CN111293215A - Magnetic tunnel junction device based on two-dimensional free magnetic layer and its fabrication method - Google Patents
Magnetic tunnel junction device based on two-dimensional free magnetic layer and its fabrication method Download PDFInfo
- Publication number
- CN111293215A CN111293215A CN201811495831.5A CN201811495831A CN111293215A CN 111293215 A CN111293215 A CN 111293215A CN 201811495831 A CN201811495831 A CN 201811495831A CN 111293215 A CN111293215 A CN 111293215A
- Authority
- CN
- China
- Prior art keywords
- layer
- dimensional
- magnetic layer
- free magnetic
- metal transition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 204
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 131
- 229910052751 metal Inorganic materials 0.000 claims abstract description 131
- 230000007704 transition Effects 0.000 claims abstract description 85
- 230000005641 tunneling Effects 0.000 claims abstract description 73
- 230000008569 process Effects 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000000231 atomic layer deposition Methods 0.000 claims abstract description 15
- 239000003302 ferromagnetic material Substances 0.000 claims abstract description 15
- 238000012546 transfer Methods 0.000 claims abstract description 13
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 11
- 239000011810 insulating material Substances 0.000 claims description 27
- 238000002955 isolation Methods 0.000 claims description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 229910052582 BN Inorganic materials 0.000 claims description 12
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 12
- 229910021389 graphene Inorganic materials 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 3
- 150000001336 alkenes Chemical class 0.000 claims 1
- 229910002804 graphite Inorganic materials 0.000 claims 1
- 239000010439 graphite Substances 0.000 claims 1
- 230000005415 magnetization Effects 0.000 abstract description 11
- 238000004544 sputter deposition Methods 0.000 abstract description 7
- 239000002245 particle Substances 0.000 abstract description 5
- 230000015654 memory Effects 0.000 description 13
- 230000005294 ferromagnetic effect Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910019236 CoFeB Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 238000000277 atomic layer chemical vapour deposition Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Abstract
本发明提供一种基于二维自由磁层的磁性隧穿结器件及其制作方法,该器件包括:第一金属连接层,形成于一CMOS电路基底上,且与MOS管的漏极连接;第一金属过渡层;固定磁层;隧穿层;自由磁层,所述自由磁层为二维铁磁材料层;第二金属过渡层;第二金属连接层。本发明在制作完隧穿层之后,采用原子层沉积工艺、化学气相沉积工艺或薄膜剥离‑转移工艺制作自由磁层,相比于溅射工艺来说,可以避免隧穿层不被溅射粒子损伤,提高隧穿层的质量。本发明的自由磁层为二维铁磁材料层,其厚度较薄,一方面可以提高磁性隧穿结器件的磁化取向速度,另一方面可以获得较为轻薄的磁性隧穿结器件。
The invention provides a magnetic tunnel junction device based on a two-dimensional free magnetic layer and a manufacturing method thereof. The device includes: a first metal connection layer formed on a CMOS circuit substrate and connected to the drain of a MOS transistor; A metal transition layer; a fixed magnetic layer; a tunneling layer; a free magnetic layer, wherein the free magnetic layer is a two-dimensional ferromagnetic material layer; a second metal transition layer; and a second metal connection layer. In the present invention, after the tunneling layer is fabricated, the atomic layer deposition process, the chemical vapor deposition process or the film stripping-transfer process is used to fabricate the free magnetic layer. Compared with the sputtering process, the tunneling layer can be prevented from being sputtered by particles. damage and improve the quality of the tunneling layer. The free magnetic layer of the present invention is a two-dimensional ferromagnetic material layer, and its thickness is relatively thin, on the one hand, the magnetization orientation speed of the magnetic tunnel junction device can be improved, and on the other hand, a relatively light and thin magnetic tunnel junction device can be obtained.
Description
技术领域technical field
本发明属于半导体集成电路设计及制造领域,特别是涉及一种基于二维自由磁层的磁性隧穿结器件及其制作方法。The invention belongs to the field of semiconductor integrated circuit design and manufacture, in particular to a magnetic tunnel junction device based on a two-dimensional free magnetic layer and a manufacturing method thereof.
背景技术Background technique
随着便携式计算器件和无线通信器件使用的增长,存储器件可能需要更高的密度、更低的功耗和/或非易失性。磁性存储器件可以能够满足上述的技术要求。As the use of portable computing devices and wireless communication devices increases, memory devices may require higher density, lower power consumption, and/or non-volatility. The magnetic memory device may be able to meet the above-mentioned technical requirements.
许多电子器件都包含电子存储器。电子存储器可以是易失性存储器或非易失性存储器。非易失性存储器能够在失电时储存数据,然而易失性存储器不能在失电时储存数据。由于磁阻式随机存取存储器(MRAM)优于目前的电子存储器的优势,所以该MRAM是下一代电子存储器的一种有前景的候选者。与目前的诸如闪速随机存取存储器的非易失性存储器相比,MRAM通常更快并且具有更好的耐用性。与目前的诸如动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)的易失性存储器相比,MRAM通常具有类似的性能和密度,但是MRAM具有更低的功耗。由于MTJ器件具有高运行速度和低功耗并且被用于替代DRAM的电容器,可以将MTJ器件应用于具有低功耗和高速度的图像设备和移动设备。Many electronic devices contain electronic memory. Electronic storage can be volatile or non-volatile. Non-volatile memory can store data when power is lost, whereas volatile memory cannot store data when power is lost. Magnetoresistive random access memory (MRAM) is a promising candidate for the next generation of electronic memory due to its advantages over current electronic memory. MRAM is generally faster and has better endurance than current non-volatile memories such as flash random access memory. Compared to current volatile memories such as dynamic random access memory (DRAM) and static random access memory (SRAM), MRAM typically has similar performance and density, but MRAM has lower power consumption. Since MTJ devices have high operating speed and low power consumption and are used to replace capacitors of DRAMs, MTJ devices can be applied to image devices and mobile devices having low power consumption and high speed.
当两个磁层的自旋方向(即磁通量的方向)彼此相同时磁电阻器件具有低电阻,而当自旋方向彼此相反时具有高电阻。这样,可以使用依赖于磁层磁化状态而改变的单元电阻改变将位数据写入磁电阻存储器件。将通过例子描述具有MTJ结构的磁电阻存储器。在具有由铁磁层/绝缘层/铁磁层组成的结构的MTJ存储单元中,当穿过了第一铁磁层的电子穿过用作隧穿阻挡(tunneling barrier)的绝缘层时,隧穿几率依赖于第二铁磁层的磁化方向而改变。也就是,当两个铁磁层的磁化方向平行时,隧穿电流被最大化,而当它们反平行时,隧穿电流被最小化。例如,可以认为,当电阻高时,写入数据“1”,而当电阻低时,写入数据“0”。电流流过磁性层时,电流将被极化,形成自旋极化电流。自旋电子将自旋动量传递给自由磁层的磁矩,使自旋磁性层的磁矩获得自旋动量后改变方向,这个过程称为自旋传输矩,因此,STT-MRAM是通过自旋电流实现信息写入的。The magnetoresistive device has low resistance when the spin directions (ie, the directions of the magnetic fluxes) of the two magnetic layers are the same as each other, and has high resistance when the spin directions are opposite to each other. In this way, bit data can be written into a magnetoresistive memory device using a change in cell resistance that is dependent on the magnetization state of the magnetic layer. A magnetoresistive memory having an MTJ structure will be described by way of example. In an MTJ memory cell having a structure composed of a ferromagnetic layer/insulating layer/ferromagnetic layer, when electrons passing through the first ferromagnetic layer pass through the insulating layer serving as a tunneling barrier, tunneling The penetration probability varies depending on the magnetization direction of the second ferromagnetic layer. That is, when the magnetization directions of the two ferromagnetic layers are parallel, the tunneling current is maximized, and when they are antiparallel, the tunneling current is minimized. For example, it can be considered that when the resistance is high, data "1" is written, and when the resistance is low, data "0" is written. When current flows through the magnetic layer, the current will be polarized, forming a spin-polarized current. The spin electron transfers the spin momentum to the magnetic moment of the free magnetic layer, so that the magnetic moment of the spin magnetic layer changes direction after acquiring the spin momentum. This process is called spin transfer torque. The current realizes the writing of information.
STT-MRAM存储单元的核心仍然是一个MTJ,由两层不同厚度的铁磁层及一层几个纳米厚的非磁性隔离层组成。通过外部电路,电流可以从垂直于MJT表面的方向通过MTJ。电流通过较厚的铁磁层(称为固定磁层)时,电子被自旋极化,其自旋方向为固定磁层的磁矩方向。如果中间非磁性隔离层的厚度足够的小,以确保高度的极化,自旋极化电子能够将其自旋角动量转移给较薄的铁磁层(称为自由磁层),改变自由磁层的磁化平衡状态。扮演“极化层”角色的固定磁层一般较厚(几十个纳米),其饱和磁化强度很大,它的平衡状态是不会发生变化的。相反,要受到自旋矩效应的自由磁层,一般很薄,其饱和磁化强度较小,因此,它的磁矩矢量能根据自旋电流中自旋电子的极化方向自由地变化取向。The core of the STT-MRAM memory cell is still an MTJ, which consists of two ferromagnetic layers of different thicknesses and a non-magnetic isolation layer several nanometers thick. With external circuitry, current can flow through the MTJ in a direction perpendicular to the MJT surface. When an electric current passes through a thicker ferromagnetic layer (called a pinned magnetic layer), the electrons are spin-polarized in the direction of the magnetic moment of the pinned magnetic layer. If the thickness of the intermediate nonmagnetic spacer is small enough to ensure a high degree of polarization, the spin-polarized electrons are able to transfer their spin angular momentum to the thinner ferromagnetic layer (called the free magnetic layer), changing the free magnetic The magnetization equilibrium state of the layer. The fixed magnetic layer that plays the role of "polarization layer" is generally thick (tens of nanometers), its saturation magnetization is very large, and its equilibrium state will not change. On the contrary, the free magnetic layer to be affected by the spin moment effect is generally very thin, and its saturation magnetization is small, so its magnetic moment vector can freely change its orientation according to the polarization direction of the spin electrons in the spin current.
STT-MRAM存储单元的结构简单,它省略了带磁性外壳的附加写信息线,最大限度地减少了制备工艺程序,并使存储单元的横截面积减小、存储密度高、存储速度快,满足高性能计算机系统的设计要求。The structure of the STT-MRAM memory cell is simple, it omits the additional write information line with a magnetic shell, minimizes the preparation process, and reduces the cross-sectional area of the memory cell, high storage density, and fast storage speed. Design requirements for high performance computer systems.
STT-MRAM存储单元的MTJ自旋阀中,自旋电子的隧穿几率和各磁层材料、隧穿层材料、厚度等有关。根据隧穿几率公式,隧穿层越薄,隧穿几率越大,对隧穿层的自身质量要求也越来越高。In the MTJ spin valve of the STT-MRAM memory cell, the tunneling probability of spin electrons is related to the material of each magnetic layer, the material of the tunneling layer, and the thickness. According to the tunneling probability formula, the thinner the tunneling layer, the greater the tunneling probability, and the higher the quality requirements of the tunneling layer.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于二维自由磁层的磁性隧穿结器件及其制作方法,用于解决现有技术中隧穿层的生长质量难以保证,隧穿层缺陷较多以及自由磁层厚度较大而导致其取向变化速度较慢的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a magnetic tunnel junction device based on a two-dimensional free magnetic layer and a manufacturing method thereof, so as to solve the problem that the growth quality of the tunnel layer in the prior art is difficult to guarantee , the tunneling layer has many defects and the thickness of the free magnetic layer is large, which leads to the problem of slow orientation change.
为实现上述目的及其他相关目的,本发明提供一种基于二维自由磁层的磁性隧穿结器件的制作方法,所述制作方法包括步骤:1)于基底上形成固定磁层;2)于所述固定磁层上形成隧穿层;3)采用原子层沉积工艺、化学气相沉积工艺或薄膜剥离-转移工艺于所述隧穿层上沉积自由磁层,所述自由磁层为二维铁磁材料层。In order to achieve the above object and other related objects, the present invention provides a method for manufacturing a magnetic tunnel junction device based on a two-dimensional free magnetic layer, the manufacturing method comprising the steps of: 1) forming a fixed magnetic layer on a substrate; A tunneling layer is formed on the fixed magnetic layer; 3) Atomic layer deposition process, chemical vapor deposition process or thin film stripping-transfer process is used to deposit a free magnetic layer on the tunneling layer, and the free magnetic layer is two-dimensional iron layer of magnetic material.
可选地,步骤1)包括:1-1)提供一CMOS电路基底,于所述CMOS电路基底上形成第一金属连接层并对所述第一金属连接层进行平坦化处理,所述第一金属连接层与所述CMOS电路的MOS管的漏极连接;1-2)于所述第一金属连接层上形成第一金属过渡层;1-3)采用原子层沉积工艺、化学气相沉积工艺或薄膜剥离-转移工艺于所述第一金属过渡层上沉积所述固定磁层。Optionally, step 1) includes: 1-1) providing a CMOS circuit substrate, forming a first metal connection layer on the CMOS circuit substrate and performing a planarization process on the first metal connection layer, the first metal connection layer is The metal connection layer is connected to the drain of the MOS transistor of the CMOS circuit; 1-2) A first metal transition layer is formed on the first metal connection layer; 1-3) Atomic layer deposition process and chemical vapor deposition process are used or a thin film lift-off-transfer process to deposit the pinned magnetic layer on the first metal transition layer.
可选地,所述第一金属过渡层具有平整表面,所述固定磁层与所述第一金属过渡层紧密结合,所述第一金属过渡层的费米能级与所述固定磁层的费米能级相等或相近,以降低所述固定磁层与所述第一金属过渡层的接触电阻,所述固定磁层的晶格常数与所述第一金属过渡层相近,以降低所述固定磁层与所述第一金属过渡层的热失配及晶格失配。Optionally, the first metal transition layer has a flat surface, the fixed magnetic layer is closely combined with the first metal transition layer, and the Fermi level of the first metal transition layer is the same as that of the fixed magnetic layer. The Fermi level is equal or similar to reduce the contact resistance between the fixed magnetic layer and the first metal transition layer, and the lattice constant of the fixed magnetic layer is close to the first metal transition layer to reduce the Thermal and lattice mismatches between the magnetic layer and the first metal transition layer are fixed.
可选地,所述CMOS电路基底包括基于SOI衬底的CMOS电路层以及覆盖所述CMOS电路层的平坦化的介质层。Optionally, the CMOS circuit substrate includes a CMOS circuit layer based on an SOI substrate and a planarized dielectric layer covering the CMOS circuit layer.
可选地,步骤3)还包括:3-1)于所述自由磁层上形成隧穿隔离顶层,所述隧穿隔离顶层为二维绝缘材料层;3-2)于所述隧穿隔离顶层上形成第二金属过渡层;3-3)于所述第二金属过渡层上形成第二金属连接层;3-4)图形化刻蚀所述第二金属连接层、第二金属过渡层、自由磁层、隧穿层、固定磁层、第一金属过渡层及第一金属连接层,以形成柱形结构的磁性隧穿结器件。Optionally, step 3) further includes: 3-1) forming a tunnel isolation top layer on the free magnetic layer, and the tunnel isolation top layer is a two-dimensional insulating material layer; 3-2) on the tunnel isolation layer forming a second metal transition layer on the top layer; 3-3) forming a second metal connection layer on the second metal transition layer; 3-4) patterning and etching the second metal connection layer and the second metal transition layer , a free magnetic layer, a tunneling layer, a fixed magnetic layer, a first metal transition layer and a first metal connection layer to form a magnetic tunnel junction device with a columnar structure.
可选地,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。Optionally, the two-dimensional insulating material layer includes one of two-dimensional boron nitride, fluorinated graphene and graphene oxide.
可选地,所述自由磁层的材质包括CrGeTe3及CrI3中的一种。Optionally, the material of the free magnetic layer includes one of CrGeTe 3 and CrI 3 .
可选地,所述隧穿层为二维绝缘材料层,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。Optionally, the tunneling layer is a two-dimensional insulating material layer, and the two-dimensional insulating material layer includes one of two-dimensional boron nitride, fluorinated graphene, and graphene oxide.
本发明还提供一种基于二维自由磁层的磁性隧穿结器件,包括:第一金属连接层,所述第一金属连接层形成于一CMOS电路基底上,所述第一金属连接层与所述CMOS电路的MOS管的漏极连接;第一金属过渡层,形成于所述第一金属连接层上;固定磁层,形成于所述第一金属过渡层上;隧穿层,形成于所述固定磁层;自由磁层,形成于所述隧穿层上,所述自由磁层为二维铁磁材料层;第二金属过渡层,形成于所述自由磁层上;第二金属连接层,形成于所述第二金属过渡层上。The present invention also provides a magnetic tunnel junction device based on a two-dimensional free magnetic layer, comprising: a first metal connection layer, the first metal connection layer is formed on a CMOS circuit substrate, the first metal connection layer is connected to The drain of the MOS transistor of the CMOS circuit is connected; the first metal transition layer is formed on the first metal connection layer; the fixed magnetic layer is formed on the first metal transition layer; the tunnel layer is formed on the the fixed magnetic layer; a free magnetic layer formed on the tunneling layer, the free magnetic layer being a two-dimensional ferromagnetic material layer; a second metal transition layer formed on the free magnetic layer; a second metal transition layer A connection layer is formed on the second metal transition layer.
可选地,所述第一金属过渡层具有平整表面,所述固定磁层与所述第一金属过渡层紧密结合,所述第一金属过渡层的费米能级与所述固定磁层的费米能级相等或相近,以降低所述固定磁层与所述第一金属过渡层的接触电阻,所述固定磁层的晶格常数与所述第一金属过渡层相近,以降低所述固定磁层与所述第一金属过渡层的热失配及晶格失配。Optionally, the first metal transition layer has a flat surface, the fixed magnetic layer is closely combined with the first metal transition layer, and the Fermi level of the first metal transition layer is the same as that of the fixed magnetic layer. The Fermi level is equal or similar to reduce the contact resistance between the fixed magnetic layer and the first metal transition layer, and the lattice constant of the fixed magnetic layer is close to the first metal transition layer to reduce the Thermal and lattice mismatches between the magnetic layer and the first metal transition layer are fixed.
可选地,所述CMOS电路基底包括基于SOI衬底的CMOS电路层以及覆盖所述CMOS电路层的平坦化的介质层。Optionally, the CMOS circuit substrate includes a CMOS circuit layer based on an SOI substrate and a planarized dielectric layer covering the CMOS circuit layer.
可选地,所述磁性隧穿结器件的形状包括圆柱形结构,所述圆柱形结构的直径范围介于10nm~200nm之间。Optionally, the shape of the magnetic tunnel junction device includes a cylindrical structure, and the diameter of the cylindrical structure ranges from 10 nm to 200 nm.
可选地,所述自由磁层的材质包括CrGeTe3及CrI3中的一种。Optionally, the material of the free magnetic layer includes one of CrGeTe 3 and CrI 3 .
可选地,所述隧穿层为单晶结构的二维绝缘材料层,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。Optionally, the tunneling layer is a two-dimensional insulating material layer with a single crystal structure, and the two-dimensional insulating material layer includes one of two-dimensional boron nitride, graphene fluoride and graphene oxide.
可选地,所述自由磁层与所述第二金属过渡层之间还包括一隧穿隔离顶层,所述隧穿隔离顶层为单晶结构的二维绝缘材料层,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。Optionally, a tunnel isolation top layer is further included between the free magnetic layer and the second metal transition layer, and the tunnel isolation top layer is a two-dimensional insulating material layer of a single crystal structure, and the two-dimensional insulating material The layer includes one of two-dimensional boron nitride, fluorinated graphene, and graphene oxide.
如上所述,本发明的基于二维自由磁层的磁性隧穿结器件及其制作方法,具有以下有益效果:As described above, the magnetic tunnel junction device based on the two-dimensional free magnetic layer and the fabrication method thereof of the present invention have the following beneficial effects:
本发明在制作完隧穿层之后,采用原子层沉积工艺制作自由磁层,相比于溅射工艺来说,可以避免隧穿层不被溅射粒子损伤,提高隧穿层的质量。In the present invention, after the tunneling layer is fabricated, the atomic layer deposition process is used to fabricate the free magnetic layer. Compared with the sputtering process, the tunneling layer can be prevented from being damaged by the sputtering particles and the quality of the tunneling layer can be improved.
通过采用原子层沉积工艺制作自由磁层,本发明的隧穿层可以选用厚度非常薄的二维绝缘材料层,隧穿层的一致性非常好,可在保证隧穿层的质量及功能的同时,大大提高隧穿几率。By using the atomic layer deposition process to make the free magnetic layer, the tunneling layer of the present invention can be a two-dimensional insulating material layer with a very thin thickness, and the consistency of the tunneling layer is very good, which can ensure the quality and function of the tunneling layer at the same time. , greatly improving the tunneling probability.
本发明的自由磁层为二维铁磁材料层,其厚度较薄,一方面可以提高磁性隧穿结器件的磁化取向速度,另一方面可以获得较为轻薄的磁性隧穿结器件。The free magnetic layer of the present invention is a two-dimensional ferromagnetic material layer, and its thickness is relatively thin, on the one hand, the magnetization orientation speed of the magnetic tunnel junction device can be improved, and on the other hand, a relatively light and thin magnetic tunnel junction device can be obtained.
本发明可以将磁性隧穿结器件直接制备于传统的硅基CMOS电路上,减小了器件制备成本。The invention can directly prepare the magnetic tunnel junction device on the traditional silicon-based CMOS circuit, thereby reducing the device preparation cost.
附图说明Description of drawings
图1~图8显示为本发明的磁性隧穿结器件的制作方法各步骤所呈现的结构示意图。FIG. 1 to FIG. 8 are schematic structural diagrams of each step of the fabrication method of the magnetic tunnel junction device of the present invention.
图9显示为本发明的磁性隧穿结器件的隧穿层的结构示意图。FIG. 9 is a schematic diagram showing the structure of the tunneling layer of the magnetic tunnel junction device of the present invention.
图10显示为本发明的磁性隧穿结器件的自由磁层的结构示意图。FIG. 10 is a schematic diagram showing the structure of the free magnetic layer of the magnetic tunnel junction device of the present invention.
图11显示为本发明的磁性隧穿结器件的制作方法的步骤流程示意图。FIG. 11 is a schematic flow chart showing the steps of the fabrication method of the magnetic tunnel junction device of the present invention.
元件标号说明Component label description
10 CMOS电路基底10 CMOS circuit substrate
101 SOI衬底101 SOI substrate
102 CMOS电路层102 CMOS circuit layers
103 介质层103 Dielectric Layer
201 第一金属连接层201 The first metal connection layer
202 第一金属过渡层202 The first metal transition layer
203 固定磁层203 Fixed magnetic layer
204 隧穿层204 Tunneling layer
205 自由磁层205 Free magnetic layer
206 第二金属过渡层206 The second metal transition layer
207 第二金属连接层207 Second metal connection layer
208 隧穿隔离顶层208 Tunneling isolation top layer
S11~S18 步骤Steps S11~S18
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1~图11。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to Figure 1 to Figure 11. It should be noted that the diagrams provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, so the diagrams only show the components related to the present invention rather than the number, shape and the number of components in the actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.
如图1~图11所示,本实施例提供一种磁性隧穿结器件的制作方法,所述制作方法包括步骤:As shown in FIG. 1 to FIG. 11 , this embodiment provides a method for fabricating a magnetic tunnel junction device, and the fabrication method includes the steps:
如图1及图11所示,首先进行步骤1)S11,提供一CMOS电路基底10,于所述CMOS电路基底10上形成第一金属连接层201并对所述第一金属连接层201进行平坦化处理,所述第一金属连接层201与所述CMOS电路的MOS管的漏极连接。As shown in FIG. 1 and FIG. 11 , step 1) S11 is first performed, a
在本实施例中,所述CMOS电路基底10可以为基于SOI衬底101的CMOS电路层102以及覆盖所述CMOS电路层102的平坦化的介质层103,且并不限于此处所列举的示例。In this embodiment, the
所述第一金属连接层201的材质可以为W、Cu及Al中的一种。The material of the first
本实施例的第一金属连接层201形成于一平坦的介质层103上,可以对所述第一金属连接层201进行平坦化处理,获得表面平整的第一金属连接层201,以提高后续第一金属过渡层202的平坦度。The first
如图2及图11所示,然后进行步骤2)S12,于所述第一金属连接层201上形成第一金属过渡层202。As shown in FIG. 2 and FIG. 11 , step 2) S12 is performed to form a first
例如,所述第一金属过渡层202具有平整表面,所述第一金属过渡层202的费米能级与后续形成的固定磁层203的费米能级相等或相近,以降低所述固定磁层203与所述第一金属过渡层202的接触电阻,所述固定磁层的晶格常数与所述第一金属过渡层相近,以降低所述固定磁层与所述第一金属过渡层的热失配及晶格失配。For example, the first
如图3及图11所示,然后进行步骤3)S13,采用原子层沉积工艺、化学气相沉积工艺或薄膜剥离-转移工艺于所述第一金属过渡层202上沉积所述固定磁层203。As shown in FIG. 3 and FIG. 11 , step 3) S13 is performed, and the fixed
由于所述第一金属过渡层202具有平整表面,且所述第一金属过渡层202的费米能级与所述固定磁层203的费米能级相等或相近,可以使得所述固定磁层203与所述第一金属过渡层202紧密结合,以降低所述固定磁层203与所述第一金属过渡层202的接触电阻,所述固定磁层的晶格常数与所述第一金属过渡层相近,以降低所述固定磁层与所述第一金属过渡层的热失配及晶格失配。Since the first
例如,所述固定磁层203的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种。For example, the material of the fixed
采用原子层沉积工艺、化学气相沉积工艺或薄膜剥离-转移工艺于可有效提高所述固定磁层203的沉积质量,且其表面更为平整,可有效提高后续制作的隧穿层204的质量。Atomic layer deposition process, chemical vapor deposition process or thin film lift-off-transfer process can effectively improve the deposition quality of the fixed
如图4及图11所示,接着进行步骤4)S14,于所述固定磁层203上形成隧穿层204。As shown in FIG. 4 and FIG. 11 , then step 4) S14 is performed to form a
作为示例,所述隧穿层204可以为Al2O3单晶层或非晶层,或MgO单晶层或非晶层等,所述隧穿层204厚度的范围可以为1~2nm。所述隧穿层204可以采用如化学气相沉积工艺或原子层沉积工艺等形成,以避免如溅射粒子等对所述固定磁层203及所述隧穿层204之间的界面造成损坏。As an example, the
如图5及图11所示,接着进行步骤5)S15,采用原子层沉积工艺、化学气相沉积工艺或薄膜剥离-转移工艺于所述隧穿层204上沉积自由磁层205,所述自由磁层205为二维铁磁材料层,所述自由磁层的结构示意如图9所示,于所述自由磁层205上形成隧穿隔离顶层208,所述隧穿隔离顶层208为二维绝缘材料层。As shown in FIG. 5 and FIG. 11 , then step 5) S15 is performed, and a free
本实施例在制作完隧穿层204之后,采用原子层沉积工艺等制作自由磁层205,相比于溅射工艺来说,可以避免隧穿层204不被溅射粒子损伤,提高隧穿层204的质量。In this embodiment, after the
所述自由磁层205的材质可以为CrGeTe3及CrI3中的一种。本发明的自由磁层为二维铁磁材料层,其厚度较薄,一方面可以提高磁性隧穿结器件的磁化取向速度,另一方面可以获得较为轻薄的磁性隧穿结器件。The material of the free
所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。所述隧穿隔离顶层208可有效隔绝后续的第二金属过渡层与所述自由磁层,使自由磁层与第二金属过渡层间没有界面态,以保证自由磁层良好的铁磁性能。第二金属过渡层与自由磁层之间通过电子的隧穿效应导电。当隧穿隔离顶层208足够薄时,例如,所述隧穿隔离顶层208可以为1层原子层,电子发生隧穿的概率变得足够大,隧穿隔离顶层208表现为较小的串联电阻。The two-dimensional insulating material layer includes one of two-dimensional boron nitride, fluorinated graphene and graphene oxide. The tunnel
如图6及图11所示,然后进行步骤6)S16,于所述隧穿隔离顶层208上形成第二金属过渡层206。As shown in FIG. 6 and FIG. 11 , step 6) S16 is performed to form a second
如图7及图11所示,接着进行步骤7)S17,于所述第二金属过渡层206上形成第二金属连接层207。As shown in FIG. 7 and FIG. 11 , then step 7) S17 is performed to form a second
例如,所述第二金属连接层207的材质可以为W、Cu及Al中的一种。For example, the material of the second
如图8及图11所示,最后进行步骤8)图形化刻蚀所述第二金属连接层207、第二金属过渡层206、隧穿隔离顶层208、自由磁层205、隧穿层204、固定磁层203、第一金属过渡层202及第一金属连接层201,以形成柱形结构的磁性隧穿结器件。As shown in FIG. 8 and FIG. 11 , step 8) is finally performed by patterning and etching the second
例如,所述磁性隧穿结器件的形状包括圆柱形结构,所述圆柱形结构的直径范围介于10nm~200nm之间。For example, the shape of the magnetic tunnel junction device includes a cylindrical structure, and the diameter of the cylindrical structure ranges from 10 nm to 200 nm.
如图9所示,本实施例还提供一种磁性隧穿结器件,包括:第一金属连接层201,所述第一金属连接层201形成于一CMOS电路基底10上,所述第一金属连接层201与所述CMOS电路的MOS管的漏极连接;第一金属过渡层202,形成于所述第一金属连接层201上;固定磁层203,形成于所述第一金属过渡层202上;隧穿层204,形成于所述固定磁层203;自由磁层205,形成于所述隧穿层204上,所述自由磁层205为二维铁磁材料层;第二金属过渡层206,形成于所述自由磁层205上;第二金属连接层207,形成于所述第二金属过渡层206上。As shown in FIG. 9 , this embodiment further provides a magnetic tunnel junction device, including: a first
例如,所述第一金属过渡层202具有平整表面,所述固定磁层203与所述第一金属过渡层202紧密结合,所述第一金属过渡层202的费米能级与所述固定磁层203的费米能级相等或相近,以降低所述固定磁层203与所述第一金属过渡层202的接触电阻。For example, the first
在本实施例中,所述CMOS电路基底10可以为基于SOI衬底101的CMOS电路层102以及覆盖所述CMOS电路层102的平坦化的介质层103,且并不限于此处所列举的示例。In this embodiment, the
例如,所述磁性隧穿结器件的形状包括圆柱形结构,所述圆柱形结构的直径范围介于10nm~200nm之间。For example, the shape of the magnetic tunnel junction device includes a cylindrical structure, and the diameter of the cylindrical structure ranges from 10 nm to 200 nm.
例如,所述固定磁层203的材质包括CoFeB、单质铁磁材料及合金铁磁材料中的一种,所述自由磁层205的材质包括CrGeTe3及CrI3中的一种。本发明的自由磁层为二维铁磁材料层,其厚度较薄,一方面可以提高磁性隧穿结器件的磁化取向速度,另一方面可以获得较为轻薄的磁性隧穿结器件。For example, the material of the fixed
在本实施例中,所述自由磁层205与所述第二金属过渡层206之间还包括一隧穿隔离顶层208,所述隧穿隔离顶层208为单晶结构的二维绝缘材料层,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。所述隧穿隔离顶层208可有效隔绝后续的第二金属过渡层与所述自由磁层,使自由磁层与第二金属过渡层间没有界面态,以保证自由磁层良好的铁磁性能。第二金属过渡层与自由磁层之间通过电子的隧穿效应导电。当隧穿隔离顶层208足够薄时,例如,所述隧穿隔离顶层208可以为1层原子层,电子发生隧穿的概率变得足够大,隧穿隔离顶层208表现为较小的串联电阻。In this embodiment, a tunnel
实施例2Example 2
如图1~图11所示,本实施例提供一种磁性隧穿结器件的制作方法,其基本步骤如实施例1,其中,与实施例1的不同之处在于,所述隧穿层204为单晶结构的二维绝缘材料层,如图9所示。例如,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。本实施例通过采用原子层沉积工艺、化学气相沉积工艺或薄膜剥离-转移工艺制作自由磁层205,本实施例的隧穿层204可以选用厚度非常薄的二维绝缘材料层,隧穿层204的一致性非常好,可在保证隧穿层204的质量及功能的同时,大大提高隧穿几率。As shown in FIGS. 1 to 11 , this embodiment provides a method for fabricating a magnetic tunnel junction device, the basic steps of which are the same as those in Embodiment 1, wherein the difference from Embodiment 1 is that the
如图8~图10所示,本实施例还提供一种磁性隧穿结器件,其中,所述磁性隧穿结器件的基本结构如实施例1,其中,与实施例1的不同之处在于,所述隧穿层204为单晶结构的二维绝缘材料层,如图9所示。例如,所述二维绝缘材料层包括二维氮化硼、氟化石墨烯及氧化石墨烯中的一种。本实施例的隧穿层204选用为厚度非常薄的二维绝缘材料层,隧穿层204的一致性非常好,可在保证隧穿层204的质量及功能的同时,大大提高隧穿几率。As shown in FIG. 8 to FIG. 10 , the present embodiment further provides a magnetic tunnel junction device, wherein the basic structure of the magnetic tunnel junction device is the same as that of Embodiment 1, and the difference from Embodiment 1 is that , the
如上所述,本发明的磁性隧穿结器件及其制作方法,具有以下有益效果:As described above, the magnetic tunnel junction device and the fabrication method thereof of the present invention have the following beneficial effects:
本发明在制作完隧穿层之后,采用原子层沉积工艺、化学气相沉积工艺或薄膜剥离-转移工艺制作自由磁层,相比于溅射工艺来说,可以避免隧穿层不被溅射粒子损伤,提高隧穿层的质量。In the present invention, after the tunneling layer is fabricated, the atomic layer deposition process, the chemical vapor deposition process or the thin film stripping-transfer process is used to make the free magnetic layer. Compared with the sputtering process, the tunneling layer can be prevented from being sputtered by particles. damage and improve the quality of the tunneling layer.
通过采用原子层沉积工艺、化学气相沉积工艺或薄膜剥离-转移工艺制作自由磁层,本发明的隧穿层可以选用厚度非常薄的二维绝缘材料层,隧穿层的一致性非常好,可在保证隧穿层的质量及功能的同时,大大提高隧穿几率。By adopting atomic layer deposition process, chemical vapor deposition process or thin film stripping-transfer process to make the free magnetic layer, the tunneling layer of the present invention can be selected as a two-dimensional insulating material layer with a very thin thickness, the consistency of the tunneling layer is very good, and it can be While ensuring the quality and function of the tunneling layer, the tunneling probability is greatly improved.
本发明的自由磁层为二维铁磁材料层,其厚度较薄,一方面可以提高磁性隧穿结器件的磁化取向速度,另一方面可以获得较为轻薄的磁性隧穿结器件。The free magnetic layer of the present invention is a two-dimensional ferromagnetic material layer, and its thickness is relatively thin, on the one hand, the magnetization orientation speed of the magnetic tunnel junction device can be improved, and on the other hand, a relatively light and thin magnetic tunnel junction device can be obtained.
本发明可以将磁性隧穿结器件直接制备于传统的硅基CMOS电路上,减小了器件制备成本。The invention can directly prepare the magnetic tunnel junction device on the traditional silicon-based CMOS circuit, thereby reducing the device preparation cost.
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811495831.5A CN111293215A (en) | 2018-12-07 | 2018-12-07 | Magnetic tunnel junction device based on two-dimensional free magnetic layer and its fabrication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811495831.5A CN111293215A (en) | 2018-12-07 | 2018-12-07 | Magnetic tunnel junction device based on two-dimensional free magnetic layer and its fabrication method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111293215A true CN111293215A (en) | 2020-06-16 |
Family
ID=71023051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811495831.5A Pending CN111293215A (en) | 2018-12-07 | 2018-12-07 | Magnetic tunnel junction device based on two-dimensional free magnetic layer and its fabrication method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111293215A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114156406A (en) * | 2020-09-07 | 2022-03-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN114843393A (en) * | 2022-05-09 | 2022-08-02 | 南开大学 | A method and application for preparing magnetic tunnel junction devices based on the combined use of CVD and ALD |
CN115436848A (en) * | 2022-09-01 | 2022-12-06 | 北京智芯微电子科技有限公司 | A kind of magnetic tunnel junction and magnetic tunnel junction sensor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030214839A1 (en) * | 2002-05-20 | 2003-11-20 | Jang In Woo | Magnetic random access memory |
CN102194848A (en) * | 2010-03-19 | 2011-09-21 | 株式会社东芝 | Spin memory and spin transistor |
CN102621188A (en) * | 2011-01-30 | 2012-08-01 | 北京慈欣生物科技有限公司 | Electromagnetic biosensor device and manufacturing method thereof |
CN103180960A (en) * | 2010-09-30 | 2013-06-26 | 艾沃思宾技术公司 | Structures and operating method for field-reset spin-torque mram |
US20140301136A1 (en) * | 2013-04-03 | 2014-10-09 | Kabushiki Kaisha Toshiba | Magnetic memory, spin element, and spin mos transistor |
CN106711323A (en) * | 2016-12-20 | 2017-05-24 | 清华大学 | Magnetic heterostructure magnetic tunnel junction adopting two-dimensional material |
CN108767107A (en) * | 2018-06-01 | 2018-11-06 | 厦门大学 | A kind of two-dimentional spin electric device and preparation method thereof of electric field regulation and control |
-
2018
- 2018-12-07 CN CN201811495831.5A patent/CN111293215A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030214839A1 (en) * | 2002-05-20 | 2003-11-20 | Jang In Woo | Magnetic random access memory |
CN102194848A (en) * | 2010-03-19 | 2011-09-21 | 株式会社东芝 | Spin memory and spin transistor |
CN103180960A (en) * | 2010-09-30 | 2013-06-26 | 艾沃思宾技术公司 | Structures and operating method for field-reset spin-torque mram |
CN102621188A (en) * | 2011-01-30 | 2012-08-01 | 北京慈欣生物科技有限公司 | Electromagnetic biosensor device and manufacturing method thereof |
US20140301136A1 (en) * | 2013-04-03 | 2014-10-09 | Kabushiki Kaisha Toshiba | Magnetic memory, spin element, and spin mos transistor |
CN106711323A (en) * | 2016-12-20 | 2017-05-24 | 清华大学 | Magnetic heterostructure magnetic tunnel junction adopting two-dimensional material |
CN108767107A (en) * | 2018-06-01 | 2018-11-06 | 厦门大学 | A kind of two-dimentional spin electric device and preparation method thereof of electric field regulation and control |
Non-Patent Citations (1)
Title |
---|
PAN LONGFEI等: ""Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X = Br, I) monolayers"", 《NANOSCALE》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114156406A (en) * | 2020-09-07 | 2022-03-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN114843393A (en) * | 2022-05-09 | 2022-08-02 | 南开大学 | A method and application for preparing magnetic tunnel junction devices based on the combined use of CVD and ALD |
CN115436848A (en) * | 2022-09-01 | 2022-12-06 | 北京智芯微电子科技有限公司 | A kind of magnetic tunnel junction and magnetic tunnel junction sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9666793B2 (en) | Method of manufacturing magnetoresistive element(s) | |
US9287323B2 (en) | Perpendicular magnetoresistive elements | |
JP5788001B2 (en) | Method and system for providing a magnetic tunneling junction element having biaxial anisotropy | |
US20140210025A1 (en) | Spin transfer mram element having a voltage bias control | |
CN103794715B (en) | A kind of based on voltage-controlled magnetic memory | |
CN105244436A (en) | Magnetic junctions using asymmetric free layers and suitable for use in spin transfer torque memories | |
CN101232073A (en) | Magnetoresistive Elements and Magnetic Memory | |
CN105702853A (en) | Spin-transfer torque magnetic memory unit | |
JP2009212323A (en) | Nonvolatile magnetic memory device | |
JP2017516303A (en) | Smooth seed layer with uniform crystalline texture for high perpendicular magnetic anisotropic materials | |
CN105702416A (en) | Multilayer film with strong vertical magnetic anisotropy | |
CN106876581A (en) | Magnetic knot and its offer method and the magnetic memory including it with elongated free layer | |
TW201436316A (en) | Method and system for providing magnetic tunneling junction elements having an easy cone anisotropy | |
CN111293215A (en) | Magnetic tunnel junction device based on two-dimensional free magnetic layer and its fabrication method | |
CN112563411B (en) | Magnetic tunnel junction, manufacturing method thereof and storage unit | |
US11038100B1 (en) | Magnetoresistive element having a perpendicular AFM structure | |
JP6127511B2 (en) | Magnetoresistive element, magnetic storage device using the same, and manufacturing method thereof | |
CN107342359B (en) | Magneto-resistor element suitable for working at high temperature | |
CN111293214A (en) | Magnetic tunneling junction device based on flexible substrate and its fabrication method | |
CN111293212B (en) | Magnetic tunneling junction device based on tunneling isolation layer and manufacturing method thereof | |
CN111293213A (en) | Magnetic tunneling junction device based on two-dimensional material and manufacturing method thereof | |
CN104701453B (en) | A kind of multiple bit unit magnetic memory device regulated and controled by cushion | |
CN204481056U (en) | A kind of magnetoresistive element with double-deck auxiliary layer | |
CN111293216A (en) | Magnetic tunnel junction device and method of making the same | |
CN110265427B (en) | STT-MRAM memory and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200616 |
|
WD01 | Invention patent application deemed withdrawn after publication |