CN204481056U - A kind of magnetoresistive element with double-deck auxiliary layer - Google Patents
A kind of magnetoresistive element with double-deck auxiliary layer Download PDFInfo
- Publication number
- CN204481056U CN204481056U CN201520092225.4U CN201520092225U CN204481056U CN 204481056 U CN204481056 U CN 204481056U CN 201520092225 U CN201520092225 U CN 201520092225U CN 204481056 U CN204481056 U CN 204481056U
- Authority
- CN
- China
- Prior art keywords
- layer
- magnetic
- auxiliary
- magnetic memory
- auxiliary layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010410 layer Substances 0.000 claims abstract description 196
- 230000005291 magnetic effect Effects 0.000 claims abstract description 112
- 230000005415 magnetization Effects 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 230000004888 barrier function Effects 0.000 claims abstract description 15
- 239000011241 protective layer Substances 0.000 claims abstract description 11
- 239000002356 single layer Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 25
- 229910019236 CoFeB Inorganic materials 0.000 claims description 10
- 230000005294 ferromagnetic effect Effects 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 239000000696 magnetic material Substances 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000013016 damping Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 229910003321 CoFe Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 229910007948 ZrB2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
本实用新型提供了一种具有双层辅助层的磁电阻元件,包括磁参考层、磁记忆层、隧道势垒层、第一辅助层、第二辅助层和保护层。所述磁参考层的磁化方向不变且磁各向异性垂直于层表面;所述磁记忆层的磁化方向可变且磁各向异性垂直于层表面,所述磁记忆层是单层或多层结构;所述隧道势垒层设置在所述磁记忆层与所述磁参考层之间且分别与所述磁记忆层与所述磁参考层相邻;所述第一辅助层与所述磁记忆层相邻,所述第一辅助层是电负性低于所述磁记忆层中金属的电负性的金属层,所述第二辅助层是电负性低于所述第一辅助层中金属的电负性的金属层;所述保护层与所述第二辅助层相邻。
The utility model provides a magnetoresistance element with double auxiliary layers, which comprises a magnetic reference layer, a magnetic memory layer, a tunnel barrier layer, a first auxiliary layer, a second auxiliary layer and a protection layer. The magnetization direction of the magnetic reference layer is constant and the magnetic anisotropy is perpendicular to the layer surface; the magnetization direction of the magnetic memory layer is variable and the magnetic anisotropy is perpendicular to the layer surface, and the magnetic memory layer is a single layer or a multilayer layer structure; the tunnel barrier layer is disposed between the magnetic memory layer and the magnetic reference layer and is respectively adjacent to the magnetic memory layer and the magnetic reference layer; the first auxiliary layer and the The magnetic memory layer is adjacent, the first auxiliary layer is a metal layer with an electronegativity lower than that of the metal in the magnetic memory layer, and the second auxiliary layer is a metal layer with an electronegativity lower than that of the first auxiliary layer. an electronegative metal layer of the metal in the layer; the protective layer is adjacent to the second auxiliary layer.
Description
技术领域technical field
本实用新型涉及存储器件领域,尤其涉及一种垂直式磁电阻元件。The utility model relates to the field of memory devices, in particular to a vertical magnetoresistance element.
背景技术Background technique
随着材料学的不断进步,一种新型的内存——磁性随机存储器(MRAM,Magnetic Random Access Memory)正在吸引人们的目光。它拥有静态随机存储器(SRAM)的高速读取写入能力,以及动态随机存储器(DRAM)的高集成度,而且基本上可以无限次地重复写入。这种高速内存已经被视为DRAM内存的接班人。With the continuous progress of material science, a new type of memory—Magnetic Random Access Memory (MRAM, Magnetic Random Access Memory) is attracting people's attention. It has the high-speed read and write capabilities of static random access memory (SRAM), and the high integration of dynamic random access memory (DRAM), and can basically be repeatedly written indefinitely. This high-speed memory has been regarded as the successor of DRAM memory.
磁性随机存储器的设计并不复杂,但是对材料的要求较高,对于一般的材料而言,它是比较微弱的一种效应,其磁场变化带来的电阻变化并不显著,用三极管很难判断出来本来就很微小的电流变化。The design of MRAM is not complicated, but it has high requirements for materials. For general materials, it is a relatively weak effect. The resistance change caused by the change of the magnetic field is not significant, and it is difficult to judge with a triode. There is already a small change in current.
磁性隧道结(MTJ,Magnetic Tunneling Junction)是由绝缘体或磁性材料构成的磁性多层膜,它在横跨绝缘层的电压作用下,其隧道电流和隧道电阻依赖于两个铁磁层磁化强度的相对取向,当此相对取向在外磁场的作用下发生改变时,可观测到大的隧穿磁电阻(TMR)。人们利用MTJ的特性做成的磁性随机存取记忆体,即为非挥发性的磁性随机存储器(MRAM)。MRAM是一种新型固态非易失性记忆体,它有着高速读写、大容量、低功耗的特性。铁磁性MTJ通常为三明治结构,其中有磁性记忆层,它可以改变磁化方向以记录不同的数据;隧道势垒层为绝缘层;磁性参考层位于绝缘层的另一侧,它的磁化方向是不变的。Magnetic Tunneling Junction (MTJ, Magnetic Tunneling Junction) is a magnetic multilayer film composed of insulators or magnetic materials. Under the action of voltage across the insulating layer, its tunnel current and tunnel resistance depend on the magnetization of the two ferromagnetic layers. Relative orientation, when the relative orientation changes under the action of an external magnetic field, a large tunneling magnetoresistance (TMR) can be observed. The magnetic random access memory made by people using the characteristics of MTJ is non-volatile magnetic random access memory (MRAM). MRAM is a new type of solid-state non-volatile memory, which has the characteristics of high-speed reading and writing, large capacity, and low power consumption. Ferromagnetic MTJ is usually a sandwich structure, in which there is a magnetic memory layer, which can change the magnetization direction to record different data; the tunnel barrier layer is an insulating layer; the magnetic reference layer is located on the other side of the insulating layer, and its magnetization direction is different. changing.
自旋转移力矩(STT,Spin Transfer Torque)可以用于磁电阻元件的写操作,即自旋极化的电流通过磁电阻元件时,可以通过STT改变记忆层的磁化方向。当记忆层的磁性物体体积变小时,所需的极化电流也会同样变小,这样就可以同时达到小型化与低电流。Spin Transfer Torque (STT, Spin Transfer Torque) can be used for the write operation of the magnetoresistive element, that is, when the spin-polarized current passes through the magnetoresistive element, the magnetization direction of the memory layer can be changed through STT. When the volume of the magnetic object in the memory layer becomes smaller, the required polarization current will also become smaller, so that miniaturization and low current can be achieved at the same time.
垂直式磁性隧道结(PMTJ,Perpendicular Magnetic Tunnel Junctions),在这种结构中,由于两个磁性层的磁各向异性比较强(不考虑形状各向异性),使得其易磁化方向都垂直于层表面。在同样的条件下,器件的尺寸可以做得比平面式磁性隧道结(即易磁化方向在面内的)器件更小,易磁化方向的磁极化误差可以做的很小。因此,如果能够找到具体有更大的磁各向异性的材料的话,可以在保持热稳定性的同时,满足使得器件小型化与低电流要求。Perpendicular Magnetic Tunnel Junctions (PMTJ, Perpendicular Magnetic Tunnel Junctions), in this structure, because the magnetic anisotropy of the two magnetic layers is relatively strong (regardless of the shape anisotropy), the easy magnetization direction is perpendicular to the layer surface. Under the same conditions, the size of the device can be made smaller than that of the planar magnetic tunnel junction (that is, the easy magnetization direction is in the plane), and the magnetic polarization error of the easy magnetization direction can be made very small. Therefore, if a material with greater magnetic anisotropy can be found, it can meet the requirements of device miniaturization and low current while maintaining thermal stability.
高性能的MTJ元件主要是以具有高磁阻(MR,Magnetoresistance)率为其特征,MR率=dR/R,R是MTJ元件最小的电阻值,dR是改变记忆层的磁性状态所观察到的电阻变化值。对于PMTJ元件,提升其MR率的改进方向主要集中在使磁性记忆层具有更好的磁垂直各向异性与热稳定性,现有技术中已有多种针对上述特征进行优化的元件结构或相应工艺,但同时伴随的问题是,由于自旋泵效应,导致磁性记忆层的阻尼系数变大,无论是垂直型还是面内型自旋注入MRAM,写电流正比于阻尼系数,反比于自旋极化率,因此减小写电流的关键在于减小阻尼系数、增大自旋极化率。The high-performance MTJ element is mainly characterized by a high magnetoresistance (MR, Magnetoresistance) rate, MR rate=dR/R, R is the minimum resistance value of the MTJ element, and dR is observed by changing the magnetic state of the memory layer resistance change value. For PMTJ elements, the direction of improving the MR rate mainly focuses on making the magnetic memory layer have better magnetic perpendicular anisotropy and thermal stability. In the prior art, there are many element structures or corresponding elements optimized for the above characteristics. process, but at the same time, the accompanying problem is that due to the spin pump effect, the damping coefficient of the magnetic memory layer becomes larger. Whether it is a vertical or in-plane spin injection MRAM, the write current is proportional to the damping coefficient and inversely proportional to the spin pole. Therefore, the key to reducing the write current is to reduce the damping coefficient and increase the spin polarizability.
实用新型内容Utility model content
针对上述中同时需要兼顾MR率和减小阻尼系数的问题,本实用新型提供了一种在磁性记忆层上增加双层辅助层的磁电阻元件结构。在磁性记忆层晶化的退火工艺(常规工艺)中,双层辅助层有助于使磁性记忆层获得更好的磁垂直各向异性与热稳定性并且还具有非常小的阻尼系数。Aiming at the above-mentioned problem that both the MR rate and the damping coefficient need to be reduced simultaneously, the utility model provides a magneto-resistive element structure in which two auxiliary layers are added on the magnetic memory layer. In the annealing process (conventional process) for crystallization of the magnetic memory layer, the double-layer auxiliary layer helps the magnetic memory layer to obtain better magnetic perpendicular anisotropy and thermal stability and also has a very small damping coefficient.
本实用新型的磁电阻元件,包括:The magnetoresistance element of the present utility model comprises:
磁参考层,所述磁参考层的磁化方向不变且磁各向异性垂直于层表面;a magnetic reference layer with a constant magnetization direction and a magnetic anisotropy perpendicular to the layer surface;
磁记忆层,所述磁记忆层的磁化方向可变且磁各向异性垂直于层表面,所述磁记忆层是单层或多层结构;A magnetic memory layer, the magnetization direction of the magnetic memory layer is variable and the magnetic anisotropy is perpendicular to the layer surface, and the magnetic memory layer is a single-layer or multi-layer structure;
隧道势垒层,所述隧道势垒层设置在所述磁记忆层与所述磁参考层之间且分别与所述磁记忆层与所述磁参考层相邻(本文中的层与层的“相邻”是指层与层紧贴设置,其间未主动设置其它层);a tunnel barrier layer, the tunnel barrier layer is arranged between the magnetic memory layer and the magnetic reference layer and is respectively adjacent to the magnetic memory layer and the magnetic reference layer (layer and layer herein "Adjacent" means that the layers are set close to each other, and no other layers are actively set in between);
相邻设置的第一辅助层和第二辅助层,所述第一辅助层与所述磁记忆层相邻,所述第一辅助层是电负性低于所述磁记忆层中金属的电负性的金属层,所述第二辅助层是电负性低于所述第一辅助层中金属的电负性的金属层;A first auxiliary layer and a second auxiliary layer arranged adjacently, the first auxiliary layer is adjacent to the magnetic memory layer, and the first auxiliary layer is an electronegativity lower than that of the metal in the magnetic memory layer. a negative metal layer, the second auxiliary layer is a metal layer having an electronegativity lower than that of the metal in the first auxiliary layer;
保护层,所述保护层与所述第二辅助层相邻。A protective layer, the protective layer is adjacent to the second auxiliary layer.
进一步地,所述第二辅助层与B元素的键结合度强于所述第一辅助层与B元素的键结合度。Further, the bonding degree of the second auxiliary layer to the B element is stronger than the bonding degree of the first auxiliary layer to the B element.
进一步地,所述第一辅助层的材料是Ti,厚度范围是1~10nm。Further, the material of the first auxiliary layer is Ti, and the thickness range is 1-10 nm.
进一步地,所述第二辅助层的材料是Zr、Hf、Mg、Al、Mn、Y、Cr、Nb、Ta中的一种,厚度范围是1~10nm。Further, the material of the second auxiliary layer is one of Zr, Hf, Mg, Al, Mn, Y, Cr, Nb, Ta, and the thickness range is 1-10 nm.
进一步地,所述保护层的材料是Cu、Ru、Al、Rh、Ag、Au中的一种。Further, the material of the protective layer is one of Cu, Ru, Al, Rh, Ag, Au.
进一步地,所述磁记忆层是单层铁磁含硼合金层。Further, the magnetic memory layer is a single-layer ferromagnetic boron-containing alloy layer.
进一步地,所述单层铁磁含硼合金层是CoFeB、CoB或FeB,其中B的摩尔分数含量优选在10%-30%之间,更优选20%。Further, the single-layer ferromagnetic boron-containing alloy layer is CoFeB, CoB or FeB, wherein the mole fraction of B is preferably between 10% and 30%, more preferably 20%.
进一步地,所述磁记忆层是依次相邻的三层结构,中间一层由非磁性材料构成,其余两层由磁性材料构成。Further, the magnetic memory layer is a three-layer structure adjacent in sequence, the middle layer is made of non-magnetic material, and the other two layers are made of magnetic material.
进一步地,所述隧道势垒层是非磁性金属氧化物或氮化物。Further, the tunnel barrier layer is a non-magnetic metal oxide or nitride.
进一步地,所述非磁性金属氧化物是MgO、ZnO或MgZnO。Further, the non-magnetic metal oxide is MgO, ZnO or MgZnO.
本实用新型旨在保护一种晶化退火(常规工艺)前的磁电阻元件结构,通过增加双层辅助层使磁记忆层在后续的晶化退火工艺时能显著提高其磁垂直各向异性与热稳定性,辅助层的材料和形成均选取常规材料和常规工艺实现,制备简单,易于实现。The utility model aims at protecting a magneto-resistance element structure before crystallization annealing (conventional process). By adding double-layer auxiliary layers, the magnetic memory layer can significantly improve its magnetic vertical anisotropy and Thermal stability, materials and formation of the auxiliary layer are realized by selecting conventional materials and conventional processes, and the preparation is simple and easy to realize.
以下将结合附图对本实用新型的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本实用新型的目的、特征和效果。The conception, specific structure and technical effects of the present utility model will be further described below in conjunction with the accompanying drawings, so as to fully understand the purpose, characteristics and effects of the present utility model.
附图说明Description of drawings
图1是本实用新型的磁电阻元件的一个较佳实施例的结构示意图;Fig. 1 is a structural representation of a preferred embodiment of the magnetoresistive element of the present utility model;
图2是图1中磁电阻元件经后续工艺处理后的结构示意图;Fig. 2 is a structural schematic diagram of the magnetoresistive element in Fig. 1 after being processed by a subsequent process;
图3是本实用新型的磁电阻元件的另一个较佳实施例的结构示意图。Fig. 3 is a structural schematic diagram of another preferred embodiment of the magnetoresistive element of the present invention.
具体实施方式Detailed ways
图1是基于本实用新型的一种MTJ元件的结构示意图,其中包括由下至上依次相邻设置的底电极1、基础层2、磁参考层3、隧道势垒层4、磁记忆层5、第一辅助层6和第二辅助层7和保护层8。Fig. 1 is a schematic structural view of an MTJ element based on the present invention, which includes a bottom electrode 1, a base layer 2, a magnetic reference layer 3, a tunnel barrier layer 4, a magnetic memory layer 5, The first auxiliary layer 6 and the second auxiliary layer 7 and the protective layer 8 .
磁参考层3和磁记忆层5是铁磁性材料,磁参考层3的磁化方向不变且磁各向异性垂直于层表面,磁记忆层5的磁化方向可变且磁各向异性垂直于层表面。磁参考层3的磁垂直各向异性能量充分大于磁记忆层5的磁垂直各向异性能量,这可以通过对磁参考层3的材料、结构以及膜厚的调整来实现,从而当自旋极化电流通过MTJ时,只能改变能量壁垒较低的磁记忆层5的磁化方向,而磁参考层3的磁化方向不受影响。The magnetic reference layer 3 and the magnetic memory layer 5 are ferromagnetic materials, the magnetization direction of the magnetic reference layer 3 is constant and the magnetic anisotropy is perpendicular to the layer surface, the magnetization direction of the magnetic memory layer 5 is variable and the magnetic anisotropy is perpendicular to the layer surface surface. The magnetic perpendicular anisotropy energy of the magnetic reference layer 3 is sufficiently greater than the magnetic perpendicular anisotropy energy of the magnetic memory layer 5, which can be realized by adjusting the material, structure and film thickness of the magnetic reference layer 3, so that when the spin pole When the magnetizing current passes through the MTJ, only the magnetization direction of the magnetic memory layer 5 with a lower energy barrier can be changed, while the magnetization direction of the magnetic reference layer 3 is not affected.
磁记忆层5是单层铁磁含硼合金层,可以是CoFeB、CoB或FeB,其中B的摩尔分数含量优选在10%-30%之间。本实施例中,磁记忆层5的材料为CoFeB(厚度约1.2nm),其中B的摩尔分数含量20%,其沉积态为非晶态;磁参考层3的材料结构为CoFeB(厚度约2nm)/TbCoFe(厚度约20nm)。其中“/”表示多层结构,左边的材料层设置在右边材料层之上。需要注意的是,实施例中所指的关于“上”、“下”的位置描述,是依据附图内元件的显示状态确定的,是为了更好地对附图进行说明,当观察元件的角度或位置发生变化时,各层间的位置描述也可需要根据实际情况做相应变化。The magnetic memory layer 5 is a single-layer ferromagnetic boron-containing alloy layer, which can be CoFeB, CoB or FeB, wherein the mole fraction of B is preferably between 10% and 30%. In the present embodiment, the material of magnetic memory layer 5 is CoFeB (about 1.2nm in thickness), wherein the mole fraction content of B is 20%, and its deposition state is amorphous; the material structure of magnetic reference layer 3 is CoFeB (about 2nm in thickness). )/TbCoFe (thickness about 20nm). Where "/" represents a multi-layer structure, and the material layer on the left is set on the material layer on the right. It should be noted that the positional descriptions of "up" and "down" referred to in the embodiments are determined according to the display state of the components in the drawings, and are for better description of the drawings. When the angle or position changes, the position description between layers may also need to be changed accordingly according to the actual situation.
隧道势垒层4是一层非磁性的绝缘金属氧化层或氮化物,比如MgO、ZnO或MgZnO。本实施例中,隧道势垒层4为NaCl晶格结构的MgO(厚度约1nm),且其(100)晶面平行于基底。The tunnel barrier layer 4 is a non-magnetic insulating metal oxide layer or nitride, such as MgO, ZnO or MgZnO. In this embodiment, the tunnel barrier layer 4 is MgO with a NaCl lattice structure (thickness is about 1 nm), and its (100) crystal plane is parallel to the substrate.
第一辅助层6和第二辅助层7均为金属层,并且其中金属的电负性低于磁记忆层5中金属(在本实施例中即Co和Fe)的电负性。更优的选择是,第二辅助层与B元素的键结合度强于第一辅助层与B元素的键结合度。第一辅助层6和第二辅助层7的主要作用是为磁记忆层5实现或提升磁垂直各向异性。当磁记忆层5进行热退火后,会形成晶体颗粒结构,它的外延生长面(100)晶面平行于隧道势垒层4的表面,使得磁记忆层5具有垂直的磁各向异性,与此同时磁记忆层5中的B元素迁移入较低电负性的第一辅助层6和第二辅助层7中。由于自旋泵效应,与磁记忆层5接触的材料会导致磁记忆层5的阻尼系数变大,而第一辅助层6和第二辅助层7可以通过减小自旋泵效应来减小磁记忆层5的阻尼系数。以下的一些金属按其与B的键结合度由强至弱顺序排列:Mg、Al、Mn、Y、Cr、Zr、Hf、Nb、Ta、V、Ti。本实施例中,第一辅助层6的材料为Ti(厚度约2nm),第二辅助层7的材料为Zr(厚度约10nm)。Both the first auxiliary layer 6 and the second auxiliary layer 7 are metal layers, and the electronegativity of the metal is lower than that of the metal (Co and Fe in this embodiment) in the magnetic memory layer 5 . A more optimal choice is that the bonding degree of the second auxiliary layer to the B element is stronger than the bonding degree of the first auxiliary layer to the B element. The main function of the first auxiliary layer 6 and the second auxiliary layer 7 is to realize or enhance magnetic perpendicular anisotropy for the magnetic memory layer 5 . When the magnetic memory layer 5 is thermally annealed, a crystal grain structure will be formed, and its epitaxial growth surface (100) crystal plane is parallel to the surface of the tunnel barrier layer 4, so that the magnetic memory layer 5 has a vertical magnetic anisotropy, which is consistent with At the same time, the B element in the magnetic memory layer 5 migrates into the first auxiliary layer 6 and the second auxiliary layer 7 with lower electronegativity. Due to the spin pump effect, the material in contact with the magnetic memory layer 5 will cause the damping coefficient of the magnetic memory layer 5 to increase, and the first auxiliary layer 6 and the second auxiliary layer 7 can reduce the magnetic field by reducing the spin pump effect. The damping coefficient of memory layer 5. The following metals are arranged in descending order according to their bonding degree with B: Mg, Al, Mn, Y, Cr, Zr, Hf, Nb, Ta, V, Ti. In this embodiment, the material of the first auxiliary layer 6 is Ti (about 2 nm in thickness), and the material of the second auxiliary layer 7 is Zr (about 10 nm in thickness).
保护层8的材料至少包含Cu、Ru、Al、Rh、Ag、Au中的一种,本实施例中保护层8的材料为Ru(厚度约10nm),基础层2材料结构为Ta(厚度约20nm)/Cu(厚度约20nm)/Ta(厚度约20nm)。The material of the protective layer 8 includes at least one of Cu, Ru, Al, Rh, Ag, and Au. In this embodiment, the material of the protective layer 8 is Ru (about 10 nm in thickness), and the material structure of the base layer 2 is Ta (about 10 nm in thickness). 20nm)/Cu (thickness about 20nm)/Ta (thickness about 20nm).
以下对本实施例的磁电阻元件的后续工艺做进一步描述,以更好地说明本实用新型的有益效果。The subsequent process of the magnetoresistive element of this embodiment will be further described below to better illustrate the beneficial effects of the present invention.
对于本实施例的磁电阻元件在250℃以上的高温下进行退火处理(常规工艺),磁记忆层5的CoFeB中的B元素首先扩散至第一辅助层6,这是因为Ti的电负性低于Co与Fe;然后再扩散至第二辅助层7中,这是因为Zr较之Ti具有更低的电负性以及更强的与B元素的键结合度。扩散的B元素与第一辅助层6中的Ti、第二辅助层中的Zr分别形成TiB2和ZrB2。同时非晶态的CoFeB晶化为bcc相CoFe晶体颗粒,它的外延生长面(100)晶面平行于隧道势垒层4的MgO的表面。第一辅助层6和第二辅助层7的厚度足以充分吸收足够的B元素,双层的梯度(电负性、与B的键结合度)设置更有利于B元素的吸收,从而可以使CoFe能更好地外延成bcc相晶格结构。典型的纯CoFe的阻尼系数大约为0.003,而CoFeB则有0.01。这样就能在磁记忆层5中形成具有低阻尼的磁垂直各向异性。For the magnetoresistive element of this embodiment, the annealing treatment (conventional process) is performed at a high temperature above 250°C, and the B element in the CoFeB of the magnetic memory layer 5 first diffuses to the first auxiliary layer 6, which is due to the electronegativity of Ti lower than Co and Fe; and then diffuse into the second auxiliary layer 7 because Zr has lower electronegativity and stronger bonding with B than Ti. The diffused B element forms TiB2 and ZrB2 with Ti in the first auxiliary layer 6 and Zr in the second auxiliary layer, respectively. At the same time, the amorphous CoFeB is crystallized into bcc phase CoFe crystal particles, and its epitaxial growth plane (100) crystal plane is parallel to the MgO surface of the tunnel barrier layer 4 . The thickness of the first auxiliary layer 6 and the second auxiliary layer 7 is sufficient to fully absorb enough B elements, and the gradient (electronegativity, bonding degree with B) of the double layer is set to be more conducive to the absorption of B elements, so that CoFe It can be epitaxially formed into a bcc phase lattice structure better. Typical pure CoFe has a damping coefficient of about 0.003, while CoFeB has a damping coefficient of 0.01. This makes it possible to form magnetic perpendicular anisotropy with low damping in the magnetic memory layer 5 .
退火处理后,可采用反应离子刻蚀(RIE,Reactive Ion Etching)刻蚀去除保护层8以及第二辅助层7,余下第一辅助层6,从而易于进行后续光刻工艺,如图2所示。After the annealing treatment, reactive ion etching (RIE, Reactive Ion Etching) can be used to etch and remove the protective layer 8 and the second auxiliary layer 7, leaving the first auxiliary layer 6, so as to facilitate the subsequent photolithography process, as shown in Figure 2 .
图3是基于本实用新型的另一种MTJ元件的结构示意图,与上述实施例的区别在于,磁记忆层5采用了三层结构,由上至下分别是磁性子层5A、非磁性中间子层5B和磁性子层5C,材料分别为CoFeB(约0.8nm)、Ta(约0.3nm)、CoFeB(约0.6nm),优选地,磁性子层5C的Fe含量比磁性子层5A层的高,这样更有助于提高MR率。另外,对MTJ进行热处理时,B原子也会扩散到非磁性中间子层5B中,这样更有助于提高其垂直磁各向异性。Fig. 3 is a structural schematic diagram of another MTJ element based on the utility model, and the difference from the above-mentioned embodiment is that the magnetic memory layer 5 adopts a three-layer structure, which is respectively a magnetic sublayer 5A and a nonmagnetic intermediate sublayer from top to bottom. Layer 5B and magnetic sublayer 5C, materials are respectively CoFeB (about 0.8nm), Ta (about 0.3nm), CoFeB (about 0.6nm), preferably, the Fe content of magnetic sublayer 5C is higher than that of magnetic sublayer 5A layer , which is more helpful to improve the MR rate. In addition, when the MTJ is heat-treated, B atoms will also diffuse into the non-magnetic intermediate sublayer 5B, which is more helpful to improve its perpendicular magnetic anisotropy.
以上详细描述了本实用新型的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本实用新型的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本实用新型的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred specific embodiments of the present utility model have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the utility model without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art based on the concept of the utility model through logical analysis, reasoning or limited experiments on the basis of the prior art should be within the scope of protection defined by the claims .
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520092225.4U CN204481056U (en) | 2015-02-09 | 2015-02-09 | A kind of magnetoresistive element with double-deck auxiliary layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520092225.4U CN204481056U (en) | 2015-02-09 | 2015-02-09 | A kind of magnetoresistive element with double-deck auxiliary layer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204481056U true CN204481056U (en) | 2015-07-15 |
Family
ID=53636832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520092225.4U Expired - Lifetime CN204481056U (en) | 2015-02-09 | 2015-02-09 | A kind of magnetoresistive element with double-deck auxiliary layer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204481056U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110797454A (en) * | 2019-11-06 | 2020-02-14 | 北京科技大学 | A kind of ultra-high anisotropic magnetoresistance thin film material and preparation method thereof |
CN112736194A (en) * | 2019-10-14 | 2021-04-30 | 上海磁宇信息科技有限公司 | Magnetic tunnel junction structure and magnetic random access memory |
-
2015
- 2015-02-09 CN CN201520092225.4U patent/CN204481056U/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112736194A (en) * | 2019-10-14 | 2021-04-30 | 上海磁宇信息科技有限公司 | Magnetic tunnel junction structure and magnetic random access memory |
CN110797454A (en) * | 2019-11-06 | 2020-02-14 | 北京科技大学 | A kind of ultra-high anisotropic magnetoresistance thin film material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8698260B2 (en) | Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications | |
US9287323B2 (en) | Perpendicular magnetoresistive elements | |
US8710603B2 (en) | Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications | |
US10522589B2 (en) | Method of making a magnetoresistive element | |
US10953319B2 (en) | Spin transfer MRAM element having a voltage bias control | |
US20140203383A1 (en) | Perpendicular magnetoresistive memory element | |
US9368176B2 (en) | Scalable magnetoresistive element | |
KR102684723B1 (en) | Magnetic apparatus having magnetic junctions and hybrid capping layers, magnetic memory using the same, and method for providing the same | |
US20220068538A1 (en) | Dipole-coupled spin-orbit torque structure | |
US9362489B1 (en) | Method of making a magnetoresistive element | |
JP5987613B2 (en) | Storage element, storage device, magnetic head | |
US10672977B2 (en) | Perpendicular magnetoresistive elements | |
TW201532040A (en) | Storage element, storage device, and magnetic head | |
CN107534081A (en) | Memory device | |
JP6567272B2 (en) | Magnetic multilayer stack | |
US11038100B1 (en) | Magnetoresistive element having a perpendicular AFM structure | |
CN107342359B (en) | Magneto-resistor element suitable for working at high temperature | |
CN204481054U (en) | A kind of microminiaturized rectilinear anisotropic magnetoresistance element | |
US11545290B2 (en) | Magnetoresistive element having a giant interfacial perpendicular magnetic anisotropy | |
US20160260890A1 (en) | Novel perpendicular magnetoresistive elements | |
US11043631B2 (en) | Perpendicular magnetoresistive elements | |
CN204481056U (en) | A kind of magnetoresistive element with double-deck auxiliary layer | |
CN204516804U (en) | A kind of magnetoresistive element with individual layer optimization layer | |
CN204481057U (en) | A kind of magnetoresistive element with individual layer auxiliary layer | |
CN204481055U (en) | A kind of magnetoresistive element with multilayer auxiliary layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20150715 |
|
CX01 | Expiry of patent term |