[go: up one dir, main page]

CN111244520A - 燃料电池堆及其制造方法 - Google Patents

燃料电池堆及其制造方法 Download PDF

Info

Publication number
CN111244520A
CN111244520A CN201911172576.5A CN201911172576A CN111244520A CN 111244520 A CN111244520 A CN 111244520A CN 201911172576 A CN201911172576 A CN 201911172576A CN 111244520 A CN111244520 A CN 111244520A
Authority
CN
China
Prior art keywords
fuel cell
metal
layer
separator
metal porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911172576.5A
Other languages
English (en)
Other versions
CN111244520B (zh
Inventor
李新宇
川村知荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Publication of CN111244520A publication Critical patent/CN111244520A/zh
Application granted granted Critical
Publication of CN111244520B publication Critical patent/CN111244520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供能够实现小型化的燃料电池堆及其制造方法。燃料电池堆的特征在于,包括:具有氧离子传导性的固体氧化物电解质层被2层电极层夹持着的第一燃料电池和第二燃料电池;由金属材料构成的分隔件,其配置在上述第一燃料电池与上述第二燃料电池之间;以及内部连接结构,其在上述分隔件的上述第一燃料电池侧设置有第一金属多孔质部和第一气体流路,在上述分隔件的上述第二燃料电池侧设置有第二金属多孔质部和第二气体流路。

Description

燃料电池堆及其制造方法
技术领域
本发明涉及燃料电池堆及其制造方法。
背景技术
为了开发在汽车等中能够使用的固体氧化物型燃料电池系统,希望开发能够耐振动且即使急速升温也不会破裂的单元电池。例如,公开有将内部连接结构用陶瓷材料形成的燃料电池(例如,参照专利文献1参照)。但是,在该燃料电池中,欠缺机械性强度和急速升温降温耐受性,因此难以搭载在汽车等中。因此,公开有使用了分隔件的燃料电池,该分隔件是通过对钢板进行冲压来制作的(例如,参照专利文献2)。
现有技术文献
专利文献
专利文献1:国际公开第2018/042476号
专利文献2:日本特开2016-39099号公报
发明内容
发明要解决的技术问题
但是,当通过冲压钢板来制作分隔件时,分隔件变厚。其结果是,燃料电池变得大型化。
用于解决技术问题的技术方案
本发明的燃料电池堆的特征在于,包括:具有氧离子传导性的固体氧化物电解质层被2层电极层夹持着的第一燃料电池和第二燃料电池;由金属材料构成的分隔件,其配置在上述第一燃料电池与上述第二燃料电池之间;以及内部连接结构,其在上述分隔件的上述第一燃料电池侧设置有第一金属多孔质部和第一气体流路,在上述分隔件的上述第二燃料电池侧设置有第二金属多孔质部和第二气体流路。
在上述燃料电池堆中,可以为上述分隔件的致密度为90%以上。
在上述燃料电池堆中,可以为上述分隔件的厚度为100μm以下。
在上述燃料电池堆中,可以为上述第一金属多孔质部和上述第二金属多孔质部的致密度为30%以上80%以下。
在上述燃料电池堆中,可以为上述第一金属多孔质部、上述分隔件和上述第二金属多孔质部依次层叠,上述第一金属多孔质部、上述致密金属层和上述第二金属多孔质部的层叠方向的总厚度为300μm以下。
在上述燃料电池堆中,可以为上述内部连接结构由如下材料构成,即在上述第一气体流路供给了含氢的燃料气体且在上述第二气体流路供给了含氧的氧化剂气体时,上述第一燃料电池侧的电子传导性变得比上述第二燃料电池侧的电子传导性高的材料。
在上述燃料电池堆中,可以为上述内部连接结构由与氧接触时能够在表面形成氧化覆膜的材料构成。
本发明的燃料电池堆的制造方法的特征在于,包括:准备层叠体的步骤,上述层叠体中,在金属粉末层上以隔开规定的间隔的方式配置多个具有消失材料和金属粉末的第一图案,在该多个第一图案上层叠第一电极层,在上述第一电极层上配置电解质层,在上述金属粉末层下以隔开规定的间隔的方式配置多个具有消失材料和金属粉末的第二图案,在该多个第二图案下层叠第二电极层;以及烧制上述层叠体的步骤。
发明效果
依照本发明,能够提供可实现小型化的燃料电池堆及其制造方法。
附图说明
图1是燃料电池堆的外观立体图。
图2是例示内部连接结构的详情的立体图。
图3示意性地表示内部连接结构的截面照片的图。
图4A和图4B是例示燃料电池堆的制造方法的图。
图5A~图5C是例示燃料电池堆的制造方法的图。
附图标记说明
10 固体氧化物电解质层
20 阴极
21 框
30 第一金属多孔质层
31 框
40 阳极
41 框
50 第二金属多孔质层
51 框
60 分隔件
71 PET膜
72 金属粉末层
73 框
74 金属粉末图案
75 PET膜
76 电解质层
77 框
78 电极层
79 气体流路形成材料
91 第一层叠体
92 第二层叠体
93 第三层叠体
94 第四层叠体
95 成型体
100 燃料电池
200 燃料电池堆。
具体实施方式
以下,参照附图,对实施方式进行说明。
如图1中所例示的那样,燃料电池堆200具有多个燃料电池100层叠而成的结构。燃料电池100具有如下结构:在固体氧化物电解质层10的上表面(第一面)按以下顺序层叠有阴极20(第一电极层)、包括第一金属多孔质部30a和气体流路30b的第一金属多孔质层30、以及分隔件60,在固体氧化物电解质层10的下表面(第二面)按一下顺序层叠有阳极40(第二电极层)、包括第二金属多孔质部50a和气体流路50b的第二金属多孔质层50、以及分隔件60。此外,在相邻的燃料电池100中,分隔件60是共同使用的部件。有时将第一金属多孔质层30、分隔件60和第二金属多孔质层50的组合称为内部连接结构。该内部连接结构是用于将由固体氧化物电解质层10、阴极20和阳极40构成的单元电池电串联地连接的部分。此外,有时将固体氧化物电解质层10、阴极20、第一金属多孔质层30、阳极40和第二金属多孔质层50的组合称为单位SOFC单元。
固体氧化物电解质层10是具有氧离子传导性的固体氧化物电解质的致密层。阴极20是作为阴极的具有电极活性的电极,具有电子传导性和氧离子传导性。阳极40是作为阳极的具有电极活性的电极,具有电子传导性和氧离子传导性。第一金属多孔质层30和第二金属多孔质层50是具有气体透过性,并且能够支承由固体氧化物电解质层10、阴极20和阳极40构成的单元电池部分的部件。分隔件60是致密的金属层,具有气体不透过性。气体流路30b和50b是由消失材料制作的空孔。
燃料电池100通过以下的作用来发电。在第一金属多孔质部30a和气体流路30b中,作为一种反应气体供给空气等含有氧的氧化剂气体。氧化剂气体经由第一金属多孔质部30a和气体流路30b到达阴极20。在阴极20中,到达了阴极20的氧与从外部电路供给的电子发生反应而成为氧离子。氧离子在固体氧化物电解质层10中传导而移动到阳极40侧。另一方面,在第二金属多孔质部50a和气体流路50b中,作为另一种反应气体供给氢气、改性气体等含有氢的燃料气体。燃料气体经由第二金属多孔质部50a和气体流路50b到达阳极40。到达了阳极40的氢在阳极40中释放出电子,并且与从阴极20侧在固体氧化物电解质层10中传导来的氧离子发生反应而形成水(H2O)。所释放的电子被外部电路取出到外部。取出到外部的电子被实施了电处理之后供给到阴极20。通过以上的作用,来进行发电。
固体氧化物电解质层10、阴极20、第一金属多孔质层30、阳极40和第二金属多孔质层50具有大致相同尺寸的大致矩形形状。因此,由固体氧化物电解质层10、阴极20、第一金属多孔质层30、阳极40和第二金属多孔质层50构成大致长方体形状。在该长方体形状中,将上表面和下表面以外的4个侧面中的、彼此相对的一对2个侧面称为第一侧面和第二侧面。将其余的相对的一对2个侧面称为第三侧面和第四侧面。设第一侧面与第二侧面相对的方向为X轴。设第三侧面与第四侧面相对的方向为Y轴。设各层的层叠方向为Z轴。X轴、Y轴和Z轴例如彼此正交。
在阴极20的第三侧面和第四侧面分别设置有框21。在第一金属多孔质层30的第三侧面和第四侧面分别设置有框31。框21和框31作为密封部件发挥作用。因此,由框21、框31以及与第一金属多孔质层30接触的分隔件60形成氧化剂气体的流路。由此,氧化剂气体在第一金属多孔质层30中从第一侧面和第二侧面之中的任意一者向另一者流动。即,氧化剂气体在X轴方向上流动。
在阳极40的第一侧面和第二侧面分别设置有框41。在第二金属多孔质层50的第一侧面和第二侧面分别设置有框51。框41和框51作为密封部件发挥作用。因此,由框41、框51以及与第二金属多孔质层50接触的分隔件60形成燃料气体的流路。由此,燃料气体在第二金属多孔质层50中从第三侧面和第四侧面中的任意一者向另一者流动。即、燃料气体在Y轴方向上流动。
图2是例示内部连接结构的详情的立体图。如图2中所例示,内部连接结构具有在分隔件60上设置有第一金属多孔质层30,在分隔件60下设置有第二金属多孔质层50的构造。分隔件60具有阻断反应气体透过的功能,并且具有将相邻的2个燃料电池100串联连接的功能。
第一金属多孔质层30中,多个第一金属多孔质部30a沿X轴方向带状地延伸。各第一金属多孔质部30a在Y轴方向上说隔开规定的间隔的方式配置。因此,在相邻的2个第一金属多孔质部30a之间,形成有在X轴方向上延伸的气体流路30b。各第一金属多孔质部30a的Y轴方向的间隔例如是500μm~3000μm。供给到第一金属多孔质层30的氧化剂气体主要一边在气体流路30b中流动一边被供给到阴极20。氧化剂气体的一部分一边从第一金属多孔质部30a扩散一边被供给到阴极20。第一金属多孔质部30a与阴极20相接触,因此作为集电体发挥作用,并且也作为支承体发挥作用。
在第二金属多孔质层50中,多个第二金属多孔质部50a沿Y轴方向带状地延伸。各第二金属多孔质部50a在X轴方向上以隔开规定的间隔的方式配置。因此,在相邻的2个第二金属多孔质部50a之间,形成有在Y轴方向上延伸的气体流路50b。各第二金属多孔质部50a的X轴方向的间隔例如为500μm~5000μm。供给到第二金属多孔质层50的燃料气体主要一边在气体流路50b中流动一边被供给到阳极40。燃料气体的一部分一边从第二金属多孔质部50a扩散一边被供给到阳极40。第二金属多孔质部50a与阳极40相接触,因此作为集电体发挥作用,并且也作为支承体发挥作用。
图3是示意性地表示内部连接结构的截面照片的图。图3的截面是第一金属多孔质部30a和第二金属多孔质部50a夹着分隔件60的部位的截面。如图3所示,在分隔件60中致密地形成有金属。在第一金属多孔质部30a和第二金属多孔质部50a中,致密地形成有金属的部位与没有形成金属而成为空隙的部位混合地存在。这样一来,即使在第一金属多孔质部30a和第二金属多孔质部50a中反应气体也能够扩散。
分隔件60优选致密地能够阻断氧化剂气体和燃料气体。因此,优选分隔件60的致密度较高。例如,分隔件60的致密度优选为90%以上,更优选为98%以上。致密度基于用SEM(扫描型电子显微镜)等观察截面得到的图像,测量致密部的面积、以及空隙部和致密部的总面积,通过计算两者之比(致密部的面积/空隙部和致密部的总面积)而能够算出。空隙率通过计算(空隙部的面积/空隙部和致密部的合计面积)而能够算出。
当分隔件60较厚地形成时,相邻的2个燃料电池100的距离变长,电阻变高。因此,优选将分隔件60较薄地形成。例如,优选分隔件60的厚度为100μm以下,更优选为60μm以下。另一方面,当分隔件60太薄时,分隔件60的连续率降低,可能发生容易生成气体泄漏的孔这样的不良状况。因此,优选对分隔件60的厚度设置下限。例如,分隔件60的厚度优选为10μm以上,更优选为40μm以上。通过将分隔件60较薄地形成,也能够实现燃料电池堆200的小型化。
第一金属多孔质部30a和第二金属多孔质部50a优选具有能够将反应气体供给到电极的程度的致密度。例如,第一金属多孔质部30a和第二金属多孔质部50a的致密度优选为80%以下,更优选为60%以下。另一方面,当第一金属多孔质部30a和第二金属多孔质部50a的致密度太低时,在烧制时,层间的紧贴力(密接力)降低,可能产生分隔件60与阳极40和阴极20之间发生剥离的不良状况。因此,优选对第一金属多孔质部30a和第二金属多孔质部50a的致密度设置下限。例如,第一金属多孔质部30a和第二金属多孔质部50a的致密度优选为30%以上,更优选为50%以上。
另外,当内部连接结构整体较厚地形成时,相邻的2个燃料电池100的距离变长,电阻变高。因此,优选将内部连接结构整体较薄地形成。例如,第一金属多孔质层30、分隔件60和第二金属多孔质层50的总厚度优选为400μm以下,更优选为250μm以下。通过将内部连接结构整体较薄地形成,能够实现燃料电池堆200的小型化。
内部连接结构的材料只要是金属即可,没有特别的限定,不过优选由在气体流路30b供给了氧化剂气体且在气体流路50b供给了燃料气体时,阳极40侧的电子传导性变得比阴极20侧的电子传导性高的材料构成。例如,优选第一金属多孔质层30、分隔件60和第二金属多孔质层50由在接触氧时表面能够形成氧化覆膜的材料构成。例如,第一金属多孔质层30、分隔件60和第二金属多孔质层50能够使用Ni等金属。或者,优选使用包含C、Si、Al、Nb、Mo、Y、Ce、Cr、Fe、Ti、Cu、Mn、La、W、Ni、Zr等元素中的一种以上的合金,且含有10wt%~95wt%的Cr,使Fe、Cr以外的微量添加元素为10wt%以下,其余为Fe成分的合金。例如,能够使用Fe-18~22Cr合金。通过在表面形成氧化覆膜,能够抑制氧化进展至内部。
另外,本实施方式的燃料电池100具有能够抑制烧制时的破裂的构成。具体而言,在阴极20和阳极40中,优选使具有电子传导性的材料的主成分与具有氧离子传导性的材料的主成分相同(共通)。在该构成中,由于阴极20和阳极40的材质是类似的,在烧制阴极20和阳极40的过程中去除粘合剂时,能够抑制两层的收缩应力的失衡(偏重),能够抑制破裂。由此,能够用印刷技术和一体烧制技术来形成由固体氧化物电解质层10、阴极20和阳极40构成的单元电池部分。由此,能够兼顾实现增加层叠数和小型化。其结果是,能够确保所希望的发电量并且实现小型化。
例如,在阴极20和阳极40中对于所使用的电子、氧离子混合传导性材料的主成分没有特别的限定。例如,作为阴极20和阳极40考虑使用兼具有电子传导性和氧离子传导性这种性质的材料(电子、氧离子混合传导性材料)。例如,作为电子、氧离子混合传导性材料能够使用LaMnO3系、LaCoO3系等。但是,在一体烧制中,为了形成第一金属多孔质层30和第二金属多孔质层50而同时烧制金属粉末,因此希望使气氛为还原性气氛。作为电子、氧离子混合传导性材料的主成分,使用LaMnO3系、LaCoO3系等时,能够获得良好的发电性能,另一方面在还原性气氛中的烧制是困难的。因此,电子、氧离子混合传导性材料的主成分优选具有耐还原性。例如,优选使用掺杂了Gd的CeO2系材料等。
作为另一种方法,作为电子传导性材料和氧离子传导性材料分别使用不同的材料,也可以总体上实现电子、氧离子混合传导性。例如,作为氧离子传导性材料的主成分没有特别地限定,优选使用氧化钪-氧化钇稳定化氧化锆(ScYSZ)。例如,优选使用具有氧化钪(Sc2O3)为5mol%~16mol%且氧化钇(Y2O3)为1mol%~3mol%的组成范围的ScYSZ。更优选使用氧化钪和氧化钇的添加量一共为6mol%~15mol%的ScYSZ。因为在该组成范围中,氧离子传导性变得最高。此外,氧离子传导性材料例如为氧离子的迁移数(transportnumber)为99%以上的材料。
接着,作为电子传导性材料没有特别的限定,能够使用Ni等金属。或者,优选含有C、Si、Y、Ce、Cr、Fe、Ti、Cu、Mn、La、W、Ni、Zr等元素的一种以上的合金,且含有10wt%~95wt%的Cr、使其它元素为30wt%以下的合金。具体而言,能够使用Fe-18~22Cr合金。通过使用金属和合金材料,SOFC系统的机械性强度变高,能够应对急速升温降温。充分利用该特性而能够搭载在汽车中。另外,关于合金的组成,通过增加Cr而使阴极20和阳极40的热膨胀率接近固体氧化物电解质层10的热膨胀率,因此单元电池变得更不容易破裂。并且,Cr较多的合金耐热性优异,能够抑制发电时的单元电池劣化。但是,由于要抑制成本和阴极侧的Cr中毒,优选Cr的含量较少。以上的内容中Fe-18~22Cr的组成是相对能够获得平衡的组成,因而是优选的。
此外,作为在阴极20和阳极40中使用的电子传导性材料的主成分,可以使用陶瓷。例如,能够使用掺杂有Sr的LaCrO3、掺杂有La的SrTiO3等。这些材料在还原性气氛和氧化性气氛较广的分压范围中是稳定的物质,与其它材料(电解质)的反应性也较低,是适用于制造工艺的材料。另外,陶瓷材料的高温安定性比金属和合金材料优异,因此如果是耐久性较好的SOFC系统,优选陶瓷材料。此外,例如,电子传导性材料在400℃以上的温度下传导率为10S·cm-1以上,是具有与金属大致相同的传导率的材料。
此外,在氧离子传导性材料和电子传导性材料分别采用不同的材料的情况下,当混合使用多种氧离子传导性材料时,只要在阴极20和阳极40中氧离子传导性材料的主成分是共通的即可,优选多种氧离子传导性材料各自是共通的。另外,在氧离子传导性材料和电子传导性材料分别采用不同的材料的情况下,当混合使用多种电子传导性材料时,在阴极20和阳极40中只要电子传导性材料的主成分是共通的即可,优选多种电子传导性材料各自是共通的。
阴极20和阳极40的厚度优选为50μm以下,更优选为30μm以下。将改性气体作为燃料使用的情况下,能够对电化学反应有效地做出贡献的电极的厚度通常为30μm程度,因为在直接使用烃类燃料的情况下,有效电极厚度变得更厚,通常为50μm程度。
阴极20和阳极40也可以包含催化剂。例如,作为阴极20和阳极40的催化剂,能够使用Ni(NO3)3、NiCl3等Ni化合物。作为Ni的添加方法能够使用在烧制后含浸于Ni(NO3)3、NiCl3等的溶液的方法。
固体氧化物电解质层10优选以在氧化钪(Sc2O3)和氧化钇(Y2O3)中掺杂了6mol%~15mol%的ZrO2等为主成分。氧化钪(Sc2O3)+氧化钇(Y2O3)的浓度在6mol~15mol%之间氧离子传导性最高,优选使用该组分的材料。另外,固体氧化物电解质层10的厚度优选为20μm以下,更优选为10μm以下。电解质越薄越好,但为了以两侧的气体不泄露的方式来制造,优选1μm以上的厚度。
第一金属多孔质层30和第二金属多孔质层50没有特别的限定。例如,能够使用Ni等金属。此外,优选使用包含C、Si、Al、Nb、Mo、Y、Ce、Cr、Fe、Ti、Cu、Mn、La、W、Ni、Zr等元素的一种以上的合金,且含有10wt%~95wt%的Cr,使Fe、Cr以外的微量添加元素为10wt%以下,其余为Fe成分的合金。具体而言,能够使用Fe-18~22Cr合金。
另外,优选第一金属多孔质部30a和第二金属多孔质部50a的空隙率为30%以上70%以下,更优选为40%以上60%以下。因为当空隙率小于30%时,气体扩散被抑制,有可能使发电量降低。另一方面,因为空隙率大于70%时金属多孔质部的强度不足,有可能不能发挥作为气体流路的支承的功能。另外,第一金属多孔质部30a和第二金属多孔质部50a的厚度优选为150μm以下50μm以上,更优选为100μm以下。变得更薄且SOFC系统整体的体积变小,对于小型化是有利的,但是为了确保必要的气体流量,需要50μm以上的厚度。另外,第一金属多孔质层30和第二金属多孔质层50是用于形成气体流路的支承物,流路的厚度与第一金属多孔质层30和第二金属多孔质层50的厚度大致为相同程度。此外,气体流路30b和气体流路50b使用在200~600℃的温度范围消失的材料,制作浆料按线和间距(line andspace)进行印刷浆料。作为能够消失的材料没有特别的限定,能够举出丙烯酸树脂等有机物。
本实施方式的燃料电池堆200中,不使用如将钢板进行冲压而制作的内部连接结构,而使用如下的内部连接结构,即在分隔件60(致密金属层)的一个面设置有第一金属多孔质部30a(第一金属多孔质部)和气体流路30b(第一气体流路),在分隔件60的另一个面设置有第二金属多孔质部50a(第二金属多孔质部)和气体流路50b(第二气体流路)的内部连接结构。若为这样的内部连接结构,能够使用印刷技术和一体烧制技术通过烧结来制作内部连接结构。由此,能够使内部连接结构较薄。其结果是,能够使燃料电池堆200小型化。
此外,在使用印刷技术和一体烧制技术制作的燃料电池100中,金属部分的比例变高。因为在现有技术的单元电池中陶瓷NiO作为支承体使用,与此不同,在本实施方式中由于通过与内部连接结构一体烧制来制作,因此不需要支承体,能够使金属的体积比例提高。例如,相对于燃料电池堆200金属部分的体积比例为70%以上。在这样的结构中,金属材料的杨氏模量较高因而比较不容易破裂。
使第一金属多孔质部30a和第二金属多孔质部50a烧结于分隔件60的两侧,第一金属多孔质部30a和第二金属多孔质部50a与分隔件60的紧贴性(密接性)变高。由此,能够有效地抑制急速升温降温时结构体的变形。另外,第一金属多孔质部30a与阴极20烧结,第二金属多孔质部50a与阳极40烧结,由此内部连接结构与单元电池部分的紧贴性也变高。
接着,关于燃料电池堆200的制造方法,进行说明。
(致密金属用材料的制造步骤)
作为致密金属用材料,将金属粉末(例如,粒径为1μm~10μm)、增塑剂(例如,为了调节片的紧贴性而调节至1wt%~6wt%)、溶剂(用甲苯、2-丙醇(IPA)、1-丁醇、萜品醇、乙酸丁酯、乙醇等,根据粘度为20wt%~30wt%)、粘合剂(PVB(聚乙烯醇缩丁醛)、丙烯酸树脂、乙基纤维素等)混合而形成浆料。为了通过烧结形成致密体,没有混合消失材料。致密金属用材料作为形成分隔件60、框31和框51的材料使用。有机成分(粘合剂固体部分和增塑剂)与金属粉末的体积比例如为1:4~1:1的范围。
(多孔质金属用材料的制作步骤)
作为多孔质金属用材料,将金属粉末(例如,粒径为10μm~100μm)、增塑剂(例如,为了调节片的紧贴性,调节至1wt%~6wt%)、溶剂(用甲苯、2-丙醇(IPA)、1-丁醇、萜品醇、乙酸丁酯、乙醇等,根据粘度为20wt%~30wt%)、消失材料(有机物)、粘合剂(PVB、丙烯酸树脂、乙基纤维素等)混合而形成浆料。多孔质金属用材料作为用于形成第一金属多孔质部30a和第二金属多孔质部50a的材料使用。使有机成分(消失材料、粘合剂固体部分、增塑剂)与金属粉末的体积比例如为1:1~20:1的范围,根据空隙率来调节有机成分量。
(电极层用材料的制作步骤)
作为电极层用材料,将电子传导性材料粉末(例如,粒径为100nm~10μm)、氧离子传导性材料粉末(例如,粒径为100nm~10μm)、催化剂(例如,粒径为10nm~1μm的Ni化合物等)、溶剂(用甲苯、2-丙醇(IPA)、1-丁醇、萜品醇、乙酸丁酯、乙醇等,根据粘度为20wt%~30wt%)、增塑剂(例如,为了调节片的紧贴性,调节至1wt%~6wt%)、消失材料(有机物)和粘合剂(PVB、丙烯酸树脂、乙基纤维素等)混合而形成浆料。作为Ni的添加方法,能够使用在烧制后含浸于Ni(NO3)3、NiCl3等的溶液的方法。使有机成分(消失材料、粘合剂固体部分、增塑剂)与电子传导性材料粉末的体积比例如形成为1:1~5:1的范围,根据空隙率来调节有机成分量。使电子传导性材料粉末与氧离子传导性材料粉末的体积比例例如为3:7~7:3的范围。
(致密混合层用材料的制作步骤)
作为致密混合层用材料,将电子传导性材料粉末(例如,粒径为1μm~10μm)、氧离子传导性材料粉末(例如,粒径为10nm~10μm)、溶剂(用甲苯、2-丙醇(IPA)、1-丁醇、萜品醇、乙酸丁酯、乙醇等,根据粘度为20wt%~30wt%)、增塑剂(例如,为了调节片的紧贴性,调节至1wt%~6wt%)和粘合剂(PVB、丙烯酸树脂、乙基纤维素等)混合而形成浆料。由于是以阻断气体为目的的层,因此不混合催化剂和消失材料。
(电解质层用材料的制作步骤)
作为电解质层用材料,将氧离子传导性材料粉末(例如是ScYSZ、YSZ等,粒径为10nm~1000nm)、溶剂(用甲苯、2-丙醇(IPA)、1-丁醇、萜品醇、乙酸丁酯、乙醇等,根据粘度为20wt%~30wt%)、增塑剂(例如,为了调节片的紧贴性,调节至1wt%~6wt%)和粘合剂(PVB、丙烯酸树脂、乙基纤维素等)混合而形成浆料。使有机成分(粘合剂固体部分、增塑剂)与氧离子传导性材料粉末的体积比例如为6:4~3:4的范围。
(气体流路形成材料的制作步骤)
使用消失材料(丙烯酸树脂、聚酰亚胺树脂等有机物),将增塑剂(例如,为了调节片的紧贴性,调节至1wt%~6wt%)、溶剂(用甲苯、2-丙醇(IPA)、1-丁醇、萜品醇、乙酸丁酯、乙醇等,根据粘度为20wt%~30wt%)、粘合剂(PVB、丙烯酸树脂、乙基纤维素等)混合而形成浆料。
首先,如图4A的上图所例示的那样,在PET(聚对苯二甲酸乙二醇酯)膜71上将致密金属用材料以形成大致矩形形状的方式涂覆20μm~35μm,由此形成金属粉末层72。例如,金属粉末层72具有大致矩形形状,作为一例具有一边的长度为60mm~70mm的正方形状。接着,通过在金属粉末层72的相对的2侧面侧的端部印刷致密金属用材料来形成2个框73。关于框73,根据层叠和切割的精度,例如使宽度为1mm~10mm的范围,使长度为60mm~70mm的范围。接着,在金属粉末层72上,在2个框73之间印刷多孔质金属用材料,由此形成金属粉末图案74。例如,如图4A下图所例示的那样,以隔开规定的间隔的方式形成多个带状的金属粉末图案74。接着,将气体流路形成材料79以金属粉末图案74的逆图案进行印刷,以填埋空的空间的方式形成气体流路形成材料79。由此,形成第一层叠体91。框73的厚度例如为100μm~200μm。金属粉末图案74的厚度例如为框73的厚度±10μm。此外,图4A的右下图为俯视图。
接着,如图4B的上图所例示的那样,在PET膜75上将电解质层用材料以形成与金属粉末层72大致相同形状的方式涂敷5μm~15μm,由此形成电解质层76。接着,在电解质层76的相对的2侧面侧的端部印刷致密电极层用材料,由此形成2个框77。关于框77,根据层叠和切割的精度,例如使幅为1mm~10mm的范围,使长度为60mm~70mm的范围。接着,在电解质层76上在2个框77之间印刷电极层用材料,由此形成电极层78(与框77相对的逆图案层)。由此,能够形成第二层叠体92。框77的厚度例如为15μm~40μm。电极层78的厚度例如为框77的厚度±3μm。其中,图4B的右下图为俯视图。
接着,如图5A中所例示的那样,将第一层叠体91层叠在第二层叠体92上。在该情况下,将第二层叠体92翻转使得将电极层78层叠在金属粉末图案74上。此外,使得框77层叠在框73上。由此,形成第三层叠体93。另外,将PET75剥离。
接着,如图5B中所例示的那样,在第三层叠体93上层叠另一第三层叠体93。在该情况下,以将电解质层76层叠在电解质层76上的方式来层叠该另一第三层叠体93。此外,使该另一第三层叠体93以2个电解质层76相对的状态旋转90°。即,在第三层叠体93和另一第三层叠体93中,使配置框73和框77的侧面是不同的。由此,形成第四层叠体94。
接着,如图5C中所例示的那样,在剥离了PET膜71的状态下,将第四层叠体94层叠多个(例如200个)。由此,形成成型体95。其中,在成型体95中,电解质层76与烧制后的固体氧化物电解质层10对应,电解质层76的上表面(第一面)上的电极层78与烧制后的阴极20对应,该电极层78上的金属粉末图案74与烧制后的第一金属多孔质部30a对应,电解质层76的下表面(第二面)下的电极层78与烧制后的阳极40对应,当該电极层78下的金属粉末图案74与烧制后的第二金属多孔质部50a对应,金属粉末层72与烧制后的分隔件60对应。
对该成型体95以例如100MPa的压力进行流体静压冲压。将各层紧贴的成型体95切割成边的长度为60mm~65mm的正方形。之后,在大气气氛中进行脱粘合剂处理。有机成分在200℃~700℃之间慢慢地分解,因此为了抑制脱粘合剂处理的不良状况,在200℃~700℃的温度范围内耗费1周左右的时间来慢慢地升温。之后,在700℃下维持1小时程度。
接着,将除去了粘合剂的成型体95移至还原烧制炉,在100%H2、0.1~4%H2-Ar气氛等还原性气氛中进行烧制。能够依照公知的烧结一体型的SOFC堆的制造方法。即,以构成的金属和陶瓷材料的至少一部分被烧结而能够获得致密质或者多孔质的所希望的烧制体的方式来实施。优选使全部的要素一起烧结。例如,能够以1200℃以上1550℃以下的温度进行加热处理,更优选的是1250℃以上1400℃以下的温度。此外,上述烧制温度下的烧制时间没有特别的限定,不过由于慢慢地烧制的方式能够抑制各层的收缩差,例如,可以采用数小时~数十小时程度等。此外,气体流路形成材料79可在任意热处理中消失。
之后,根据需要使阴极20和阳极40含浸催化剂,由此完成燃料电池堆200。例如,使阳极40含浸催化剂时,用掩模带将阴极20封闭而含浸在硝酸Ni或者氯化Ni的溶液中,进行干燥。另一方面,将阴极20含浸在硝酸Ag、硝酸Pr或者成为LSM、LSC、LSCF这样的硝酸盐前体溶液中,进行干燥。之后,在大气气氛中,以300℃~850℃进行热处理,使所含浸的试剂分解、反应,成为所希望的催化剂。
在本实施方式的制造方法中,准备层叠体,然后烧制该层叠体,其中,该层叠体中,在金属粉末层72上,以隔开规定的间隔的方式配置多个气体流路形成材料79和具有金属粉末的金属粉末图案74(第一图案),在该多个金属粉末图案74上层叠电极层78(第一电极层),在电极层78上配置电解质层76,在金属粉末层72下,以隔开规定的间隔的方式配置多个气体流路形成材料79和具有金属粉末的金属粉末图案74(第二图案),在该多个金属粉末图案74下层叠电极层78(第二电极层)。
依照该制造方法,能够使用印刷技术和一体烧制技术来制作内部连接结构。由此,能够使内部连接结构形成得较薄。其结果是,能够使燃料电池堆200小型化。另外,通过使第一金属多孔质部30a和第二金属多孔质部50a烧结于分隔件60的两侧,能够提高第一金属多孔质部30a和第二金属多孔质部50a与分隔件60的紧贴性。由此,能够有效地抑制在急速升温降温时构造体的变形。另外,第一金属多孔质部30a与阴极20烧结,第二金属多孔质部50a与阳极40烧结,由此也能够提高内部连接结构与单元电池部分的紧贴性。
【实施例】
按照上述实施方式,制作了燃料电池堆200。作为致密金属用材料,使用了粒径20μm的Fe-Cr合金粉末。作为多孔质金属用材料,使用了粒径20μm的Fe-Cr合金粉末。作为电极层用材料,使用了粒径5μm的Fe-Cr合金粉末、100nm的10Sc1YSZ粉末。作为致密混合层用材料,使用了粒径5μm的Fe-Cr合金粉末、100nm的10Sc1YSZ粉末。作为电解质用材料使用了粒径100nm的10Sc1YSZ粉末。作为气体流路形成材料,使用了丙烯酸树脂。在一体烧制后的内部连接结构中,分隔件60为98%的致密体,厚度为40μm。气体流路30b的宽度为1mm。由于为了使空气流动而设计地比较厚,因此气体流路30b的厚度为95μm。此外,气体流路50b的宽度为1mm,由于为了使燃料气体流动而设计地比较薄,因此气体流路50b的厚度为70μm。另外,第一金属多孔质部30a的宽度为1mm,与气体流路30b为相同高度,致密度为大约70vol%。第二金属多孔质部50a的宽度为1mm,与气体流路50b为相同高度,致密度为大约70vol%。由分隔件60、第一金属多孔质层30和第二金属多孔质层50构成的内部连接结构的总厚度为205μm。
以上,对本发明的实施例进行了详细说明,但本发明并不限定于上述的特定的实施例,在权利要求所记载的本发明的主旨的范围内能够进行各种变形、改变。

Claims (8)

1.一种燃料电池堆,其特征在于,包括:
具有氧离子传导性的固体氧化物电解质层被2层电极层夹持着的第一燃料电池和第二燃料电池;
由金属材料构成的分隔件,其配置在所述第一燃料电池与所述第二燃料电池之间;以及
内部连接结构,其在所述分隔件的所述第一燃料电池侧设置有第一金属多孔质部和第一气体流路,在所述分隔件的所述第二燃料电池侧设置有第二金属多孔质部和第二气体流路。
2.如权利要求1所述的燃料电池堆,其特征在于:
所述分隔件的致密度为90%以上。
3.如权利要求1或2所述的燃料电池堆,其特征在于:
所述分隔件的厚度为100μm以下。
4.如权利要求1~3中任一项所述的燃料电池堆,其特征在于:
所述第一金属多孔质部和所述第二金属多孔质部的致密度为30%以上80%以下。
5.如权利要求1~4中任一项所述的燃料电池堆,其特征在于:
所述第一金属多孔质部、所述分隔件和所述第二金属多孔质部依次层叠,所述第一金属多孔质部、所述致密金属层和所述第二金属多孔质部的层叠方向的总厚度为300μm以下。
6.如权利要求1~5中任一项所述的燃料电池堆,其特征在于:
所述内部连接结构由如下材料构成,即在所述第一气体流路供给了含氢的燃料气体且在所述第二气体流路供给了含氧的氧化剂气体时,所述第一燃料电池侧的电子传导性变得比所述第二燃料电池侧的电子传导性高的材料。
7.如权利要求6所述的燃料电池堆,其特征在于:
所述内部连接结构由与氧接触时能够在表面形成氧化覆膜的材料构成。
8.一种燃料电池堆的制造方法,其特征在于,包括:
准备层叠体的步骤,所述层叠体中,在金属粉末层上以隔开规定的间隔的方式配置多个具有消失材料和金属粉末的第一图案,在该多个第一图案上层叠第一电极层,在所述第一电极层上配置电解质层,在所述金属粉末层下以隔开规定的间隔的方式配置多个具有消失材料和金属粉末的第二图案,在该多个第二图案下层叠第二电极层;以及
烧制所述层叠体的步骤。
CN201911172576.5A 2018-11-28 2019-11-26 燃料电池堆及其制造方法 Active CN111244520B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018222503A JP7245036B2 (ja) 2018-11-28 2018-11-28 燃料電池スタックおよびその製造方法
JP2018-222503 2018-11-28

Publications (2)

Publication Number Publication Date
CN111244520A true CN111244520A (zh) 2020-06-05
CN111244520B CN111244520B (zh) 2024-11-26

Family

ID=70770441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911172576.5A Active CN111244520B (zh) 2018-11-28 2019-11-26 燃料电池堆及其制造方法

Country Status (3)

Country Link
US (1) US11575137B2 (zh)
JP (1) JP7245036B2 (zh)
CN (1) CN111244520B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745618A (zh) * 2021-08-28 2021-12-03 山东工业陶瓷研究设计院有限公司 一种sofc电池及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484048B2 (ja) * 2020-03-10 2024-05-16 太陽誘電株式会社 固体酸化物型燃料電池およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146363A (ja) * 1986-07-16 1988-06-18 Mitsubishi Electric Corp 燃料電池
US20060286433A1 (en) * 2005-06-15 2006-12-21 Rakowski James M Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
CN101821891A (zh) * 2007-08-02 2010-09-01 夏普株式会社 燃料电池堆及燃料电池系统
JP2012160367A (ja) * 2011-02-01 2012-08-23 Denso Corp 燃料電池スタックおよび燃料電池
JP2012190746A (ja) * 2011-03-14 2012-10-04 Denso Corp 燃料電池スタックおよび燃料電池
CN103647100A (zh) * 2008-03-26 2014-03-19 财团法人日本精细陶瓷中心 层叠型固体氧化物燃料电池用的堆结构体、层叠型固体氧化物燃料电池及其制造方法
CN107146898A (zh) * 2017-05-31 2017-09-08 安徽理工大学 一种质子交换模燃料电池金属双极板湿磨温压烧结方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767680A (en) * 1986-07-16 1988-08-30 Mitsubishi Denki Kabushiki Kaisha Fuel cell
JPH0475262A (ja) * 1990-07-18 1992-03-10 Fuji Electric Co Ltd 固体電解質型燃料電池
US6146780A (en) * 1997-01-24 2000-11-14 Lynntech, Inc. Bipolar separator plates for electrochemical cell stacks
US20040247978A1 (en) * 2001-09-18 2004-12-09 Takayuki Shimamune Bipolar plate for fuel cell and method for production thereof
JP2004247174A (ja) 2003-02-13 2004-09-02 Ngk Spark Plug Co Ltd 固体電解質型燃料電池
JP4492119B2 (ja) * 2003-07-24 2010-06-30 日産自動車株式会社 燃料電池用集電構造及び固体酸化物形燃料電池スタック
WO2005041329A1 (en) * 2003-09-30 2005-05-06 Pirelli & C. S.P.A. Solid oxide fuel cell
US20120082920A1 (en) * 2010-10-05 2012-04-05 Delphi Technologies Inc. Co-fired metal interconnect supported sofc
US9054366B2 (en) * 2010-11-24 2015-06-09 Siemens Aktiengesellschaft Electrical energy storage device
TWI447995B (zh) * 2011-12-20 2014-08-01 Ind Tech Res Inst 雙極板與燃料電池
US9017897B2 (en) * 2012-12-13 2015-04-28 Delphi Technologies, Inc. Metal composite material for attachment to ceramic
JP2014163286A (ja) 2013-02-25 2014-09-08 Yamaha Motor Co Ltd V型エンジン、船外機、および船舶
JP2014163287A (ja) 2013-02-25 2014-09-08 Yamaha Motor Co Ltd 船舶推進装置および船舶
GB2517927B (en) * 2013-09-04 2018-05-16 Ceres Ip Co Ltd Process for forming a metal supported solid oxide fuel cell
US9634335B2 (en) * 2014-01-09 2017-04-25 Bloom Energy Corporation Duplex coating for SOFC interconnect
JP6443615B2 (ja) 2014-08-11 2018-12-26 日産自動車株式会社 燃料電池ユニット、該燃料電池ユニットの製造方法、及び燃料電池スタック
EP3182924B1 (en) 2014-08-21 2021-03-31 Koninklijke Philips N.V. Attachment with resonant structure for personal care appliance
DE102015226753A1 (de) * 2015-12-28 2017-06-29 Robert Bosch Gmbh Verfahren zur Herstellung einer Strömungsplatte für eine Brennstoffzelle
US10236528B2 (en) * 2016-07-18 2019-03-19 Northwestern University Three dimensional extrusion printed electrochemical devices
JP6311952B1 (ja) 2016-08-29 2018-04-18 FCO Power株式会社 インターコネクタ、固体酸化物形燃料電池スタック、及び固体酸化物形燃料電池スタックの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146363A (ja) * 1986-07-16 1988-06-18 Mitsubishi Electric Corp 燃料電池
US20060286433A1 (en) * 2005-06-15 2006-12-21 Rakowski James M Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
CN101821891A (zh) * 2007-08-02 2010-09-01 夏普株式会社 燃料电池堆及燃料电池系统
CN103647100A (zh) * 2008-03-26 2014-03-19 财团法人日本精细陶瓷中心 层叠型固体氧化物燃料电池用的堆结构体、层叠型固体氧化物燃料电池及其制造方法
JP2012160367A (ja) * 2011-02-01 2012-08-23 Denso Corp 燃料電池スタックおよび燃料電池
JP2012190746A (ja) * 2011-03-14 2012-10-04 Denso Corp 燃料電池スタックおよび燃料電池
CN107146898A (zh) * 2017-05-31 2017-09-08 安徽理工大学 一种质子交换模燃料电池金属双极板湿磨温压烧结方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745618A (zh) * 2021-08-28 2021-12-03 山东工业陶瓷研究设计院有限公司 一种sofc电池及其制备方法

Also Published As

Publication number Publication date
JP7245036B2 (ja) 2023-03-23
JP2020087792A (ja) 2020-06-04
CN111244520B (zh) 2024-11-26
US20200168917A1 (en) 2020-05-28
US11575137B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
KR101162806B1 (ko) 자가-지지형 세라믹 멤브레인 및 전기화학 전지 및 이것을포함하는 전기화학 전지 적층체
KR101045168B1 (ko) 완전하게 밀봉되고 지지된 세라믹 막, 및 이를 포함하는전기화학 전지 및 전기화학 전지 적층체
US20030232230A1 (en) Solid oxide fuel cell with enhanced mechanical and electrical properties
JP2008538449A5 (zh)
CN111146445B (zh) 燃料电池、燃料电池堆、以及它们的制造方法
JP2020021646A (ja) メタルサポートセルの支持構造
CN111244520B (zh) 燃料电池堆及其制造方法
US20120082920A1 (en) Co-fired metal interconnect supported sofc
JPH10172590A (ja) 固体電解質型燃料電池
JP5079991B2 (ja) 燃料電池セル及び燃料電池
CN111244498B (zh) 燃料电池和燃料电池堆
JP7658769B2 (ja) 固体酸化物型燃料電池およびその製造方法
JP7629444B2 (ja) 固体酸化物型燃料電池、固体酸化物型燃料電池スタック、及び固体酸化物型燃料電池の製造方法
JP4480377B2 (ja) 燃料電池セル及び燃料電池
JP5074004B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP7607393B2 (ja) 固体酸化物型燃料電池およびその製造方法
KR102707813B1 (ko) 고체산화물 연료전지 및 이의 제조방법
JP2005216619A (ja) 燃料電池セル及び燃料電池
JP7552073B2 (ja) 固体酸化物形燃料電池
JP2024077292A (ja) 固体酸化物型燃料電池およびその製造方法
WO2020261935A1 (ja) 燃料極-固体電解質層複合体、燃料極-固体電解質層複合部材、燃料電池、および、燃料電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant