[go: up one dir, main page]

CN111293941B - Permanent magnet synchronous motor finite time dynamic surface control method considering iron loss - Google Patents

Permanent magnet synchronous motor finite time dynamic surface control method considering iron loss Download PDF

Info

Publication number
CN111293941B
CN111293941B CN202010229724.9A CN202010229724A CN111293941B CN 111293941 B CN111293941 B CN 111293941B CN 202010229724 A CN202010229724 A CN 202010229724A CN 111293941 B CN111293941 B CN 111293941B
Authority
CN
China
Prior art keywords
formula
constant
permanent magnet
magnet synchronous
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010229724.9A
Other languages
Chinese (zh)
Other versions
CN111293941A (en
Inventor
于金鹏
马玉梅
张肖平
田新诚
刘占杰
赵恩亮
雷启鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202010229724.9A priority Critical patent/CN111293941B/en
Publication of CN111293941A publication Critical patent/CN111293941A/en
Application granted granted Critical
Publication of CN111293941B publication Critical patent/CN111293941B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明属于永磁同步电动机位置跟踪控制技术领域,具体公开了一种考虑铁损的永磁同步电动机有限时间动态面控制方法。本发明方法针对永磁同步电动机中存在的铁损和输入饱和问题,在传统反步法中引入了动态面技术来解决计算过程中的“计算复杂性”问题,同时使用模糊逻辑系统来逼近永磁同步电动机驱动系统中未知的非线性项;本发明方法采用有限时间控制技术加快了系统响应速度并减少了跟踪误差,本发明方法能够保证系统的跟踪误差收敛到原点的一个足够小的邻域内,从而提高了永磁同步电动机驱动系统的响应速度。本发明方法具有较好的鲁棒性,抗负载扰动能力较强,实现了理想的控制效果。

Figure 202010229724

The invention belongs to the technical field of position tracking control of permanent magnet synchronous motors, and specifically discloses a finite time dynamic surface control method of permanent magnet synchronous motors considering iron loss. Aiming at the iron loss and input saturation problems existing in the permanent magnet synchronous motor, the method of the invention introduces the dynamic surface technology in the traditional backstepping method to solve the problem of "computational complexity" in the calculation process, and uses the fuzzy logic system to approximate the permanent The unknown nonlinear term in the magnetic synchronous motor drive system; the method of the invention adopts the finite time control technology to speed up the response speed of the system and reduce the tracking error, and the method of the invention can ensure that the tracking error of the system converges to a sufficiently small neighborhood of the origin , thereby improving the response speed of the permanent magnet synchronous motor drive system. The method of the invention has better robustness, stronger anti-load disturbance capability, and achieves ideal control effect.

Figure 202010229724

Description

一种考虑铁损的永磁同步电动机有限时间动态面控制方法A finite-time dynamic surface control method for permanent magnet synchronous motors considering iron loss

技术领域technical field

本发明属于永磁同步电动机位置跟踪控制技术领域,尤其涉及一种考虑铁损的永磁同步电动机有限时间动态面控制方法。The invention belongs to the technical field of position tracking control of permanent magnet synchronous motors, and in particular relates to a finite time dynamic surface control method of permanent magnet synchronous motors considering iron loss.

背景技术Background technique

永磁同步电动机凭借其结构简单,体积小、效率高、功率因数高等优点,已经在工业、制造业等领域得到了广泛应用。但永磁同步电动机具有多变量、高度非线性和强耦合性等特点,因此如何克服上述控制难点实现对永磁同步电动机准确有效的控制具有重要意义。Permanent magnet synchronous motors have been widely used in industry, manufacturing and other fields due to their simple structure, small size, high efficiency, and high power factor. However, the permanent magnet synchronous motor has the characteristics of multi-variable, highly nonlinear and strong coupling, so how to overcome the above control difficulties and realize the accurate and effective control of the permanent magnet synchronous motor is of great significance.

目前,研究者们提出了许多关于非线性系统的控制方法,例如反步控制、直接转矩控制、哈密顿控制和滑模控制等。然而永磁同步电动机在实际运行中存在铁损和输入饱和问题。At present, researchers have proposed many control methods for nonlinear systems, such as backstepping control, direct torque control, Hamiltonian control and sliding mode control. However, the permanent magnet synchronous motor has problems of iron loss and input saturation in actual operation.

铁损问题主要指当永磁同步电动机长期处于轻负载的工作状态时,系统将会产生大量的铁芯损耗,对整个控制系统产生不利的影响;而输入饱和问题主要指在工程系统中的执行器受到不平滑以及非线性条件的限制,会对系统的控制性能和控制系统的稳定性产生严重影响。因此在永磁同步电动机的位置控制过程中考虑铁损和输入饱和具有一定的实际意义。The iron loss problem mainly refers to that when the permanent magnet synchronous motor is in the working state of light load for a long time, the system will generate a large amount of iron core loss, which will have an adverse effect on the entire control system; and the input saturation problem mainly refers to the implementation of the engineering system. The controller is limited by non-smooth and nonlinear conditions, which will seriously affect the control performance of the system and the stability of the control system. Therefore, it has certain practical significance to consider iron loss and input saturation in the position control process of permanent magnet synchronous motor.

另外,反步法已经被广泛应用到永磁同步电动机控制系统中,并取得了良好的控制效果。然而,传统反步法中存在因对虚拟控制变量进行反复求导容易产生“计算复杂性”问题;此外,传统反步法还要求永磁同步电动机驱动系统中的某些函数必须是线性的。In addition, the backstepping method has been widely used in the permanent magnet synchronous motor control system, and has achieved good control results. However, there is a problem of "computational complexity" in the traditional backstepping method due to repeated derivation of the virtual control variables; in addition, the traditional backstepping method also requires that some functions in the permanent magnet synchronous motor drive system must be linear.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提出一种考虑铁损的永磁同步电动机有限时间动态面控制方法,以解决铁损和输入饱和问题对系统带来的不利影响,保证对永磁同步电动机的跟踪控制效果。The purpose of the present invention is to propose a finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss, so as to solve the adverse effect of iron loss and input saturation problem on the system, and ensure the tracking control effect of permanent magnet synchronous motor.

本发明为了实现上述目的,采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

一种考虑铁损的永磁同步电动机有限时间动态面控制方法,包括如下步骤:A finite-time dynamic surface control method for a permanent magnet synchronous motor considering iron loss, comprising the following steps:

a.建立d-q轴上考虑铁损的永磁同步电动机的动态数学模型,如公式(1)所示:a. Establish a dynamic mathematical model of the permanent magnet synchronous motor considering iron loss on the d-q axis, as shown in formula (1):

Figure BDA0002428906820000021
Figure BDA0002428906820000021

其中,Θ表示转子角度,ω表示转子角速度,np表示磁对数,J表示转动惯量,TL表示负载转矩,id表示d轴电流,iq表示q轴电流,ud表示d轴电压,uq表示q轴电压,iod表示d轴励磁电流分量,ioq表示q轴励磁电流分量,Ld表示d轴定子电感,Lq表示q轴定子电感,Lld表示d轴漏电感,Llq表示q轴漏电感,Lmd表示d轴励磁电感,Lmq表示q轴励磁电感,R1表示定子电阻,Rc表示铁芯损耗电阻,λPM是转子永磁体励磁通量;Where, Θ is the rotor angle, ω is the rotor angular velocity, n p is the magnetic logarithm, J is the moment of inertia, TL is the load torque, id is the d -axis current, i q is the q-axis current, and ud is the d -axis Voltage, u q represents the q-axis voltage, i od represents the d-axis excitation current component, i oq represents the q-axis excitation current component, L d represents the d-axis stator inductance, L q represents the q-axis stator inductance, and L ld represents the d-axis leakage inductance , L lq represents the q-axis leakage inductance, L md represents the d-axis excitation inductance, L mq represents the q-axis excitation inductance, R 1 represents the stator resistance, R c represents the iron core loss resistance, λ PM is the rotor permanent magnet excitation flux;

为简化考虑铁损的永磁同步电动机的动态数学模型,定义新的变量如下:In order to simplify the dynamic mathematical model of permanent magnet synchronous motor considering iron loss, new variables are defined as follows:

Figure BDA0002428906820000022
Figure BDA0002428906820000022

则考虑铁损的永磁同步电动机的动态数学模型用公式(2)表示,即:Then the dynamic mathematical model of permanent magnet synchronous motor considering iron loss is expressed by formula (2), namely:

Figure BDA0002428906820000031
Figure BDA0002428906820000031

b.根据有限时间动态面技术和自适应反步法原理,设计一种考虑铁损的永磁同步电动机有限时间动态面控制方法,具体过程如下:b. According to the finite-time dynamic surface technology and the principle of the adaptive backstepping method, a finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss is designed. The specific process is as follows:

假设f(Z)在紧集ΩZ中是一个连续的函数,对于任意的常数ε>0,总是有一个模糊逻辑系统WTS(Z)满足:

Figure BDA0002428906820000032
Assuming that f(Z) is a continuous function in the compact set Ω Z , for any constant ε>0, there is always a fuzzy logic system W T S(Z) satisfying:
Figure BDA0002428906820000032

式中,输入向量

Figure BDA0002428906820000033
q是模糊输入维数,Rq为实数向量集;W∈Rl是模糊权向量,模糊节点数l为正整数,且l>1,Rl为实数向量集;S(Z)=[s1(Z),...,sl(Z)]T∈Rl为基函数向量,s1(Z),...,sl(Z)分别表示S(Z)的基向量;选取基函数sj(Z)为如下的高斯函数:where, the input vector
Figure BDA0002428906820000033
q is the fuzzy input dimension, R q is a real vector set; W∈R l is a fuzzy weight vector, the number of fuzzy nodes l is a positive integer, and l>1, R l is a real vector set; S(Z)=[s 1 (Z),...,s l (Z)] T ∈R l is the basis function vector, s 1 (Z),...,s l (Z) represent the basis vector of S(Z) respectively; The basis function s j (Z) is a Gaussian function as follows:

Figure BDA0002428906820000035
其中,μj=[μj1,...,μjq]T是Gaussian函数分布曲线的中心位置,而ηj则为其宽度;μj1,...,μjq分别表示μj的基向量;
Figure BDA0002428906820000035
Among them, μ j =[μ j1 ,...,μ jq ] T is the center position of the Gaussian function distribution curve, and η j is its width; μ j1 ,...,μ jq represent the basis vectors of μ j respectively ;

定义有限时间:对于任意的实数λ1>0,λ2>0,0<γ<1,则有限时间稳定的扩展Lyapunov条件表示为:

Figure BDA0002428906820000036
其中,V(x)表示系统的Lyapunov函数;系统的收敛时间Tr通过Tr≤t0+[1/λ1(1-γ)]ln[(λ1V1-γ(t0)+λ2)/λ2]来估计,t0表示初始时间;Define finite time: for any real numbers λ 1 >0, λ 2 >0, 0<γ<1, the extended Lyapunov condition for finite time stability is expressed as:
Figure BDA0002428906820000036
Among them, V(x) represents the Lyapunov function of the system; the convergence time T r of the system is determined by T r ≤t 0 +[1/λ 1 (1-γ)]ln[(λ 1 V 1-γ (t 0 )+ λ 2 )/λ 2 ] to estimate, t 0 represents the initial time;

考虑永磁同步电动机输入电压约束问题如下:umin≤v≤umax,其中,umin和umax分别表示已知定子输入电压的最小值和最大值,即:Considering the input voltage constraint problem of the permanent magnet synchronous motor as follows: u min ≤v≤u max , where u min and u max represent the minimum and maximum values of the known stator input voltage, namely:

Figure BDA0002428906820000034
Figure BDA0002428906820000034

其中,umax>0和umin<0都为输入约束限制的未知常数,v为实际的输入信号;Among them, u max >0 and u min <0 are unknown constants limited by input constraints, and v is the actual input signal;

利用分段光滑函数g(v)来近似约束函数,定义g(v)为下:Use the piecewise smooth function g(v) to approximate the constraint function, and define g(v) as follows:

Figure BDA0002428906820000041
Figure BDA0002428906820000041

u=sat(v)=g(v)+d(v),d(v)是一个有界函数,其界限为:u=sat(v)=g(v)+d(v), d(v) is a bounded function whose bounds are:

|d(v)|=|sat(v)-g(v)|≤max{umax[1-tanh(1)}]umin[tanh(1)-1]=D;|d(v)|=|sat(v)-g(v)|≤max{u max [1-tanh(1)}]u min [tanh(1)-1]=D;

其中,D在d轴和q轴上分别表示Dd和Dq,Dd、Dq均为大于0的常数;Among them, D represents D d and D q on the d-axis and q-axis, respectively, and both D d and D q are constants greater than 0;

利用中值定理得知:存在一个常数μ,使得

Figure BDA0002428906820000042
Using the mean value theorem, we know that there is a constant μ such that
Figure BDA0002428906820000042

其中,

Figure BDA0002428906820000043
vμ=μv+(1-μ)v0;in,
Figure BDA0002428906820000043
v μ = μv+(1-μ) v 0 ;

选取v0=0,则以上函数写为:

Figure BDA0002428906820000044
因此,
Figure BDA0002428906820000045
则有
Figure BDA0002428906820000046
Figure BDA0002428906820000047
其中存在一个未知常数gm,使得
Figure BDA0002428906820000048
Selecting v 0 =0, the above function can be written as:
Figure BDA0002428906820000044
therefore,
Figure BDA0002428906820000045
then there are
Figure BDA0002428906820000046
Figure BDA0002428906820000047
where there is an unknown constant g m such that
Figure BDA0002428906820000048

定义一个新变量αid和一个时间常数∈i

Figure BDA0002428906820000049
αid(0)=αi(0),i=1,2,3,4;Define a new variable α id and a time constant ∈ i ,
Figure BDA0002428906820000049
α id (0)=α i (0), i=1, 2, 3, 4;

其中,αid(0)表示αid的初始值,αi(0)表示αi的初始值;Among them, α id (0) represents the initial value of α id , and α i (0) represents the initial value of α i ;

虚拟控制律αi通过一阶滤波器得到αid,其中,虚拟控制律α1、α2、α3、α4为一阶滤波器的输入信号,α1d、α2d、α3d、α4d为一阶滤波器的输出信号;The virtual control law α i obtains α id through a first-order filter, wherein, the virtual control laws α 1 , α 2 , α 3 , α 4 are the input signals of the first-order filter, α 1d , α 2d , α 3d , α 4d is the output signal of the first-order filter;

定义跟踪误差z1、z2、z3、z4、z5和z6为:The tracking errors z 1 , z 2 , z 3 , z 4 , z 5 and z 6 are defined as:

Figure BDA00024289068200000410
Figure BDA00024289068200000410

其中,x1d为期望的位置信号,x4d为期望的转子磁链信号;Among them, x 1d is the desired position signal, and x 4d is the desired rotor flux linkage signal;

以上考虑铁损的永磁同步电动机有限时间动态面控制方法中每一步都会选取一个Lyapunov函数构建一个虚拟控制律或者真实控制律,具体步骤如下:In the above finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss, a Lyapunov function is selected for each step to construct a virtual control law or a real control law. The specific steps are as follows:

b.1.根据公式(3)中第一个方程z1=x1-x1d,选择Lyapunov函数:

Figure BDA00024289068200000411
对V1求导得到:b.1. According to the first equation z 1 =x 1 -x 1d in formula (3), choose the Lyapunov function:
Figure BDA00024289068200000411
Derivation with respect to V1 gives :

Figure BDA00024289068200000412
Figure BDA00024289068200000412

选取虚拟控制律:

Figure BDA0002428906820000051
Choose a virtual control law:
Figure BDA0002428906820000051

其中,控制增益k1>0,常数s1>0,正常数0<γ<1;Wherein, the control gain k 1 >0, the constant s 1 >0, the constant 0<γ<1;

基于以上公式(4)和公式(5)得到:Based on the above formula (4) and formula (5), we get:

Figure BDA0002428906820000052
Figure BDA0002428906820000052

b.2.根据公式(3)中第二个方程z2=x21d,选择Lyapunov函数:

Figure BDA0002428906820000053
对V2求导并将公式(6)代入,得到公式(7):b.2. According to the second equation z 2 =x 21d in formula (3), choose the Lyapunov function:
Figure BDA0002428906820000053
Differentiating V 2 and substituting Equation (6) yields Equation (7):

Figure BDA0002428906820000054
Figure BDA0002428906820000054

其中,负载转矩TL是未知的常数且上限为d,即|TL|≤d,其中,d>0;Among them, the load torque T L is an unknown constant and the upper limit is d, that is, |T L |≤d, where d>0;

通过杨氏不等式有

Figure BDA0002428906820000055
其中,ε1是一个任意小的正数,则:By Young's inequality we have
Figure BDA0002428906820000055
where ε 1 is an arbitrarily small positive number, then:

Figure BDA0002428906820000056
Figure BDA0002428906820000056

其中,

Figure BDA0002428906820000057
由万能逼近定理,对于任意小的正数ε2,选取模糊逻辑系统
Figure BDA0002428906820000058
使得:
Figure BDA0002428906820000059
其中,δ2(Z)为逼近误差,并满足不等式|δ2(Z)|≤ε2,||W2||是向量W2的范数;in,
Figure BDA0002428906820000057
According to the universal approximation theorem, for any small positive number ε 2 , choose the fuzzy logic system
Figure BDA0002428906820000058
makes:
Figure BDA0002428906820000059
Among them, δ 2 (Z) is the approximation error and satisfies the inequality |δ 2 (Z)|≤ε 2 , and ||W 2 || is the norm of the vector W 2 ;

选取虚拟控制律:

Figure BDA00024289068200000510
Choose a virtual control law:
Figure BDA00024289068200000510

其中,控制增益k2>0,常数s2>0,常数l2>0,

Figure BDA00024289068200000511
为θ的估计值,θ的定义在下文给出;Among them, the control gain k 2 >0, the constant s 2 >0, the constant l 2 >0,
Figure BDA00024289068200000511
is an estimate of θ, the definition of θ is given below;

根据公式(3)中第三个方程z3=x32d,则

Figure BDA00024289068200000512
表示为:According to the third equation z 3 =x 32d in formula (3), then
Figure BDA00024289068200000512
Expressed as:

Figure BDA00024289068200000513
Figure BDA00024289068200000513

b.3.根据公式(3)中第三个方程:z3=x32d,选择Lyapunov函数:

Figure BDA00024289068200000514
对V3求导并将公式(10)代入,得到公式(11):b.3. According to the third equation in formula (3): z 3 =x 32d , choose the Lyapunov function:
Figure BDA00024289068200000514
Differentiating V 3 and substituting Equation (10) yields Equation (11):

Figure BDA0002428906820000061
Figure BDA0002428906820000061

其中,

Figure BDA0002428906820000062
由万能逼近定理,对于任意小的正数ε3,选取模糊逻辑系统
Figure BDA0002428906820000063
使得:
Figure BDA0002428906820000064
其中δ3(Z)为逼近误差,并满足不等式|δ3(Z)|≤ε3,||W3||是向量W3的范数;从而:in,
Figure BDA0002428906820000062
According to the universal approximation theorem, for any small positive number ε 3 , choose the fuzzy logic system
Figure BDA0002428906820000063
makes:
Figure BDA0002428906820000064
where δ 3 (Z) is the approximation error and satisfies the inequality |δ 3 (Z)|≤ε 3 , and ||W 3 || is the norm of the vector W 3 ; thus:

Figure BDA0002428906820000065
Figure BDA0002428906820000065

选取虚拟控制律:

Figure BDA0002428906820000066
Choose a virtual control law:
Figure BDA0002428906820000066

其中,控制增益k3>0,常数s3>0,常数l3>0;Wherein, the control gain k 3 >0, the constant s 3 >0, and the constant l 3 >0;

根据公式(3)中第四个方程z4=x43d,则

Figure BDA0002428906820000067
表示为:According to the fourth equation z 4 =x 43d in formula (3), then
Figure BDA0002428906820000067
Expressed as:

Figure BDA0002428906820000068
Figure BDA0002428906820000068

b.4.根据公式(3)中第四个方程z4=x43d,选择Lyapunov函数:

Figure BDA0002428906820000069
对V4求导并将公式(14)代入,得到公式(15):b.4. According to the fourth equation z 4 =x 43d in formula (3), choose the Lyapunov function:
Figure BDA0002428906820000069
Differentiating V 4 and substituting Equation (14) yields Equation (15):

Figure BDA00024289068200000610
Figure BDA00024289068200000610

其中,

Figure BDA00024289068200000611
由万能逼近定理,对于任意小的正数ε4,选取模糊逻辑系统
Figure BDA00024289068200000612
使得
Figure BDA00024289068200000613
其中,δ4(Z)为逼近误差,并满足不等式|δ4(Z)|≤ε4,||W4||是向量W4的范数;从而:in,
Figure BDA00024289068200000611
According to the universal approximation theorem, for any small positive number ε 4 , choose the fuzzy logic system
Figure BDA00024289068200000612
make
Figure BDA00024289068200000613
where δ 4 (Z) is the approximation error and satisfies the inequality |δ 4 (Z)|≤ε 4 , and ||W 4 || is the norm of the vector W 4 ; thus:

Figure BDA00024289068200000614
Figure BDA00024289068200000614

构建真实控制律:

Figure BDA00024289068200000615
Build the real control law:
Figure BDA00024289068200000615

其中,控制增益k4>0,常数s4>0,常数l4>0;Wherein, the control gain k 4 >0, the constant s 4 >0, and the constant l 4 >0;

由输入饱和公式uq=sat(vq)=g(vq)+d(vq),得到:d1z4uq=d1z4g(vq)+d1z4d(vq),From the input saturation formula u q =sat(v q )=g(v q )+d(v q ), we get: d 1 z 4 u q =d 1 z 4 g(v q )+d 1 z 4 d( v q ),

Figure BDA0002428906820000071
Figure BDA0002428906820000071

由杨氏不等式得到

Figure BDA0002428906820000072
其中,常数Dq>0,得到:From Young's inequality we get
Figure BDA0002428906820000072
where the constant D q > 0, we get:

Figure BDA0002428906820000073
Figure BDA0002428906820000073

b.5.根据公式(3)中第五个方程z5=x5,选择Lyapunov函数:

Figure BDA0002428906820000074
对V5求导得到:b.5. According to the fifth equation z 5 =x 5 in formula (3), choose the Lyapunov function:
Figure BDA0002428906820000074
Derivation with respect to V5 gives:

Figure BDA0002428906820000075
Figure BDA0002428906820000075

构建虚拟控制律:

Figure BDA0002428906820000076
Build a virtual control law:
Figure BDA0002428906820000076

其中,控制增益k5>0,常数s5>0;根据公式(3)中第六个方程z6=x64d得到:Wherein, the control gain k 5 >0, the constant s 5 >0; according to the sixth equation z 6 =x 64d in formula (3), we can obtain:

Figure BDA0002428906820000077
Figure BDA0002428906820000077

b.6.根据公式(3)中第六个方程z6=x64d,选择Lyapunov函数:

Figure BDA0002428906820000078
对V6求导得到:
Figure BDA0002428906820000079
b.6. According to the sixth equation z 6 =x 64d in formula (3), select the Lyapunov function:
Figure BDA0002428906820000078
Derivating V 6 gives:
Figure BDA0002428906820000079

其中,

Figure BDA00024289068200000710
由万能逼近定理,对于任意小的正数ε6,选取模糊逻辑系统
Figure BDA00024289068200000711
使得
Figure BDA00024289068200000712
其中δ6(Z)为逼近误差,并满足不等式|δ6(Z)|≤ε6,||W6||是向量W6的范数;从而:in,
Figure BDA00024289068200000710
According to the universal approximation theorem, for any small positive number ε 6 , choose the fuzzy logic system
Figure BDA00024289068200000711
make
Figure BDA00024289068200000712
where δ 6 (Z) is the approximation error and satisfies the inequality |δ 6 (Z)|≤ε 6 , and ||W 6 || is the norm of the vector W 6 ; thus:

Figure BDA00024289068200000713
Figure BDA00024289068200000713

构建真实控制律:Build the real control law:

Figure BDA00024289068200000714
Figure BDA00024289068200000714

其中,控制增益k6>0,常数s6>0,常数l6>0;Wherein, the control gain k 6 >0, the constant s 6 >0, and the constant l 6 >0;

由输入饱和公式ud=sat(vd)=g(vd)+d(vd),得到:d2z6ud=d2z6g(vd)+d2z6d(vd),By entering the saturation formula ud =sat(v d )=g(v d )+d(v d ), we get: d 2 z 6 u d = d 2 z 6 g(v d )+d 2 z 6 d( v d ),

Figure BDA0002428906820000081
Figure BDA0002428906820000081

定义

Figure BDA0002428906820000082
Figure BDA0002428906820000083
为θ的估计值,定义
Figure BDA0002428906820000084
definition
Figure BDA0002428906820000082
Figure BDA0002428906820000083
is the estimated value of θ, define
Figure BDA0002428906820000084

由杨氏不等式

Figure BDA0002428906820000085
其中,常数Dd>0,得到:By Young's inequality
Figure BDA0002428906820000085
where the constant D d > 0, we get:

Figure BDA0002428906820000086
Figure BDA0002428906820000086

b.7.定义yi=αidi,i=1,2,3,4,得到:b.7. Define y iidi , i=1, 2, 3, 4, and get:

Figure BDA0002428906820000087
Figure BDA0002428906820000087

其中,

Figure BDA0002428906820000088
选择系统的Lyapunov函数:
Figure BDA0002428906820000089
in,
Figure BDA0002428906820000088
Choose the Lyapunov function for the system:
Figure BDA0002428906820000089

其中,r1是正数,对V求导得到:where r 1 is a positive number, and derivation with respect to V yields:

Figure BDA00024289068200000810
Figure BDA00024289068200000810

其中,控制增益k6>0;构建自适应律如下:Among them, the control gain k 6 >0; the adaptive law is constructed as follows:

Figure BDA00024289068200000811
Figure BDA00024289068200000811

其中,m1为正数;Among them, m 1 is a positive number;

c.对步骤b中的考虑铁损的永磁同步电动机有限时间动态面控制方法进行稳定性分析;c. Stability analysis of the finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss in step b;

将公式(27)代入公式(26)得到:Substituting formula (27) into formula (26) yields:

Figure BDA0002428906820000091
Figure BDA0002428906820000091

其中,|Bi|有一个最大值|BiM|在紧集|Ωi|,i=1,2,3,4上且|Bi|≤BiM,则得到:

Figure BDA0002428906820000092
常数τ>0;where |B i | has a maximum value |B iM | on the compact set |Ω i |,i=1,2,3,4 and |B i |≤B iM , then:
Figure BDA0002428906820000092
constant τ>0;

由杨氏不等式得到:From Young's inequality we get:

Figure BDA0002428906820000093
Figure BDA0002428906820000093

由不等式放缩得到:From inequality scaling we get:

Figure BDA0002428906820000094
Figure BDA0002428906820000094

Figure BDA0002428906820000095
Figure BDA0002428906820000095

根据以上不等式放缩,公式(28)写为:Scaling according to the above inequality, Equation (28) is written as:

Figure BDA0002428906820000096
Figure BDA0002428906820000096

其中,in,

Figure BDA0002428906820000101
Figure BDA0002428906820000101

b0=min{2,2s1,2s2,2s3,2gms4,2s5,2gms6,m1};b 0 =min{2, 2s 1 , 2s 2 , 2s 3 , 2g m s 4 , 2s 5 , 2g m s 6 , m 1 };

Figure BDA0002428906820000102
Figure BDA0002428906820000102

由公式(29)得到:It is obtained by formula (29):

Figure BDA0002428906820000103
Figure BDA0002428906820000103

从公式(30)得知,如果a0-(c/2V)>0以及b0-(c/2V[(γ+1)/2])>0;From formula (30), if a 0 -(c/2V)>0 and b 0 -(c/2V [(γ+1)/2] )>0;

通过有限时间的定义得知,在系统的收敛时间Tr里,

Figure BDA0002428906820000104
跟踪误差z1将在有限时间内收敛到原点的一个小邻域内。According to the definition of finite time, in the convergence time Tr of the system,
Figure BDA0002428906820000104
The tracking error z 1 will converge to within a small neighborhood of the origin in finite time.

本发明具有如下优点:The present invention has the following advantages:

(1)本发明方法考虑了铁损和输入饱和对永磁同步电动机带来的不利影响,避免了输入饱和可能带来的安全性问题;(2)本发明采用动态面技术,有效地避免了因传统反步法中对虚拟函数的连续求导而产生的“计算复杂性”问题,同时使用模糊逻辑系统来逼近永磁同步电动机驱动系统中未知的非线性项;(3)本发明采用有限时间控制技术,使跟踪误差能够在有限时间内收敛到原点的一个充分小的邻域内,提高了永磁同步电动机驱动系统的响应速度;(4)本发明方法具有较好的鲁棒性,抗负载扰动能力较强,实现了理想的控制效果。(1) The method of the present invention considers the adverse effects of iron loss and input saturation on the permanent magnet synchronous motor, and avoids the safety problem that may be caused by the input saturation; (2) The present invention adopts the dynamic surface technology, which effectively avoids the The "computational complexity" problem caused by the continuous derivation of the virtual function in the traditional backstepping method, and the fuzzy logic system is used to approximate the unknown nonlinear term in the permanent magnet synchronous motor drive system; (3) the present invention adopts limited The time control technology enables the tracking error to converge to a sufficiently small neighborhood of the origin within a limited time, and improves the response speed of the permanent magnet synchronous motor drive system; (4) the method of the present invention has better robustness and resistance to The load disturbance ability is strong, and the ideal control effect is realized.

附图说明Description of drawings

图1为本发明实施例中有限时间动态面位置跟踪控制器、坐标变换、SVPWM逆变器组成的复合被控对象的示意图;1 is a schematic diagram of a composite controlled object composed of a finite-time dynamic surface position tracking controller, coordinate transformation, and SVPWM inverter in the embodiment of the present invention;

图2为经本发明方法控制后转子位置信号实际值和转子位置信号给定值的跟踪仿真图;2 is a tracking simulation diagram of the actual value of the rotor position signal and the given value of the rotor position signal after being controlled by the method of the present invention;

图3为经本发明方法控制后转子位置信号跟踪误差仿真图;3 is a simulation diagram of the tracking error of the rotor position signal after being controlled by the method of the present invention;

图4为经本发明方法控制后q轴定子电压仿真图;4 is a simulation diagram of the q-axis stator voltage after being controlled by the method of the present invention;

图5为经本发明方法控制后d轴定子电压仿真图。FIG. 5 is a simulation diagram of the d-axis stator voltage after being controlled by the method of the present invention.

具体实施方式Detailed ways

本发明的基本思想为:通过将自适应反步法与动态面技术相结合应用在永磁同步电动机的位置跟踪控制上,以解决永磁同步电动机驱动系统中存在的参数不确定、外界负载变化问题和传统反步法中存在的“计算复杂性”问题;考虑了铁损及输入饱和问题对永磁同步电动机带来的不利影响;引入了有限时间控制技术,使得跟踪误差能够在有限时间内收敛到原点非常小的领域内,使本发明控制方法具有更高的工程实践价值,并获得了理想的跟踪效果。The basic idea of the invention is as follows: by combining the adaptive backstepping method and the dynamic surface technology in the position tracking control of the permanent magnet synchronous motor, it can solve the parameter uncertainty and external load change existing in the permanent magnet synchronous motor drive system. The problem and the "computational complexity" problem in the traditional backstepping method; the adverse effects of iron loss and input saturation on the permanent magnet synchronous motor are considered; the finite-time control technology is introduced, so that the tracking error can be controlled within a limited time. The control method of the present invention has higher engineering practice value by converging to a field with a very small origin, and obtains an ideal tracking effect.

下面结合附图以及具体实施方式对本发明作进一步详细说明:The present invention is described in further detail below in conjunction with the accompanying drawings and specific embodiments:

结合图1所示,一种考虑铁损的永磁同步电动机有限时间动态面控制方法,其采用的部件包括有限时间动态面位置跟踪控制器1、坐标变换单元2、SVPWM逆变器3和转速检测单元4与电流检测单元5。其中,有限时间动态面位置跟踪控制器1即根据本发明中考虑铁损的永磁同步电动机有限时间动态面控制方法设计的控制器。Uα和Uβ表示两相旋转坐标系下的电压,U、V和W表示三相电压。转速检测单元4和电流检测单元5主要用于检测永磁同步电动机的转速和电流值相关变量,通过实际测量的电流和转速变量作为输入,通过有限时间动态面位置跟踪控制器1进行电压控制,最终转换为三相电控制永磁同步电动机的转子位置。为了设计一个更加有效的有限时间动态面位置跟踪控制器1,建立永磁同步电动机动态模型是十分必要的。下面对本发明方法的具体步骤进行详细说明:As shown in Figure 1, a finite-time dynamic surface control method for permanent magnet synchronous motors considering iron loss, the components used include a finite-time dynamic surface position tracking controller 1, a coordinate transformation unit 2, an SVPWM inverter 3 and a rotational speed. Detection unit 4 and current detection unit 5 . Among them, the finite-time dynamic surface position tracking controller 1 is a controller designed according to the finite-time dynamic surface control method of the permanent magnet synchronous motor considering iron loss in the present invention. U α and U β represent the voltage in the two-phase rotating coordinate system, and U, V and W represent the three-phase voltage. The rotational speed detection unit 4 and the current detection unit 5 are mainly used to detect the variables related to the rotational speed and current value of the permanent magnet synchronous motor, and use the actual measured current and rotational speed variables as input, and perform the voltage control through the finite-time dynamic surface position tracking controller 1, The final conversion is to three-phase electric control of the rotor position of the permanent magnet synchronous motor. In order to design a more effective finite-time dynamic surface position tracking controller 1, it is necessary to establish a dynamic model of permanent magnet synchronous motor. The concrete steps of the method of the present invention are described in detail below:

一种考虑铁损的永磁同步电动机有限时间动态面控制方法,包括如下步骤:A finite-time dynamic surface control method for a permanent magnet synchronous motor considering iron loss, comprising the following steps:

a.建立d-q轴上考虑铁损的永磁同步电动机的动态数学模型,如公式(1)所示:a. Establish a dynamic mathematical model of the permanent magnet synchronous motor considering iron loss on the d-q axis, as shown in formula (1):

Figure BDA0002428906820000111
Figure BDA0002428906820000111

其中,Θ表示转子角度,ω表示转子角速度,np表示磁对数,J表示转动惯量,TL表示负载转矩,id表示d轴电流,iq表示q轴电流,ud表示d轴电压,uq表示q轴电压,iod表示d轴励磁电流分量,ioq表示q轴励磁电流分量,Ld表示d轴定子电感,Lq表示q轴定子电感,Lld表示d轴漏电感,Llq表示q轴漏电感,Lmd表示d轴励磁电感,Lmq表示q轴励磁电感,R1表示定子电阻,Rc表示铁芯损耗电阻,λPM是转子永磁体励磁通量。Where, Θ is the rotor angle, ω is the rotor angular velocity, n p is the magnetic logarithm, J is the moment of inertia, TL is the load torque, id is the d -axis current, i q is the q-axis current, and ud is the d -axis Voltage, u q represents the q-axis voltage, i od represents the d-axis excitation current component, i oq represents the q-axis excitation current component, L d represents the d-axis stator inductance, L q represents the q-axis stator inductance, and L ld represents the d-axis leakage inductance , L lq represents the q-axis leakage inductance, L md represents the d-axis excitation inductance, L mq represents the q-axis excitation inductance, R 1 represents the stator resistance, R c represents the iron core loss resistance, and λ PM is the rotor permanent magnet excitation flux.

为简化考虑铁损的永磁同步电动机的动态数学模型,定义新的变量如下:In order to simplify the dynamic mathematical model of permanent magnet synchronous motor considering iron loss, new variables are defined as follows:

Figure BDA0002428906820000121
Figure BDA0002428906820000121

则考虑铁损的永磁同步电动机的动态数学模型用公式(2)表示,即:Then the dynamic mathematical model of permanent magnet synchronous motor considering iron loss is expressed by formula (2), namely:

Figure BDA0002428906820000122
Figure BDA0002428906820000122

b.根据有限时间动态面技术和自适应反步法原理,设计一种考虑铁损的永磁同步电动机有限时间动态面控制方法,具体过程如下:b. According to the finite-time dynamic surface technology and the principle of the adaptive backstepping method, a finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss is designed. The specific process is as follows:

假设f(Z)在紧集ΩZ中是一个连续的函数,对于任意的常数ε>0,总是有一个模糊逻辑系统WTS(Z)满足:

Figure BDA0002428906820000123
Assuming that f(Z) is a continuous function in the compact set Ω Z , for any constant ε>0, there is always a fuzzy logic system W T S(Z) satisfying:
Figure BDA0002428906820000123

式中,输入向量

Figure BDA0002428906820000124
q是模糊输入维数,Rq为实数向量集;W∈Rl是模糊权向量,模糊节点数l为正整数,且l>1,Rl为实数向量集;S(Z)=[s1(Z),...,sl(Z)]T∈Rl为基函数向量,s1(Z),...,sl(Z)分别表示S(Z)的基向量;选取基函数sj(Z)为如下的高斯函数:where, the input vector
Figure BDA0002428906820000124
q is the fuzzy input dimension, R q is a real vector set; W∈R l is a fuzzy weight vector, the number of fuzzy nodes l is a positive integer, and l>1, R l is a real vector set; S(Z)=[s 1 (Z),...,s l (Z)] T ∈R l is the basis function vector, s 1 (Z),...,s l (Z) represent the basis vector of S(Z) respectively; The basis function s j (Z) is a Gaussian function as follows:

Figure BDA0002428906820000131
其中,μj=[μj1,...,μjq]T是Gaussian函数分布曲线的中心位置,而ηj则为其宽度;μj1,...,μjq分别表示μj的基向量。
Figure BDA0002428906820000131
Among them, μ j =[μ j1 ,...,μ jq ] T is the center position of the Gaussian function distribution curve, and η j is its width; μ j1 ,...,μ jq represent the basis vectors of μ j respectively .

定义有限时间:对于任意的实数λ1>0,λ2>0,0<γ<1,则有限时间稳定的扩展Lyapunov条件表示为:

Figure BDA0002428906820000132
其中,V(x)表示系统的Lyapunov函数;系统的收敛时间Tr通过Tr≤t0+[1/λ1(1-γ)]ln[(λ1V1-γ(t0)+λ2)/λ2]来估计,t0表示初始时间。Define finite time: for any real numbers λ 1 >0, λ 2 >0, 0<γ<1, the extended Lyapunov condition for finite time stability is expressed as:
Figure BDA0002428906820000132
Among them, V(x) represents the Lyapunov function of the system; the convergence time T r of the system is determined by T r ≤t 0 +[1/λ 1 (1-γ)]ln[(λ 1 V 1-γ (t 0 )+ λ 2 )/λ 2 ] to estimate, t 0 represents the initial time.

考虑永磁同步电动机输入电压约束问题如下:umin≤v≤umax,其中,umin和umax分别表示已知定子输入电压的最小值和最大值,即:Considering the input voltage constraint problem of the permanent magnet synchronous motor as follows: u min ≤v≤u max , where u min and u max represent the minimum and maximum values of the known stator input voltage, namely:

Figure BDA0002428906820000133
Figure BDA0002428906820000133

其中,umax>0和umin<0都为输入约束限制的未知常数,v为实际的输入信号。Among them, u max >0 and u min <0 are unknown constants limited by input constraints, and v is the actual input signal.

利用分段光滑函数g(v)来近似约束函数,定义g(v)为下:Use the piecewise smooth function g(v) to approximate the constraint function, and define g(v) as follows:

Figure BDA0002428906820000134
Figure BDA0002428906820000134

u=sat(v)=g(v)+d(v),d(v)是一个有界函数,其界限为:u=sat(v)=g(v)+d(v), d(v) is a bounded function whose bounds are:

|d(v)|=|sat(v)-g(v)|≤max{umax[1-tanh(1)}]umin[tanh(1)-1]=D;|d(v)|=|sat(v)-g(v)|≤max{u max [1-tanh(1)}]u min [tanh(1)-1]=D;

其中,D在d轴和q轴上分别表示Dd和Dq,Dd、Dq均为大于0的常数;Among them, D represents D d and D q on the d-axis and q-axis, respectively, and both D d and D q are constants greater than 0;

利用中值定理得知:存在一个常数μ,使得

Figure BDA0002428906820000135
Using the mean value theorem, we know that there is a constant μ such that
Figure BDA0002428906820000135

其中,

Figure BDA0002428906820000136
vμ=μv+(1-μ)v0。in,
Figure BDA0002428906820000136
v μ = μv+(1−μ)v 0 .

选取v0=0,则以上函数写为:

Figure BDA0002428906820000137
因此,
Figure BDA0002428906820000138
则有
Figure BDA0002428906820000139
Figure BDA00024289068200001310
其中存在一个未知常数gm,使得
Figure BDA00024289068200001311
Selecting v 0 =0, the above function can be written as:
Figure BDA0002428906820000137
therefore,
Figure BDA0002428906820000138
then there are
Figure BDA0002428906820000139
Figure BDA00024289068200001310
where there is an unknown constant g m such that
Figure BDA00024289068200001311

定义一个新变量αid和一个时间常数∈i

Figure BDA00024289068200001312
αid(0)=αi(0),i=1,2,3,4。Define a new variable α id and a time constant ∈ i ,
Figure BDA00024289068200001312
α id (0)=α i (0), i=1,2,3,4.

其中,αid(0)表示αid的初始值,αi(0)表示αi的初始值。Among them, α id (0) represents the initial value of α id , and α i (0) represents the initial value of α i .

虚拟控制律αi通过一阶滤波器得到αid,其中,虚拟控制律α1、α2、α3、α4为一阶滤波器的输入信号,α1d、α2d、α3d、α4d为一阶滤波器的输出信号。The virtual control law α i obtains α id through a first-order filter, wherein, the virtual control laws α 1 , α 2 , α 3 , α 4 are the input signals of the first-order filter, α 1d , α 2d , α 3d , α 4d is the output signal of the first-order filter.

定义跟踪误差z1、z2、z3、z4、z5和z6为:The tracking errors z 1 , z 2 , z 3 , z 4 , z 5 and z 6 are defined as:

Figure BDA0002428906820000141
Figure BDA0002428906820000141

其中,x1d为期望的位置信号,x4d为期望的转子磁链信号。Among them, x 1d is the desired position signal, and x 4d is the desired rotor flux linkage signal.

以上考虑铁损的永磁同步电动机有限时间动态面控制方法中每一步都会选取一个Lyapunov函数构建一个虚拟控制律或者真实控制律,具体步骤如下:In the above finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss, a Lyapunov function is selected for each step to construct a virtual control law or a real control law. The specific steps are as follows:

b.1.根据公式(3)中第一个方程z1=x1-x1d,选择Lyapunov函数:

Figure BDA0002428906820000142
对V1求导得到:b.1. According to the first equation z 1 =x 1 -x 1d in formula (3), choose the Lyapunov function:
Figure BDA0002428906820000142
Derivation with respect to V1 gives :

Figure BDA0002428906820000143
Figure BDA0002428906820000143

选取虚拟控制律:

Figure BDA0002428906820000144
Choose a virtual control law:
Figure BDA0002428906820000144

其中,控制增益k1>0,常数s1>0,正常数0<γ<1。Among them, the control gain k 1 >0, the constant s 1 >0, and the constant 0<γ<1.

基于以上公式(4)和公式(5)得到:Based on the above formula (4) and formula (5), we get:

Figure BDA0002428906820000145
Figure BDA0002428906820000145

b.2.根据公式(3)中第二个方程z2=x21d,选择Lyapunov函数:

Figure BDA0002428906820000146
对V2求导并将公式(6)代入,得到公式(7):b.2. According to the second equation z 2 =x 21d in formula (3), choose the Lyapunov function:
Figure BDA0002428906820000146
Differentiating V 2 and substituting Equation (6) yields Equation (7):

Figure BDA0002428906820000147
Figure BDA0002428906820000147

其中,负载转矩TL是未知的常数且上限为d,即|TL|≤d,其中,d>0。Wherein, the load torque TL is an unknown constant and the upper limit is d, ie | TL |≤d, where d>0.

通过杨氏不等式有

Figure BDA0002428906820000148
其中,ε1是一个任意小的正数,则:By Young's inequality we have
Figure BDA0002428906820000148
where ε 1 is an arbitrarily small positive number, then:

Figure BDA0002428906820000149
Figure BDA0002428906820000149

其中,

Figure BDA00024289068200001410
由万能逼近定理,对于任意小的正数ε2,选取模糊逻辑系统
Figure BDA00024289068200001411
使得:
Figure BDA00024289068200001412
其中,δ2(Z)为逼近误差,并满足不等式|δ2(Z)|≤ε2,||W2||是向量W2的范数。in,
Figure BDA00024289068200001410
According to the universal approximation theorem, for any small positive number ε 2 , choose the fuzzy logic system
Figure BDA00024289068200001411
makes:
Figure BDA00024289068200001412
Among them, δ 2 (Z) is the approximation error, and satisfies the inequality |δ 2 (Z)|≤ε 2 , and ||W 2 || is the norm of the vector W 2 .

选取虚拟控制律:

Figure BDA0002428906820000151
Choose a virtual control law:
Figure BDA0002428906820000151

其中,控制增益k2>0,常数s2>0,常数l2>0,

Figure BDA0002428906820000152
为θ的估计值,θ的定义在下文给出。Among them, the control gain k 2 >0, the constant s 2 >0, the constant l 2 >0,
Figure BDA0002428906820000152
is an estimate of θ, the definition of θ is given below.

根据公式(3)中第三个方程z3=x32d,则

Figure BDA0002428906820000153
表示为:According to the third equation z 3 =x 32d in formula (3), then
Figure BDA0002428906820000153
Expressed as:

Figure BDA0002428906820000154
Figure BDA0002428906820000154

b.3.根据公式(3)中第三个方程:z3=x32d,选择Lyapunov函数:

Figure BDA0002428906820000155
对V3求导并将公式(10)代入,得到公式(11):b.3. According to the third equation in formula (3): z 3 =x 32d , choose the Lyapunov function:
Figure BDA0002428906820000155
Differentiating V 3 and substituting Equation (10) yields Equation (11):

Figure BDA0002428906820000156
Figure BDA0002428906820000156

其中,

Figure BDA0002428906820000157
由万能逼近定理,对于任意小的正数ε3,选取模糊逻辑系统W3 TS3(Z),使得:
Figure BDA0002428906820000158
其中δ3(Z)为逼近误差,并满足不等式|δ3(Z)|≤ε3,||W3||是向量W3的范数。从而:in,
Figure BDA0002428906820000157
According to the universal approximation theorem, for any small positive number ε 3 , the fuzzy logic system W 3 T S 3 (Z) is selected such that:
Figure BDA0002428906820000158
where δ 3 (Z) is the approximation error and satisfies the inequality |δ 3 (Z)|≤ε 3 , and ||W 3 || is the norm of the vector W 3 . thereby:

Figure BDA0002428906820000159
Figure BDA0002428906820000159

选取虚拟控制律:

Figure BDA00024289068200001510
Choose a virtual control law:
Figure BDA00024289068200001510

其中,控制增益k3>0,常数s3>0,常数l3>0。Wherein, the control gain k 3 >0, the constant s 3 >0, and the constant l 3 >0.

根据公式(3)中第四个方程z4=x43d,则

Figure BDA00024289068200001511
表示为:According to the fourth equation z 4 =x 43d in formula (3), then
Figure BDA00024289068200001511
Expressed as:

Figure BDA00024289068200001512
Figure BDA00024289068200001512

b.4.根据公式(3)中第四个方程z4=x43d,选择Lyapunov函数:

Figure BDA00024289068200001513
对V4求导并将公式(14)代入,得到公式(15):b.4. According to the fourth equation z 4 =x 43d in formula (3), choose the Lyapunov function:
Figure BDA00024289068200001513
Differentiating V 4 and substituting Equation (14) yields Equation (15):

Figure BDA0002428906820000161
Figure BDA0002428906820000161

其中,

Figure BDA0002428906820000162
由万能逼近定理,对于任意小的正数ε4,选取模糊逻辑系统
Figure BDA0002428906820000163
使得
Figure BDA0002428906820000164
其中,δ4(Z)为逼近误差,并满足不等式|δ4(Z)|≤ε4,||W4||是向量W4的范数。从而:in,
Figure BDA0002428906820000162
According to the universal approximation theorem, for any small positive number ε 4 , choose the fuzzy logic system
Figure BDA0002428906820000163
make
Figure BDA0002428906820000164
Among them, δ 4 (Z) is the approximation error and satisfies the inequality |δ 4 (Z)|≤ε 4 , and ||W 4 || is the norm of the vector W 4 . thereby:

Figure BDA0002428906820000165
Figure BDA0002428906820000165

构建真实控制律:

Figure BDA0002428906820000166
Build the real control law:
Figure BDA0002428906820000166

其中,控制增益k4>0,常数s4>0,常数l4>0。Among them, the control gain k 4 >0, the constant s 4 >0, and the constant l 4 >0.

由输入饱和公式uq=sat(vq)=g(vq)+d(vq),得到:d1z4uq=d1z4g(vq)+d1z4d(vq),From the input saturation formula u q =sat(v q )=g(v q )+d(v q ), we get: d 1 z 4 u q =d 1 z 4 g(v q )+d 1 z 4 d( v q ),

Figure BDA0002428906820000167
Figure BDA0002428906820000167

由杨氏不等式得到

Figure BDA0002428906820000168
其中,常数Dq>0,得到:From Young's inequality we get
Figure BDA0002428906820000168
where the constant D q > 0, we get:

Figure BDA0002428906820000169
Figure BDA0002428906820000169

b.5.根据公式(3)中第五个方程z5=x5,选择Lyapunov函数:

Figure BDA00024289068200001610
对V5求导得到:b.5. According to the fifth equation z 5 =x 5 in formula (3), choose the Lyapunov function:
Figure BDA00024289068200001610
Derivation with respect to V5 gives:

Figure BDA00024289068200001611
Figure BDA00024289068200001611

构建虚拟控制律:

Figure BDA00024289068200001612
Build a virtual control law:
Figure BDA00024289068200001612

其中,控制增益k5>0,常数s5>0;根据公式(3)中第六个方程z6=x64d得到:Wherein, the control gain k 5 >0, the constant s 5 >0; according to the sixth equation z 6 =x 64d in formula (3), we can obtain:

Figure BDA00024289068200001613
Figure BDA00024289068200001613

b.6.根据公式(3)中第六个方程z6=x64d,选择Lyapunov函数:

Figure BDA00024289068200001614
对V6求导得到:
Figure BDA0002428906820000171
b.6. According to the sixth equation z 6 =x 64d in formula (3), select the Lyapunov function:
Figure BDA00024289068200001614
Derivating V 6 gives:
Figure BDA0002428906820000171

其中,

Figure BDA0002428906820000172
由万能逼近定理,对于任意小的正数ε6,选取模糊逻辑系统
Figure BDA0002428906820000173
使得
Figure BDA0002428906820000174
其中δ6(Z)为逼近误差,并满足不等式|δ6(Z)|≤ε6,||W6||是向量W6的范数。从而:in,
Figure BDA0002428906820000172
According to the universal approximation theorem, for any small positive number ε 6 , choose the fuzzy logic system
Figure BDA0002428906820000173
make
Figure BDA0002428906820000174
where δ 6 (Z) is the approximation error, and satisfies the inequality |δ 6 (Z)|≤ε 6 , and ||W 6 || is the norm of the vector W 6 . thereby:

Figure BDA0002428906820000175
Figure BDA0002428906820000175

构建真实控制律:Build the real control law:

Figure BDA0002428906820000176
Figure BDA0002428906820000176

其中,控制增益k6>0,常数s6>0,常数l6>0。Among them, the control gain k 6 >0, the constant s 6 >0, and the constant l 6 >0.

由输入饱和公式ud=sat(vd)=g(vd)+d(vd),得到:d2z6ud=d2z6g(vd)+d2z6d(vd),By entering the saturation formula ud =sat(v d )=g(v d )+d(v d ), we get: d 2 z 6 u d = d 2 z 6 g(v d )+d 2 z 6 d( v d ),

Figure BDA0002428906820000177
Figure BDA0002428906820000177

定义

Figure BDA0002428906820000178
Figure BDA0002428906820000179
为θ的估计值,定义
Figure BDA00024289068200001710
definition
Figure BDA0002428906820000178
Figure BDA0002428906820000179
is the estimated value of θ, define
Figure BDA00024289068200001710

由杨氏不等式

Figure BDA00024289068200001711
其中,常数Dd>0,得到:By Young's inequality
Figure BDA00024289068200001711
where the constant D d > 0, we get:

Figure BDA00024289068200001712
Figure BDA00024289068200001712

b.7.定义yi=αidi,i=1,2,3,4,得到:b.7. Define y iidi , i=1, 2, 3, 4, and get:

Figure BDA00024289068200001713
Figure BDA00024289068200001713

其中,

Figure BDA00024289068200001714
选择系统的Lyapunov函数:
Figure BDA00024289068200001715
in,
Figure BDA00024289068200001714
Choose the Lyapunov function for the system:
Figure BDA00024289068200001715

其中,r1是正数,对V求导得到:where r 1 is a positive number, and derivation with respect to V yields:

Figure BDA0002428906820000181
Figure BDA0002428906820000181

其中,控制增益k6>0。构建自适应律如下:Wherein, the control gain k 6 >0. The adaptive law is constructed as follows:

Figure BDA0002428906820000182
Figure BDA0002428906820000182

其中,m1为正数。where m 1 is a positive number.

c.对步骤b中的考虑铁损的永磁同步电动机有限时间动态面控制方法进行稳定性分析。c. Stability analysis of the finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss in step b.

将公式(27)代入公式(26)得到:Substituting formula (27) into formula (26) yields:

Figure BDA0002428906820000183
Figure BDA0002428906820000183

其中,|Bi|有一个最大值|BiM|在紧集|Ωi|,i=1,2,3,4上且|Bi|≤BiM,则得到:where |B i | has a maximum value |B iM | on the compact set |Ω i |,i=1,2,3,4 and |B i |≤B iM , then:

Figure BDA0002428906820000184
Figure BDA0002428906820000184

由杨氏不等式得到:From Young's inequality we get:

Figure BDA0002428906820000185
Figure BDA0002428906820000185

由不等式放缩得到:From inequality scaling we get:

Figure BDA0002428906820000186
Figure BDA0002428906820000186

Figure BDA0002428906820000187
Figure BDA0002428906820000187

根据以上不等式放缩,公式(28)写为:Scaling according to the above inequality, Equation (28) is written as:

Figure BDA0002428906820000191
Figure BDA0002428906820000191

其中,in,

Figure BDA0002428906820000192
Figure BDA0002428906820000192

b0=min{2,2s1,2s2,2s3,2gms4,2s5,2gms6,m1}。b 0 =min{2, 2s 1 , 2s 2 , 2s 3 , 2g m s 4 , 2s 5 , 2g m s 6 , m 1 }.

Figure BDA0002428906820000193
Figure BDA0002428906820000193

由公式(29)得到:It is obtained by formula (29):

Figure BDA0002428906820000194
Figure BDA0002428906820000194

从公式(30)得知,如果a0-(c/2V)>0以及b0-(c/2V[(γ+1)/2])>0;From formula (30), if a 0 -(c/2V)>0 and b 0 -(c/2V [(γ+1)/2] )>0;

通过有限时间的定义得知,在系统的收敛时间Tr里,

Figure BDA0002428906820000195
跟踪误差z1将在有限时间内收敛到原点的一个小邻域内。According to the definition of finite time, in the convergence time Tr of the system,
Figure BDA0002428906820000195
The tracking error z 1 will converge to within a small neighborhood of the origin in finite time.

在虚拟环境下对建立的考虑铁损的永磁同步电动机有限时间动态面控制方法进行仿真,验证其在永磁同步电动机驱动系统中的可行性,永磁同步电动机及负载参数如下:In the virtual environment, the established finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss is simulated, and its feasibility in permanent magnet synchronous motor drive system is verified. The permanent magnet synchronous motor and load parameters are as follows:

R1=2.21Ω,Rc=200Ω,Ld=Lq=0.00977H,Lld=Llq=0.00177H;R 1 =2.21Ω, R c =200Ω, L d =L q =0.00977H, L ld =L lq =0.00177H;

Lmd=Lmq=0.008H,J=0.00379kg·m2PM=0.0844,np=3。L md =L mq =0.008H, J = 0.00379 kg·m 2 , λ PM =0.0844, n p =3.

选择控制律参数为:The control law parameters are selected as:

k1=100,k2=200,k3=200,k4=8000,k5=100,k6=800,∈1=∈2=∈4=0.00005;k 1 =100,k 2 =200,k 3 =200,k 4 =8000,k 5 =100,k 6 =800,∈ 1 =∈ 2 =∈ 4 =0.00005;

3=0.001,r1=0.05,m1=0.5,l2=l3=l4=100,l6=10。3 =0.001, r 1 =0.05, m 1 =0.5, l 2 =l 3 =l 4 =100,l 6 =10.

期望的位置信号为:x1d=sint,负载转矩为:

Figure BDA0002428906820000201
The desired position signal is: x 1d =sint, and the load torque is:
Figure BDA0002428906820000201

选择模糊隶属度函数为:The fuzzy membership function is chosen as:

Figure BDA0002428906820000202
Figure BDA0002428906820000202

Figure BDA0002428906820000203
Figure BDA0002428906820000203

Figure BDA0002428906820000204
Figure BDA0002428906820000204

Figure BDA0002428906820000205
Figure BDA0002428906820000205

Figure BDA0002428906820000206
Figure BDA0002428906820000206

Figure BDA0002428906820000207
Figure BDA0002428906820000207

仿真是在系统参数和非线性函数未知的前提下进行的,相应的仿真结果如下所示。其中,图2为经本发明方法控制后转子位置的跟踪仿真图,通过仿真结果表明本发明方法跟踪效果好,响应速度快;图3为经本发明控制方法控制后转子位置和转子位置给定值的跟踪误差仿真图;图4和图5分别为经本发明方法控制后永磁同步电动机q轴定子、永磁同步电动机d轴定子电压仿真图,通过仿真结果表明本发明控制方法能够有效的减少输入饱和带来的不利影响,整体效果较好、波动较小、响应速度快。模拟信号清楚地表明,本发明提出的考虑铁损的永磁同步电动机有限时间动态面控制方法,能够高效地跟踪参考信号。The simulation is carried out under the premise that the system parameters and nonlinear functions are unknown, and the corresponding simulation results are shown below. Among them, Fig. 2 is a tracking simulation diagram of the rotor position after being controlled by the method of the present invention. The simulation results show that the method of the present invention has a good tracking effect and a fast response speed; Fig. 3 is a rotor position and a given rotor position after being controlled by the control method of the present invention. The tracking error simulation diagram of the value; Figure 4 and Figure 5 are respectively the simulation diagrams of the permanent magnet synchronous motor q-axis stator and the permanent magnet synchronous motor d-axis stator voltage after the control of the method of the present invention. The simulation results show that the control method of the present invention can effectively Reduce the adverse effects of input saturation, the overall effect is better, the fluctuation is small, and the response speed is fast. The simulation signal clearly shows that the finite-time dynamic surface control method of the permanent magnet synchronous motor proposed by the present invention considering iron loss can efficiently track the reference signal.

当然,以上说明仅仅为本发明的较佳实施例,本发明并不限于列举上述实施例,应当说明的是,任何熟悉本领域的技术人员在本说明书的教导下,所做出的所有等同替代、明显变形形式,均落在本说明书的实质范围之内,理应受到本发明的保护。Of course, the above descriptions are only the preferred embodiments of the present invention, and the present invention is not limited to the above-mentioned embodiments. , and obvious deformation forms, all fall within the essential scope of this specification, and should be protected by the present invention.

Claims (1)

1.一种考虑铁损的永磁同步电动机有限时间动态面控制方法,其特征在于,1. a permanent magnet synchronous motor finite-time dynamic surface control method considering iron loss, is characterized in that, 包括如下步骤:It includes the following steps: a.建立d-q轴上考虑铁损的永磁同步电动机的动态数学模型,如公式(1)所示:a. Establish a dynamic mathematical model of the permanent magnet synchronous motor considering iron loss on the d-q axis, as shown in formula (1):
Figure FDA0002428906810000011
Figure FDA0002428906810000011
其中,Θ表示转子角度,ω表示转子角速度,np表示磁对数,J表示转动惯量,TL表示负载转矩,id表示d轴电流,iq表示q轴电流,ud表示d轴电压,uq表示q轴电压,iod表示d轴励磁电流分量,ioq表示q轴励磁电流分量,Ld表示d轴定子电感,Lq表示q轴定子电感,Lld表示d轴漏电感,Llq表示q轴漏电感,Lmd表示d轴励磁电感,Lmq表示q轴励磁电感,R1表示定子电阻,Rc表示铁芯损耗电阻,λPM是转子永磁体励磁通量;Where, Θ is the rotor angle, ω is the rotor angular velocity, n p is the magnetic logarithm, J is the moment of inertia, TL is the load torque, id is the d -axis current, i q is the q-axis current, and ud is the d -axis Voltage, u q represents the q-axis voltage, i od represents the d-axis excitation current component, i oq represents the q-axis excitation current component, L d represents the d-axis stator inductance, L q represents the q-axis stator inductance, and L ld represents the d-axis leakage inductance , L lq represents the q-axis leakage inductance, L md represents the d-axis excitation inductance, L mq represents the q-axis excitation inductance, R 1 represents the stator resistance, R c represents the iron core loss resistance, and λ PM is the rotor permanent magnet excitation flux; 为简化考虑铁损的永磁同步电动机的动态数学模型,定义新的变量如下:In order to simplify the dynamic mathematical model of permanent magnet synchronous motor considering iron loss, new variables are defined as follows:
Figure FDA0002428906810000012
Figure FDA0002428906810000012
则考虑铁损的永磁同步电动机的动态数学模型用公式(2)表示,即:Then the dynamic mathematical model of permanent magnet synchronous motor considering iron loss is expressed by formula (2), namely:
Figure FDA0002428906810000021
Figure FDA0002428906810000021
b.根据有限时间动态面技术和自适应反步法原理,设计一种考虑铁损的永磁同步电动机有限时间动态面控制方法,具体过程如下:b. According to the finite-time dynamic surface technology and the principle of the adaptive backstepping method, a finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss is designed. The specific process is as follows: 假设f(Z)在紧集ΩZ中是一个连续的函数,对于任意的常数ε>0,总是有一个模糊逻辑系统WTS(Z)满足:
Figure FDA0002428906810000022
Assuming that f(Z) is a continuous function in the compact set Ω Z , for any constant ε>0, there is always a fuzzy logic system W T S(Z) satisfying:
Figure FDA0002428906810000022
式中,输入向量
Figure FDA0002428906810000023
q是模糊输入维数,Rq为实数向量集;W∈Rl是模糊权向量,模糊节点数l为正整数,且l>1,Rl为实数向量集;S(Z)=[s1(Z),...,sl(Z)]T∈Rl为基函数向量,s1(Z),...,sl(Z)分别表示S(Z)的基向量;选取基函数sj(Z)为如下的高斯函数:
where, the input vector
Figure FDA0002428906810000023
q is the fuzzy input dimension, R q is a real vector set; W∈R l is a fuzzy weight vector, the number of fuzzy nodes l is a positive integer, and l>1, R l is a real vector set; S(Z)=[s 1 (Z),...,s l (Z)] T ∈R l is the basis function vector, s 1 (Z),...,s l (Z) represent the basis vector of S(Z) respectively; The basis function s j (Z) is a Gaussian function as follows:
Figure FDA0002428906810000024
其中,μj=[μj1,...,μjq]T是Gaussian函数分布曲线的中心位置,而ηj则为其宽度;μj1,...,μjq分别表示μj的基向量;
Figure FDA0002428906810000024
Among them, μ j =[μ j1 ,...,μ jq ] T is the center position of the Gaussian function distribution curve, and η j is its width; μ j1 ,...,μ jq represent the basis vectors of μ j respectively ;
定义有限时间:对于任意的实数λ1>0,λ2>0,0<γ<1,则有限时间稳定的扩展Lyapunov条件表示为:
Figure FDA0002428906810000025
其中,V(x)表示系统的Lyapunov函数;系统的收敛时间Tr通过Tr≤t0+[1/λ1(1-γ)]ln[(λ1V1-γ(t0)+λ2)/λ2]来估计,t0表示初始时间;
Define finite time: for any real numbers λ 1 >0, λ 2 >0, 0<γ<1, the extended Lyapunov condition for finite time stability is expressed as:
Figure FDA0002428906810000025
Among them, V(x) represents the Lyapunov function of the system; the convergence time T r of the system is determined by T r ≤t 0 +[1/λ 1 (1-γ)]ln[(λ 1 V 1-γ (t 0 )+ λ 2 )/λ 2 ] to estimate, t 0 represents the initial time;
考虑永磁同步电动机输入电压约束问题如下:umin≤v≤umaxConsidering the input voltage constraint problem of permanent magnet synchronous motor as follows: u min ≤v≤u max ; 其中,umin和umax分别表示已知定子输入电压的最小值和最大值,即:Among them, u min and u max represent the minimum and maximum value of the known stator input voltage, namely:
Figure FDA0002428906810000026
Figure FDA0002428906810000026
其中,umax>0和umin<0都为输入约束限制的未知常数,v为实际的输入信号;Among them, u max >0 and u min <0 are unknown constants limited by input constraints, and v is the actual input signal; 利用分段光滑函数g(v)来近似约束函数,定义g(v)为下:Use the piecewise smooth function g(v) to approximate the constraint function, and define g(v) as follows:
Figure FDA0002428906810000031
Figure FDA0002428906810000031
u=sat(v)=g(v)+d(v),d(v)是一个有界函数,其界限为:u=sat(v)=g(v)+d(v), d(v) is a bounded function whose bounds are: |d(v)|=|sat(v)-g(v)|≤max{umax[1-tanh(1)}]umin[tanh(1)-1]=D;|d(v)|=|sat(v)-g(v)|≤max{u max [1-tanh(1)}]u min [tanh(1)-1]=D; 其中,D在d轴和q轴上分别表示Dd和Dq,Dd、Dq均为大于0的常数;Among them, D represents D d and D q on the d-axis and q-axis, respectively, and both D d and D q are constants greater than 0; 利用中值定理得知:存在一个常数μ,使得
Figure FDA0002428906810000032
Using the mean value theorem, we know that there is a constant μ such that
Figure FDA0002428906810000032
其中,
Figure FDA0002428906810000033
vμ=μv+(1-μ)v0
in,
Figure FDA0002428906810000033
v μ = μv+(1-μ) v 0 ;
选取v0=0,则以上函数写为:
Figure FDA0002428906810000034
因此,
Figure FDA0002428906810000035
则有
Figure FDA0002428906810000036
Figure FDA0002428906810000037
其中存在一个未知常数gm,使得
Figure FDA0002428906810000038
Selecting v 0 =0, the above function can be written as:
Figure FDA0002428906810000034
therefore,
Figure FDA0002428906810000035
then there are
Figure FDA0002428906810000036
Figure FDA0002428906810000037
where there is an unknown constant g m such that
Figure FDA0002428906810000038
定义一个新变量αid和一个时间常数∈i
Figure FDA0002428906810000039
αid(0)=αi(0),i=1,2,3,4;
Define a new variable α id and a time constant ∈ i ,
Figure FDA0002428906810000039
α id (0)=α i (0), i=1, 2, 3, 4;
其中,αid(0)表示αid的初始值,αi(0)表示αi的初始值;Among them, α id (0) represents the initial value of α id , and α i (0) represents the initial value of α i ; 虚拟控制律αi通过一阶滤波器得到αid,其中,虚拟控制律α1、α2、α3、α4为一阶滤波器的输入信号,α1d、α2d、α3d、α4d为一阶滤波器的输出信号;The virtual control law α i obtains α id through a first-order filter, wherein, the virtual control laws α 1 , α 2 , α 3 , α 4 are the input signals of the first-order filter, α 1d , α 2d , α 3d , α 4d is the output signal of the first-order filter; 定义跟踪误差z1、z2、z3、z4、z5和z6为:The tracking errors z 1 , z 2 , z 3 , z 4 , z 5 and z 6 are defined as:
Figure FDA00024289068100000310
Figure FDA00024289068100000310
其中,x1d为期望的位置信号,x4d为期望的转子磁链信号;Among them, x 1d is the desired position signal, and x 4d is the desired rotor flux linkage signal; 以上考虑铁损的永磁同步电动机有限时间动态面控制方法中每一步都会选取一个Lyapunov函数构建一个虚拟控制律或者真实控制律,具体步骤如下:In the above finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss, a Lyapunov function is selected for each step to construct a virtual control law or a real control law. The specific steps are as follows: b.1.根据公式(3)中第一个方程z1=x1-x1d,选择Lyapunov函数:
Figure FDA00024289068100000311
对V1求导得到:
b.1. According to the first equation z 1 =x 1 -x 1d in formula (3), choose the Lyapunov function:
Figure FDA00024289068100000311
Derivation with respect to V1 gives :
Figure FDA00024289068100000312
Figure FDA00024289068100000312
选取虚拟控制律:
Figure FDA0002428906810000041
Choose a virtual control law:
Figure FDA0002428906810000041
其中,控制增益k1>0,常数s1>0,正常数0<γ<1;Wherein, the control gain k 1 >0, the constant s 1 >0, the constant 0<γ<1; 基于以上公式(4)和公式(5)得到:Based on the above formula (4) and formula (5), we get:
Figure FDA0002428906810000042
Figure FDA0002428906810000042
b.2.根据公式(3)中第二个方程z2=x21d,选择Lyapunov函数:
Figure FDA0002428906810000043
对V2求导并将公式(6)代入,得到公式(7):
b.2. According to the second equation z 2 =x 21d in formula (3), choose the Lyapunov function:
Figure FDA0002428906810000043
Differentiating V 2 and substituting Equation (6) yields Equation (7):
Figure FDA0002428906810000044
Figure FDA0002428906810000044
其中,负载转矩TL是未知的常数且上限为d,即|TL|≤d,其中,d>0;Among them, the load torque T L is an unknown constant and the upper limit is d, that is, |T L |≤d, where d>0; 通过杨氏不等式有
Figure FDA0002428906810000045
其中,ε1是一个任意小的正数,则:
By Young's inequality we have
Figure FDA0002428906810000045
where ε 1 is an arbitrarily small positive number, then:
Figure FDA0002428906810000046
Figure FDA0002428906810000046
其中,
Figure FDA0002428906810000047
由万能逼近定理,对于任意小的正数ε2,选取模糊逻辑系统
Figure FDA0002428906810000048
使得:
Figure FDA0002428906810000049
其中,δ2(Z)为逼近误差,并满足不等式|δ2(Z)|≤ε2,||W2||是向量W2的范数;
in,
Figure FDA0002428906810000047
According to the universal approximation theorem, for any small positive number ε 2 , choose the fuzzy logic system
Figure FDA0002428906810000048
makes:
Figure FDA0002428906810000049
Among them, δ 2 (Z) is the approximation error and satisfies the inequality |δ 2 (Z)|≤ε 2 , and ||W 2 || is the norm of the vector W 2 ;
选取虚拟控制律:
Figure FDA00024289068100000410
Choose a virtual control law:
Figure FDA00024289068100000410
其中,控制增益k2>0,常数s2>0,常数l2>0,
Figure FDA00024289068100000411
为θ的估计值,θ的定义在下文给出;
Among them, the control gain k 2 >0, the constant s 2 >0, the constant l 2 >0,
Figure FDA00024289068100000411
is an estimate of θ, the definition of θ is given below;
根据公式(3)中第三个方程z3=x32d,则
Figure FDA00024289068100000412
表示为:
According to the third equation z 3 =x 32d in formula (3), then
Figure FDA00024289068100000412
Expressed as:
Figure FDA00024289068100000413
Figure FDA00024289068100000413
b.3.根据公式(3)中第三个方程:z3=x32d,选择Lyapunov函数:
Figure FDA00024289068100000414
对V3求导并将公式(10)代入,得到公式(11):
b.3. According to the third equation in formula (3): z 3 =x 32d , choose the Lyapunov function:
Figure FDA00024289068100000414
Differentiating V 3 and substituting Equation (10) yields Equation (11):
Figure FDA0002428906810000051
Figure FDA0002428906810000051
其中,
Figure FDA0002428906810000052
由万能逼近定理,对于任意小的正数ε3,选取模糊逻辑系统
Figure FDA0002428906810000053
使得:
Figure FDA0002428906810000054
其中δ3(Z)为逼近误差,并满足不等式|δ3(Z)|≤ε3,||W3||是向量W3的范数;从而:
in,
Figure FDA0002428906810000052
According to the universal approximation theorem, for any small positive number ε 3 , choose the fuzzy logic system
Figure FDA0002428906810000053
makes:
Figure FDA0002428906810000054
where δ 3 (Z) is the approximation error and satisfies the inequality |δ 3 (Z)|≤ε 3 , and ||W 3 || is the norm of the vector W 3 ; thus:
Figure FDA0002428906810000055
Figure FDA0002428906810000055
选取虚拟控制律:
Figure FDA0002428906810000056
Choose a virtual control law:
Figure FDA0002428906810000056
其中,控制增益k3>0,常数s3>0,常数l3>0;Wherein, the control gain k 3 >0, the constant s 3 >0, and the constant l 3 >0; 根据公式(3)中第四个方程z4=x43d,则
Figure FDA0002428906810000057
表示为:
According to the fourth equation z 4 =x 43d in formula (3), then
Figure FDA0002428906810000057
Expressed as:
Figure FDA0002428906810000058
Figure FDA0002428906810000058
b.4.根据公式(3)中第四个方程z4=x43d,选择Lyapunov函数:
Figure FDA0002428906810000059
对V4求导并将公式(14)代入,得到公式(15):
b.4. According to the fourth equation z 4 =x 43d in formula (3), choose the Lyapunov function:
Figure FDA0002428906810000059
Differentiating V 4 and substituting Equation (14) yields Equation (15):
Figure FDA00024289068100000510
Figure FDA00024289068100000510
其中,
Figure FDA00024289068100000511
由万能逼近定理,对于任意小的正数ε4,选取模糊逻辑系统
Figure FDA00024289068100000512
使得
Figure FDA00024289068100000513
其中,δ4(Z)为逼近误差,并满足不等式|δ4(Z)|≤ε4,||W4||是向量W4的范数;从而:
in,
Figure FDA00024289068100000511
According to the universal approximation theorem, for any small positive number ε 4 , choose the fuzzy logic system
Figure FDA00024289068100000512
make
Figure FDA00024289068100000513
where δ 4 (Z) is the approximation error and satisfies the inequality |δ 4 (Z)|≤ε 4 , and ||W 4 || is the norm of the vector W 4 ; thus:
Figure FDA00024289068100000514
Figure FDA00024289068100000514
构建真实控制律:
Figure FDA00024289068100000515
Build the real control law:
Figure FDA00024289068100000515
其中,控制增益k4>0,常数s4>0,常数l4>0;Wherein, the control gain k 4 >0, the constant s 4 >0, and the constant l 4 >0; 由输入饱和公式uq=sat(vq)=g(vq)+d(vq),得到:d1z4uq=d1z4g(vq)+d1z4d(vq),From the input saturation formula u q =sat(v q )=g(v q )+d(v q ), we get: d 1 z 4 u q =d 1 z 4 g(v q )+d 1 z 4 d( v q ),
Figure FDA0002428906810000061
Figure FDA0002428906810000061
由杨氏不等式得到
Figure FDA0002428906810000062
其中,常数Dq>0,得到:
From Young's inequality we get
Figure FDA0002428906810000062
where the constant D q > 0, we get:
Figure FDA0002428906810000063
Figure FDA0002428906810000063
b.5.根据公式(3)中第五个方程z5=x5,选择Lyapunov函数:
Figure FDA0002428906810000064
对V5求导得到:
b.5. According to the fifth equation z 5 =x 5 in formula (3), choose the Lyapunov function:
Figure FDA0002428906810000064
Derivation with respect to V5 gives:
Figure FDA0002428906810000065
Figure FDA0002428906810000065
构建虚拟控制律:
Figure FDA0002428906810000066
Build a virtual control law:
Figure FDA0002428906810000066
其中,控制增益k5>0,常数s5>0;根据公式(3)中第六个方程z6=x64d得到:Wherein, the control gain k 5 >0, the constant s 5 >0; according to the sixth equation z 6 =x 64d in formula (3), we can obtain:
Figure FDA0002428906810000067
Figure FDA0002428906810000067
b.6.根据公式(3)中第六个方程z6=x64d,选择Lyapunov函数:
Figure FDA0002428906810000068
对V6求导得到:
Figure FDA0002428906810000069
b.6. According to the sixth equation z 6 =x 64d in formula (3), select the Lyapunov function:
Figure FDA0002428906810000068
Derivating V 6 gives:
Figure FDA0002428906810000069
其中,
Figure FDA00024289068100000610
由万能逼近定理,对于任意小的正数ε6,选取模糊逻辑系统
Figure FDA00024289068100000611
使得
Figure FDA00024289068100000612
其中δ6(Z)为逼近误差,并满足不等式|δ6(Z)|≤ε6,||W6||是向量W6的范数;从而:
in,
Figure FDA00024289068100000610
According to the universal approximation theorem, for any small positive number ε 6 , choose the fuzzy logic system
Figure FDA00024289068100000611
make
Figure FDA00024289068100000612
where δ 6 (Z) is the approximation error and satisfies the inequality |δ 6 (Z)|≤ε 6 , and ||W 6 || is the norm of the vector W 6 ; thus:
Figure FDA00024289068100000613
Figure FDA00024289068100000613
构建真实控制律:
Figure FDA00024289068100000614
Build the real control law:
Figure FDA00024289068100000614
其中,控制增益k6>0,常数s6>0,常数l6>0;Wherein, the control gain k 6 >0, the constant s 6 >0, and the constant l 6 >0; 由输入饱和公式ud=sat(vd)=g(vd)+d(vd),得到:d2z6ud=d2z6g(vd)+d2z6d(vd),By entering the saturation formula ud =sat(v d )=g(v d )+d(v d ), we get: d 2 z 6 u d = d 2 z 6 g(v d )+d 2 z 6 d( v d ),
Figure FDA0002428906810000071
Figure FDA0002428906810000071
定义
Figure FDA0002428906810000072
Figure FDA0002428906810000073
为θ的估计值,定义
Figure FDA0002428906810000074
definition
Figure FDA0002428906810000072
Figure FDA0002428906810000073
is the estimated value of θ, define
Figure FDA0002428906810000074
由杨氏不等式
Figure FDA0002428906810000075
其中,常数Dd>0,得到:
By Young's inequality
Figure FDA0002428906810000075
where the constant D d > 0, we get:
Figure FDA0002428906810000076
Figure FDA0002428906810000076
b.7.定义yi=αidi,i=1,2,3,4,得到:b.7. Define y iidi , i=1, 2, 3, 4, and get:
Figure FDA0002428906810000077
Figure FDA0002428906810000077
其中,
Figure FDA0002428906810000078
选择系统的Lyapunov函数:
Figure FDA0002428906810000079
in,
Figure FDA0002428906810000078
Choose the Lyapunov function for the system:
Figure FDA0002428906810000079
其中,r1是正数,对V求导得到:where r 1 is a positive number, and derivation with respect to V yields:
Figure FDA00024289068100000710
Figure FDA00024289068100000710
其中,控制增益k6>0;构建自适应律如下:Among them, the control gain k 6 >0; the adaptive law is constructed as follows:
Figure FDA00024289068100000711
Figure FDA00024289068100000711
其中,m1为正数;Among them, m 1 is a positive number; c.对步骤b中的考虑铁损的永磁同步电动机有限时间动态面控制方法进行稳定性分析;c. Stability analysis of the finite-time dynamic surface control method of permanent magnet synchronous motor considering iron loss in step b; 将公式(27)代入公式(26)得到:Substituting formula (27) into formula (26) yields:
Figure FDA0002428906810000081
Figure FDA0002428906810000081
其中,|Bi|有一个最大值|BiM|在紧集|Ωi|,i=1,2,3,4上且|Bi|≤BiM,则得到:where |B i | has a maximum value |B iM | on the compact set |Ω i |,i=1,2,3,4 and |B i |≤B iM , then:
Figure FDA0002428906810000082
常数τ>0;
Figure FDA0002428906810000082
constant τ>0;
由杨氏不等式得到:From Young's inequality we get:
Figure FDA0002428906810000083
Figure FDA0002428906810000083
由不等式放缩得到:
Figure FDA0002428906810000084
By inequality scaling we get:
Figure FDA0002428906810000084
Figure FDA0002428906810000085
Figure FDA0002428906810000085
根据以上不等式放缩,公式(28)写为:Scaling according to the above inequality, Equation (28) is written as:
Figure FDA0002428906810000086
Figure FDA0002428906810000086
其中,
Figure FDA0002428906810000091
in,
Figure FDA0002428906810000091
b0=min{2,2s1,2s2,2s3,2gms4,2s5,2gms6,m1};b 0 =min{2, 2s 1 , 2s 2 , 2s 3 , 2g m s 4 , 2s 5 , 2g m s 6 , m 1 };
Figure FDA0002428906810000092
Figure FDA0002428906810000092
由公式(29)得到:It is obtained by formula (29):
Figure FDA0002428906810000093
Figure FDA0002428906810000093
从公式(30)得知,如果a0-(c/2V)>0以及b0-(c/2V[(γ+1)/2])>0;From formula (30), if a 0 -(c/2V)>0 and b 0 -(c/2V [(γ+1)/2] )>0; 通过有限时间的定义得知,在系统的收敛时间Tr里,
Figure FDA0002428906810000094
跟踪误差z1将在有限时间内收敛到原点的一个小邻域内。
According to the definition of finite time, in the convergence time Tr of the system,
Figure FDA0002428906810000094
The tracking error z 1 will converge to within a small neighborhood of the origin in finite time.
CN202010229724.9A 2020-03-27 2020-03-27 Permanent magnet synchronous motor finite time dynamic surface control method considering iron loss Active CN111293941B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010229724.9A CN111293941B (en) 2020-03-27 2020-03-27 Permanent magnet synchronous motor finite time dynamic surface control method considering iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010229724.9A CN111293941B (en) 2020-03-27 2020-03-27 Permanent magnet synchronous motor finite time dynamic surface control method considering iron loss

Publications (2)

Publication Number Publication Date
CN111293941A CN111293941A (en) 2020-06-16
CN111293941B true CN111293941B (en) 2021-11-09

Family

ID=71019590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010229724.9A Active CN111293941B (en) 2020-03-27 2020-03-27 Permanent magnet synchronous motor finite time dynamic surface control method considering iron loss

Country Status (1)

Country Link
CN (1) CN111293941B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381662B (en) * 2021-06-28 2023-02-03 青岛大学 Permanent magnet synchronous motor random system fuzzy control method based on finite time dynamic surface technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024828A1 (en) * 2011-08-18 2013-02-21 日立建機株式会社 Motor control device and work machine using same
CN104993760A (en) * 2015-07-31 2015-10-21 青岛大学 Electric vehicle asynchronous motor fuzzy adaptive dynamic surface control method with consideration of iron loss
CN107294448A (en) * 2017-06-16 2017-10-24 青岛大学 A kind of asynchronous machine fuzzy discrete control method based on command filtering
CN110112971A (en) * 2019-05-15 2019-08-09 青岛大学 A kind of asynchronous motor Position Tracking Control method based on finite time dynamic surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024828A1 (en) * 2011-08-18 2013-02-21 日立建機株式会社 Motor control device and work machine using same
CN104993760A (en) * 2015-07-31 2015-10-21 青岛大学 Electric vehicle asynchronous motor fuzzy adaptive dynamic surface control method with consideration of iron loss
CN107294448A (en) * 2017-06-16 2017-10-24 青岛大学 A kind of asynchronous machine fuzzy discrete control method based on command filtering
CN110112971A (en) * 2019-05-15 2019-08-09 青岛大学 A kind of asynchronous motor Position Tracking Control method based on finite time dynamic surface

Also Published As

Publication number Publication date
CN111293941A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
CN104993760B (en) Consider the electric automobile asynchronous machine fuzzy self-adaption dynamic surface control method of iron loss
CN106788086B (en) Command Filtering Finite Time Fuzzy Control Method for Asynchronous Motor Considering Input Saturation
CN109194219B (en) A method and system for permanent magnet synchronous motor control based on model-free non-singular terminal sliding mode
CN106788052B (en) Observer-based fuzzy control method for asynchronous motor command filtering error compensation
CN106788046B (en) Permanent magnet synchronous motor command filtering finite time fuzzy control method
CN110112971B (en) Asynchronous motor position tracking control method based on finite time dynamic surface
CN110401391B (en) Fuzzy self-adaptive dynamic surface control method for asynchronous motor stochastic system
CN109873582B (en) Finite time position tracking control method of permanent magnet synchronous motor based on dynamic surface
CN102811015A (en) A Control System of AC Induction Motor Based on Active Disturbance Rejection Control
CN109921698B (en) Permanent magnet synchronous motor random command filtering neural network control method considering iron loss
CN110336505B (en) Asynchronous motor command filtering fuzzy control method based on state constraint
CN108964545A (en) A kind of synchronous motor neural network contragradience Discrete Control Method based on command filtering
CN108418487A (en) A speed pulsation suppression method for electric vehicles
CN107276471B (en) A state-constrained fuzzy position tracking control method for asynchronous motors
CN108945373A (en) Impeller driven system and control method under integrated water
CN115313939A (en) Fuzzy adaptive control method of command filter for permanent magnet synchronous motor stochastic system
CN109873583B (en) Fuzzy Position Tracking Control Method for Permanent Magnet Synchronous Motor Based on State Constraints
CN106788053B (en) Observer-based error compensation control method for permanent magnet synchronous motor system of electric vehicle
CN117691903A (en) Sliding mode control method of permanent magnet synchronous motor based on RBF neural network
CN107294448B (en) A kind of asynchronous machine fuzzy discrete control method based on command filtering
CN111293941B (en) Permanent magnet synchronous motor finite time dynamic surface control method considering iron loss
CN113659894B (en) Stochastic finite-time fuzzy adaptive control method for asynchronous motors based on command filtering
CN113659895B (en) Permanent magnet synchronous motor full-state constraint finite time control method based on instruction filtering
CN106533313B (en) The extreme learning machine command filtering control method of Over Electric Motor with PMSM
Mohamed et al. New hybrid sensorless speed of a non-salient pole PMSG coupled to wind turbine using a modified switching algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant