CN111312891A - A kind of flexible GMR magnetic field sensor and preparation method thereof - Google Patents
A kind of flexible GMR magnetic field sensor and preparation method thereof Download PDFInfo
- Publication number
- CN111312891A CN111312891A CN202010113228.7A CN202010113228A CN111312891A CN 111312891 A CN111312891 A CN 111312891A CN 202010113228 A CN202010113228 A CN 202010113228A CN 111312891 A CN111312891 A CN 111312891A
- Authority
- CN
- China
- Prior art keywords
- layer
- flexible
- magnetic field
- giant magnetoresistance
- field sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 13
- 238000002955 isolation Methods 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 140
- 229920002120 photoresistant polymer Polymers 0.000 claims description 34
- 229910003321 CoFe Inorganic materials 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 10
- 238000001459 lithography Methods 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- 239000012790 adhesive layer Substances 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910019236 CoFeB Inorganic materials 0.000 claims description 6
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000003302 ferromagnetic material Substances 0.000 claims description 5
- 239000002885 antiferromagnetic material Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 4
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 238000004544 sputter deposition Methods 0.000 claims description 4
- 229910015136 FeMn Inorganic materials 0.000 claims description 3
- 229910019041 PtMn Inorganic materials 0.000 claims description 3
- 229910004166 TaN Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 238000011161 development Methods 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 claims description 3
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
Abstract
一种柔性GMR磁场传感器及其制备方法,包括柔性基底、巨磁电阻结构和导电层;巨磁电阻结构和导电层均设置在柔性基底上表面,且导电层设置在巨磁电阻结构的周围;巨磁电阻结构包括第一缓冲层、第二缓冲层、钉扎层、隔离层和两个铁磁层,两个铁磁层分别为被钉扎层和自由层;第一缓冲层设置在柔性基底上表面,第一缓冲层上自下而上依次设置钉扎层、被钉扎层、隔离层、自由层和第二缓冲层,形成巨磁电阻结构。本发明实现了使用超薄柔性基底对巨磁电阻结构的多层磁性传感器薄膜能够实现曲率半径为微米级的弯折上万次而不产生疲劳,同时可以减小器件面积来实现高密度的芯片集成,具有灵敏度较高、体积小、功耗低、可靠性高、温度特性好、可集成化优点。
A flexible GMR magnetic field sensor and a preparation method thereof, comprising a flexible substrate, a giant magnetoresistance structure and a conductive layer; the giant magnetoresistance structure and the conductive layer are both arranged on the upper surface of the flexible substrate, and the conductive layer is arranged around the giant magnetoresistance structure; The giant magnetoresistance structure includes a first buffer layer, a second buffer layer, a pinned layer, an isolation layer and two ferromagnetic layers, the two ferromagnetic layers are respectively a pinned layer and a free layer; the first buffer layer is arranged on the flexible On the upper surface of the substrate, a pinning layer, a pinned layer, an isolation layer, a free layer and a second buffer layer are sequentially arranged on the first buffer layer from bottom to top to form a giant magnetoresistance structure. The invention realizes that the multi-layer magnetic sensor film with the giant magnetoresistance structure using the ultra-thin flexible substrate can be bent for tens of thousands of times with a radius of curvature of a micrometer without fatigue, and at the same time, the device area can be reduced to realize a high-density chip Integrated, has the advantages of high sensitivity, small size, low power consumption, high reliability, good temperature characteristics, and can be integrated.
Description
技术领域technical field
本发明属于传感器设计技术领域,特别涉及一种柔性GMR磁场传感器及其制备方法。The invention belongs to the technical field of sensor design, in particular to a flexible GMR magnetic field sensor and a preparation method thereof.
背景技术Background technique
传感器具备磁场信息的感知、采集、转换、传输和处理等功能,已经成为自动检测、自动控制系统中不可缺少的重要电子元器件。目前,GMR材料已在磁传感器、计算机读出磁头、磁随机存取存储器等领域得到商业化应用,由于其对低场的高灵敏度,非常适于工控领域中角度、位置、转速等方面的测量,以及用于制造高密度存储介质,被广泛应用于非接触位置测量、交通速度检测、生物探测、电力系统等多种领域。与传统传感器相比,GMR传感器具有灵敏度较高、体积小、功耗低、可靠性高、温度特性好、可集成化等优点,使其在磁性传感器中的市场占有率越来越大。巨磁电阻效应,是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。巨磁电阻是一种量子力学效应,它产生于层状的磁性薄膜结构,这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。当相邻的两个铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻;当相邻的两个铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。铁磁材料磁矩的方向是由加到材料的外磁场控制的。一般采用反铁磁材料的交换偏置效应对其中一层铁磁层的磁化方向进行钉扎,使其不能自由转向;而另一铁磁层可随外加磁场发生自由转向,称为自由层。当外磁场超过自由层的矫顽场时,可以实现磁化方向的平行和反平行两种状态,产生磁电阻的极小和极大值。磁电阻极值与外磁场之间具有线性关系,因此可用于测量外磁场的大小。Sensors have the functions of perception, acquisition, conversion, transmission and processing of magnetic field information, and have become an indispensable and important electronic component in automatic detection and automatic control systems. At present, GMR materials have been commercialized in the fields of magnetic sensors, computer read heads, magnetic random access memories, etc. Due to their high sensitivity to low fields, they are very suitable for the measurement of angles, positions, and rotational speeds in the field of industrial control. , and for the manufacture of high-density storage media, which are widely used in non-contact position measurement, traffic speed detection, biological detection, power systems and other fields. Compared with traditional sensors, GMR sensors have the advantages of high sensitivity, small size, low power consumption, high reliability, good temperature characteristics, and can be integrated, making them more and more market share in magnetic sensors. The giant magnetoresistance effect refers to the phenomenon that the resistivity of magnetic materials changes greatly when there is an external magnetic field compared to when there is no external magnetic field. Giant magnetoresistance is a quantum mechanical effect that arises from a layered magnetic thin film structure, which is formed by alternating thin layers of ferromagnetic and non-ferromagnetic materials. When the magnetic moments of the two adjacent ferromagnetic layers are parallel to each other, the spin-related scattering of carriers is the smallest, and the material has the smallest resistance; when the magnetic moments of the two adjacent ferromagnetic layers are antiparallel, The spin-dependent scattering is strongest and the material has the greatest resistance. The direction of the magnetic moment of a ferromagnetic material is controlled by an external magnetic field applied to the material. Generally, the exchange bias effect of antiferromagnetic materials is used to pin the magnetization direction of one ferromagnetic layer so that it cannot be freely turned; while the other ferromagnetic layer can be freely turned with an external magnetic field, which is called the free layer. When the external magnetic field exceeds the coercive field of the free layer, two states of parallel and anti-parallel magnetization directions can be realized, resulting in the minimum and maximum values of the magnetoresistance. There is a linear relationship between the extrema of magnetoresistance and the external magnetic field, so it can be used to measure the magnitude of the external magnetic field.
目前的磁场传感器具有以下几项缺陷和不足:(1)传统的磁场传感器为基于霍尔效应的电流器件,其存在体积大,功耗高,灵敏度低测量范围小等问题,其原理和制造技术的缺陷限制了磁场传感器的应用范围。(2)新型的GMR传感器虽然是多层薄膜结构,缓解了传统磁场传感器高能耗的缺点但仍然无法摆脱器件集成度低空间利用率不够,并且较传统传感器测量范围进一步的缩小使用。(3)现有GMR磁场传感器为非柔性结构,无法弯曲折叠和裁剪,不能充分利用体积形状,使用密度不够高。(4)现有的GMR磁场传感器大多是硅基器件,在集成方面无法解决重量,击穿漏导等问题。(5)现有的GMR器件加工成本较高,商用价值有限。(6)现有的GMR传感器在解决散热上和受外界温度影响等问题上难以突破。The current magnetic field sensor has the following defects and shortcomings: (1) The traditional magnetic field sensor is a current device based on the Hall effect, which has problems such as large volume, high power consumption, low sensitivity and small measurement range. The defects limit the application range of magnetic field sensors. (2) Although the new GMR sensor is a multi-layer thin film structure, which alleviates the shortcomings of high energy consumption of traditional magnetic field sensors, it still cannot get rid of the low device integration and insufficient space utilization, and the measurement range of the traditional sensor is further reduced. (3) The existing GMR magnetic field sensor is an inflexible structure, cannot be bent, folded and cut, cannot make full use of the volume shape, and the use density is not high enough. (4) Most of the existing GMR magnetic field sensors are silicon-based devices, which cannot solve the problems of weight, breakdown and leakage conductance in terms of integration. (5) The processing cost of the existing GMR device is high, and the commercial value is limited. (6) The existing GMR sensor is difficult to break through in solving the problems of heat dissipation and the influence of external temperature.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种柔性GMR磁场传感器及其制备方法,以解决上述问题。The purpose of the present invention is to provide a flexible GMR magnetic field sensor and a preparation method thereof to solve the above problems.
为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种柔性GMR磁场传感器,包括柔性基底、巨磁电阻结构和导电层;巨磁电阻结构和导电层均设置在柔性基底上表面,且导电层设置在巨磁电阻结构的周围;巨磁电阻结构包括第一缓冲层、第二缓冲层、钉扎层、隔离层和两个铁磁层,两个铁磁层分别为被钉扎层和自由层;第一缓冲层设置在柔性基底上表面,第一缓冲层上自下而上依次设置钉扎层、被钉扎层、隔离层、自由层和第二缓冲层,形成巨磁电阻结构。A flexible GMR magnetic field sensor, comprising a flexible substrate, a giant magnetoresistance structure and a conductive layer; the giant magnetoresistance structure and the conductive layer are both arranged on the upper surface of the flexible substrate, and the conductive layer is arranged around the giant magnetoresistance structure; the giant magnetoresistance structure It includes a first buffer layer, a second buffer layer, a pinned layer, an isolation layer and two ferromagnetic layers, the two ferromagnetic layers are a pinned layer and a free layer respectively; the first buffer layer is arranged on the upper surface of the flexible substrate, A pinned layer, a pinned layer, an isolation layer, a free layer and a second buffer layer are sequentially arranged on the first buffer layer from bottom to top to form a giant magnetoresistance structure.
进一步的,柔性基底为PET、PEN、PMMA或Kapton。Further, the flexible substrate is PET, PEN, PMMA or Kapton.
进一步的,导电层为Ta、Au、Ag、Al、Cu、Pt、W、Ti、Mo、TaN或TiN中的一种。Further, the conductive layer is one of Ta, Au, Ag, Al, Cu, Pt, W, Ti, Mo, TaN or TiN.
进一步的,隔离层为Ta、Au、Ag、Al、Cu、Pt、W、Ti或Mo中的一种。Further, the isolation layer is one of Ta, Au, Ag, Al, Cu, Pt, W, Ti or Mo.
进一步的,自由层为CoFe、CoFe/Ru/CoFe、NiFe、CoFeB、FeGaB、Co、Fe、NiFeCo或CoNbZr中的一种。Further, the free layer is one of CoFe, CoFe/Ru/CoFe, NiFe, CoFeB, FeGaB, Co, Fe, NiFeCo or CoNbZr.
进一步的,钉扎层为IrMn、PtMn或FeMn中的一种反铁磁材料;被钉扎层为CoFe、CoFe/Ru/CoFe、NiFe、CoFeB、FeGaB、Co、Fe、NiFeCo或CoNbZr中的一种铁磁性材料;缓冲层为Ta。Further, the pinned layer is an antiferromagnetic material in IrMn, PtMn or FeMn; the pinned layer is one of CoFe, CoFe/Ru/CoFe, NiFe, CoFeB, FeGaB, Co, Fe, NiFeCo or CoNbZr. ferromagnetic material; the buffer layer is Ta.
进一步的,导电层分为四个部分,巨磁电阻结构两个端部的两侧均设置有导电层。Further, the conductive layer is divided into four parts, and conductive layers are provided on both sides of the two ends of the giant magnetoresistance structure.
进一步的,一种柔性GMR磁场传感器的制备方法,包括以下步骤:Further, a preparation method of a flexible GMR magnetic field sensor, comprising the following steps:
步骤1,对一个柔性基底利用异丙醇和去离子水进行表面清洗,用N2吹干;
步骤2,在上述柔性基底上涂上一层光刻胶,用紫外线曝光把图案外的光刻胶层去掉,即在光刻胶上刻上所需要的磁阻单元和阵列图形,然后显影并烘干,完成第一次光刻;Step 2: Coat a layer of photoresist on the above-mentioned flexible substrate, remove the photoresist layer outside the pattern with ultraviolet light exposure, that is, engrave the required magnetoresistive units and array patterns on the photoresist, and then develop and Drying to complete the first lithography;
步骤3,生长巨磁电阻薄膜,采用磁控溅射技术,将所需的靶材按顺序进行淀积,在整个预留区域生长多层巨磁电阻薄膜;Step 3, growing the giant magnetoresistance film, using the magnetron sputtering technology, depositing the required targets in sequence, and growing the multi-layer giant magnetoresistance film in the entire reserved area;
步骤4,剥离,在丙酮溶液中浸泡,通过剥离工艺去除剩余的胶层及胶层上面不需要的的巨磁电阻薄膜,形成预留的巨磁阻单元及阵列;
步骤5,在上述薄膜上涂上一层光刻胶,用紫外线曝光把图案外的光刻胶层去掉,即在光刻胶上刻上所需要的导电层图形,然后显影并烘干,完成第二次光刻;Step 5: Coat a layer of photoresist on the above-mentioned film, remove the photoresist layer outside the pattern with ultraviolet light exposure, that is, engrave the required conductive layer pattern on the photoresist, then develop and dry to complete second lithography;
步骤6,导电层生长,第二次光刻完成后,溅射一层导电材料作为导电层;
步骤7,剥离,溅射完毕后,通过剥离工艺去除光刻胶及其上的金属层形成导电层。Step 7, peeling off, after the sputtering is completed, the photoresist and the metal layer on it are removed by a peeling process to form a conductive layer.
进一步的,步骤2具体包括以下操作过程:Further,
涂胶:在压电基底上喷涂一层光刻胶,涂胶后置于115℃的烘箱中烘干20min;Glue coating: spray a layer of photoresist on the piezoelectric substrate, and place it in an oven at 115℃ for 20min after coating;
曝光:利用紫外线曝光在光刻胶上刻上需要的形状图案;首先将掩模版贴合在要曝光的薄膜上,然后在紫外激光下照射9s,后置于115℃的烘箱中1min;Exposure: UV exposure is used to engrave the desired shape pattern on the photoresist; first, the reticle is attached to the film to be exposed, then irradiated under UV laser for 9s, and then placed in an oven at 115°C for 1min;
显影:将上述曝光后的压电基底置于显影液中浸泡1min,出现图形后,用去离子水清洗并烘干。Development: Soak the exposed piezoelectric substrate in the developer solution for 1 min. After the pattern appears, wash it with deionized water and dry it.
与现有技术相比,本发明有以下技术效果:Compared with the prior art, the present invention has the following technical effects:
本发明利用在柔性基底上生长GMR磁性材料结构来实现对GMR磁场传感器的可弯折和拉伸情况的环境应用,本发明实现了使用超薄柔性基底对巨磁电阻结构的多层磁性传感器薄膜能够实现曲率半径为微米级的弯折上万次而不产生疲劳,同时可以减小器件面积来实现高密度的芯片集成,其具有灵敏度较高、体积小、功耗低、可靠性高、温度特性好、可集成化等优点。可将柔性GMR磁场传感器可用于车载电子、物联网和可穿戴设备等微型磁传感器芯片及其阵列的制造。The invention utilizes the growth of the GMR magnetic material structure on the flexible substrate to realize the environmental application of the bending and stretching of the GMR magnetic field sensor. It can achieve tens of thousands of bends with a radius of curvature of micron level without fatigue, and can reduce the device area to achieve high-density chip integration. It has high sensitivity, small size, low power consumption, high reliability, and high temperature. Features are good, can be integrated and so on. Flexible GMR magnetic field sensors can be used in the fabrication of miniature magnetic sensor chips and their arrays in automotive electronics, IoT, and wearable devices.
附图说明Description of drawings
图1为本发明的截面图。FIG. 1 is a cross-sectional view of the present invention.
图2为本发明的俯视图。Figure 2 is a top view of the present invention.
图3为本发明的制作流程图。Fig. 3 is the production flow chart of the present invention.
其中:1柔性基底;2第一缓冲层;3钉扎层;4被钉扎层;5隔离层;6自由层;7导电层;8第二缓冲层。Wherein: 1 flexible substrate; 2 first buffer layer; 3 pinned layer; 4 pinned layer; 5 isolation layer; 6 free layer; 7 conductive layer; 8 second buffer layer.
具体实施方式Detailed ways
以下结合附图对本发明进一步说明:Below in conjunction with accompanying drawing, the present invention is further described:
请参阅图1至图3,一种柔性GMR磁场传感器,包括柔性基底1、巨磁电阻结构和导电层7;巨磁电阻结构和导电层7均设置在柔性基底上表面,且导电层7设置在巨磁电阻结构的周围;巨磁电阻结构包括第一缓冲层2、第二缓冲层8、钉扎层3、隔离层5和两个铁磁层,两个铁磁层分别为被钉扎层4和自由层6;第一缓冲层2设置在柔性基底上表面,第一缓冲层2上自下而上依次设置钉扎层3、被钉扎层4、隔离层5、自由层6和第二缓冲层8,形成巨磁电阻结构。Please refer to FIGS. 1 to 3, a flexible GMR magnetic field sensor, comprising a
柔性基底1为PET、PEN、PMMA或Kapton。The
导电层为Ta、Au、Ag、Al、Cu、Pt、W、Ti、Mo、TaN或TiN中的一种。The conductive layer is one of Ta, Au, Ag, Al, Cu, Pt, W, Ti, Mo, TaN or TiN.
隔离层为Ta、Au、Ag、Al、Cu、Pt、W、Ti或Mo中的一种。The isolation layer is one of Ta, Au, Ag, Al, Cu, Pt, W, Ti or Mo.
自由层为CoFe、CoFe/Ru/CoFe、NiFe、CoFeB、FeGaB、Co、Fe、NiFeCo或CoNbZr中的一种。The free layer is one of CoFe, CoFe/Ru/CoFe, NiFe, CoFeB, FeGaB, Co, Fe, NiFeCo or CoNbZr.
钉扎层为IrMn、PtMn或FeMn中的一种反铁磁材料;被钉扎层为CoFe、CoFe/Ru/CoFe、NiFe、CoFeB、FeGaB、Co、Fe、NiFeCo或CoNbZr中的一种铁磁性材料;缓冲层为Ta。The pinned layer is an antiferromagnetic material in IrMn, PtMn or FeMn; the pinned layer is a ferromagnetic material in CoFe, CoFe/Ru/CoFe, NiFe, CoFeB, FeGaB, Co, Fe, NiFeCo or CoNbZr material; the buffer layer is Ta.
导电层7分为四个部分,巨磁电阻结构两个端部的两侧均设置有导电层7。The conductive layer 7 is divided into four parts, and the conductive layers 7 are provided on both sides of the two ends of the giant magnetoresistance structure.
一种柔性GMR磁场传感器的制备方法,包括以下步骤:A preparation method of a flexible GMR magnetic field sensor, comprising the following steps:
步骤1,对一个柔性基底利用异丙醇和去离子水进行表面清洗,用N2吹干;
步骤2,在上述柔性基底上涂上一层光刻胶,用紫外线曝光把图案外的光刻胶层去掉,即在光刻胶上刻上所需要的磁阻单元和阵列图形,然后显影并烘干,完成第一次光刻;Step 2: Coat a layer of photoresist on the above-mentioned flexible substrate, remove the photoresist layer outside the pattern with ultraviolet light exposure, that is, engrave the required magnetoresistive units and array patterns on the photoresist, and then develop and Drying to complete the first lithography;
步骤3,生长巨磁电阻薄膜,采用磁控溅射技术,将所需的靶材按顺序进行淀积,在整个预留区域生长多层巨磁电阻薄膜;Step 3, growing the giant magnetoresistance film, using the magnetron sputtering technology, depositing the required targets in sequence, and growing the multi-layer giant magnetoresistance film in the entire reserved area;
步骤4,剥离,在丙酮溶液中浸泡,通过剥离工艺去除剩余的胶层及胶层上面不需要的的巨磁电阻薄膜,形成预留的巨磁阻单元及阵列;
步骤5,在上述薄膜上涂上一层光刻胶,用紫外线曝光把图案外的光刻胶层去掉,即在光刻胶上刻上所需要的导电层图形,然后显影并烘干,完成第二次光刻;Step 5: Coat a layer of photoresist on the above-mentioned film, remove the photoresist layer outside the pattern with ultraviolet light exposure, that is, engrave the required conductive layer pattern on the photoresist, then develop and dry to complete second lithography;
步骤6,导电层生长,第二次光刻完成后,溅射一层导电材料作为导电层;
步骤7,剥离,溅射完毕后,通过剥离工艺去除光刻胶及其上的金属层形成导电层。Step 7, peeling off, after the sputtering is completed, the photoresist and the metal layer on it are removed by a peeling process to form a conductive layer.
步骤2具体包括以下操作过程:
涂胶:在压电基底上喷涂一层光刻胶,涂胶后置于115℃的烘箱中烘干20min;Glue coating: spray a layer of photoresist on the piezoelectric substrate, and place it in an oven at 115℃ for 20min after coating;
曝光:利用紫外线曝光在光刻胶上刻上需要的形状图案;首先将掩模版贴合在要曝光的薄膜上,然后在紫外激光下照射9s,后置于115℃的烘箱中1min;Exposure: UV exposure is used to engrave the desired shape pattern on the photoresist; first, the reticle is attached to the film to be exposed, then irradiated under UV laser for 9s, and then placed in an oven at 115°C for 1min;
显影:将上述曝光后的压电基底置于显影液中浸泡1min,出现图形后,用去离子水清洗并烘干。Development: Soak the exposed piezoelectric substrate in the developer solution for 1 min. After the pattern appears, wash it with deionized water and dry it.
步骤1:对一个基底利用异丙醇和去离子水进行表面清洗,用N2吹干;如图3a。步骤2:在上述压电基底上涂上一层光刻胶,用紫外线曝光把图案外的光刻胶层去掉,Step 1: Use isopropanol and deionized water for surface cleaning of a substrate, and dry it with N2; as shown in Figure 3a. Step 2: apply a layer of photoresist on the above-mentioned piezoelectric substrate, and remove the photoresist layer outside the pattern with ultraviolet light exposure,
即在光刻胶上刻上所需要的磁阻单元和阵列图形,然后显影并烘干,完成第一次光刻;如图3b。That is, the required magnetoresistive units and array patterns are engraved on the photoresist, and then developed and dried to complete the first lithography; as shown in Figure 3b.
步骤3:生长巨磁电阻薄膜,采用磁控溅射技术,将所需的靶材按顺序进行淀积,在整个预留区域生长多层巨磁电阻薄膜;如图3c。Step 3: grow the giant magnetoresistance film, adopt the magnetron sputtering technology, deposit the required target material in sequence, and grow the multi-layer giant magnetoresistance film in the entire reserved area; as shown in Figure 3c.
步骤4:剥离,在丙酮溶液中浸泡,通过剥离工艺去除剩余的胶层及胶层上面的磁电阻薄膜,形成预留的巨磁阻单元及阵列;如图3d。Step 4: peel off, soak in acetone solution, remove the remaining adhesive layer and the magnetoresistive film on the adhesive layer by a peeling process, and form a reserved giant magnetoresistive unit and array; as shown in Figure 3d.
步骤5:在上述薄膜上涂上一层光刻胶,用紫外线曝光把图案外的光刻胶层去掉,即在光刻胶上刻上所需要的导电层图形,然后显影并烘干,完成第二次光刻;如图3e。Step 5: apply a layer of photoresist on the above-mentioned film, remove the photoresist layer outside the pattern with ultraviolet light exposure, that is, engrave the required conductive layer pattern on the photoresist, then develop and dry to complete Second lithography; Figure 3e.
步骤6:导电层生长,第二次光刻完成后,溅射一层导电材料作为导电层;如图3f。Step 6: The conductive layer is grown, and after the second lithography is completed, a layer of conductive material is sputtered as the conductive layer; as shown in Figure 3f.
步骤7:剥离,溅射完毕后,通过剥离工艺去除光刻胶及其上的金属层形成导电层。如图3g。Step 7: stripping, after the sputtering is completed, the photoresist and the metal layer on it are removed by a stripping process to form a conductive layer. Figure 3g.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010113228.7A CN111312891A (en) | 2020-02-24 | 2020-02-24 | A kind of flexible GMR magnetic field sensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010113228.7A CN111312891A (en) | 2020-02-24 | 2020-02-24 | A kind of flexible GMR magnetic field sensor and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111312891A true CN111312891A (en) | 2020-06-19 |
Family
ID=71161852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010113228.7A Pending CN111312891A (en) | 2020-02-24 | 2020-02-24 | A kind of flexible GMR magnetic field sensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111312891A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112490351A (en) * | 2020-11-19 | 2021-03-12 | 西安交通大学 | Flexible TMR magnetoresistive sensor and preparation method thereof |
CN114280513A (en) * | 2021-12-20 | 2022-04-05 | 电子科技大学 | Giant magnetoresistance linear sensor implementation method |
CN114509563A (en) * | 2022-04-18 | 2022-05-17 | 合肥工业大学 | A giant magnetoresistive sensor combined with microfluidic technology and its manufacturing method and application |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010039450A1 (en) * | 1999-06-02 | 2001-11-08 | Dusan Pavcnik | Implantable vascular device |
US20030197503A1 (en) * | 2002-04-19 | 2003-10-23 | Mitsubishi Denki Kabushiki Kaisha | Magnetoresistive sensor device |
US20090251829A1 (en) * | 2008-04-02 | 2009-10-08 | Headway Technologies, Inc. | Seed layer for TMR or CPP-GMR sensor |
CN102270736A (en) * | 2010-06-01 | 2011-12-07 | 中国科学院物理研究所 | A kind of magnetic nano multi-layer film for magnetic sensitive sensor and its manufacturing method |
CN102709470A (en) * | 2011-09-19 | 2012-10-03 | 中国科学院物理研究所 | Nano-multilayer film, field effect tube, sensor, random access memory and preparation method |
CN105122489A (en) * | 2013-11-01 | 2015-12-02 | 中国科学院物理研究所 | Nanometre magnetic multilayer film for temperature sensor and manufacturing method therefor |
CN106291413A (en) * | 2015-05-21 | 2017-01-04 | 中国科学院宁波材料技术与工程研究所 | A kind of spin valve structure and the application as giant magnetoresistance strain gauge thereof |
US20180033959A1 (en) * | 2015-02-04 | 2018-02-01 | Everspin Technologies, Inc. | Magnetoresistive Stack/Structure and Method of Manufacturing Same |
CN109888088A (en) * | 2019-03-01 | 2019-06-14 | 西安交通大学 | A magnetoresistive sensor structure and its manufacturing method |
CN110176534A (en) * | 2019-06-03 | 2019-08-27 | 西安交通大学 | Adjustable tunneling junction magnetoresistive sensor of measurement range and preparation method thereof |
CN110197872A (en) * | 2019-06-03 | 2019-09-03 | 西安交通大学 | Adjustable anisotropic magnetoresistance sensor of measurement range and preparation method thereof |
CN110212085A (en) * | 2019-06-03 | 2019-09-06 | 西安交通大学 | Adjustable giant magnetoresistance sensor of measurement range and preparation method thereof |
-
2020
- 2020-02-24 CN CN202010113228.7A patent/CN111312891A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010039450A1 (en) * | 1999-06-02 | 2001-11-08 | Dusan Pavcnik | Implantable vascular device |
US20030197503A1 (en) * | 2002-04-19 | 2003-10-23 | Mitsubishi Denki Kabushiki Kaisha | Magnetoresistive sensor device |
US20090251829A1 (en) * | 2008-04-02 | 2009-10-08 | Headway Technologies, Inc. | Seed layer for TMR or CPP-GMR sensor |
CN102270736A (en) * | 2010-06-01 | 2011-12-07 | 中国科学院物理研究所 | A kind of magnetic nano multi-layer film for magnetic sensitive sensor and its manufacturing method |
CN102709470A (en) * | 2011-09-19 | 2012-10-03 | 中国科学院物理研究所 | Nano-multilayer film, field effect tube, sensor, random access memory and preparation method |
CN105122489A (en) * | 2013-11-01 | 2015-12-02 | 中国科学院物理研究所 | Nanometre magnetic multilayer film for temperature sensor and manufacturing method therefor |
US20180033959A1 (en) * | 2015-02-04 | 2018-02-01 | Everspin Technologies, Inc. | Magnetoresistive Stack/Structure and Method of Manufacturing Same |
CN106291413A (en) * | 2015-05-21 | 2017-01-04 | 中国科学院宁波材料技术与工程研究所 | A kind of spin valve structure and the application as giant magnetoresistance strain gauge thereof |
CN109888088A (en) * | 2019-03-01 | 2019-06-14 | 西安交通大学 | A magnetoresistive sensor structure and its manufacturing method |
CN110176534A (en) * | 2019-06-03 | 2019-08-27 | 西安交通大学 | Adjustable tunneling junction magnetoresistive sensor of measurement range and preparation method thereof |
CN110197872A (en) * | 2019-06-03 | 2019-09-03 | 西安交通大学 | Adjustable anisotropic magnetoresistance sensor of measurement range and preparation method thereof |
CN110212085A (en) * | 2019-06-03 | 2019-09-06 | 西安交通大学 | Adjustable giant magnetoresistance sensor of measurement range and preparation method thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112490351A (en) * | 2020-11-19 | 2021-03-12 | 西安交通大学 | Flexible TMR magnetoresistive sensor and preparation method thereof |
CN114280513A (en) * | 2021-12-20 | 2022-04-05 | 电子科技大学 | Giant magnetoresistance linear sensor implementation method |
CN114280513B (en) * | 2021-12-20 | 2025-04-01 | 电子科技大学 | A method for realizing a giant magnetoresistance linear sensor |
CN114509563A (en) * | 2022-04-18 | 2022-05-17 | 合肥工业大学 | A giant magnetoresistive sensor combined with microfluidic technology and its manufacturing method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110212085B (en) | Giant magnetoresistance sensor with adjustable measurement range and preparation method thereof | |
CN111312891A (en) | A kind of flexible GMR magnetic field sensor and preparation method thereof | |
CN101672903B (en) | Preparation method of Wheatstone bridge type spin valve magnetic sensor | |
CN110176534A (en) | Adjustable tunneling junction magnetoresistive sensor of measurement range and preparation method thereof | |
JP2009085953A (en) | Method of manufacturing magnetic device and method of manufacturing magnetic field angle sensor | |
CN104103753B (en) | Magnetoresistive film structure and magnetic field sensor using the same | |
WO2007065377A1 (en) | An integrate planar sensor for detecting weak magnetic field on three dimensional directions and a manufacturing method thereof | |
CN101000821B (en) | A closed shape magnetic multilayer film and its preparation method and application | |
CN109888088A (en) | A magnetoresistive sensor structure and its manufacturing method | |
CN117062512B (en) | Structure for improving size and thermal stability of artificial antiferromagnetic coupling field and processing method thereof | |
CN111505544A (en) | TMR magnetic field sensor capable of reconstructing sensitive direction and preparation method | |
CN105449096A (en) | Magnetic thin film structure, manufacturing and usage methods thereof, magnetic sensitive sensing unit and array | |
Özer et al. | Shapeable planar hall sensor with a stable sensitivity under concave and convex bending | |
KR100905737B1 (en) | Spin Valve Magnetoresistance Element with Vertical Magnetic Anisotropy | |
CN112713240A (en) | Preparation method of anti-symmetric magneto-resistance device based on two-dimensional material | |
CN105699920A (en) | Area-array giant-magnetoresistance magnetic sensor and manufacturing method thereof | |
CN1992104B (en) | Ring-shaped magnetic multi-layer film and method for making same and use | |
CN110531286A (en) | A kind of AMR sensor and preparation method thereof of anti-high-intensity magnetic field interference | |
US9784802B1 (en) | GMR nanowire sensors | |
CN100487938C (en) | Non mask preparation method based on thin film multiple layer film nano magnetic electron device | |
Lone et al. | Multilayer ferromagnetic spintronic devices for neuromorphic computing applications | |
CN100561747C (en) | Ultra-high-density magnetic random access memory based on Hall effect and its preparation method | |
US10718636B1 (en) | Magneto-resistive sensors | |
CN203932116U (en) | Close-shaped MTJ | |
CN101692480B (en) | A Method of Improving Bias Field Stability in Co/Cu/NiFe/FeMn Spin Valve Structure Multilayer Film Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200619 |