CN111305919A - A flexible peak-shaving system and method for air energy storage in a power plant - Google Patents
A flexible peak-shaving system and method for air energy storage in a power plant Download PDFInfo
- Publication number
- CN111305919A CN111305919A CN202010203406.5A CN202010203406A CN111305919A CN 111305919 A CN111305919 A CN 111305919A CN 202010203406 A CN202010203406 A CN 202010203406A CN 111305919 A CN111305919 A CN 111305919A
- Authority
- CN
- China
- Prior art keywords
- valve
- energy storage
- air
- outlet
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 69
- 230000033228 biological regulation Effects 0.000 claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 19
- 230000005611 electricity Effects 0.000 claims abstract description 15
- 238000010248 power generation Methods 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 238000005338 heat storage Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 238000011084 recovery Methods 0.000 claims description 7
- 230000008901 benefit Effects 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 5
- 238000000748 compression moulding Methods 0.000 claims description 2
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K11/00—Plants characterised by the engines being structurally combined with boilers or condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/02—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/06—Cooling; Heating; Prevention of freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B41/00—Pumping installations or systems specially adapted for elastic fluids
- F04B41/02—Pumping installations or systems specially adapted for elastic fluids having reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B41/00—Pumping installations or systems specially adapted for elastic fluids
- F04B41/06—Combinations of two or more pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明公开了一种发电厂空气储能灵活性调峰系统及方法,该系统包括液态压缩空气储能系统和燃煤机组发电系统,该系统的运行模式包括储能模式和释能模式,电网用电负荷低谷、存在剩余电能时开启储能模式,利用剩余电能驱动多级压缩机压缩空气,电网用电高峰、缺少电能供应时开启释能模式,利用燃煤机组抽汽加热低温空气,推动膨胀机发电对外输出电能;本发明可以提高储能系统效率,同时避免了使用高压比压缩机时面临的能耗高、寿命低等问题;本发明取消了传统液态压缩空气储能系统中的储热系统,降低了储能系统投资,同时解决了储能过程与释能过程中热量的不匹配问题。
The invention discloses a flexible peak regulation system and method for air energy storage in a power plant. The system includes a liquid compressed air energy storage system and a coal-fired unit power generation system. The operation modes of the system include an energy storage mode and an energy release mode. When the electricity load is low and there is surplus electricity, the energy storage mode is turned on, and the surplus electricity is used to drive the multi-stage compressor to compress the air. The energy release mode is turned on when the grid electricity consumption peaks and there is a lack of electricity supply. The expander generates electricity and outputs electric energy to the outside; the invention can improve the efficiency of the energy storage system, and at the same time avoid the problems of high energy consumption and low service life when using a high pressure ratio compressor; the invention cancels the traditional liquid compressed air energy storage system. The thermal system reduces the investment of the energy storage system, and at the same time solves the problem of heat mismatch between the energy storage process and the energy release process.
Description
技术领域technical field
本发明属于储能调峰技术领域,具体涉及一种发电厂空气储能灵活性调峰系统及方法,适用于以燃煤机组为典型的各种热发电厂,能够提高燃煤机组的灵活性、调峰能力和经济收益,同时可以提高液态压缩空气储能系统的储能效率。The invention belongs to the technical field of energy storage peak regulation, and in particular relates to a flexible peak regulation system and method for air energy storage in a power plant, which is suitable for various thermal power plants typified by coal-fired units, and can improve the flexibility of the coal-fired units , peak shaving capacity and economic benefits, and at the same time can improve the energy storage efficiency of the liquid compressed air energy storage system.
背景技术Background technique
我国风能、太阳能等可再生能源逐年迅猛发展,截止2018年底,我国光伏、风电装机分别达到1.72亿千瓦、1.84亿千瓦,年总发电量达到5435亿千瓦时,风光等可再生清洁能源具有波动大、随机性强的缺点,为充分消纳新能源,电网对燃煤机组调峰次数及深度的要求均大幅提升。此外,全社会用电量逐年攀升,电网用电峰谷差日益增大,这也增大了燃煤机组的调峰压力。Renewable energy such as wind energy and solar energy in my country is developing rapidly year by year. By the end of 2018, my country's photovoltaic and wind power installed capacity reached 172 million kilowatts and 184 million kilowatts respectively, and the total annual power generation reached 543.5 billion kilowatt hours. , the shortcomings of strong randomness, in order to fully absorb new energy, the power grid has greatly increased the requirements for the number and depth of peak shaving of coal-fired units. In addition, the electricity consumption of the whole society is increasing year by year, and the peak-to-valley difference of electricity consumption in the power grid is increasing day by day, which also increases the peak regulation pressure of coal-fired units.
建设大规模储能设施能够有效提高电网的调峰能力以及对可再生能源的消纳水平。现阶段抽水蓄能是一种最成熟的大规模储能技术,它效率较高但选址条件严格且建设周期很长;电化学电池储能技术响应快、体积小,但寿命短、平均成本很高、安全风险大,是否适合建设大规模储能实施仍需工程示范验证;液态压缩空气储能技术寿命长、平均成本低、不依赖地理环境,是一种极具发展潜力的大规模储能技术。The construction of large-scale energy storage facilities can effectively improve the peak shaving capacity of the power grid and the consumption level of renewable energy. At present, pumped storage is the most mature large-scale energy storage technology. It has high efficiency but strict site selection conditions and a long construction period. Electrochemical battery energy storage technology has fast response, small size, but short life and average cost. It is very high and the safety risk is high. Whether it is suitable for the construction of large-scale energy storage still needs engineering demonstration and verification; the liquid compressed air energy storage technology has a long service life, low average cost, and does not depend on the geographical environment. It is a large-scale energy storage technology with great development potential. energy technology.
在液态压缩空气储能系统中,压缩空气的过程中会产生大量的压缩热,为提升储能系统的储能效率,会建设储热系统回收压缩热并尽可能提高压缩热的温度品位,目前压缩空气储能技术中末级压缩机出口空气的压力在10MPa左右,温度基本在200℃~400℃,目前还有进一步提高的趋势,但提高压缩机工作温度会导致压缩机性能恶化、耗电量增加、使用寿命降低,目前市场上也缺乏可以承受该等级温度和压力的压缩机。此外对于常规液态压缩空气储能系统,储能过程中储热系统获得的热量大于释能过程中所需的热量,会造成能量的浪费。In the liquid compressed air energy storage system, a large amount of compression heat will be generated in the process of compressing the air. In order to improve the energy storage efficiency of the energy storage system, a heat storage system will be constructed to recover the compression heat and improve the temperature grade of the compression heat as much as possible. In the compressed air energy storage technology, the pressure of the outlet air of the final stage compressor is about 10MPa, and the temperature is basically between 200°C and 400°C. At present, there is still a trend of further improvement, but increasing the working temperature of the compressor will lead to deterioration of compressor performance and power consumption. The volume increases and the service life decreases, and there is also a lack of compressors that can withstand this level of temperature and pressure on the market. In addition, for the conventional liquid compressed air energy storage system, the heat obtained by the heat storage system during the energy storage process is greater than the heat required in the energy release process, which will cause energy waste.
发明内容SUMMARY OF THE INVENTION
为克服现有大规模储能调峰技术的不足,本发明提出一种发电厂空气储能灵活性调峰系统及方法,该系统中空气压缩机可以在中低温、小压比工况下工作,降低了压缩机的能量损失、提高了储能效率,同时显著增强了燃煤机组的灵活性和调峰能力。In order to overcome the shortcomings of the existing large-scale energy storage peak regulation technology, the present invention proposes a power plant air energy storage flexible peak regulation system and method. The air compressor in the system can work under the working conditions of medium and low temperature and small pressure ratio. , reducing the energy loss of the compressor, improving the energy storage efficiency, and significantly enhancing the flexibility and peak shaving capacity of the coal-fired unit.
为了达到上述目的,本发明采用如下技术方案。In order to achieve the above objects, the present invention adopts the following technical solutions.
一种发电厂空气储能灵活性调峰系统,包括:由压缩机1、冷却器2、气液转换装置3、液体空气储罐4、加热器5、膨胀机6、新增压缩机21和新增冷却器22组成的液态压缩空气储能系统;由凝汽器11、凝结水泵12、一级低压加热器13-1、二级低压加热器13-2、除氧器14、给水泵15、高压加热器16、锅炉17、高压缸18、中压缸19和低压缸20组成的燃煤机组发电系统;由第一阀门7、第二阀门8、第三阀门9和第四阀门10组成的控制阀组;A flexible peak regulation system for air energy storage in a power plant, comprising: a compressor 1, a cooler 2, a gas-
所述压缩机1出口依次连通冷却器2高温侧入口、冷却器2高温侧出口、新增压缩机21、新增冷却器22高温侧入口、新增冷却器22高温侧出口、气液转换装置3降温液化侧入口、气液转换装置3降温液化侧出口和液体空气储罐4入口;液体空气储罐4出口依次连通气液转换装置3冷能回收侧入口、气液转换装置3冷能回收侧出口、加热器5低温侧入口、加热器5低温侧出口和膨胀机6;凝汽器11出口依次连通凝结水泵12、一级低压加热器13-1、二级低压加热器13-2、除氧器14、给水泵15、高压加热器16、锅炉17凝结水入口、锅炉17主蒸汽出口、高压缸18、锅炉17再热蒸汽入口、锅炉17再热蒸汽出口、中压缸19、低压缸20和凝汽器11入口;第一阀门7一侧与凝结水泵12出口连通,第一阀门7另一侧与冷却器2低温侧入口和新增冷却器22低温侧入口连通,第二阀门8一侧与一级低压加热器13-1出口连通,第二阀门8另一侧与冷却器2低温侧出口和新增冷却器22低温侧出口连通,第三阀门9一侧与低压缸20入口连通,第三阀门9另一侧与加热器5高温侧入口连通,第四阀门10一侧与凝汽器11出口连通,第四阀门10另一侧与加热器5高温侧出口连通;该系统取消了液态压缩空气储能系统中的储热系统,利用燃煤机组发电系统的抽汽加热低温空气,使压缩机1和新增压缩机21能够在中低温、单级小压比工况下工作,并且能够有效利用蒸汽潜热,提高了液态压缩空气储能系统的储能效率。The outlet of the compressor 1 is sequentially connected to the high temperature side inlet of the cooler 2, the high temperature side outlet of the cooler 2, the newly added
所述低压缸20能够在最小安全蒸汽流量下工作(低压缸有效输出功约为零),此时整个系统的储能效率最高。The low-
所述压缩机1和冷却器2均为一级或者多级,压缩机1和冷却器2数量一一对应,每级压缩机后串联对应的冷却器。The compressor 1 and the cooler 2 are of one or more stages, the number of the compressor 1 and the cooler 2 is in one-to-one correspondence, and each stage of the compressor is connected to a corresponding cooler in series.
所述新增压缩机21和新增冷却器22均为一级或者多级,与压缩机1、冷却器2是串联关系,新增压缩机21和新增冷却器22数量一一对应,每级新增压缩机后串联对应的新增冷却器。The newly added
所述新增压缩机21表示优化设计后新增的压缩级,作用是降低每级压缩过程中空气的压比,从而压缩机1和新增压缩机21缩机出口空气温度、降低压塑机1和新增压缩机21功耗。The newly added
所述加热器5和膨胀机6均为一级或者多级,加热器5和膨胀机6数量一一对应,每级加热器后串联对应的膨胀机。The
所述第三阀门9与中压缸19出口、低压缸20入口连通,也可根据发电机组具体情况优化筛选抽汽位置。The
该系统适用于热电联产机组和纯凝机组,能够提高机组的灵活性、调峰能力和经济收益,同时提高液态压缩空气储能系统的储能效率。The system is suitable for cogeneration units and pure condensing units, which can improve the flexibility, peak shaving capacity and economic benefits of the units, and at the same time improve the energy storage efficiency of the liquid compressed air energy storage system.
所述第一阀门7、第二阀门8、第三阀门9和第四阀门10的作用是控制该系统按储能模式还是释能模式工作。The functions of the first valve 7 , the second valve 8 , the
所述的一种发电厂空气储能灵活性调峰系统的运行方法,包括储能模式和释能模式,具体如下:The operation method of the air energy storage flexible peak regulation system in a power plant includes an energy storage mode and an energy release mode, and the details are as follows:
储能模式:电网用电低谷、存在多余电量时开启储能模式,打开第一阀门7和第二阀门8,关闭第三阀门9和第四阀门10;空气侧,常温常压空气进入压缩机1提升压力和温度,进入冷却器2降低温度,再进入新增压缩机21提升压力和温度,再进入新增冷却器22降低温度,常温高压空气经过气液转换装置3进行降温液化,低温液态空气进入液体空气储罐4储存;水侧,凝汽器11出口凝结水经凝结水泵12加压后,部分或全部凝结水经过第一阀门7分别进入冷却器2和新增冷却器22冷却高温空气,再经第二阀门8回到二级低压加热器13-2入口,其余凝结水直接进入一级低压加热器13-1,二级低压加热器13-2出口水依次通过除氧器14、给水泵15、高压加热器16、锅炉17生成主蒸汽,主蒸汽进入高压缸18膨胀作功后生成冷再热蒸汽,再经锅炉17提高温度后生成热再热蒸汽,再依次进入中压缸19、低压缸20和凝汽器11,在凝汽器11中蒸汽冷凝成凝结水;Energy storage mode: The energy storage mode is turned on when the power consumption of the grid is low and there is excess power, the first valve 7 and the second valve 8 are opened, and the
释能模式:电网用电高峰、缺少电能供应时开启释能模式,关闭第一阀门7和第二阀门8,打开第三阀门9和第四阀门10;空气侧,低温液态空气从液体空气储罐4流出,经气液转换装置3进行冷能回收后生成常温高压空气,再进入加热器5提高温度,再进入膨胀机6膨胀作功输出电能,膨胀机6出口为常压常温空气,排入周围环境;水侧,在中压缸19出口处部分或全部蒸汽经过第三阀门9进入加热器5加热空气,再通过第四阀门10进入凝结水泵12,其余蒸汽直接进入低压缸20继续作功,在凝结水泵12出口凝结水全部进入一级低压加热器13-1,其它设备中水的循环流程与储能模式相同。Energy release mode: open the energy release mode when the grid electricity peaks and lack of power supply, close the first valve 7 and the second valve 8, open the
和现有技术相比较,本发明具备如下优点:Compared with the prior art, the present invention has the following advantages:
本发明发电厂空气储能灵活性调峰系统及方法用于解决电网中日益凸显的大容量调峰问题,可以显著提高燃煤机组的灵活性,从而提高电网对可再生能源发电的消纳能力;该系统的运行模式包括储能模式和释能模式,电网用电负荷低谷、存在剩余电能时开启储能模式,利用剩余电能驱动多级压缩机压缩空气,电网用电高峰、缺少电能供应时开启释能模式,利用燃煤机组抽汽加热低温空气,推动膨胀机发电对外输出电能;本发明可以提高储能系统效率,同时避免了使用高压比压缩机时面临的能耗高、寿命低等问题;本发明取消了传统液态压缩空气储能系统中的储热系统,降低了储能系统投资,同时解决了储能过程与释能过程中热量的不匹配问题。The air energy storage flexible peak regulation system and method of the power plant of the invention are used to solve the increasingly prominent large-capacity peak regulation problem in the power grid, and can significantly improve the flexibility of the coal-fired unit, thereby improving the grid's ability to absorb renewable energy power generation ; The operating modes of the system include energy storage mode and energy release mode. When the electricity load of the grid is low and there is surplus electricity, the energy storage mode is turned on, and the surplus electricity is used to drive the multi-stage compressor to compress the air. Turn on the energy release mode, use the extraction steam of the coal-fired unit to heat the low-temperature air, and push the expander to generate electricity to output electric energy to the outside world; the invention can improve the efficiency of the energy storage system, and at the same time avoid the high energy consumption and low life expectancy when using a high-pressure compressor. Problem: The present invention cancels the heat storage system in the traditional liquid compressed air energy storage system, reduces the investment of the energy storage system, and solves the problem of heat mismatch between the energy storage process and the energy release process.
附图说明Description of drawings
图1是本发明的系统示意图。FIG. 1 is a schematic diagram of the system of the present invention.
图2是常规液态压缩空气储能系统的示意图。Figure 2 is a schematic diagram of a conventional liquid compressed air energy storage system.
图中:In the picture:
1-压缩机 2-冷却器 3-气液转换装置 4-液体空气储罐1-Compressor 2-Cooler 3-Gas-liquid conversion device 4-Liquid air storage tank
5-加热器 6-膨胀机 7-第一阀门 8-第二阀门 9-第三阀门5-Heater 6-Expander 7-First valve 8-Second valve 9-Third valve
10-第四阀门 11-凝汽器 12-凝结水泵 13-1-一级低压加热器10-The fourth valve 11-Condenser 12-Condensate pump 13-1-First-stage low pressure heater
13-2-二级低压加热器 14-除氧器 15-给水泵 16-高压加热器13-2-Secondary low pressure heater 14-Deaerator 15-Feed water pump 16-High pressure heater
17-锅炉 18-高压缸 19-中压缸 20-低压缸 21-新增压缩机17-Boiler 18-High Pressure Cylinder 19-Medium Pressure Cylinder 20-Low Pressure Cylinder 21-Added Compressor
22-新增冷却器22-Add cooler
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明专利作进一步详细说明,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The patent of the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The specific embodiments described herein are only used to explain the present invention, and are not intended to limit the present invention.
如图1所示,本发明一种发电厂空气储能灵活性调峰系统,包括:由压缩机1、冷却器2、气液转换装置3、液体空气储罐4、加热器5、膨胀机6、新增压缩机21和新增冷却器22组成的液态压缩空气储能系统;由凝汽器11、凝结水泵12、一级低压加热器13-1、二级低压加热器13-2、除氧器14、给水泵15、高压加热器16、锅炉17、高压缸18、中压缸19和低压缸20组成的燃煤机组发电系统;由第一阀门7、第二阀门8、第三阀门9和第四阀门10组成的控制阀组;As shown in Figure 1, a flexible peak regulation system for air energy storage in a power plant of the present invention includes: a compressor 1, a cooler 2, a gas-
所述压缩机1出口依次连通冷却器2高温侧入口、冷却器2高温侧出口、新增压缩机21、新增冷却器22高温侧入口、新增冷却器22高温侧出口、气液转换装置3降温液化侧入口、气液转换装置3降温液化侧出口和液体空气储罐4入口;同时,液体空气储罐4出口依次连通气液转换装置3冷能回收侧入口、气液转换装置3冷能回收侧出口、加热器5低温侧入口、加热器5低温侧出口和膨胀机6;凝汽器11出口依次连通凝结水泵12、一级低压加热器13-1、二级低压加热器13-2、除氧器14、给水泵15、高压加热器16、锅炉17凝结水入口、锅炉17主蒸汽出口、高压缸18、锅炉17再热蒸汽入口、锅炉17再热蒸汽出口、中压缸19、低压缸20和凝汽器11入口;第一阀门7一侧与凝结水泵12出口连通,第一阀门7另一侧与冷却器2低温侧入口和新增冷却器22低温侧入口连通,第二阀门8一侧与一级低压加热器13-1出口连通,第二阀门8另一侧与冷却器2低温侧出口和新增冷却器22低温侧出口连通,第三阀门9一侧与低压缸20入口连通,第三阀门9另一侧与加热器5高温侧入口连通,第四阀门10一侧与凝汽器11出口连通,第四阀门10另一侧与加热器5高温侧出口连通。本发明系统适用于热电联产机组和纯凝机组,能够提高机组的灵活性、调峰能力和经济收益,同时提高液态压缩空气储能系统的储能效率。The outlet of the compressor 1 is sequentially connected to the high temperature side inlet of the cooler 2, the high temperature side outlet of the cooler 2, the newly added
本发明一种发电厂空气储能灵活性调峰系统可以按照以下储能模式和释能模式运行。The flexible peak regulation system for air energy storage in a power plant of the present invention can operate according to the following energy storage mode and energy release mode.
储能模式:电网用电低谷、存在多余电量时开启储能模式,打开第一阀门7和第二阀门8,关闭第三阀门9和第四阀门10;空气侧,常温常压空气进入压缩机1提升压力和温度,进入冷却器2降低温度,再进入新增压缩机21提升压力和温度,再进入新增冷却器22降低温度,常温高压空气经过气液转换装置3进行降温液化,低温液态空气进入液体空气储罐4储存;水侧,凝汽器11出口凝结水经凝结水泵12加压后,部分或全部凝结水经过第一阀门7分别进入冷却器2和新增冷却器22冷却高温空气,再经第二阀门8回到二级低压加热器13-2入口,其余凝结水直接进入一级低压加热器13-1,二级低压加热器13-2出口水依次通过除氧器14、给水泵15、高压加热器16、锅炉17生成主蒸汽,主蒸汽进入高压缸18膨胀作功后生成冷再热蒸汽,再经锅炉17提高温度后生成热再热蒸汽,再依次进入中压缸19、低压缸20和凝汽器11,在凝汽器11中蒸汽冷凝成凝结水。Energy storage mode: The energy storage mode is turned on when the power consumption of the grid is low and there is excess power, the first valve 7 and the second valve 8 are opened, and the
释能模式:电网用电高峰、缺少电能供应时开启释能模式,关闭第一阀门7和第二阀门8,打开第三阀门9和第四阀门10;空气侧,低温液态空气从液体空气储罐4流出,经气液转换装置3进行冷能回收后生成常温高压空气,再进入加热器5提高温度,再进入膨胀机6膨胀作功输出电能,膨胀机6出口为常压常温空气,排入周围环境;水侧,在中压缸19出口处部分或全部蒸汽经过第三阀门9进入加热器5加热空气,再通过第四阀门10进入凝结水泵12,其余蒸汽直接进入低压缸20继续作功,在凝结水泵12出口凝结水全部进入一级低压加热器13-1,其它设备中水的循环流程与储能模式相同。Energy release mode: open the energy release mode when the grid electricity peaks and lack of power supply, close the first valve 7 and the second valve 8, open the
本实施例压缩机1和冷却器2代表三级“压缩—冷却”过程,加热器5和膨胀机6代表三级“加热-膨胀”过程;储能过程中压缩机入口空气温度30℃、压比5.2时,出口空气温度约240℃,增大压比可以继续提高压缩机出口空气温度,低温导热油从储热系统冷罐进入冷却器2将空气重新冷却至30℃,升温后的导热油储存在储热系统热罐中;释能过程中,高温导热油由储热系统热罐进入加热器5将空气重新加热至206℃,膨胀机出口空气温度约60℃,完成一个完整的储能过程与释能过程,系统储能效率约为57%;利用本发明提出的系统和方法,新增压缩级21和新增冷却器22表示四级“压缩—冷却”过程,每级压缩机压比降低为1.9,压缩机出口空气温度约100℃,在释能过程中工况参数不变的情况下储能效率提升至约72%,并且减少了液态压缩空气储能系统中导热油储热系统的建设。In this embodiment, the compressor 1 and the cooler 2 represent a three-stage "compression-cooling" process, and the
图2为常规液态压缩空气储能系统的示意图。储能过程中,利用压缩机1压缩常温常压空气,空气经过冷却器2冷却后进入气液转换装置3降温液化,随后储存在液体空气储罐4中,空气在冷却器2中释放的热量储存在储热系统中;释能过程中,低温液态空气从液体空气储罐4中流出进入气液转换装置3进行冷能回收,随后进入加热器5中提高温度,再进入膨胀机6膨胀作功,空气在加热器5中吸收的热量来自储热系统。为提高常规液态压缩空气储能系统的储能效率,需要尽量提高压缩机出口温度,这造成压缩机工况恶劣、制造难度大,另外还必须建设大容量储热系统,增加了投资成本。FIG. 2 is a schematic diagram of a conventional liquid compressed air energy storage system. During the energy storage process, the compressor 1 is used to compress the air at normal temperature and pressure. The air is cooled by the cooler 2 and then enters the gas-
尽管上面结合附图对本发明进行了描述,但本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以作出很多变形,这些均属于本发明的保护之内。凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。Although the present invention has been described above with reference to the accompanying drawings, the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative rather than restrictive. Under the inspiration of the present invention, many modifications can be made without departing from the spirit of the present invention, which all belong to the protection of the present invention. Any insubstantial modification of the present invention by using this concept shall be regarded as an act infringing the protection scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010203406.5A CN111305919A (en) | 2020-03-20 | 2020-03-20 | A flexible peak-shaving system and method for air energy storage in a power plant |
PCT/CN2020/126291 WO2021184773A1 (en) | 2020-03-20 | 2020-11-03 | Flexible peak regulation system and method for air energy storage by power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010203406.5A CN111305919A (en) | 2020-03-20 | 2020-03-20 | A flexible peak-shaving system and method for air energy storage in a power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111305919A true CN111305919A (en) | 2020-06-19 |
Family
ID=71158787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010203406.5A Pending CN111305919A (en) | 2020-03-20 | 2020-03-20 | A flexible peak-shaving system and method for air energy storage in a power plant |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111305919A (en) |
WO (1) | WO2021184773A1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111927584A (en) * | 2020-09-08 | 2020-11-13 | 西安热工研究院有限公司 | Liquid compressed air energy storage system and method for improving operational flexibility of thermal power units |
CN111946411A (en) * | 2020-07-30 | 2020-11-17 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Supercritical carbon dioxide energy storage system for ship |
CN112049698A (en) * | 2020-09-29 | 2020-12-08 | 西安热工研究院有限公司 | Liquid compressed air energy storage peak shaving system and method for supplying black start power supply |
CN112049699A (en) * | 2020-09-29 | 2020-12-08 | 西安热工研究院有限公司 | A coal-fired generating set coupled with liquid compressed air energy storage peak regulation system and method |
CN112065515A (en) * | 2020-09-29 | 2020-12-11 | 西安热工研究院有限公司 | Liquid compressed air energy storage and peak regulation system and method coaxially arranged with steam turbine set |
CN112065516A (en) * | 2020-09-29 | 2020-12-11 | 西安热工研究院有限公司 | Liquid compressed air energy storage peak regulation system and method for steam heat cascade utilization |
CN112096470A (en) * | 2020-09-29 | 2020-12-18 | 西安热工研究院有限公司 | Liquid compressed air energy storage peak shaving system and method coupled with heat supply system |
CN112160805A (en) * | 2020-09-29 | 2021-01-01 | 西安热工研究院有限公司 | Liquid compressed air energy storage system and method coupled with heat source of coal-fired generating set |
CN112177693A (en) * | 2020-10-27 | 2021-01-05 | 西安热工研究院有限公司 | Compressed air energy storage system and method utilizing cold end of coal-fired generator set |
CN112240540A (en) * | 2020-10-27 | 2021-01-19 | 西安热工研究院有限公司 | System and method for peak regulation and frequency regulation of thermal power units based on liquid compressed air energy storage |
CN112282875A (en) * | 2020-11-21 | 2021-01-29 | 西安热工研究院有限公司 | A plant-level multi-unit coupling and intermodal transportation system to improve the flexibility of thermal power units |
CN112302742A (en) * | 2020-10-30 | 2021-02-02 | 西安热工研究院有限公司 | Air energy storage system and method with peak regulation and stable combustion functions |
CN112412561A (en) * | 2020-11-11 | 2021-02-26 | 贵州电网有限责任公司 | Compressed air energy storage system and thermal power plant control system coupling control method |
CN112780375A (en) * | 2021-03-05 | 2021-05-11 | 中国华能集团清洁能源技术研究院有限公司 | Compressed air energy storage system coupled with thermal power plant and using method thereof |
WO2021184773A1 (en) * | 2020-03-20 | 2021-09-23 | 西安西热节能技术有限公司 | Flexible peak regulation system and method for air energy storage by power plant |
CN113536588A (en) * | 2021-07-29 | 2021-10-22 | 西安热工研究院有限公司 | Combined heat and power generation unit coupled air energy storage compression heating system and optimized operation method |
CN113586185A (en) * | 2021-09-13 | 2021-11-02 | 西安交通大学 | Coal-fired boiler flue gas and steam combined heat storage deep peak regulation system and operation method |
WO2022027844A1 (en) * | 2020-08-07 | 2022-02-10 | 西安西热节能技术有限公司 | Liquefied air energy storage peak regulation system and method based on intermediate suction of compressor |
CN114033515A (en) * | 2021-11-09 | 2022-02-11 | 西安西热节能技术有限公司 | Liquid compressed air energy storage method and system with injection and confluence device |
CN114109543A (en) * | 2021-11-09 | 2022-03-01 | 西安热工研究院有限公司 | Liquid compressed air energy storage method and system utilizing steam turbine bypass for heat supplement |
CN114382561A (en) * | 2022-01-10 | 2022-04-22 | 西安交通大学 | A compressed air energy storage power generation system integrating CO2 heat pump and its operation method |
CN114465254A (en) * | 2022-03-17 | 2022-05-10 | 华北电力大学(保定) | Coal-fired power station energy storage peak regulation system |
CN114810243A (en) * | 2022-05-27 | 2022-07-29 | 华能国际电力股份有限公司 | Coal-fired power generation system and operation method of boiler flue gas coupling compressed air energy storage |
CN115818750A (en) * | 2022-11-04 | 2023-03-21 | 上海发电设备成套设计研究院有限责任公司 | Liquefied air energy storage and low-temperature multi-effect seawater desalination coupling system and operation method thereof |
CN116031912A (en) * | 2023-02-14 | 2023-04-28 | 苏州市兴鲁空分设备科技发展有限公司 | Energy storage peak shaving system |
CN116447769A (en) * | 2023-06-16 | 2023-07-18 | 百穰新能源科技(深圳)有限公司 | Carbon dioxide energy storage system |
CN116518358A (en) * | 2023-05-12 | 2023-08-01 | 西安热工研究院有限公司 | Coal-fired unit frequency and peak shaving system coupled with multi-stage heat storage system and its operation method |
CN116838439A (en) * | 2023-07-31 | 2023-10-03 | 中国能源建设集团湖南省电力设计院有限公司 | A combined cycle system for thermal power generation and compressed air energy storage power generation |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113847109B (en) * | 2021-09-26 | 2024-02-20 | 西安热工研究院有限公司 | Electric heating comprehensive energy storage peak shaving system of coal motor unit and working method |
CN113914951B (en) * | 2021-10-15 | 2024-01-19 | 西安热工研究院有限公司 | Nuclear power plant peak shaving system based on compressed air energy storage and operation method |
CN113864051B (en) * | 2021-10-27 | 2023-01-06 | 贵州电网有限责任公司 | Combustion engine and compressed air coupling system and method for quickly responding to peak regulation and frequency modulation requirements |
CN113865399B (en) * | 2021-11-01 | 2025-01-07 | 西安热工研究院有限公司 | A molten salt coupled thermal power unit cascade heat storage system and working method |
CN114060112B (en) * | 2021-11-09 | 2024-02-09 | 西安热工研究院有限公司 | Liquid compressed air energy storage method and system for utilizing exhaust waste heat of air cooling unit |
CN114109601B (en) * | 2021-11-26 | 2024-06-04 | 西安热工研究院有限公司 | Energy-storage type cold-hot-electricity triple fuel supply engine system |
CN114234692A (en) * | 2021-12-14 | 2022-03-25 | 西安热工研究院有限公司 | A low-pressure steam supply system and method for heat storage and peak regulation of reheated steam |
CN114382565B (en) * | 2022-01-24 | 2023-07-04 | 中国科学院工程热物理研究所 | Energy storage power generation system with combined cooling, heating and power |
CN114440295B (en) * | 2022-01-27 | 2022-12-09 | 西安交通大学 | Compressed air energy storage system and method with wind power stabilization and thermoelectric decoupling functions |
CN114526134B (en) * | 2022-01-28 | 2024-04-30 | 中国能源建设集团江苏省电力设计院有限公司 | Camera system based on compressed air energy storage power generation system and operation method thereof |
CN114622960A (en) * | 2022-03-09 | 2022-06-14 | 中国科学院理化技术研究所 | Transcritical carbon dioxide energy storage system |
CN114777419B (en) * | 2022-03-30 | 2024-04-19 | 上海发电设备成套设计研究院有限责任公司 | A system and method for flue gas compression energy storage coupled with carbon capture |
CN115199371B (en) * | 2022-04-12 | 2025-03-28 | 河北工业大学 | A solar photovoltaic and thermal integrated thermal power storage peak regulation system |
CN114810258B (en) * | 2022-04-25 | 2023-08-01 | 中国科学院工程热物理研究所 | Compressed air energy storage system and heat pump electricity storage coupling system |
CN114893263B (en) * | 2022-05-17 | 2024-06-28 | 华能国际电力股份有限公司上安电厂 | Cogeneration system capable of storing energy by coupling compressed air and operation method |
CN114876601A (en) * | 2022-05-25 | 2022-08-09 | 西安热工研究院有限公司 | A double-effect steam turbine power generation system |
CN115031222A (en) * | 2022-06-17 | 2022-09-09 | 西安热工研究院有限公司 | System and method for improving peak regulation capacity of thermal power generating unit by improved heat storage device |
CN115163231B (en) * | 2022-06-20 | 2024-06-11 | 煤炭工业合肥设计研究院有限责任公司 | Mining compressed air energy storage system and method |
CN114991959B (en) * | 2022-06-23 | 2024-08-16 | 西安热工研究院有限公司 | A gas turbine coupled compressed air energy storage flexible and efficient peak shaving system and method |
CN115095899B (en) * | 2022-06-30 | 2024-04-09 | 华能国际电力股份有限公司上安电厂 | Coal-fired unit coupled compressed air energy storage waste heat supply system and operation method |
CN115199514B (en) * | 2022-07-13 | 2024-12-03 | 中能安然(北京)工程技术股份有限公司 | A combined heat and power system coupling photovoltaic power generation and supercritical carbon dioxide energy storage |
CN115263454B (en) * | 2022-07-28 | 2024-09-06 | 北京航空航天大学 | A compressed air energy storage device based on heat storage and cold storage and a method of using the same |
CN115307472B (en) * | 2022-07-29 | 2024-11-19 | 南京工业大学 | Air-heating calcium circulation energy storage system and application method thereof |
CN115182799A (en) * | 2022-07-29 | 2022-10-14 | 西安热工研究院有限公司 | Air-cooled condensed and evaporated liquid CO 2 Mixture energy storage system and method |
CN115126559A (en) * | 2022-08-12 | 2022-09-30 | 华能国际电力股份有限公司 | Coal-fired power generation system with integrated pump heat storage and operation method |
CN115341972B (en) * | 2022-08-19 | 2024-10-15 | 南京航空航天大学 | Auxiliary power system and method for artificial precipitation UAV |
CN115306686B (en) * | 2022-08-19 | 2024-04-19 | 中国石油天然气集团有限公司 | Compressed air energy storage system based on carbon dioxide phase change voltage stabilization |
CN116255213A (en) * | 2022-09-06 | 2023-06-13 | 西安热工研究院有限公司 | An Industrial Steam Supply System Based on Steam Heat Source |
CN115523002B (en) * | 2022-09-26 | 2024-10-01 | 中国航发湖南动力机械研究所 | Distributed power generation circulation system and control method |
CN115653712A (en) * | 2022-10-12 | 2023-01-31 | 浙江中光新能源科技有限公司 | Thermoelectric unit energy storage peak regulation system and method |
CN115680802B (en) * | 2022-10-31 | 2024-09-10 | 上海海事大学 | Constant pressure type compressed carbon dioxide energy storage system based on adsorption method |
CN115680803B (en) * | 2022-11-07 | 2024-10-15 | 西安交通大学 | A closed gas turbine energy storage system with multiple operating modes and control method thereof |
CN115773164B (en) * | 2023-02-13 | 2023-05-16 | 西安热工研究院有限公司 | An isothermal compressed air efficiency energy storage system and method |
CN116336450B (en) * | 2023-04-04 | 2024-08-02 | 北京怀柔实验室 | Flexible high-efficiency novel coal-fired generator set |
CN117318315B (en) * | 2023-09-25 | 2024-04-30 | 水利部交通运输部国家能源局南京水利科学研究院 | Adiabatic pumping compressed air energy storage device and method based on multi-stage water circulation |
CN117767369B (en) * | 2023-12-25 | 2024-07-16 | 中国长江电力股份有限公司 | Energy storage site selection and hierarchical configuration method considering medium-long term planning |
CN118333358B (en) * | 2024-06-14 | 2024-09-03 | 国网安徽省电力有限公司经济技术研究院 | Grid side energy storage site selection and volume fixation coordination planning method |
CN119145953B (en) * | 2024-11-20 | 2025-03-21 | 浙江大学 | A natural gas power generation system and method combined with liquefied air energy storage |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102052256A (en) * | 2009-11-09 | 2011-05-11 | 中国科学院工程热物理研究所 | Supercritical air energy storage system |
CN102758689A (en) * | 2012-07-29 | 2012-10-31 | 中国科学院工程热物理研究所 | Ultra-supercritical air energy storage/release system |
CN103016152A (en) * | 2012-12-06 | 2013-04-03 | 中国科学院工程热物理研究所 | Supercritical air energy storage system with novel process |
FR3016025A1 (en) * | 2013-12-30 | 2015-07-03 | Fives | COMBINATION OF A COMPRESSED AIR ENERGY STORAGE UNIT AND A THERMAL POWER PLANT |
DE102015109898A1 (en) * | 2015-02-20 | 2016-08-25 | Mitsubishi Hitachi Power Systems Europe Gmbh | Steam power plant and method for its operation |
CN108224535A (en) * | 2018-01-18 | 2018-06-29 | 中国科学院工程热物理研究所 | A kind of thermal power plant's cogeneration of heat and power and compressed-air energy storage complementation integrated system |
CN209457990U (en) * | 2019-01-25 | 2019-10-01 | 西安热工研究院有限公司 | A supercritical carbon dioxide power generation system with liquid air energy storage |
CN212054836U (en) * | 2020-03-20 | 2020-12-01 | 西安西热节能技术有限公司 | A flexible peak-shaving system for air energy storage in power plants |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103233820B (en) * | 2013-05-10 | 2016-06-08 | 华北电力大学(保定) | Caes and the integrated power generation system of combined cycle |
DE102014105237B3 (en) * | 2014-04-11 | 2015-04-09 | Mitsubishi Hitachi Power Systems Europe Gmbh | Method and device for storing and recovering energy |
CN206409276U (en) * | 2017-01-19 | 2017-08-15 | 浙江城建煤气热电设计院有限公司 | A kind of compressed-air energy-storage system |
CN111305919A (en) * | 2020-03-20 | 2020-06-19 | 西安西热节能技术有限公司 | A flexible peak-shaving system and method for air energy storage in a power plant |
-
2020
- 2020-03-20 CN CN202010203406.5A patent/CN111305919A/en active Pending
- 2020-11-03 WO PCT/CN2020/126291 patent/WO2021184773A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102052256A (en) * | 2009-11-09 | 2011-05-11 | 中国科学院工程热物理研究所 | Supercritical air energy storage system |
CN102758689A (en) * | 2012-07-29 | 2012-10-31 | 中国科学院工程热物理研究所 | Ultra-supercritical air energy storage/release system |
CN103016152A (en) * | 2012-12-06 | 2013-04-03 | 中国科学院工程热物理研究所 | Supercritical air energy storage system with novel process |
FR3016025A1 (en) * | 2013-12-30 | 2015-07-03 | Fives | COMBINATION OF A COMPRESSED AIR ENERGY STORAGE UNIT AND A THERMAL POWER PLANT |
DE102015109898A1 (en) * | 2015-02-20 | 2016-08-25 | Mitsubishi Hitachi Power Systems Europe Gmbh | Steam power plant and method for its operation |
CN108224535A (en) * | 2018-01-18 | 2018-06-29 | 中国科学院工程热物理研究所 | A kind of thermal power plant's cogeneration of heat and power and compressed-air energy storage complementation integrated system |
CN209457990U (en) * | 2019-01-25 | 2019-10-01 | 西安热工研究院有限公司 | A supercritical carbon dioxide power generation system with liquid air energy storage |
CN212054836U (en) * | 2020-03-20 | 2020-12-01 | 西安西热节能技术有限公司 | A flexible peak-shaving system for air energy storage in power plants |
Non-Patent Citations (1)
Title |
---|
赵明;陈星;梁俊宇;张晓磊;张会岩;肖睿;: "基于液态空气储能技术的新型整体煤气化联合循环系统分析", 化工进展, no. 1 * |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021184773A1 (en) * | 2020-03-20 | 2021-09-23 | 西安西热节能技术有限公司 | Flexible peak regulation system and method for air energy storage by power plant |
CN111946411A (en) * | 2020-07-30 | 2020-11-17 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Supercritical carbon dioxide energy storage system for ship |
CN111946411B (en) * | 2020-07-30 | 2023-01-03 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Supercritical carbon dioxide energy storage system for ship |
WO2022027844A1 (en) * | 2020-08-07 | 2022-02-10 | 西安西热节能技术有限公司 | Liquefied air energy storage peak regulation system and method based on intermediate suction of compressor |
CN111927584A (en) * | 2020-09-08 | 2020-11-13 | 西安热工研究院有限公司 | Liquid compressed air energy storage system and method for improving operational flexibility of thermal power units |
CN112049698A (en) * | 2020-09-29 | 2020-12-08 | 西安热工研究院有限公司 | Liquid compressed air energy storage peak shaving system and method for supplying black start power supply |
CN112049699A (en) * | 2020-09-29 | 2020-12-08 | 西安热工研究院有限公司 | A coal-fired generating set coupled with liquid compressed air energy storage peak regulation system and method |
CN112065515A (en) * | 2020-09-29 | 2020-12-11 | 西安热工研究院有限公司 | Liquid compressed air energy storage and peak regulation system and method coaxially arranged with steam turbine set |
CN112065516A (en) * | 2020-09-29 | 2020-12-11 | 西安热工研究院有限公司 | Liquid compressed air energy storage peak regulation system and method for steam heat cascade utilization |
CN112096470A (en) * | 2020-09-29 | 2020-12-18 | 西安热工研究院有限公司 | Liquid compressed air energy storage peak shaving system and method coupled with heat supply system |
CN112160805A (en) * | 2020-09-29 | 2021-01-01 | 西安热工研究院有限公司 | Liquid compressed air energy storage system and method coupled with heat source of coal-fired generating set |
CN112177693A (en) * | 2020-10-27 | 2021-01-05 | 西安热工研究院有限公司 | Compressed air energy storage system and method utilizing cold end of coal-fired generator set |
CN112240540A (en) * | 2020-10-27 | 2021-01-19 | 西安热工研究院有限公司 | System and method for peak regulation and frequency regulation of thermal power units based on liquid compressed air energy storage |
CN112302742A (en) * | 2020-10-30 | 2021-02-02 | 西安热工研究院有限公司 | Air energy storage system and method with peak regulation and stable combustion functions |
CN112412561B (en) * | 2020-11-11 | 2023-05-23 | 贵州电网有限责任公司 | Coupling control method for compressed air energy storage system and thermal power plant control system |
CN112412561A (en) * | 2020-11-11 | 2021-02-26 | 贵州电网有限责任公司 | Compressed air energy storage system and thermal power plant control system coupling control method |
CN112282875A (en) * | 2020-11-21 | 2021-01-29 | 西安热工研究院有限公司 | A plant-level multi-unit coupling and intermodal transportation system to improve the flexibility of thermal power units |
CN112780375A (en) * | 2021-03-05 | 2021-05-11 | 中国华能集团清洁能源技术研究院有限公司 | Compressed air energy storage system coupled with thermal power plant and using method thereof |
CN113536588A (en) * | 2021-07-29 | 2021-10-22 | 西安热工研究院有限公司 | Combined heat and power generation unit coupled air energy storage compression heating system and optimized operation method |
CN113586185A (en) * | 2021-09-13 | 2021-11-02 | 西安交通大学 | Coal-fired boiler flue gas and steam combined heat storage deep peak regulation system and operation method |
CN114033515B (en) * | 2021-11-09 | 2023-04-28 | 西安西热节能技术有限公司 | Liquid compressed air energy storage method and system with injection converging device |
CN114109543A (en) * | 2021-11-09 | 2022-03-01 | 西安热工研究院有限公司 | Liquid compressed air energy storage method and system utilizing steam turbine bypass for heat supplement |
CN114109543B (en) * | 2021-11-09 | 2024-01-19 | 西安热工研究院有限公司 | Liquid compressed air energy storage method and system utilizing bypass heat supplement of steam turbine |
CN114033515A (en) * | 2021-11-09 | 2022-02-11 | 西安西热节能技术有限公司 | Liquid compressed air energy storage method and system with injection and confluence device |
CN114382561A (en) * | 2022-01-10 | 2022-04-22 | 西安交通大学 | A compressed air energy storage power generation system integrating CO2 heat pump and its operation method |
CN114382561B (en) * | 2022-01-10 | 2022-10-25 | 西安交通大学 | Integrated CO 2 Compressed air energy storage power generation system of heat pump and operation method thereof |
CN114465254A (en) * | 2022-03-17 | 2022-05-10 | 华北电力大学(保定) | Coal-fired power station energy storage peak regulation system |
CN114810243B (en) * | 2022-05-27 | 2023-05-26 | 华能国际电力股份有限公司 | Coal-fired power generation system and operation method with boiler flue gas coupled with compressed air energy storage |
CN114810243A (en) * | 2022-05-27 | 2022-07-29 | 华能国际电力股份有限公司 | Coal-fired power generation system and operation method of boiler flue gas coupling compressed air energy storage |
CN115818750A (en) * | 2022-11-04 | 2023-03-21 | 上海发电设备成套设计研究院有限责任公司 | Liquefied air energy storage and low-temperature multi-effect seawater desalination coupling system and operation method thereof |
CN116031912A (en) * | 2023-02-14 | 2023-04-28 | 苏州市兴鲁空分设备科技发展有限公司 | Energy storage peak shaving system |
CN116518358A (en) * | 2023-05-12 | 2023-08-01 | 西安热工研究院有限公司 | Coal-fired unit frequency and peak shaving system coupled with multi-stage heat storage system and its operation method |
CN116447769A (en) * | 2023-06-16 | 2023-07-18 | 百穰新能源科技(深圳)有限公司 | Carbon dioxide energy storage system |
CN116447769B (en) * | 2023-06-16 | 2023-09-29 | 百穰新能源科技(深圳)有限公司 | Carbon dioxide energy storage system |
CN116838439A (en) * | 2023-07-31 | 2023-10-03 | 中国能源建设集团湖南省电力设计院有限公司 | A combined cycle system for thermal power generation and compressed air energy storage power generation |
Also Published As
Publication number | Publication date |
---|---|
WO2021184773A1 (en) | 2021-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021184773A1 (en) | Flexible peak regulation system and method for air energy storage by power plant | |
CN212054836U (en) | A flexible peak-shaving system for air energy storage in power plants | |
CN111928511A (en) | Liquefied air energy storage peak shaving system and method based on compressor intermediate suction | |
CN111305918A (en) | A steam-driven air energy storage peak regulation system and method without cold source loss | |
CN114060111B (en) | Liquid compressed air energy storage method and system for utilizing waste heat of circulating water of thermal power generating unit | |
CN112780375B (en) | A compressed air energy storage system coupled with a thermal power plant and a method of using the same | |
CN111305920A (en) | A steam-driven air energy storage peak regulation system and method | |
CN212054838U (en) | A steam supplementary heat air energy storage and peak regulation system | |
CN111305917A (en) | A system and method for energy storage and peak regulation of steam supplementary heat air | |
CN115263696A (en) | Solar power generation system coupled with compressed carbon dioxide energy storage | |
CN111271143A (en) | System and method for improving electric power flexibility | |
CN211900716U (en) | A steam-driven air energy storage peak-shaving system without cooling source loss | |
CN212054842U (en) | A steam-driven air energy storage peak-shaving system | |
CN114033516B (en) | Liquid compressed air energy storage method and system for coupling high-back-pressure heat supply unit | |
CN114109543B (en) | Liquid compressed air energy storage method and system utilizing bypass heat supplement of steam turbine | |
CN215486194U (en) | Compressed air energy storage system coupled with thermal power plant | |
CN118757246A (en) | Liquid air energy storage system for cascade utilization of solar energy and operation method thereof | |
CN118801427A (en) | A nuclear power plant peak-shaving system combining liquefied air energy storage technology | |
CN118049290A (en) | A coal-fired generator set coupled heat pump energy storage system and operation method thereof | |
CN115199371B (en) | A solar photovoltaic and thermal integrated thermal power storage peak regulation system | |
CN115875243A (en) | Energy cascade utilization system for compressed gas energy storage | |
CN115653713A (en) | Thermal mass energy storage device based on heat pump cycle and control method | |
CN111928525A (en) | Liquefied air energy storage peak regulation system and method based on waste heat refrigeration | |
CN212054837U (en) | A system to improve power flexibility | |
CN115539161A (en) | Carbon dioxide energy storage system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200619 |
|
WD01 | Invention patent application deemed withdrawn after publication |