[go: up one dir, main page]

CN111245443B - A kind of resolver soft decoding processing method and device based on DSADC - Google Patents

A kind of resolver soft decoding processing method and device based on DSADC Download PDF

Info

Publication number
CN111245443B
CN111245443B CN202010152343.5A CN202010152343A CN111245443B CN 111245443 B CN111245443 B CN 111245443B CN 202010152343 A CN202010152343 A CN 202010152343A CN 111245443 B CN111245443 B CN 111245443B
Authority
CN
China
Prior art keywords
signal
value
sin
cos
historical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010152343.5A
Other languages
Chinese (zh)
Other versions
CN111245443A (en
Inventor
颜宇杰
张智勇
李辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuangqu Shanghai New Energy Technology Co ltd
Zhejiang Chuangqu Intelligent Technology Co ltd
Original Assignee
Chuangqu Shanghai New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuangqu Shanghai New Energy Technology Co ltd filed Critical Chuangqu Shanghai New Energy Technology Co ltd
Priority to CN202010152343.5A priority Critical patent/CN111245443B/en
Publication of CN111245443A publication Critical patent/CN111245443A/en
Application granted granted Critical
Publication of CN111245443B publication Critical patent/CN111245443B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本发明公开的一种基于DSADC的旋变解码处理方法,包括以下步骤:1.接收旋转变压器产生的原始旋变信号,并对接收到的原始旋变信号进行滤波处理;2.对经过滤波处理后的旋变信号进行解调处理,使得所述旋变信号生成Sin信号和Cos信号;3.对Sin信号和Cos信号进行偏移检测,并根据偏检测结果对所述Sin信号和Cos信号进行偏移误差补偿;4.对偏移误差补偿后的Sin信号和Cos信号进行计算,产生旋变角度信号及旋变速度信号并输出。还公开了一种用于实现上述基于DSADC的旋变软解码处理方法的装置。本发明提高解码精度,其运算简单,占用系统资源较少。

Figure 202010152343

A resolver decoding processing method based on DSADC disclosed in the present invention comprises the following steps: 1. receiving the original resolver signal generated by the resolver, and filtering the received original resolver signal; 2. filtering the resolver signal The final resolver signal is demodulated so that the resolver signal generates a Sin signal and a Cos signal; 3. An offset detection is performed on the Sin signal and the Cos signal, and the Sin signal and the Cos signal are performed according to the offset detection result Offset error compensation; 4. Calculate the Sin signal and Cos signal after offset error compensation, generate and output the resolver angle signal and resolver speed signal. Also disclosed is a device for realizing the above-mentioned DSADC-based resolver soft decoding processing method. The invention improves the decoding precision, has simple operation and occupies less system resources.

Figure 202010152343

Description

一种基于DSADC的旋变软解码处理方法及其装置A kind of resolver soft decoding processing method and device based on DSADC

技术领域technical field

本发明涉及汽车电子技术领域,尤其涉及一种基于DSADC的旋变软解码处理方法及其装置。The invention relates to the technical field of automotive electronics, in particular to a DSADC-based resolver soft decoding processing method and a device thereof.

背景技术Background technique

旋转变压器因其精度高、抗干扰能力强,被广泛应用于电动汽车的电驱动应用中,但与旋变配合使用的解码芯片成本较高。近年来,基于DSADC的旋变软解码方案成为研究的热点,参见图1,图中给出的是现有的基于DSADC的旋变软解码处理流程,包括以下步骤:Due to its high precision and strong anti-interference ability, the resolver is widely used in the electric drive application of electric vehicles, but the cost of the decoding chip used in conjunction with the resolver is relatively high. In recent years, the DSADC-based resolver soft decoding scheme has become a research hotspot. See Figure 1. The figure shows the existing DSADC-based resolver soft decoding process, including the following steps:

1.旋转变压器10产生原始旋变信号,并将原始旋变信号发送至DSADC模块20;1. The resolver 10 generates the original resolver signal, and sends the original resolver signal to the DSADC module 20;

2.DSADC模块20对接收到的原始旋变信号进行滤波处理,并将经过滤波处理后的旋变信号发送至解调模块30;2. The DSADC module 20 performs filtering processing on the received original resolver signal, and sends the filtered resolver signal to the demodulation module 30;

3.解调模块30对经过滤波处理的旋变信号进行解调处理,生成Sin信号和Cos信号,并将生成的Sin信号和Cos信号输入至角度观测器模块40;3. The demodulation module 30 demodulates the resolver signal through the filtering process, generates a Sin signal and a Cos signal, and inputs the generated Sin signal and Cos signal to the angle observer module 40;

4.角度观测器模块40对Sin信号和Cos信号进行计算处理,生成旋变角度信号及旋变速度信号并输出。4. The angle observer module 40 calculates and processes the Sin signal and the Cos signal, generates and outputs a resolver angle signal and a resolver speed signal.

以上的基于DSADC的旋变软解码处理方案不需要专门的解码芯片,可有效地降低了成本,但在处理过程中,受芯片的计算能力与补偿方法的限制,一般不会对旋变安装偏心、DSADC采样漂移等造成的信号误差进行补偿。若不对旋变信号误差进补偿或者补偿不准确,会造成解码后的角度含有周期性的误差,将其作为控制输入,会造成系统性能下降,甚至失稳。The above DSADC-based resolver soft decoding processing scheme does not require a special decoding chip, which can effectively reduce the cost, but in the processing process, due to the limitation of the chip's computing power and compensation method, generally the resolver will not be installed eccentrically. , DSADC sampling drift and other signal errors caused by compensation. If the resolver signal error is not compensated or the compensation is inaccurate, the decoded angle will contain periodic errors. Using it as a control input will cause system performance degradation or even instability.

为此,本申请人经过有益的探索和研究,找到了解决上述问题的办法,下面将要介绍的技术方案便是在这种背景下产生的。For this reason, the applicant has found a solution to the above-mentioned problems through beneficial exploration and research, and the technical solutions to be introduced below are produced under this background.

发明内容Contents of the invention

本发明所要解决的技术问题之一在于:针对现有的基于DSADC的旋变软解码处理方法造成系统性能下降的问题,而提供一种提高系统性能的基于DSADC的旋变软解码处理方法。One of the technical problems to be solved by the present invention is to provide a DSADC-based resolver soft-decode processing method that improves system performance for the problem of system performance degradation caused by the existing DSADC-based resolver soft-decode processing method.

本发明所要解决的技术问题之二在于:提供一种用于实现上述基于DSADC的旋变软解码处理方法的装置。The second technical problem to be solved by the present invention is to provide a device for realizing the above-mentioned DSADC-based resolver soft decoding processing method.

作为本发明第一方面的一种基于DSADC的旋变解码处理方法,包括以下步骤:A kind of resolver decoding processing method based on DSADC as the first aspect of the present invention, comprises the following steps:

步骤S10,接收旋转变压器产生的原始旋变信号,并对接收到的原始旋变信号进行滤波处理;Step S10, receiving the original resolver signal generated by the resolver, and filtering the received original resolver signal;

步骤S20,对经过滤波处理后的旋变信号进行解调处理,使得所述旋变信号生成Sin信号和Cos信号;Step S20, demodulating the resolver signal after filtering, so that the resolver signal generates a Sin signal and a Cos signal;

步骤S30,对所述Sin信号和Cos信号进行偏移检测,并根据偏检测结果对所述Sin信号和Cos信号进行偏移误差补偿;Step S30, performing offset detection on the Sin signal and the Cos signal, and performing offset error compensation on the Sin signal and the Cos signal according to the offset detection result;

步骤S40,对偏移误差补偿后的Sin信号和Cos信号进行计算,产生旋变角度信号及旋变速度信号并输出。Step S40, calculating the Sin signal and the Cos signal after offset error compensation, generating and outputting a resolver angle signal and a resolver speed signal.

在本发明的一个优选实施例中,在所述步骤S30中,对所述Sin信号和Cos信号进行偏移检测,并根据偏检测结果对所述Sin信号和Cos信号进行偏移误差补偿,包括以下子步骤:In a preferred embodiment of the present invention, in the step S30, offset detection is performed on the Sin signal and the Cos signal, and offset error compensation is performed on the Sin signal and the Cos signal according to the offset detection result, including The following substeps:

步骤S31,在每个运算周期中,对软解码输出的角度进行积分,当角度积分大于360度时,生成使能信号,同时将角度积分清零;Step S31, in each calculation cycle, integrate the angle output by the soft decoding, when the angle integral is greater than 360 degrees, generate an enabling signal, and simultaneously clear the angle integral;

步骤S32,在每个运算周期中,将当前周期的Sin信号值分别与历史最大值SinMax和历史最小值SinMin进行比较,若当前周期的Sin信号值大于历史最大值SinMax,则将当前周期的Sin信号值替换历史最大值SinMax,若当前周期的Sin信号值小于历史最小值SinMin,则将当前周期的Sin信号值替换历史最小值SinMin;Step S32, in each calculation cycle, compare the Sin signal value of the current cycle with the historical maximum value SinMax and the historical minimum value SinMin respectively, if the Sin signal value of the current cycle is greater than the historical maximum value SinMax, then the current cycle Sin The signal value replaces the historical maximum value SinMax. If the Sin signal value of the current cycle is less than the historical minimum value SinMin, the current cycle Sin signal value replaces the historical minimum value SinMin;

将当前周期中的Cos信号值与历史最大值CosMax和历史最小值CosMin进行比较,若当前周期的Cos信号值大于历史最大值CosMax,则将当前周期的Cos信号值替换历史最大值CosMax,若当前周期的Cos信号值小于历史最小值CosMin,则将当前周期的Cos信号值替换历史最小值CosMin;Compare the Cos signal value in the current cycle with the historical maximum value CosMax and the historical minimum value CosMin. If the Cos signal value in the current cycle is greater than the historical maximum value CosMax, replace the historical maximum value CosMax with the current cycle Cos signal value. If the current If the Cos signal value of the period is less than the historical minimum value CosMin, the Cos signal value of the current period will replace the historical minimum value CosMin;

步骤S33,当检测到步骤S31的使能信号后,将历史最大值SinMax、历史最小值SinMin、历史最大值CosMax以及历史最小值CosMin进行输出,输出后将历史最大值SinMax、历史最小值SinMin、历史最大值CosMax以及历史最小值CosMin清零;Step S33, after detecting the enable signal of step S31, output the historical maximum value SinMax, historical minimum value SinMin, historical maximum value CosMax and historical minimum value CosMin, and output the historical maximum value SinMax, historical minimum value SinMin, The historical maximum value CosMax and the historical minimum value CosMin are cleared;

步骤S34,将步骤S33输出的历史最大值SinMax与历史最小值SinMin相加并除以2,得到Sin信号的幅值偏移量SinOffset:Step S34, add the historical maximum value SinMax and the historical minimum value SinMin output in step S33 and divide by 2 to obtain the amplitude offset SinOffset of the Sin signal:

SinOffset=(SinMax+SinMin)/2;SinOffset=(SinMax+SinMin)/2;

将步骤S33输出的历史最大值CosMax与历史最小值CosMin相加并除以2,得到Cos信号的幅值偏移量CosOffset:Add the historical maximum value CosMax output by step S33 to the historical minimum value CosMin and divide by 2 to obtain the amplitude offset CosOffset of the Cos signal:

CosOffset=(CosMax+CosMin)/2;CosOffset=(CosMax+CosMin)/2;

将步骤S33输出的历史最大值SinMaxOutput与历史最小值SinMinOutput相减并除以2,得到Sin包络线信号的Sin幅值SinAmp:Subtract the historical maximum value SinMaxOutput output by step S33 from the historical minimum value SinMinOutput and divide by 2 to obtain the Sin amplitude SinAmp of the Sin envelope signal:

SinAmp=(SinMaxOutput-SinMinOutput)/2;SinAmp=(SinMaxOutput-SinMinOutput)/2;

将步骤S33输出的历史最大值CosMaxOutput与历史最小值CosMinOutput相减并除以2,得到Cos信号的Cos幅值CosAmp:Subtract the historical maximum value CosMaxOutput output by step S33 from the historical minimum value CosMinOutput and divide by 2 to obtain the Cos amplitude CosAmp of the Cos signal:

CosAmp=(CosMaxOutput-CosMinOutput)/2;CosAmp = (CosMaxOutput-CosMinOutput)/2;

将幅值SinAmp除以幅值CosAmp,得到Sin幅值相对于Cos幅值的幅值比例SinCosRatio:Divide the amplitude SinAmp by the amplitude CosAmp to obtain the amplitude ratio SinCosRatio of the Sin amplitude relative to the Cos amplitude:

SinCosRatio=SinAmp/CosAmp;SinCosRatio = SinAmp/CosAmp;

步骤S35,在每个运算周期中,将当前周期中的Sin信号值、Cos信号值分别减去步骤S34输出的幅值偏移量SinOffset、幅值偏移量CosOffset,将Cos信号值乘以步骤S34输出的幅值比例SinCosRatio,补偿后的Sin信号值、Cos信号值为Step S35, in each calculation cycle, subtract the amplitude offset SinOffset and the amplitude offset CosOffset output by step S34 respectively from the Sin signal value and the Cos signal value in the current cycle, and multiply the Cos signal value by the step The amplitude ratio SinCosRatio output by S34, the compensated Sin signal value and Cos signal value

SinComp=Sin-SinOffsetSinComp=Sin-SinOffset

CosComp=(Cos-CosOffset)*SinCosRatio;CosComp=(Cos-CosOffset)*SinCosRatio;

步骤S36,在每个运算周期中,将按照步骤S35补偿后的信号SinComp、CosComp用作角度计算的输入。Step S36, in each calculation cycle, the signals SinComp, CosComp compensated according to step S35 are used as input for angle calculation.

作为本发明第二方面的一种用于实现上述基于DSADC的旋变软解码处理方法的装置,包括:As a second aspect of the present invention, a device for realizing the above-mentioned DSADC-based resolver soft decoding processing method includes:

DSADC模块,所述DSADC模块用于接收旋转变压器产生的原始旋变信号,并对接收到的原始旋变信号进行滤波处理;A DSADC module, the DSADC module is used to receive the original resolver signal generated by the resolver, and filter the received original resolver signal;

解调模块,所述解调模块用于对经过所述DSADC模块滤波处理后的旋变信号进行解调处理,使得所述旋变信号生成Sin信号和Cos信号;A demodulation module, the demodulation module is used to demodulate the resolver signal filtered by the DSADC module, so that the resolver signal generates a Sin signal and a Cos signal;

误差补偿模块,所述误差补偿模块用于对所述解调模块生成的Sin信号和Cos信号进行偏移检测,并根据偏检测结果对所述Sin信号和Cos信号进行偏移误差补偿;An error compensation module, the error compensation module is used to perform offset detection on the Sin signal and the Cos signal generated by the demodulation module, and perform offset error compensation on the Sin signal and the Cos signal according to the offset detection result;

角度观测器模块,所述角度观测器模块用于对经过所述误差补偿模块偏移误差补偿后的Sin信号和Cos信号进行计算,产生旋变角度信号及旋变速度信号并输出。An angle observer module, the angle observer module is used to calculate the Sin signal and the Cos signal after offset error compensation by the error compensation module, generate and output a resolver angle signal and a resolver speed signal.

由于采用了如上技术方案,本发明的有益效果在于:本发明在旋变软解码过程中,对旋变安装偏心、DSADC采样漂移等造成的信号误差进行实时检测并补偿,提高解码精度,其运算简单,占用系统资源较少,且能够时时动态监测当前误差值,对系统误差的变化具有自适应能力,补偿准确有效。经测试,加入误差补偿后,角度精度提高10%,有效地提高系统性能。Due to the adoption of the above technical solution, the beneficial effects of the present invention are: the present invention detects and compensates the signal errors caused by the eccentricity of the resolver installation and the DSADC sampling drift in real time during the soft decoding process of the resolver, and improves the decoding accuracy. It is simple, occupies less system resources, and can dynamically monitor the current error value from time to time. It has the ability to adapt to the change of system error, and the compensation is accurate and effective. After testing, after adding error compensation, the angle accuracy can be increased by 10%, effectively improving the system performance.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1是现有的基于DSADC的旋变软解码的处理流程图。Fig. 1 is a processing flowchart of the existing DSADC-based resolver soft decoding.

图2是本发明的基于DSADC的旋变解码处理方法的流程图。FIG. 2 is a flow chart of the DSADC-based resolver decoding processing method of the present invention.

图3是解调后的Sin信号与Cos信号的含有幅值偏移、幅值比例误差的示意图。Fig. 3 is a schematic diagram of demodulated Sin signal and Cos signal including amplitude offset and amplitude ratio error.

图4是本发明的信号误差检测及补偿的处理流程图。FIG. 4 is a flow chart of signal error detection and compensation processing in the present invention.

图5是本发明的基于DSADC的旋变解码处理装置的结构示意图。FIG. 5 is a schematic structural diagram of a resolver decoding processing device based on DSADC according to the present invention.

图6是未加入误差检测及补偿的软解码输出速度与角度的关系图。Fig. 6 is a relationship diagram of the soft decoding output speed and angle without adding error detection and compensation.

图7是加入误差检测及补偿的软解码输出速度与角度的关系图。Fig. 7 is a diagram of the relationship between the output speed and the angle of the soft decoding with error detection and compensation added.

具体实施方式Detailed ways

为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。In order to make the technical means, creative features, goals and effects achieved by the present invention easy to understand, the present invention will be further described below in conjunction with specific illustrations.

参见图2,图中给出的是一种基于DSADC的旋变解码处理方法,包括以下步骤:Referring to Fig. 2, a kind of resolver decoding processing method based on DSADC is shown in the figure, including the following steps:

步骤S10,接收旋转变压器产生的原始旋变信号,并对接收到的原始旋变信号进行滤波处理;Step S10, receiving the original resolver signal generated by the resolver, and filtering the received original resolver signal;

步骤S20,对经过滤波处理后的旋变信号进行解调处理,使得所述旋变信号生成Sin信号和Cos信号。旋变解调后的Sin信号和Cos信号含有幅值偏移、幅值比例误差等信息,如图3所示,其不直接用于角度、速度的计算,而是先进行误差补偿处理;Step S20, performing demodulation processing on the resolved resolver signal after filtering, so that the resolver signal generates a Sin signal and a Cos signal. The Sin signal and Cos signal after resolver demodulation contain information such as amplitude offset and amplitude ratio error, as shown in Figure 3, which are not directly used for the calculation of angle and speed, but are firstly processed for error compensation;

步骤S30,对Sin信号和Cos信号进行偏移检测,并根据偏检测结果对所述Sin信号和Cos信号进行偏移误差补偿;Step S30, performing offset detection on the Sin signal and the Cos signal, and performing offset error compensation on the Sin signal and the Cos signal according to the offset detection result;

步骤S40,对偏移误差补偿后的Sin信号和Cos信号进行计算,产生旋变角度信号及旋变速度信号并输出。Step S40, calculating the Sin signal and the Cos signal after offset error compensation, generating and outputting a resolver angle signal and a resolver speed signal.

在步骤S30中,参见图4,对Sin信号和Cos信号进行偏移检测,并根据偏检测结果对所述Sin信号和Cos信号进行偏移误差补偿,包括以下子步骤:In step S30, referring to Fig. 4, Sin signal and Cos signal are carried out offset detection, and described Sin signal and Cos signal are carried out offset error compensation according to the result of offset detection, including the following sub-steps:

步骤S31,在每个运算周期中,对软解码输出的角度进行积分,当角度积分大于360度时,生成使能信号,同时将角度积分清零;Step S31, in each calculation cycle, integrate the angle output by the soft decoding, when the angle integral is greater than 360 degrees, generate an enabling signal, and simultaneously clear the angle integral;

步骤S32,在每个运算周期中,将当前周期的Sin信号值分别与历史最大值SinMax和历史最小值SinMin进行比较,若当前周期的Sin信号值大于历史最大值SinMax,则将当前周期的Sin信号值替换历史最大值SinMax,若当前周期的Sin信号值小于历史最小值SinMin,则将当前周期的Sin信号值替换历史最小值SinMin;Step S32, in each calculation cycle, compare the Sin signal value of the current cycle with the historical maximum value SinMax and the historical minimum value SinMin respectively, if the Sin signal value of the current cycle is greater than the historical maximum value SinMax, then the current cycle Sin The signal value replaces the historical maximum value SinMax. If the Sin signal value of the current cycle is less than the historical minimum value SinMin, the current cycle Sin signal value replaces the historical minimum value SinMin;

将当前周期中的Cos信号值与历史最大值CosMax和历史最小值CosMin进行比较,若当前周期的Cos信号值大于历史最大值CosMax,则将当前周期的Cos信号值替换历史最大值CosMax,若当前周期的Cos信号值小于历史最小值CosMin,则将当前周期的Cos信号值替换历史最小值CosMin;Compare the Cos signal value in the current cycle with the historical maximum value CosMax and the historical minimum value CosMin. If the Cos signal value in the current cycle is greater than the historical maximum value CosMax, replace the historical maximum value CosMax with the current cycle Cos signal value. If the current If the Cos signal value of the period is less than the historical minimum value CosMin, the Cos signal value of the current period will replace the historical minimum value CosMin;

步骤S33,当检测到步骤S31的使能信号后,将历史最大值SinMax、历史最小值SinMin、历史最大值CosMax以及历史最小值CosMin进行输出,输出后将历史最大值SinMax、历史最小值SinMin、历史最大值CosMax以及历史最小值CosMin清零;Step S33, after detecting the enable signal of step S31, output the historical maximum value SinMax, historical minimum value SinMin, historical maximum value CosMax and historical minimum value CosMin, and output the historical maximum value SinMax, historical minimum value SinMin, The historical maximum value CosMax and the historical minimum value CosMin are cleared;

步骤S34,将步骤S33输出的历史最大值SinMax与历史最小值SinMin相加并除以2,得到Sin信号的幅值偏移量SinOffset:Step S34, add the historical maximum value SinMax and the historical minimum value SinMin output in step S33 and divide by 2 to obtain the amplitude offset SinOffset of the Sin signal:

SinOffset=(SinMax+SinMin)/2;SinOffset=(SinMax+SinMin)/2;

将步骤S33输出的历史最大值CosMax与历史最小值CosMin相加并除以2,得到Cos信号的幅值偏移量CosOffset:Add the historical maximum value CosMax output by step S33 to the historical minimum value CosMin and divide by 2 to obtain the amplitude offset CosOffset of the Cos signal:

CosOffset=(CosMax+CosMin)/2;CosOffset=(CosMax+CosMin)/2;

将步骤S33输出的历史最大值SinMaxOutput与历史最小值SinMinOutput相减并除以2,得到Sin包络线信号的Sin幅值SinAmp:Subtract the historical maximum value SinMaxOutput output by step S33 from the historical minimum value SinMinOutput and divide by 2 to obtain the Sin amplitude SinAmp of the Sin envelope signal:

SinAmp=(SinMaxOutput-SinMinOutput)/2;SinAmp=(SinMaxOutput-SinMinOutput)/2;

将步骤S33输出的历史最大值CosMaxOutput与历史最小值CosMinOutput相减并除以2,得到Cos信号的Cos幅值CosAmp:Subtract the historical maximum value CosMaxOutput output by step S33 from the historical minimum value CosMinOutput and divide by 2 to obtain the Cos amplitude CosAmp of the Cos signal:

CosAmp=(CosMaxOutput-CosMinOutput)/2;CosAmp = (CosMaxOutput-CosMinOutput)/2;

将幅值SinAmp除以幅值CosAmp,得到Sin幅值相对于Cos幅值的幅值比例SinCosRatio:Divide the amplitude SinAmp by the amplitude CosAmp to obtain the amplitude ratio SinCosRatio of the Sin amplitude relative to the Cos amplitude:

SinCosRatio=SinAmp/CosAmp;SinCosRatio = SinAmp/CosAmp;

步骤S35,在每个运算周期中,将当前周期中的Sin信号值、Cos信号值分别减去步骤S34输出的幅值偏移量SinOffset、幅值偏移量CosOffset,将Cos信号值乘以步骤S34输出的幅值比例SinCosRatio,补偿后的Sin信号值、Cos信号值为Step S35, in each calculation cycle, subtract the amplitude offset SinOffset and the amplitude offset CosOffset output by step S34 respectively from the Sin signal value and the Cos signal value in the current cycle, and multiply the Cos signal value by the step The amplitude ratio SinCosRatio output by S34, the compensated Sin signal value and Cos signal value

SinComp=Sin-SinOffsetSinComp=Sin-SinOffset

CosComp=(Cos-CosOffset)*SinCosRatio;CosComp=(Cos-CosOffset)*SinCosRatio;

步骤S36,在每个运算周期中,将按照步骤S35补偿后的信号SinComp、CosComp用作角度计算的输入。Step S36, in each calculation cycle, the signals SinComp, CosComp compensated according to step S35 are used as input for angle calculation.

参见图5,图中给出的是一种用于实现上述基于DSADC的旋变软解码处理方法的装置,包括DSADC模块100、解调模块200、误差补偿模块300以及角度观测器模块400。Referring to FIG. 5 , shown in the figure is a device for implementing the above-mentioned DSADC-based resolver soft decoding processing method, including a DSADC module 100 , a demodulation module 200 , an error compensation module 300 and an angle observer module 400 .

DSADC模块100用于接收旋转变压器10产生的原始旋变信号,并对接收到的原始旋变信号进行滤波处理,再滤波处理后的旋变信号发送至解调模块200。解调模块200用于对经过DSADC模块100滤波处理后的旋变信号进行解调处理,使得所述旋变信号生成Sin信号和Cos信号,并将生成的Sin信号和Cos信号发送至误差补偿模块300。误差补偿模块300用于对解调模块200生成的Sin信号和Cos信号进行偏移检测,并根据偏检测结果对Sin信号和Cos信号进行偏移误差补偿,再将偏移误差补偿后的Sin信号和Cos信号发送至角度观测器模块400。角度观测器模块400用于对经过误差补偿模块300偏移误差补偿后的Sin信号和Cos信号进行计算,产生旋变角度信号及旋变速度信号并输出。The DSADC module 100 is used to receive the original resolver signal generated by the resolver 10 , filter the received original resolver signal, and send the filtered resolver signal to the demodulation module 200 . The demodulation module 200 is used to demodulate the resolver signal filtered by the DSADC module 100, so that the resolver signal generates a Sin signal and a Cos signal, and sends the generated Sin signal and Cos signal to the error compensation module 300. The error compensation module 300 is used to perform offset detection on the Sin signal and the Cos signal generated by the demodulation module 200, and perform offset error compensation on the Sin signal and the Cos signal according to the offset detection result, and then the offset error compensated Sin signal and Cos signals are sent to the angle observer module 400 . The angle observer module 400 is used to calculate the Sin signal and the Cos signal after offset error compensation by the error compensation module 300 , generate and output a resolver angle signal and a resolver speed signal.

本发明在旋变软解码过程中,对旋变安装偏心、DSADC采样漂移等造成的信号误差进行实时检测并补偿,提高解码精度,其运算简单,占用系统资源较少,且能够时时动态监测当前误差值,对系统误差的变化具有自适应能力,补偿准确有效。经测试,加入误差补偿后,角度精度提高10%,有效地提高系统性能。In the soft decoding process of the resolver, the present invention detects and compensates the signal errors caused by the eccentricity of the resolver installation and the DSADC sampling drift in real time, improves the decoding accuracy, has simple operation, takes up less system resources, and can dynamically monitor the current The error value has the ability to adapt to the change of the system error, and the compensation is accurate and effective. After testing, after adding error compensation, the angle accuracy can be increased by 10%, effectively improving the system performance.

参见图6和图7,图6为未加入误差检测及补偿的软解码输出速度与角度的关系图,图7为加入误差检测及补偿的软解码输出速度与角度的关系图,对比两者可以看出,本发明可消除了软解码输出速度的周期性波动。Referring to Figure 6 and Figure 7, Figure 6 is the relationship between the soft decoding output speed and angle without error detection and compensation, and Figure 7 is the relationship between the soft decoding output speed and angle with error detection and compensation, comparing the two can be It can be seen that the present invention can eliminate the periodic fluctuation of the soft decoding output speed.

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Variations and improvements are possible, which fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.

Claims (3)

1. The DSADC-based rotary-variable decoding processing method is characterized by comprising the following steps of:
step S10, receiving an original rotation signal generated by a rotary transformer, and performing filtering processing on the received original rotation signal;
step S20, demodulating the filtered rotation-varying signal to generate a Sin signal and a Cos signal;
step S30, performing offset detection on the Sin signal and the Cos signal, and performing offset error compensation on the Sin signal and the Cos signal according to an offset detection result;
step S40, calculating the Sin signal and the Cos signal after offset error compensation, generating and outputting a rotation angle signal and a rotation speed signal.
2. The DSADC-based rotary decoding processing method of claim 1, wherein in the step S30, offset detection is performed on the Sin signal and the Cos signal, and offset error compensation is performed on the Sin signal and the Cos signal according to a result of the offset detection, comprising the sub-steps of:
s31, integrating the angle output by soft decoding in each operation period, generating an enabling signal when the angle integral is larger than 360 degrees, and clearing the angle integral;
step S32, in each operation period, comparing the Sin signal value of the current period with a historical maximum value SinMx and a historical minimum value SinMin respectively, if the Sin signal value of the current period is larger than the historical maximum value SinMx, replacing the Sin signal value of the current period with the historical maximum value SinMx, and if the Sin signal value of the current period is smaller than the historical minimum value SinMin, replacing the Sin signal value of the current period with the historical minimum value SinMin;
comparing the Cos signal value in the current period with a historical maximum value CosMax and a historical minimum value CosMin, if the Cos signal value in the current period is larger than the historical maximum value CosMax, replacing the Cos signal value in the current period with the historical maximum value CosMax, and if the Cos signal value in the current period is smaller than the historical minimum value CosMin, replacing the Cos signal value in the current period with the historical minimum value CosMin;
step S33, outputting the historical maximum value SinMx, the historical minimum value SinMin, the historical maximum value CosMax and the historical minimum value CosMin after the enabling signal of the step S31 is detected, and clearing the historical maximum value SinMx, the historical minimum value SinMin, the historical maximum value CosMax and the historical minimum value CosMin after outputting;
step S34, adding the historical maximum value SinMax and the historical minimum value SinMin output in the step S33 and dividing by 2 to obtain the amplitude offset SinOffset of the Sin signal:
SinOffset=(SinMax+SinMin)/2;
the history maximum value CosMax output in step S33 is added to the history minimum value CosMin and divided by 2 to obtain the amplitude offset CosOffset of the Cos signal:
CosOffset=(CosMax+CosMin)/2;
subtracting the historical maximum value SinmaxOutput and the historical minimum value SinmInOutput output in the step S33 and dividing the historical maximum value SinmaxOutput and the historical minimum value SinmInOutput by 2 to obtain the Sin amplitude Sinamp of the Sin envelope signal:
SinAmp=(SinMaxOutput-SinMinOutput)/2;
subtracting the historical maximum value CosMaxOutput output in the step S33 from the historical minimum value CosMinOutput and dividing the historical maximum value CosMaxOutput by 2 to obtain a Cos amplitude CosAmp of the Cos signal:
CosAmp=(CosMaxOutput-CosMinOutput)/2;
dividing the amplitude Sinamp by the amplitude Cosamp to obtain an amplitude ratio SinCosRatio of Sin amplitude relative to Cos amplitude:
SinCosRatio=SinAmp/CosAmp;
step S35, in each operation period, subtracting the amplitude offset SinOffset and the amplitude offset CosOffset output in the step S34 from the Sin signal value and the Cos signal value in the current period, respectively, multiplying the Cos signal value by the amplitude proportion SinCosRatio output in the step S34, wherein the compensated Sin signal value and the Cos signal value are
SinComp=Sin-SinOffset
CosComp=(Cos-CosOffset)*SinCosRatio;
In step S36, the signal SinComp, cosComp compensated in step S35 is used as an input for angle calculation in each calculation cycle.
3. An apparatus for implementing the DSADC-based soft-spin-decoding processing method of claim 1 or 2, comprising:
the DSADC module is used for receiving an original rotation signal generated by the rotary transformer and filtering the received original rotation signal;
the demodulation module is used for demodulating the rotation-varying signal subjected to the DSADC module filtering processing so that the rotation-varying signal generates a Sin signal and a Cos signal;
the error compensation module is used for carrying out offset detection on the Sin signal and the Cos signal generated by the demodulation module and carrying out offset error compensation on the Sin signal and the Cos signal according to an offset detection result;
and the angle observer module is used for calculating the Sin signal and the Cos signal subjected to offset error compensation by the error compensation module, generating a rotation angle signal and a rotation speed signal and outputting the rotation angle signal and the rotation speed signal.
CN202010152343.5A 2020-03-06 2020-03-06 A kind of resolver soft decoding processing method and device based on DSADC Active CN111245443B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010152343.5A CN111245443B (en) 2020-03-06 2020-03-06 A kind of resolver soft decoding processing method and device based on DSADC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010152343.5A CN111245443B (en) 2020-03-06 2020-03-06 A kind of resolver soft decoding processing method and device based on DSADC

Publications (2)

Publication Number Publication Date
CN111245443A CN111245443A (en) 2020-06-05
CN111245443B true CN111245443B (en) 2023-04-25

Family

ID=70873391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010152343.5A Active CN111245443B (en) 2020-03-06 2020-03-06 A kind of resolver soft decoding processing method and device based on DSADC

Country Status (1)

Country Link
CN (1) CN111245443B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511174B (en) * 2020-09-25 2022-10-14 上海擎度汽车科技有限公司 Rotary soft decoding method meeting functional safety requirements
CN113804223B (en) * 2021-10-20 2023-09-26 苏州汇川联合动力系统股份有限公司 Method, device and storage medium for improving decoding reliability of rotary soft part
CN114421838B (en) * 2021-12-07 2024-04-19 浙江零跑科技股份有限公司 High-precision rotary transformer soft decoding implementation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117577A (en) * 1994-01-28 1996-02-28 三菱电机株式会社 Absolute position detection apparatus and error compensation methods therefor
US6032028A (en) * 1996-04-12 2000-02-29 Continentral Electronics Corporation Radio transmitter apparatus and method
CN101197555A (en) * 2006-12-05 2008-06-11 比亚迪股份有限公司 Electric car motor control method and fault-tolerance processing method for its rotor position detection
CN104061950A (en) * 2014-06-27 2014-09-24 中北大学 Method for improving decoding precision of digital decoding system of rotary transformer
CN107332565A (en) * 2017-08-10 2017-11-07 上海金脉电子科技有限公司 Rotation based on DSADC becomes software decoding system and method
CN110426062A (en) * 2019-07-31 2019-11-08 中车永济电机有限公司 It is a kind of to inhibit the digital RDC of function to decode system with error

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599664B (en) * 2018-05-30 2021-01-08 阳光电源股份有限公司 Method and system for acquiring position of motor rotor of rotary transformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117577A (en) * 1994-01-28 1996-02-28 三菱电机株式会社 Absolute position detection apparatus and error compensation methods therefor
US6032028A (en) * 1996-04-12 2000-02-29 Continentral Electronics Corporation Radio transmitter apparatus and method
CN101197555A (en) * 2006-12-05 2008-06-11 比亚迪股份有限公司 Electric car motor control method and fault-tolerance processing method for its rotor position detection
CN104061950A (en) * 2014-06-27 2014-09-24 中北大学 Method for improving decoding precision of digital decoding system of rotary transformer
CN107332565A (en) * 2017-08-10 2017-11-07 上海金脉电子科技有限公司 Rotation based on DSADC becomes software decoding system and method
CN110426062A (en) * 2019-07-31 2019-11-08 中车永济电机有限公司 It is a kind of to inhibit the digital RDC of function to decode system with error

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hui Zhong等.Design and analysis of rotary transformer for brushless doubly fed induction generators.《IEEE》.2018,全文. *
张伟鹏等.一种高精度旋转变压器解码算法.《科学技术与工程》.2019,全文. *

Also Published As

Publication number Publication date
CN111245443A (en) 2020-06-05

Similar Documents

Publication Publication Date Title
CN111245443B (en) A kind of resolver soft decoding processing method and device based on DSADC
CN110411486B (en) PGC-DCDM demodulation method insensitive to phase delay and modulation depth
CN114910112B (en) Signal error correction method, magnetic encoder, and optical encoder
CN102721362B (en) Rotating transformer position measuring system and method
CN102116798A (en) Power grid frequency measurement method and device
CN107863913A (en) The coding/decoding method and system of a kind of rotary transformer
CN101060311A (en) A digital phase-lock amplifier
CN105245203A (en) High-precision low-speed clock duty cycle detection system and method
CN103776471A (en) Magnetic encoder based on double synchronous rotation coordinate systems
US6794857B2 (en) Apparatus and method for measuring a phase delay characteristic
CN115128159A (en) A Fast Track Defect Detection Method Based on Signal Pulse Width Capture
CN112560762B (en) Vehicle body rotation angle data processing method, device, controller and medium
JPH0271639A (en) System and apparatus for detecting unique word
JP4672253B2 (en) Control device for electric power steering device
CN106353528A (en) Apparatus and method for measuring motor speed
CN112556570B (en) Rotation angle data processing method, device and medium for construction machine
CN107436380B (en) Method and device for generating electric energy pulse
EP3401643A1 (en) Encoder, electric machine, encoder data processing method and storage medium
CN111580033B (en) Method for calibrating phase difference in dynamic calibration process
CN113484802A (en) Fault detection method and device for rotary transformer
CN209103271U (en) A kind of temperature-detecting device
CN107563253B (en) Signal Anti-jamming Processing Method Based on Mutual Sampling
CN105573553A (en) Information processing method, information processing device and electronic equipment
CN113726706B (en) Method, device and storage medium for improving demodulation precision of D8PSK signal
CN117792198B (en) A soft decoding method, device, equipment and medium for motor position angle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20250428

Address after: Room 602-1, 6th Floor (601), Building 4, No. 38 Caosong Road, Xinqiao Town, Songjiang District, Shanghai, 2016

Patentee after: CHUANGQU (SHANGHAI) NEW ENERGY TECHNOLOGY Co.,Ltd.

Country or region after: China

Patentee after: Zhejiang chuangqu Intelligent Technology Co.,Ltd.

Address before: 201611 1-2 floor of No. 2 Che Yang Road, Che Dun Town, Songjiang District, Shanghai 331

Patentee before: CHUANGQU (SHANGHAI) NEW ENERGY TECHNOLOGY Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right