)。
发现CD4+ T细胞耗尽亦移除ALT-801针对C57BL/6小鼠中的MB49luc的抗肿瘤活性,但NK细胞耗尽则否。ALT-801亦在缺乏T细胞的SCID小鼠中,丧失其抗MB49luc活性。不受限于特定理论,ALT-801-活化的CD4+ T细胞能渗入肿瘤,并且在肿瘤微环境中分泌IFN-γ,以有效地再极化TAM,以用于肿瘤破坏。IHC研究的数据(实施例11)与这理论一致。
经由新颖机转的记忆CD8+细胞介导的抗肿瘤活性
在免疫耗尽研究中,CD8+和CD4+细胞的消除可消除ALT-801在C57BL/6小鼠中的原位MB49luc膀胱肿瘤模式中的抗肿瘤活性,而单独消除NK细胞则否。因此,ALT-801-活化的CD8+细胞对于ALT-801的抗膀胱癌活性是重要的。
最近已显示细胞因子介导的刺激可促进具有独特表型的记忆CD8+细胞的无抗原特异性的扩大。不同于向上调节PD-1和CD25的抗原依赖性扩大所产生的记忆CD8+ T细胞,这些研究中的细胞因子介导的扩大记忆的CD8+ T细胞表达具有广泛的溶胞能力的NKG2D(其为一种颗粒酶B),并且暗示所述能力负责癌症免疫疗法的明显抗肿瘤效果(Tietze等人,Blood,2012,119:3073)。不受限于特定理论,这类型的记忆CD8+ T细胞的ALT-801活化在小鼠中的抗MB49luc肿瘤活性中扮演主要的角色。为了评估这可能性,首先检验单独的ALT-801是否可诱发体外的记忆CD8+ T细胞扩大。以ALT-801或抗CD3抗体(TCR依赖性接合)活化之后,比较CD8+CD44T细胞的表型。曝露于ALT-801或抗CD3抗体的CD8+ T细胞产生具有明显不同表型的CD8+CD44T细胞。ALT-801刺激导致NKG2D的向上调节,但更高水平的CD25和PD-1表达则否,而抗CD3刺激导致更高水平的CD25和PD-1表达,但非NKG2D向上调节。为了检验体内是否发生相似现象,将不带有肿瘤的小鼠以1.6mg/kg ALT-801(于100μL)或PBS(100μL)静脉内地注射两次(隔72小时),并且在第二次PBS或ALT-801治疗之后分析PBMC和脾细胞的表型一天。ALT-801治疗后,比较表达NKG2D扩大的CD8+CD44记忆T细胞水平与以IL-2或PBS治疗的小鼠中所见的水平。相反地,CD8+CD44记忆T细胞群体中无观察到ALT-801向上调节PD-1或CD25。
CD8+CD44记忆T细胞过继转移实验中亦观察到相似的结果。在这研究中,以CelltraceTM Violet标示的脾细胞(0.5x 106)从首次接受试验的C57BL/6小鼠过继转移入首次接受试验的同基因的C57BL/6小鼠,接着在过继细胞转移后一天以ALT-801或PBS静脉内地治疗小鼠。接着,第二次ALT-801或PBS治疗之后一天,分析来自接收方小鼠的脾脏的CD8+CD44T细胞的表型。ALT-801诱发CD8+CD44T细胞的增殖,而IL-2或PBS则否。额外地,在以ALT-801治疗的接收方小鼠中经过继转移和扩大的记忆CD8+CD44T细胞之间的NKG2D-阳性细胞群体增加,但以PBS治疗的接收方小鼠则否。再者,ALT-801治疗后无观察到这些细胞的表面上有CD25或PD-1的向上调节。因此,这些数据证实ALT-801明显能以与抗原无关的方式活化具有独特表型的CD8+CD44记忆T细胞。
为了进一步证实表达NKG2D的CD8+CD44T细胞的百分比的增加是由于NKG2D的重生调节,而非先前存在的NKG2D+记忆CD8+ T细胞群体的扩大,将首次接受试验的C57BL/6小鼠NKG2D-/CD25-/CD8+/CD44T细胞分类。以CelltraceTM Violet示踪剂标示分类的NKG2D-/CD25-/CD8+/CD44T细胞,并且过继转移(0.4x 106个细胞/接收方小鼠)入首次接受试验的C57BL/6小鼠。转移后一天,以两种剂量的PBS或以ALT-801治疗小鼠,并且于第二次治疗后一天采集脾细胞以分析NKG2D表型。来自以ALT-801治疗的小鼠的以CelltraceTM Violet标示的CD8+CD44T细胞中的NKG2D扩增且向上调节,而PBS对照组中则否。在体外,以ALT-801活化的CD8+CD44T细胞展现针对膀胱癌细胞的与抗原无关的强效抗肿瘤活性。
不受限于特定理论,结果与以抗原无关的方式使ALT-801活化CD8+ T细胞以增殖和向上调节内生类的表面受体的模式一致。这些活化的记忆T细胞展示针对膀胱癌细胞的有效,但与抗原无关的杀死。可能是这内生类型,与抗原无关的反应是抗肿瘤活性不取决于目标的p53-胜肽/HLA-A*0201抗原的原因。
这新颖的机转作用对于固体肿瘤而言与其它以T细胞为主的免疫治疗剂(诸如抗CTLA和抗PD-1抗体)不同,而且可增强支持这些结论的这些研究的效力。设计有ALT-801的最佳组合疗法
已知癌症患者(尤其是彼等有晚期疾病者)是免疫学上受损。这是因为肿瘤细胞主动地诱发呈现抗原细胞和效应细胞的功能障碍,并且促进调控免疫细胞的扩大,其向下调节抗肿瘤免疫力,允许肿瘤细胞逃逸免疫反应(Whiteside,J Allergy Clin免疫l,2010,125:S272;Poschke等人,Cancer Immunol Immuotherher,2011,60:1161;Talmadge,SeminCancer Biol,2011,21:131)。两个最佳特征化的免疫抑制细胞子集为FoxP3+调控细胞(Tregs)和衍生自骨髓的抑制细胞(MDSCs)(Qin,Cell Mol Immunol,2009,6:3;Gabrilovich等人,Nat Rev Immunol,2009,9:162;Ostrand-Rosenberg,CAncer ImmunolImmuotherher,2010,59:1593.)。MDSC为由骨髓前体细胞、不成熟巨噬细胞、不成熟树突状细胞以及不成熟粒细胞所组成的不成熟骨髓细胞的异质群体(Gabrilovich等人,Nat RevImmunol,2009,9:162)。大量文献显示在宽排列的可移植和原位生成肿瘤模式中的MDSC扩增。由于假设细胞通过肿瘤衍生因子(诸如,粒细胞-巨噬细胞群落-刺激因素和TNF-α)的分泌而从骨髓扩增及募集至肿瘤位置,血液、脾脏、骨髓以及肿瘤位置的MDSC累积有可能为肿瘤恶化中的早期事件(Bayne等人,Cancer Cell,2012,21:822;Pylayeva-Gupta等人,Cancer Cell,2012,21:836;Zhao等人,J Clin Invest,2012,122:4094.)。MDSC作用以抑制NK和T细胞通过直接细胞接触、细胞因子以及代谢途径的副产物、控制Tregs的扩大和活化、Treg渗透到肿瘤的促进,以及支持肿瘤细胞的新生血管形成和转移性扩散(Gabrilovich等人,Nat Rev Immunol,2009,9:162;Peranzoni等人,Curr Opin Immunol,2010,22:238;Marigo等人Immunol Rev,2008,222:162;Chioda等人,Cancer Metastasis Rev,2011,30:27;Schlecker等人,J Immunol,2012,189:5602)。
MDSC显现与肿瘤联结的巨噬细胞(TAM)密切相关,所述TAM通常展现M2极化,而且可通过产生IL-10、TGFβ以及促血管形成因子(诸如,基质金属蛋白酶)、VEGF以及衍生自血小板的生长因素而贡献肿瘤发展和免疫抑制(Mantovani等人,Hum Immunol,2009,70:325)。最近小鼠模式的证据暗示达到肿瘤的缺氧环境时,MDSC可区分成TAM,而且之后展示相异的表型和功能性特征(Corzo等人,.J Exp Med,2010,207:2439)。
膀胱癌患者中的衍生自骨髓的抑制性细胞:由于MDSC的最初辨识,数个后续刊物报导增加有各式各样人类固体肿瘤的患者中MDSC循环浓度增加(Montero等人,JImmuothher,2012,35:107.)。报导在非肌肉侵入性和肌肉侵入性膀胱癌患者中,周围血液中存在2个相异的MDSC群体(Eruslanov等人,Int J Cancer,2012,130:1109.):(i)CD11b+/CD15/CD33与中性粒细胞标志CD114和CD117的共表达;以及(ii)CD11b+/CD15/CD33与单核细胞-巨噬细胞标志CD14、CD115、CD116以及CCR2的共表达。当比较来自健康志愿者的样本和患者周围血液样本时,仅发现在膀胱癌患者中存在更高水平的CD11b+/CD15high/CD33细胞,而发现健康志愿者中存在显著量的CD11b+/CD15/CD33细胞。虽然发现两个群体分泌实质量的细胞因子,仅注明CD11b+/CD15high/CD33群体具有免疫抑制活性。在肿瘤试样中,发现2个相异的MDSC群体渗入肿瘤:彼等细胞中有60%至70%的被描述成CD11b+/HLA-DR+,而剩下30%至40%被描述成CD11b+和CD15+。未完全探讨彼等细胞的临床显著性。在另一个研究中,在膀胱尿道上皮癌瘤患者中发现增加的免疫抑制性CD14+/HLA-DR-/低细胞的循环水平和临床癌症期及病理级别的相关性。因此,膀胱尿道上皮癌瘤的患者展现提升MDSC的水平,包含与晚期疾病相关的免疫抑制性表型。
已进行连接MDSC和膀胱癌的前临床研究,并且总结如下:
·在C56BL/6小鼠中的原位MB49luc模式中,当疾病这化成成肌肉侵入性期时,膀胱内植入的肿瘤实质上提高血液中的MDSC(实施例10)。
·在此模式中,当MB49luc肿瘤细胞皮下或静脉内地植入时,观察到相似的结果(实施例12)。
·将带有MB49luc肿瘤的C57BL/6小鼠的MDSC分类,并且过继转移至非带有肿瘤(接收方)的C57BL/6小鼠。将来自接收方小鼠或野生型C57BL/6小鼠细胞单离,并且以ALT-801体外激发。接着,体外评估以ALT-801活化的脾细胞针对MB49luc细胞的细胞毒性。来自野生型C57BL/6小鼠的脾细胞较从MDSC接收方小鼠单离的细胞展现显著更强的针对MB49luc细胞的细胞毒性(实施例13)。这些数据证实MB49luc诱发的MDSC针对ALT-801诱发的生物活性的强效免疫抑制活性。
这些研究的结果暗示膀胱肿瘤细胞诱发MDSC可妨碍或干扰体内的ALT-801的抗肿瘤活性。
吉西他滨增强ALT-801抗肿瘤免疫反应:已建议消除MDSC可显著地增进癌症免疫疗法(诸如,ALT-801)的抗肿瘤反应和增强的效果。
吉西他滨为用于人类转移性膀胱癌中第一线化学疗法的主要组分,而且发现其为治疗剂量时,实质上减少带有大肿瘤的动物的脾脏中MDSC的数目,但没有影响CD4+ T细胞、CD8+ T细胞、NK细胞、巨噬细胞或B细胞的数目(Suzuki等人,Clin Cancer Res,2005,11:6713.)。MDSC的流失伴随CD8+ T细胞和NK细胞的抗肿瘤活性的增加。以吉西他滨预处理显著地扩大IFN-β对大间皮瘤肿瘤的抗肿瘤效果。在C26鼠腺癌模式中,带有肿瘤的小鼠中较对照的小鼠在脾脏中具有显著地提升的MDSC水平,并且如STAT1磷酸化的测量的在IFN-α和INF-γ的反应中展现减少的脾细胞活化(Mundy-Bosse等人,Cancer Res,2011,71:5101.)。以吉西他滨或抗GR1抗体治疗带有C26的小鼠导致MDCS的耗尽和脾细胞IFN反应性的恢复。
已进行将吉西他滨与膀胱癌细胞诱发的MDSC活性的减少连接的临床前研究,并且总结如下:
·在MB49luc肿瘤模式的临床前研究中,吉西他滨治疗显著地减少带有肿瘤的小鼠中的MDSC水平(实施例12)。这些数据暗示吉西他滨可为对消除MDSC有用的化学治疗药物,藉此允许ALT-801刺激的免疫效应细胞介导针对膀胱癌的抗肿瘤活性。
·在C56BL/6小鼠中的原位MB49luc模式中,次佳浓度的ALT-801与吉西他滨的组合是有效的,但较相同水平的ALT-801与顺铂+吉西他滨的组合针对MB49luc肿瘤展现更少的毒性(亦即,体重流失)。同样地,在带有皮下MB49luc肿瘤的C57BL/6小鼠中,ALT-801与吉西他滨的组合较单独的A LT-801或单独的吉西他滨造成显著更大的抗肿瘤活性。
·已产生有吉西他滨抗性的MB49luc肿瘤细胞,并且用以评估C57BL/6皮下肿瘤模式中次佳剂量的ALT-801与吉西他滨的组合的功效。结果显示次佳剂量水平的ALT-801与吉西他滨的组合较单独的ALT-801或吉西他滨展现显著更大的抗肿瘤活性。
共同地,这些结果暗示ALT-801与吉西他滨的组合可提供转移性膀胱癌(特别是有铂抗性的肿瘤)的有效治疗,同时顺铂可为废除的。因此,评估ALT-801与吉西他滨的组合在对以铂为主的治疗的晚期膀胱癌患者中的抗肿瘤活性是令人感兴趣的。这功效研究的结果将告知是否从当前的ALT-801+吉西他滨+顺铂疗方移除顺铂,以治疗对顺铂+吉西他滨有抗性的转移性尿道上皮癌瘤患者。若以非铂为主的疗方经证明为和以铂为主的疗方一样有效,将亦大幅帮助具有肾功能不全的患者,而不适合接收含有顺铂的疗方。已向美国FDA提交晚期膀胱癌实验中的ALT-801+吉西他滨试验中招收高达十四位患者的提议,而且这试验的患者招收是从2012年12月开始。
实施例15:人类临床试验实验计划。
研究设计
这是在具有膀胱、肾盂、输尿管以及尿道的肌肉侵入性或转移性尿道上皮细胞癌患者中,在含有顺铂和吉西他滨的生物化学疗法疗方中的ALT-801的第Ib/II期,开放标签,多发性中心,竞争性招收以及提升剂量的研究。以符合良好临床实践(Good ClinicalTrial,GCP)的方式进行研究。
研究包含剂量提升期以测定ALT-801与顺铂和吉西他滨的组合的最大忍受剂量(MTD)和在MTD的两阶段扩大期。这研究中的剂量提升是使用(3+3)剂量提升设计,而且在MTD的二阶段扩大期是使用修改的Simon两阶段设计进行。在这研究的剂量提升期中,除了两个不提升的剂量水平之外,还有ALT-801的五个剂量水平(0.04mg/kg、0.06mg/kg和0.08mg/kg、0.10mg/kg和0.12mg/kg)。顺铂(70mg/m2/剂量)和吉西他滨(1000mg/m2/剂量)的剂量在横跨所有ALT-801剂量水平是固定的。若剂量提升期未达到MTD,则赞助商,数据安全监控委员会(Data Safety Monitoring Board),及主要调查者会唔以讨论是否修正实验计划以扩张剂量提升期,以包含额外的ALT-801剂量水平。
治疗
计划的最初研究中的治疗为3个疗程。各疗程是由顺铂(第1天)、吉西他滨(第1天)、ALT-801(第3天和第5天)、吉西他滨(第8天)、ALT-801(第8天和第10天)以及休息期(第11至21天)所组成。第二或第三个疗程开始之前,受试者需求达到连续标准。完成研究治疗的三个完整疗程时,已将各招收的患者按排,而具有总共12种剂量的研究药物ALT-801、3种剂量的顺铂以及6种剂量的吉西他滨。完成3个疗程的最初研究治疗之后,具有至少稳定的疾病和达到其它治疗标准的患者将以每周四种额外的ALT-801剂量重复研究治疗。实验计划中解决延迟或修改。这是在以下方案和图28和29中阐释:
最初研究治疗:
Figure BDA0002437135000000531
重复研究治疗:
剂量编号 1 2 3 4
重复 1 8 15 22
ALT-801 X X X X
招收的患者在有充足诊断和治疗设施合格的癌症治疗中心接收研究治疗,以提供适当的疗法和并发症处理。通过在对包含阿地白介素(aldesleukin)
Figure BDA0002437135000000533
顺铂以及吉西他滨的癌症剂的使用有经验的合格医师的监督下,将ALT-801、顺铂以及吉西他滨静脉内渗入中央或周围静脉而给药。以下为研究的剂量提升期期间的剂量水平的方案。在DLT事件的情况下,最初剂量水平中的包含ALT-801的-1和-2剂量水平。
Figure BDA0002437135000000532
剂量提升
在研究的这期中,各剂量水平招收最少3位患者。从最初剂量开始监控所有患者的剂量限制毒性(DLT)8周。若0/3的患者在最初剂量后8周有研究治疗相关的剂量-限制毒性,则开放招收下一个同龄群。若一位在剂量水平的患者发展与药物相关的DLT,则在所述剂量水平和后续各更高剂量水平招收高达六位患者。若共6位患者的同龄群中的6患者中的0或1位具有达到与研究治疗相关的DLT的标准的事件,则开放下一个同龄群的招收。若剂量提升同龄群中的3至6位患者中有2位或更多位具有药物相关的DLT,则将所述剂量水平指定为超过最大忍受剂量。若在这水平下的剂量水平中有3位患者,则在所述剂量水平招收额外的患者(总共高达6位)。当6位患者中有0或1位患者有DLT的剂量水平(其为最大计划的剂量水平(水平5)或其为无法忍受的一个剂量水平下)时,考虑定义了为最大忍受剂量的剂量。在那点,可考虑通过实验计划修正而进一步修改治疗计划。
若六位患者中有超过两位在最初剂量水平(水平1)经历DLT超过,则赞助商,数据安全监控委员会,及主要调查者会唔以测定如何将顺铂、吉西他滨及/或研究药物的剂量水平向下调整,或在在(-1)和(-2)同龄群中持续,以及测定如何进行研究。
剂量限制毒性(DLT)是定义为不分解成分第1级或在72小时内降低的第3级的毒性和任何疗程期间发生的第4级的任何毒性,除了研究实验计划中描述的细节外。经历DLT的患者应中断研究治疗。由于研究药物投药之前经历不良事件、疾病恶化、或没有出现任何研究治疗中断事件,但患者退出研究治疗的决定的研究治疗中断将不需要定义DLT事件。在实验计划中定义研究治疗中断事件。
剂量扩大
使用修改的Simon两阶段设计在MTD进行两阶段扩大期。评估客观反应(OR)(定义为完整反应(CR)+部分反应(PR))和临床益助(CB)(定义为CR、PR+稳定的疾病(SD))两者,并且选择常见缺乏功效的设定阀值(或速率(ORR)=40%;CB速率(CBR)=78%)和感兴趣的功效水平(ORR=60%;CBR=92%)。样本尺寸是由各阶段具有更大样本尺寸的参数所驱动。
停止规则
患者招收将依照任何以下者的出现而暂时停止,而且赞助商,数据安全监控委员会,以及主要调查者将会唔以讨论如何进行研究中的未来患者招收:
·若在研究的剂量提升期的任何时间,共三位的同龄群中有超过一位患者或六位患者中有两位经历任何DLT;
·若研究的扩大期的期间的的任何时间,超过33%的患者经历任何与药物相关的DLT。
评估
治疗期间评估患者的临床毒性。收集患者的血液样本以评估研究药物的药品动力学剖面和免疫原性。从治疗的第一疗程的最初剂量评估抗肿瘤反应高达18周。抗肿瘤反应评估中包含所有接收至少一个剂量的研究药物ALT-801的患者。各同龄群之间和研究结束时,分析研究中所有招收的患者的剂量-反应效果的临床和安全数据。
群体
年龄为18岁或以上的患者为用于治疗膀胱、肾盂、输尿管的肌肉侵入性或转移性尿道上皮细胞癌的全身性顺铂和吉西他滨的候选者,而且可选择尿道以进一步评估参予研究的合格性。患者亦被要求具有适当的心脏、肺脏、肝脏以及肾脏功能,并且具有美国东岸癌症临床研究合作组织(Eastern Cooperative Oncology Group,ECOG)的0或1的效能状态和至少12周的生命期望值。
样本尺寸
研究(第Ib期)的最初剂量提升期将发生总共高达30位可评估的患者;估计的数目为21。将在研究(第II期)的扩大期(第1和2期)招收额外高达40位可评估的患者。整个研究将招收总共大约61位可评估的患者。假设20%为不合格的或不可评估的案例,研究可发生总高达72位患者。
初级端点
仅对于第I阶段
(1)界定ALT-801与顺铂和吉西他滨的组合在治疗肌肉侵入性或转移性尿道上皮细胞癌患者中的MTD。
对于第I和II阶段
(2)评估组合研究治疗在治疗患者中的安全性。
(3)评估治疗患者的客观反应速率。
次级端点
(1)评估治疗患者的无恶化存活。
(2)评估治疗患者的整体存活。
(3)评估治疗患者的免疫原性和ALT-801药品动力学剖面。
(4)评估HLA-A*0201/p53氨基酸264至272络合物的肿瘤呈现和研究治疗的安全性和临床益助之间的关系。
药品动力学和生物标志
收集血液样本以评估HLA-A2的鉴别、免疫细胞水平、表型、药品动力学、ALT-801研究药物的免疫原性以及IFN-γ和TNF-α的血清水平。收集肿瘤样本以测试HLA-A*0201/p53氨基酸264至272络合物呈现。在研究治疗的第一疗程中的ALT-801给药的第一天取血液样本,以进行ALT-801的药品动力学分析。在时间0(渗入开始之前)、在30分钟(渗入完成之后15分钟)、以及从时间0开始1、3以及6小时获得静脉血,以评估ALT-801血清浓度。进行非隔室和隔室分析。另外,使用收集以进行PK分析的相同血液样本来评估研究药物ALT-801的免疫原性和IFN-γ和TNF-α的血清水平。研究治疗的第一和第二疗程开始之前,收集用于HLA-A2鉴别、免疫细胞水平以及表型测试的新鲜血液样本。仅进行HLA-A2鉴别一次。
监控试验
在各研究药物渗入天、流出天以及追踪拜访时,获得用于尿检的尿样本、用于标准化学的血液样本、CBC、差示以及凝结。从研究治疗的最初剂量的第一ALT-801渗入天和第9周之前用剂之前,收集用于免疫原性试验(其包含用于抗ALT-801和IL-2中和抗体的测定法)的血液样本。
抗肿瘤反应评估
从研究治疗的最初剂量评估抗肿瘤反应高达18周:对无回应者:第9和13周;对早期回应者:第9和14周;对后期回应者:第9、13以及18周。使用固体肿瘤委员会(RECIST)中的反应评估标准1.1建议的新国际标准评估客观反应。基线评估应在开始研究治疗之前进行高达28天。使用相同评估方法和相同技术,以特征化在基线和追踪期间的各辨识和报导的病变。当两种方法已用以评估治疗的抗肿瘤效果时,优选为以成像为主的评估进行临床检验的评估。然而,除了辐射学测试以外,这群体中可常规地使用膀胱镜评估。
存活评估
从研究治疗开始的第6、9、12、18、24、30以及36个月或通过指定为研究追踪结束点时,评估所有招收的患者的无恶化存活和整体存活。
不良事件
治疗期间监控所有患者和评估临床毒性,并且在各不良事件(AE)的追踪拜访询问。患者可志愿提供关于AE的信息。使用不良事件的NCI常见术语标准4.0版(NCI CommonTerminology Criteria for Adverse Events,CTCAE v4.0)将所有不良事件分级,并且以患者案例报告形式登入。知悉事件之后1天内,研究中心应经由赞助商的电话、传真或电子信箱(或组合)报告触发使患者的研究治疗中断的所有SAE和所有事件。赞助商将使用信息以控制和协调剂量提升、同龄群扩大以及患者招收。接着,赞助商将知悉了解事件后,经由电话、传真或电子信箱通知当前剂量水平的所有参予临床位置和所述水平欲招收的患者数目,或任何患者招收暂停。研究中心应遵循向研究实验计划中所定义的规范向赞助商报告其它不良事件。将以根据21 CFR§312.32的促进方式向FDA报告所有与研究药物相关的皆为严重和未预料到的不良事件(AE)。
统计学计划
至于各同龄群,将所有AE列表,并且将评估药品动力学数据的检验和所有安全性。至于反应持续时间的估算,将使用卡普兰-迈耶方法。P-值of<0.05(两侧)将被认为是说明统计学上显著性。
实施例16:IL-2/T-细胞受体融合蛋白与吉西他滨和顺铂(GC)组合的第1/2期研究显示局部晚期或转移性尿道上皮细胞癌患者的阳性反应。
ALT-801是一种先前在晚期恶性肿瘤患者中第1期测试的人类IL-2/单链T-细胞受体融合蛋白(Fishman等人(2011)Clin Cancer Research17:7765)。在多个鼠模式中,ALT-801证实针对同基因和异体移植尿道上皮细胞癌的强效活性,暗示这疾病对IL-2为主的免疫治疗的敏感性(参见前述)。虽然尿道上皮细胞癌对以铂为主的化学疗法敏感,与完整反应速率联结的组合物(诸如,吉西他滨+顺铂)仅在15%左右,并且具有限反应耐久性和有限撤回效果。
方法:对可考虑GC化学疗法的局部晚期或肿瘤转移的尿道上皮细胞癌患者进行第21天预定表,共3个循环,共给药吉西他滨(1000mg/m2/剂量,第1和8天)、顺铂(70mg/m2/剂量,第1天)以及ALT-801(提高的剂量,第3、5、8、10天)所得最初功效结果。图30显示患者人口统计和疾病状态。以3+3提升设计,5剂量同龄群中的ALT-801计划的剂量为0.04至0.12mg/kg/剂量中。具有至少稳定的疾病受试者在3个疗程之后可接收每周4个额外的单独ALT-801的剂量。
结果:转移性尿道上皮细胞癌患者中持续进行ALT-801加上顺铂和吉西他滨的试验良好发生。总体上,患者充分地忍受ALT-801加上顺铂和吉西他滨的组合。治疗疗方在首次接受化疗的患者和有化学抗性疾病患者两者中具有鼓励客观反应速率(ORR)。以目标病变的变化百分比的测量肿瘤评估显示71%的患者中的肿缩小(21位中有15位)(图31)。当患者分成首次接受化学疗法和有铂经验的患者的类别时,80%的首次接受化学疗法的患者(10位中有8位)和55%的有铂经验的患者(11位中有6位)显示阳性客观反应(部分或完整反应)(图32)。当无查看到恶化存活期时,所有患者和有铂经验的患者的中位数为5.3个月(图33)。目前,相较于与有铂经验的患者约8月,一些患者中无恶化存活期延长至高达几乎13个月。额外地,如用剂之后所见高达6小时的血清IFN-γ水平增加,给药ALT-801之后诱发血浆细胞活素反应(图34)。相较于0.04mg/kg ALT-801的剂量,于0.06mg/kg ALT-801的剂量的血清IFN-γ反应持续。
迄今,至少三位第IV期尿道上皮细胞癌患者(1F,2M;59至63岁;2位患者有主要节点肿瘤转移和一位患者有肝脏肿瘤转移)已完成以0.04mg/kg ALT-801+GC的治疗。两位已先前进行一个根治性囊肿切除术,接着稍后GC治疗失败。与已知的GC和ALT-801的药物动态效果一致,所观察到的第3/4级毒性包含嗜中性粒细胞减少症(2)、血小板减少症(2)、白血球减少症(1)、淋巴球减少症(1)和贫血(1)。所有3者在第13周有放射线学完整反应。一位接着经历根治性囊肿切除术的患者被确认为病理学上不含肿瘤细胞。
基于这患者群体中先前公开的临床研究,以ALT-801+GC的治疗之后,具有晚期/转移性尿道上皮细胞癌的首次接受治疗的受试者中观察到的反应速率(包含完整反应)是高度未预料到的。例如,von der Maase等人(J.Clin.Oncol.(2000)17:3068)报导具有晚期或转移性膀胱癌的患者的第III期临床研究中,用独立辐射学检查,以吉西他滨+顺铂的治疗造成49.4%(182位评估患者中有81位)的整体肿瘤反应速率(亦即,部分反应和完整反应的速率)和12.2%的完整反应速率。这研究亦报导以甲氨蝶呤、长春花碱、多柔比星以及顺铂治疗的患者有相似整体反应速率(45.7%,181位评估患者中的69位)和完整反应速率(11.9%)。这患者群体中的其它化学疗法疗方(亦即,单剂、双重峰、三重峰)的后续研究报导类似或低劣的反应速率(由Yafi等人Curr.Oncol.(2011)18:e25所评论)。
额外地,基于文献,对化学疗法有抗性的转移性尿道上皮细胞癌患者中,所观察到ALT-801+GC治疗的的功效(亦即,完整和部分反应)亦是高度未预料到的。例如,含有铂的疗方之后370位有恶化的晚期尿道上皮细胞癌的患者的第III期研究中无报导CR(Bellmunt等人J.Clin.Oncol.(2009)27:4454)。额外地,其它第二线单一治疗和用于有铂经验的患者的组合疗法仅提供适度效果和显著的毒性(由Yafi等人Curr.Oncol.(2011)18:e25所评论)。
其它具体实施例
从前述说明,可对本文描述的发明进行的改变和修改,以使其适合多种用途和条件将为显而易知的。此具体实施例亦在以下权利要求书的范畴内。
本文变数的任何定义中的组件列表的叙述包含将那变量定义为单一组件或所列组件的组合(或子组合)。本文具体实施例的叙述包含那具体实施例作为任何单一具体实施例或与任何其它具体实施例或其部分的组合。这说明书中描述的所有专利和刊物是以相同程度以参考方式并入本文,彷佛具体地和个别地说明各独立专利和刊物是以参考方式并入。

Claims (21)

1.一种改善癌症的药物组成物,包括:
包括ALT-801、顺铂、以及吉西他滨的治疗组合。
2.如权利要求1所述的药物组成物,进一步包括选自由贝伐单抗、西妥昔单抗、伊匹单抗、帕尼单抗、利妥昔单抗及曲妥珠单抗所组成群组的抗体。
3.如权利要求1所述的药物组成物,其中,所述癌症是选自由膀胱癌、尿道、输尿管以及肾盂的尿道上皮细胞癌、多发性骨髓瘤、肾脏癌、乳癌、结肠癌、头颈癌、肺癌、前列腺癌、神经胶母细胞瘤、骨肉瘤、脂肪肉瘤、软组织肉瘤、卵巢癌、黑色素瘤、肝癌、食道癌、胰脏癌以及胃癌所组成群组。
4.如权利要求3所述的药物组成物,其中,所述癌症是膀胱或尿道上皮细胞癌。
5.如权利要求1所述的药物组成物,其中,所述癌症有化学抗性。
6.一种通过减少受试者的肿瘤体积而减少肿瘤负担的药剂,包括:
包括ALT-801、顺铂、以及吉西他滨的治疗组合。
7.如权利要求6所述的药剂,进一步包括选自由贝伐单抗、西妥昔单抗、伊匹单抗、帕尼单抗、利妥昔单抗及曲妥珠单抗所组成群组的抗体。
8.如权利要求6所述的药剂,其中,所述吉西他滨是以每公斤受试者身体质量的40mg的剂量给药,所述顺铂是以3mg/kg的剂量给药,以及所述ALT-801是以1.6mg/kg的剂量给药。
9.如权利要求6所述的药剂,其中,所述癌症是选自由膀胱癌、尿道、输尿管以及肾盂的尿道上皮细胞癌、多发性骨髓瘤、肾脏癌、乳癌、结肠癌、头颈癌、肺癌、前列腺癌、神经胶母细胞瘤、骨肉瘤、脂肪肉瘤、软组织肉瘤、卵巢癌、黑色素瘤、肝癌、食道癌、胰脏癌以及胃癌所组成群组。
10.如权利要求9所述的药剂,其中,所述癌症是膀胱或尿道上皮细胞癌。
11.如权利要求6所述的药剂,其中,所述癌症有化学抗性。
12.一种在受试者中诱发针对癌症的耐久性免疫记忆反应的药剂,包括:
包括ALT-801、顺铂、以及吉西他滨的治疗组合。
13.如权利要求12所述的药剂,进一步包括选自由贝伐单抗、西妥昔单抗、伊匹单抗、帕尼单抗、利妥昔单抗及曲妥珠单抗所组成群组的抗体。
14.如权利要求12所述的药剂,其中,所述癌症是选自由膀胱癌、尿道、输尿管以及肾盂的尿道上皮细胞癌、多发性骨髓瘤、肾脏癌、乳癌、结肠癌、头颈癌、肺癌、前列腺癌、神经胶母细胞瘤、骨肉瘤、脂肪肉瘤、软组织肉瘤、卵巢癌、黑色素瘤、肝癌、食道癌、胰脏癌以及胃癌所组成群组。
15.如权利要求14所述的药剂,其中,所述癌症是膀胱或尿道上皮细胞癌。
16.如权利要求12所述的药剂,其中,所述癌症有化学抗性。
17.一种增加具有癌症的受试者的存活的药剂,包括:
包括ALT-801、顺铂、以及吉西他滨的治疗组合。
18.如权利要求17所述的药剂,进一步包括选自由贝伐单抗、西妥昔单抗、伊匹单抗、帕尼单抗、利妥昔单抗及曲妥珠单抗所组成群组的抗体。
19.如权利要求17所述的药剂,其中,所述癌症是选自由膀胱癌、尿道、输尿管以及肾盂的尿道上皮细胞癌、多发性骨髓瘤、肾脏癌、乳癌、结肠癌、头颈癌、肺癌、前列腺癌、神经胶母细胞瘤、骨肉瘤、脂肪肉瘤、软组织肉瘤、卵巢癌、黑色素瘤、肝癌、食道癌、胰脏癌以及胃癌所组成群组。
20.如权利要求19所述的药剂,其中,所述癌症是膀胱或尿道上皮细胞癌。
21.如权利要求20所述的药剂,其中,所述癌症有化学抗性。
CN202010255455.3A 2012-03-29 2013-03-15 用于治疗肿瘤的方法 Pending CN111420032A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261617370P 2012-03-29 2012-03-29
US61/617,370 2012-03-29
CN201380028390.7A CN104470535A (zh) 2012-03-29 2013-03-15 用于治疗肿瘤的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201380028390.7A Division CN104470535A (zh) 2012-03-29 2013-03-15 用于治疗肿瘤的方法

Publications (1)

Publication Number Publication Date
CN111420032A true CN111420032A (zh) 2020-07-17

Family

ID=49261086

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380028390.7A Pending CN104470535A (zh) 2012-03-29 2013-03-15 用于治疗肿瘤的方法
CN202010255455.3A Pending CN111420032A (zh) 2012-03-29 2013-03-15 用于治疗肿瘤的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201380028390.7A Pending CN104470535A (zh) 2012-03-29 2013-03-15 用于治疗肿瘤的方法

Country Status (8)

Country Link
US (2) US20150216937A1 (zh)
EP (1) EP2830648A4 (zh)
JP (2) JP6639228B2 (zh)
KR (2) KR20150002706A (zh)
CN (2) CN104470535A (zh)
AU (2) AU2013240191B2 (zh)
CA (1) CA2868431A1 (zh)
WO (1) WO2013148337A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875152B1 (en) 2014-12-15 2024-04-10 Washington University Compositions and methods for targeted cytokine delivery
US10722527B2 (en) 2015-04-10 2020-07-28 Capsugel Belgium Nv Abiraterone acetate lipid formulations
US11053293B2 (en) 2016-02-05 2021-07-06 Washington University Compositions and methods for targeted cytokine delivery
KR102702620B1 (ko) 2016-03-02 2024-09-05 에자이 알앤드디 매니지먼트 가부시키가이샤 에리불린-기반 항체-약물 콘주게이트 및 사용 방법
CN118453872A (zh) * 2016-05-06 2024-08-09 塔里斯生物医药公司 治疗下尿路尿道上皮癌的方法
CN109952369B (zh) * 2016-10-05 2024-03-22 弗罗里达中央大学研究基金会 涉及nk细胞和抗pdl1癌症治疗的方法和组合物
JP7300394B2 (ja) 2017-01-17 2023-06-29 ヘパリジェニックス ゲーエムベーハー 肝再生の促進又は肝細胞死の低減もしくは予防のためのプロテインキナーゼ阻害
US11046768B2 (en) * 2017-01-27 2021-06-29 Memorial Sloan Kettering Cancer Center Bispecific HER2 and CD3 binding molecules
PE20200303A1 (es) 2017-05-24 2020-02-06 Novartis Ag Proteinas de anticuerpo injertadas con citocina y metodos de uso en el tratamiento del cancer
SG10201913998YA (en) 2017-07-25 2020-03-30 Taris Biomedical Llc Methods of treating tumor metastasis
US10792297B2 (en) 2017-11-08 2020-10-06 Taris Biomedical Llc Methods of treatment and maintenance therapy for bladder cancer using gemcitabine
CN108392634A (zh) * 2018-03-28 2018-08-14 清华大学 B7s1抑制剂在制备肝癌药物中的用途
US20220098268A1 (en) * 2019-01-15 2022-03-31 Altor Bioscience, Llc Human immunodeficiency virus-specific t cell receptors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274098A (zh) * 2003-05-30 2008-10-01 健泰科生物技术公司 利用抗-vegf抗体的治疗
WO2011066379A2 (en) * 2009-11-24 2011-06-03 H. Lee Moffitt Cancer Center And Research Institute, Inc. METHOD OF REDUCING INTRATUMORAL pHe AND ACID-MEDIATED INVASION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537973B1 (en) * 1992-03-16 2003-03-25 Isis Pharmaceuticals, Inc. Oligonucleotide inhibition of protein kinase C
US6617135B1 (en) * 1999-08-09 2003-09-09 Emd Lexigen Research Center Corp. Multiple cytokine protein complexes
EP1589943A2 (en) * 2003-01-09 2005-11-02 Arizeke Pharmaceuticals, Inc. Methods of treating lung diseases
EP1842553A1 (en) * 2006-04-07 2007-10-10 Bayer Schering Pharma Aktiengesellschaft Combination of an anti-EDb fibronectin domain antibody/IL2 fusion protein and a further small molecule
WO2008042436A2 (en) * 2006-10-03 2008-04-10 Biogen Idec Ma Inc. Biomarkers and assays for the treatment of cancer
US20110070191A1 (en) * 2008-03-19 2011-03-24 Wong Hing C T cell receptor fusions and conjugates and methods of use there of

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274098A (zh) * 2003-05-30 2008-10-01 健泰科生物技术公司 利用抗-vegf抗体的治疗
WO2011066379A2 (en) * 2009-11-24 2011-06-03 H. Lee Moffitt Cancer Center And Research Institute, Inc. METHOD OF REDUCING INTRATUMORAL pHe AND ACID-MEDIATED INVASION

Also Published As

Publication number Publication date
CN104470535A (zh) 2015-03-25
AU2018203584A1 (en) 2018-06-14
AU2013240191A1 (en) 2014-10-09
EP2830648A1 (en) 2015-02-04
EP2830648A4 (en) 2015-12-02
KR20150002706A (ko) 2015-01-07
WO2013148337A1 (en) 2013-10-03
CA2868431A1 (en) 2013-10-03
JP2015512914A (ja) 2015-04-30
JP6639228B2 (ja) 2020-02-05
AU2013240191B2 (en) 2018-02-22
US20190328838A1 (en) 2019-10-31
KR20190134832A (ko) 2019-12-04
JP2018172414A (ja) 2018-11-08
US20150216937A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
CN111420032A (zh) 用于治疗肿瘤的方法
JP6884155B2 (ja) 癌治療のための併用免疫療法及びサイトカイン制御療法
JP2022058876A (ja) 腫瘍成長および転移を阻害するための免疫調節療法との組み合わせでのセマフォリン-4d阻害分子の使用
JP6170926B2 (ja) 癌胎児抗原関連細胞接着分子(ceacam)に対する抗体
EP3563835A1 (en) Novel exosome-based anticancer agent
CN109180804A (zh) 肿瘤坏死因子受体超家族(tnfrsf)结合剂类及其用途
KR20170121178A (ko) 보편적인 살해 t-세포
KR20150043234A (ko) 텔로머라제로부터 유래된 보편적 암 펩티드
Kim et al. Nanoparticle delivery of recombinant IL-2 (BALLkine-2) achieves durable tumor control with less systemic adverse effects in cancer immunotherapy
KR20200045520A (ko) 프로그래밍된 세포사 단백질 1에 대한 항체
CN109748953A (zh) 用于治疗多种肿瘤(例如包括nsclc在内的肺癌)的新型免疫疗法
KR20210093950A (ko) Il-7 단백질 및 면역 관문 저해제의 조합으로 종양을 치료하는 방법
JP2021535083A (ja) Cd80細胞外ドメインfc融合タンパク質投与レジメン
TW202039540A (zh) 一種治療ebv相關性癌症之抗lmp2 tcr-t細胞療法
EP4140495A1 (en) Pharmaceutical composition for cancer treatment comprising fusion protein including il-2 protein and cd80 protein and anticancer drug
Dréau et al. Combining the specific anti-MUC1 antibody TAB004 and lip-MSA-IL-2 limits pancreatic cancer progression in immune competent murine models of pancreatic ductal adenocarcinoma
Jeon et al. Cell-based IL-15: IL-15Rα secreting vaccine as an effective therapy for CT26 colon cancer in mice
JP6811710B2 (ja) トリプトファン2,3−ジオキシゲナーゼまたはそのフラグメントを含むワクチン組成物
KR102783033B1 (ko) 펩타이드를 사용하는 병용 요법
CN111405909A (zh) 基于gp96的癌症疗法
CN113164574A (zh) 基于细胞的组合疗法
US20240352121A1 (en) Lair-1 agonistic antibodies and methods of use thereof
Midavaine et al. CCR2-targeting pepducins reduce T cell-nociceptor interaction driving bone cancer pain
Rajangam et al. Adoptive T-Cell Therapy for the Treatment of Lung Cancer
Trigo Synergistic Antitumor Effect of Combined Laser Thermotherapy and Immunomodulators in Malignant Melanoma: Pilot Studies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200717

WD01 Invention patent application deemed withdrawn after publication