CN111244218B - Solar cell and preparation method thereof - Google Patents
Solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN111244218B CN111244218B CN201811446260.6A CN201811446260A CN111244218B CN 111244218 B CN111244218 B CN 111244218B CN 201811446260 A CN201811446260 A CN 201811446260A CN 111244218 B CN111244218 B CN 111244218B
- Authority
- CN
- China
- Prior art keywords
- layer
- light guide
- solar cell
- metal electrode
- guide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 80
- 239000002184 metal Substances 0.000 claims abstract description 80
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 15
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 239000004408 titanium dioxide Substances 0.000 claims description 7
- 239000005083 Zinc sulfide Substances 0.000 claims description 6
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 6
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 6
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- AZCUJQOIQYJWQJ-UHFFFAOYSA-N oxygen(2-) titanium(4+) trihydrate Chemical compound [O-2].[O-2].[Ti+4].O.O.O AZCUJQOIQYJWQJ-UHFFFAOYSA-N 0.000 claims description 5
- 238000007740 vapor deposition Methods 0.000 claims description 5
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 claims description 4
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 4
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 4
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 4
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 229940105963 yttrium fluoride Drugs 0.000 claims description 3
- RBORBHYCVONNJH-UHFFFAOYSA-K yttrium(iii) fluoride Chemical compound F[Y](F)F RBORBHYCVONNJH-UHFFFAOYSA-K 0.000 claims description 3
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 claims description 2
- 229910001632 barium fluoride Inorganic materials 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
- H10F77/42—Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
- H10F77/484—Refractive light-concentrating means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
- H10F71/1272—The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising at least three elements, e.g. GaAlAs or InGaAsP
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明提供了一种太阳能电池及其制备方法。该太阳能电池包括自下而上依次设置的衬底、外延层和金属电极,该太阳能电池还包括设置在金属电极的远离外延层的表面上的光导结构,光导结构包括沿远离金属电极的方向依次叠置的至少两层光导层,且光导层沿远离金属电极的方向折射率依次增大。在太阳能电池的金属电极上设置光导结构,由于光导结构的光导层沿远离金属电极的方向折射率依次增大,因此通过光的折射作用可以将投射在金属电极的太阳光引导至可以进行光吸收的位置进而对该部分原本不被吸收的太阳光加以利用,进而有效提高太阳能电池单位面积上光的利用效率。
The invention provides a solar cell and a preparation method thereof. The solar cell includes a substrate, an epitaxial layer and a metal electrode sequentially arranged from bottom to top, the solar cell also includes a light guide structure arranged on a surface of the metal electrode away from the epitaxial layer, and the light guide structure includes a sequence along the direction away from the metal electrode. At least two layers of light guide layers are stacked, and the refractive index of the light guide layers increases sequentially along the direction away from the metal electrode. The light guide structure is arranged on the metal electrode of the solar cell. Since the refractive index of the light guide layer of the light guide structure increases in turn along the direction away from the metal electrode, the sunlight projected on the metal electrode can be guided by the refraction of light to be able to absorb light. The position of the solar cell is used to make use of the part of the sunlight that was not originally absorbed, thereby effectively improving the utilization efficiency of light per unit area of the solar cell.
Description
技术领域technical field
本发明涉及太阳能电池领域,具体而言,涉及一种太阳能电池及其制备方法。The present invention relates to the field of solar cells, in particular, to a solar cell and a preparation method thereof.
背景技术Background technique
GaAs禁带宽度为1.43ev,是吸收太阳光最优选材料之一。由砷化镓制备的太阳能电池具有转化效率高、温度特性好、抗辐射能力强等特点,且随着金属有机化合物气相沉积(MOCVD)和分子束外延(MBE)等技术的发展,GaAs太阳能电池应用越来越广泛。GaAs has a forbidden band width of 1.43 eV and is one of the most preferred materials for absorbing sunlight. Solar cells prepared from gallium arsenide have the characteristics of high conversion efficiency, good temperature characteristics, and strong radiation resistance. With the development of metal organic compound vapor deposition (MOCVD) and molecular beam epitaxy (MBE) technologies, GaAs solar cells Applications are becoming more and more widespread.
砷化镓太阳能电池芯片制作一般都是在外延层结构制备完成后,制作前电极,前电极常选择金、银、铜、铝等导电性好的金属电极,起到收集电流、导通电池的目的。前电极布局按照需要设计,所占电池芯片的面积5%左右。由于金属电极不透光,因此投射在电池芯片上前电极的太阳光不能得到利用,这降低了砷化镓太阳能电池单位面积上光的利用效率。Gallium arsenide solar cell chips are generally fabricated after the epitaxial layer structure is prepared, and the front electrode is usually made of gold, silver, copper, aluminum and other metal electrodes with good conductivity, which can collect current and turn on the battery. Purpose. The layout of the front electrode is designed according to the needs, which occupies about 5% of the area of the battery chip. Since the metal electrode is opaque to light, the sunlight projected on the front electrode on the battery chip cannot be utilized, which reduces the utilization efficiency of light per unit area of the gallium arsenide solar cell.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供一种太阳能电池及其制备方法,以解决现有技术中的太阳能电池单位面积上光利用率低的问题。The main purpose of the present invention is to provide a solar cell and a preparation method thereof, so as to solve the problem of low utilization rate of light per unit area of the solar cell in the prior art.
为了实现上述目的,根据本发明的一个方面,提供了一种太阳能电池,太阳能电池包括自下而上依次设置的衬底、外延层和金属电极,该太阳能电池还包括设置在金属电极的远离外延层的表面上的光导结构,光导结构包括沿远离金属电极的方向依次叠置的至少两层光导层,且光导层沿远离金属电极的方向折射率依次增大。In order to achieve the above object, according to one aspect of the present invention, a solar cell is provided. The solar cell includes a substrate, an epitaxial layer and a metal electrode sequentially arranged from bottom to top. A light guide structure on the surface of the layer, the light guide structure includes at least two light guide layers stacked in sequence along the direction away from the metal electrode, and the refractive index of the light guide layers increases sequentially along the direction away from the metal electrode.
进一步地,上述光导结构包括:第一光导层,设置在金属电极的远离外延层的表面上;第二光导层,设置在第一光导层的远离金属电极的表面上,第一光导层的折射率小于第二光导层的折射率。Further, the above-mentioned light guide structure includes: a first light guide layer, disposed on the surface of the metal electrode away from the epitaxial layer; the second light guide layer, disposed on the surface of the first light guide layer away from the metal electrode, the The ratio is less than the refractive index of the second light guide layer.
进一步地,上述第一光导层的折射率在1.3~1.7之间,优选第一光导层的厚度在50~200nm之间,优选第一光导层为氟化镁层、氟化铝层、氟化钡层、氟化钇层、氟化镧层和硅氧化物层中的任意一种或多种的复合层。Further, the refractive index of the first optical guide layer is between 1.3 and 1.7, preferably the thickness of the first optical guide layer is between 50 and 200 nm, and preferably the first optical guide layer is a magnesium fluoride layer, an aluminum fluoride layer, a fluoride A composite layer of any one or more of the barium layer, the yttrium fluoride layer, the lanthanum fluoride layer and the silicon oxide layer.
进一步地,上述第二光导层的折射率在1.7~2.05之间,优选第二光导层的厚度在50~200nm之间,优选第二光导层为氮化硅层、氧化锆层、氧化铪层和氧化锌层中的任意一种或多种的复合层。Further, the refractive index of the second optical guide layer is between 1.7 and 2.05, preferably the thickness of the second optical guide layer is between 50 and 200 nm, and preferably the second optical guide layer is a silicon nitride layer, a zirconium oxide layer, and a hafnium oxide layer. and a composite layer of any one or more of the zinc oxide layers.
进一步地,上述光导结构还包括第三光导层,第三光导层设置在第二光导层的远离第一光导层的表面上,优选第三光导层的折射率在2.02~2.5之间,进一步优选第三光导层的厚度在50~200nm之间,更优选第三光导层为二氧化钛层、五氧化三钛层、氧化铈层和硫化锌层中的任意一种或多种的复合层。Further, the above-mentioned light guide structure further includes a third light guide layer, and the third light guide layer is disposed on the surface of the second light guide layer away from the first light guide layer. Preferably, the refractive index of the third light guide layer is between 2.02 and 2.5, and more preferably The thickness of the third optical guide layer is between 50 and 200 nm, and more preferably the third optical guide layer is a composite layer of any one or more of a titanium dioxide layer, a titanium pentoxide layer, a cerium oxide layer and a zinc sulfide layer.
进一步地,上述外延层的部分表面上设置有金属电极,另一部分表面裸露,太阳能电池还包括减反射层和第三光导层,减反射层设置在外延层的裸露表面上,第三光导层设置在第二光导层的远离第一光导层的表面上,且减反射层的折射率和第三光导层的折射率相同且均大于第二光导层的折射率,优选减反射层的折射率在2.02~2.5之间,进一步优选减反射层的厚度在50~200nm之间,更优选减反射层为二氧化钛层、五氧化三钛层、氧化铈层和硫化锌层中的任意一种或多种的复合层。Further, a part of the surface of the above-mentioned epitaxial layer is provided with a metal electrode, and another part of the surface is exposed, the solar cell also includes an anti-reflection layer and a third light guide layer, the anti-reflection layer is provided on the exposed surface of the epitaxial layer, and the third light guide layer is provided. On the surface of the second light guide layer away from the first light guide layer, and the refractive index of the anti-reflection layer is the same as that of the third light guide layer and both are greater than the refractive index of the second light guide layer, preferably the refractive index of the anti-reflection layer is Between 2.02 and 2.5, it is further preferred that the thickness of the anti-reflection layer is between 50 and 200 nm, and it is more preferred that the anti-reflection layer is any one or more of a titanium dioxide layer, a titanium pentoxide layer, a cerium oxide layer and a zinc sulfide layer. composite layer.
进一步地,上述太阳能电池为硅基太阳能电池、异质结太阳能电池或化合物半导体薄膜型太阳能电池,优选化合物半导体薄膜型太阳能电池为砷化镓太阳能电池或铜铟镓硒太阳能电池,外延层包括依次远离衬底叠置的缓冲层、背场层、基层、发射层、窗口层和欧姆接触层组成的单结,或者包括由隧道结连接的多个单结。Further, the above-mentioned solar cell is a silicon-based solar cell, a heterojunction solar cell or a compound semiconductor thin film type solar cell. Preferably, the compound semiconductor thin film type solar cell is a gallium arsenide solar cell or a copper indium gallium selenide solar cell. A single junction consisting of a buffer layer, a back field layer, a base layer, an emission layer, a window layer and an ohmic contact layer stacked away from the substrate, or including a plurality of single junctions connected by tunnel junctions.
进一步地,上述衬底为GaAs衬底、Ge衬底或SiC衬底,优选金属电极为金电极、铜电极或银电极。Further, the above-mentioned substrate is a GaAs substrate, a Ge substrate or a SiC substrate, and the metal electrode is preferably a gold electrode, a copper electrode or a silver electrode.
根据本发明的另一方面,提供了一种上述任一种的太阳能电池的制备方法,该制备方法包括在衬底上依次形成外延层和金属电极,其特征在于,制备方法还包括在金属电极的远离外延层的表面上设置光导结构,光导结构包括沿远离金属电极的方向依次叠置的至少两层光导层,且光导层沿远离金属电极的方向折射率依次增大。According to another aspect of the present invention, there is provided a preparation method of any one of the above solar cells, the preparation method includes sequentially forming an epitaxial layer and a metal electrode on a substrate, and characterized in that, the preparation method further includes forming an epitaxial layer on the metal electrode. A light guide structure is arranged on the surface away from the epitaxial layer, and the light guide structure includes at least two layers of light guide layers stacked in sequence along the direction away from the metal electrode, and the refractive index of the light guide layers increases sequentially along the direction away from the metal electrode.
进一步地,上述在金属电极的远离外延层的表面上设置光导结构的过程包括:在外延层上设置掩膜层;在金属电极上依次设置第一光导层、第二光导层和第三光导层;去除掩膜层,在外延层上设置减反射层,或者在金属电极的远离外延层的表面上设置光导结构的过程包括:在外延层上设置掩膜层;在金属电极上依次设置第一光导层和第二光导层;去除掩膜层,在外延层上和第二光导层上设置折光材料,以在第二光导层上形成第三光导层,在外延层上形成减反射层;优选第一光导层、第二光导层、第三光导层和折光材料各自独立地采用蒸镀或溅射的方式设置。Further, the above-mentioned process of disposing the light guide structure on the surface of the metal electrode away from the epitaxial layer includes: disposing a mask layer on the epitaxial layer; disposing the first light guide layer, the second light guide layer and the third light guide layer on the metal electrode in sequence The process of removing the mask layer, setting an anti-reflection layer on the epitaxial layer, or setting a light guide structure on the surface of the metal electrode away from the epitaxial layer includes: setting a mask layer on the epitaxial layer; The light guide layer and the second light guide layer; the mask layer is removed, and a refractive material is arranged on the epitaxial layer and the second light guide layer to form a third light guide layer on the second light guide layer, and an antireflection layer is formed on the epitaxial layer; preferably The first light guide layer, the second light guide layer, the third light guide layer and the refracting material are independently provided by vapor deposition or sputtering.
应用本发明的技术方案,在太阳能电池的金属电极上设置光导结构,由于光导结构的光导层沿远离金属电极的方向折射率依次增大,因此通过光的折射作用可以将投射在金属电极的太阳光引导至可以进行光吸收的位置进而对该部分原本不被吸收的太阳光加以利用,进而有效提高太阳能电池单位面积上光的利用效率。Applying the technical solution of the present invention, a light guide structure is arranged on the metal electrode of the solar cell. Since the refractive index of the light guide layer of the light guide structure increases in turn along the direction away from the metal electrode, the sunlight projected on the metal electrode can be refracted by the refraction of light. The light is guided to a position where light can be absorbed, and the part of sunlight that is not originally absorbed can be utilized, thereby effectively improving the utilization efficiency of light per unit area of the solar cell.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings forming a part of the present application are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:
图1示出了根据本发明的一种优选实施例的太阳能电池结构示意图;以及FIG. 1 shows a schematic diagram of a solar cell structure according to a preferred embodiment of the present invention; and
图2示出了光线在图1所示的太阳能电池的光导结构中的传导示意图。FIG. 2 shows a schematic diagram of light conduction in the light guide structure of the solar cell shown in FIG. 1 .
其中,上述附图包括以下附图标记:Wherein, the above-mentioned drawings include the following reference signs:
10、衬底;20、外延层;30、金属电极;41、第一光导层;42、第二光导层;43、第三光导层;50、减反射层。10, substrate; 20, epitaxial layer; 30, metal electrode; 41, first light guide layer; 42, second light guide layer; 43, third light guide layer; 50, anti-reflection layer.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict. The present invention will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
如本申请背景技术所分析的,现有技术中由于金属电极不透光,投射在电池芯片上金属电极的太阳光不能得到利用,这降低了太阳能电池单位面积上光的利用效率,为了解决该问题,本申请提供了一种太阳能电池及其制备方法。As analyzed in the background art of this application, in the prior art, since the metal electrodes are opaque to light, the sunlight projected on the metal electrodes on the battery chips cannot be utilized, which reduces the utilization efficiency of light per unit area of the solar cells. In order to solve this problem Problem, the present application provides a solar cell and a preparation method thereof.
在本申请一种典型的实施方式中,提供了一种太阳能电池,如图1所示,该太阳能电池包括自下而上依次设置的衬底10、外延层20和金属电极30,太阳能电池还包括设置在金属电极30的远离外延层20的表面上的光导结构,光导结构包括沿远离金属电极30的方向依次叠置的至少两层光导层,且光导层沿远离金属电极30的方向折射率依次增大。In a typical embodiment of the present application, a solar cell is provided. As shown in FIG. 1 , the solar cell includes a
在太阳能电池的金属电极30上设置光导结构,由于光导结构的光导层沿远离金属电极30的方向折射率依次增大,因此通过光的折射作用可以将投射在金属电极30的太阳光引导至可以进行光吸收的位置进而对该部分原本不被吸收的太阳光加以利用(可以参考图2),进而有效提高太阳能电池单位面积上光的利用效率。A light guide structure is arranged on the
在本申请一种实施例中,如图1所示,优选上述光导结构包括第一光导层41和第二光导层42,第一光导层41设置在金属电极30的远离外延层20的表面上;第二光导层42设置在第一光导层41的远离金属电极30的表面上,第一光导层41的折射率小于第二光导层42的折射率。上述光导结构的结构简单,通过调整第一光导层41和第二光导层42的折射率差异即可有效地改变进入光吸收位置的太阳光的量,提高太阳能电池单位面积上光的利用效率。In an embodiment of the present application, as shown in FIG. 1 , preferably, the above-mentioned light guide structure includes a first
用于本申请的第一光导层41的材料可以有多种,优选控制第一光导层41的折射率在1.3~1.7之间,该折射率范围为目前常用固态折射率材料的最低范围,另外为了将尽可能多的长波段太阳光(380nm至870nm)引入可吸收位置,优选第一光导层41的厚度在50~200nm之间。为了更好地与太阳能电池的材料相适应,优选第一光导层41为氟化镁层、氟化铝层、氟化钡层、氟化钇层、氟化镧层和硅氧化物层中的任意一种或多种的复合层。There are many kinds of materials used for the first
用于本申请的第一光导层41的材料可以有多种,优选控制第二光导层42的折射率在1.7~2.05之间。另外为了与第一光导层41的折射率相配合将尽可能多的长波段太阳光(380nm至870nm)引入可吸收位置,优选第二光导层42的厚度在50~200nm之间。为了更好地与第一光导层41的材料相匹配,优选第二光导层42为氮化硅层、氧化锆层、氧化铪层和氧化锌层中的任意一种或多种的复合层。There may be various materials for the first
在本申请另一种实施例中,如图1所示,上述光导结构还包括第三光导层43,第三光导层43设置在第二光导层42的远离第一光导层41的表面上,优选第三光导层43的折射率在2.02~2.5之间,进一步优选第三光导层43的厚度在50~200nm之间,更优选第三光导层43为二氧化钛层、五氧化三钛层、氧化铈层和硫化锌层中的任意一种或多种的复合层。如图2所示,通过设置第三光导层43,进一步增加光线的折射角度,使更多的光线被引入可吸收位置,进一步提高单位面积上光的利用效率。In another embodiment of the present application, as shown in FIG. 1 , the above-mentioned light guide structure further includes a third
在本申请另一种实施例中,优选外延层20的部分表面上设置有金属电极30,另一部分表面裸露,太阳能电池还包括减反射层50和第三光导层43,减反射层50设置在外延层20的裸露表面上,第三光导层43设置在第二光导层42的远离第一光导层41的表面上,且减反射层50的折射率和第三光导层43的折射率相同且均大于第二光导层42的折射率,优选减反射层50的折射率在2.02~2.5之间,进一步优选减反射层50的厚度在50~200nm之间,更优选减反射层50为二氧化钛层、五氧化三钛层、氧化铈层和硫化锌层中的任意一种或多种的复合层。将减反射层50设置在光导结构上,将其作为光导层使用,同样能够起到改变光路提高光利用效率的效果。In another embodiment of the present application, it is preferable that a part of the surface of the
当然,本申请的光导结构中光导层的数量不限于上述两层或三层,本领域技术人员还可以根据金属电极的面积、外延层的面积以及所采用的各光导层的折射率大小调整光导层的数量,无论是调整至几层,均在本申请的保护范围之内。Of course, the number of light guide layers in the light guide structure of the present application is not limited to the above two or three layers, and those skilled in the art can also adjust the light guide according to the area of the metal electrode, the area of the epitaxial layer and the refractive index of each light guide layer used. The number of layers, whether adjusted to several layers, is within the scope of protection of the present application.
本申请的光导结构可以用于多种太阳能电池中,优选上述太阳能电池为硅基太阳能电池、异质结太阳能电池或化合物半导体薄膜型太阳能电池。The light-guiding structure of the present application can be used in various solar cells, preferably the above-mentioned solar cells are silicon-based solar cells, heterojunction solar cells or compound semiconductor thin-film solar cells.
在一种优选的实施例中,上述化合物半导体薄膜型太阳能电池为砷化镓太阳能电池或铜铟镓硒太阳能电池,外延层20包括依次远离衬底10叠置的缓冲层、背场层、基层、发射层、窗口层和欧姆接触层组成的单结,或者包括由隧道结连接的多个单结。即上述太阳能电池可以为单结太阳能电池也可以为多结太阳能电池。In a preferred embodiment, the compound semiconductor thin film solar cell is a gallium arsenide solar cell or a copper indium gallium selenide solar cell, and the
用于上述太阳能电池的衬底10可以根据具体的太阳能类型进行选择,优选上述衬底10为GaAs衬底、Ge衬底或SiC衬底。The
用于本申请的太阳能电池的金属电极30可以为太阳能电池中常用的金属电极30,为了提高导电效果,优选上述金属电极30为金电极、铜电极或银电极。The
在本申请另一种典型的实施方式中,提供了一种上述任一种的太阳能电池的制备方法,该制备方法包括在衬底10上依次形成外延层20和金属电极30,此外,该制备方法还包括在金属电极30的远离外延层20的表面上设置光导结构,光导结构包括沿远离金属电极30的方向依次叠置的至少两层光导层,且光导层沿远离金属电极30的方向折射率依次增大。In another typical embodiment of the present application, there is provided a preparation method of any one of the above solar cells, the preparation method includes sequentially forming an
本申请的制备方法在太阳能电池的金属电极30上设置光导结构,由于光导结构的光导层沿远离金属电极30的方向折射率依次增大,因此通过光的折射作用可以将投射在金属电极30的太阳光引导至可以进行光吸收的位置进而对该部分原本不被吸收的太阳光加以利用(可以参考图2),进而有效提高太阳能电池单位面积上光的利用效率。In the preparation method of the present application, a light guide structure is arranged on the
上述太阳能电池的外延层和金属电极的制作方法本领域技术人员均可参考现有技术,比如采用外延生长形成外延层,在此不再赘述。Those skilled in the art can refer to the prior art for the fabrication method of the above-mentioned epitaxial layer and metal electrode of the solar cell, for example, the epitaxial layer is formed by epitaxial growth, which will not be repeated here.
在本申请一种实施例中,在金属电极的远离外延层20的表面上设置光导结构的过程包括:在外延层上设置掩膜层;在金属电极上依次设置第一光导层41、第二光导层42和第三光导层43;去除掩膜层,在外延层上设置减反射层50。上述过程中,第三光导层43和减反射层50分步骤形成,可以灵活选择各自的材料。In an embodiment of the present application, the process of disposing the light guide structure on the surface of the metal electrode away from the
在本申请另一种实施例中,在金属电极30的远离外延层20的表面上设置光导结构的过程包括:在外延层上设置掩膜层;在金属电极30上依次设置第一光导层41和第二光导层42;去除掩膜层,在外延层20上和第二光导层42上设置折光材料,以在第二光导层42上形成第三光导层43,在外延层20上形成减反射层50。在上述过程中,第三光导层43和减反射层50同时形成,简化了制作流程。In another embodiment of the present application, the process of disposing the light guide structure on the surface of the
优选上述第一光导层41、第二光导层42、第三光导层43和折光材料各自独立地采用蒸镀或溅射的方式设置。Preferably, the first
上述蒸镀或溅射的具体实施过程可以参考现有技术,比如利用掩膜板遮盖不需要设置第一光导层的位置,然后利用的第一光导层材料进行蒸镀或溅射,具体的蒸镀工艺参数或溅射工艺参数可以在参考现有技术的基础上根据厚度要求进行调整,在此不再赘述。以下将结合实施例和对比例,进一步说明本申请的技术效果。The specific implementation process of the above evaporation or sputtering can refer to the prior art, such as using a mask to cover the position where the first optical guide layer does not need to be set, and then using the first optical guide layer material for evaporation or sputtering. Plating process parameters or sputtering process parameters can be adjusted according to thickness requirements on the basis of referring to the prior art, and details are not described herein again. The technical effects of the present application will be further described below with reference to the examples and comparative examples.
实施例1Example 1
1)将Ge衬底传入MOCVD设备中,按照如下方式生长各外延层:1) The Ge substrate is introduced into the MOCVD equipment, and each epitaxial layer is grown as follows:
将Ge衬底传入MOCVD设备中,通入H2气体,在800℃下对衬底进行高温清洗;The Ge substrate was introduced into the MOCVD equipment, and the H 2 gas was introduced to clean the substrate at a high temperature at 800 °C;
在清洗后的衬底上外延生长背场层,该背场层为Al0.5Ga0.5As其中,背场层的厚度为100nm,背场层的生长温度为800℃;A back field layer is epitaxially grown on the cleaned substrate, and the back field layer is Al 0.5 Ga 0.5 As, wherein the thickness of the back field layer is 100 nm, and the growth temperature of the back field layer is 800°C;
在背场层上生长基层,基层为GaAs,基层的厚度为2000nm,基层的生长温度为800℃;The base layer is grown on the back field layer, the base layer is GaAs, the thickness of the base layer is 2000nm, and the growth temperature of the base layer is 800°C;
在基层上生长C掺杂的GaAs发射层,其中,发射层厚度为500nm;growing a C-doped GaAs emitting layer on the base layer, wherein the thickness of the emitting layer is 500 nm;
在发射层上生长窗口层,优选窗口层为Al0.5Ga0.5As,窗口层的厚度为100nm,窗口层的生长温度为800℃;A window layer is grown on the emission layer, preferably the window layer is Al 0.5 Ga 0.5 As, the thickness of the window layer is 100nm, and the growth temperature of the window layer is 800°C;
在窗口层上生长接触层,接触层为P掺杂的GaAs层,P掺杂的浓度为1E20,接触层的厚度为100nm,接触层的生长温度为800℃。A contact layer is grown on the window layer, the contact layer is a P-doped GaAs layer, the P-doped concentration is 1E20, the thickness of the contact layer is 100 nm, and the growth temperature of the contact layer is 800°C.
2)在外延层上定义出金属电极区,其余部分覆上掩膜,蒸镀金制作金属电极;2) Define a metal electrode region on the epitaxial layer, cover the rest with a mask, and evaporate gold to make metal electrodes;
3)在金属电极上蒸镀氟化镁(折射率1.38)形成第一光导层,厚度为120nm;3) Evaporating magnesium fluoride (refractive index 1.38) on the metal electrode to form a first light guide layer with a thickness of 120 nm;
4)在第一光导层上蒸镀氧化铪(折射率1.95)形成第二光导层,厚度为90nm;4) Vapor deposition of hafnium oxide (refractive index 1.95) on the first light guide layer to form a second light guide layer with a thickness of 90 nm;
5)去除掩膜;5) Remove the mask;
6)在金属电极以及裸露的外延层表面蒸镀TiO2(折射率2.35),以在金属电极上形成第三光导层,在裸露的外延层表上形成减反射层,厚度为70nm。6) Evaporate TiO 2 (refractive index 2.35) on the surface of the metal electrode and the exposed epitaxial layer to form a third optical guide layer on the metal electrode, and form an anti-reflection layer on the surface of the exposed epitaxial layer with a thickness of 70 nm.
实施例2Example 2
与实施例1不同之处在于,第一光导层为氟化铝,折射率为1.35;第二光导层为氧化锌,折射率为2.0。The difference from Example 1 is that the first light guide layer is aluminum fluoride with a refractive index of 1.35; the second light guide layer is zinc oxide with a refractive index of 2.0.
实施例3Example 3
与实施例1不同之处在于,第一光导层为氟化镧,折射率为1.58;第二光导层为氧化锆,折射率为2.05;第三光导层为氧化铈,折射率为2.20。The difference from Example 1 is that the first light guide layer is lanthanum fluoride with a refractive index of 1.58; the second light guide layer is zirconium oxide with a refractive index of 2.05; the third light guide layer is cerium oxide with a refractive index of 2.20.
实施例4Example 4
与实施例1不同之处在于,第一光导层厚度为50nm。The difference from Example 1 is that the thickness of the first optical guide layer is 50 nm.
实施例5Example 5
与实施例1不同之处在于,第一光导层厚度为200nm。The difference from Example 1 is that the thickness of the first optical guide layer is 200 nm.
实施例6Example 6
与实施例1不同之处在于,第二光导层厚度为200nm。The difference from Example 1 is that the thickness of the second optical guide layer is 200 nm.
实施例7Example 7
与实施例1不同之处在于,第二光导层厚度为50nm。The difference from Example 1 is that the thickness of the second optical guide layer is 50 nm.
实施例8Example 8
与实施例1不同之处在于,第三光导层厚度为50nm。The difference from Example 1 is that the thickness of the third optical guide layer is 50 nm.
实施例9Example 9
与实施例1不同之处在于,第三光导层厚度为200nm。The difference from Example 1 is that the thickness of the third optical guide layer is 200 nm.
实施例10Example 10
与实施例1不同之处在于,第二光导层厚度为40nm。The difference from Example 1 is that the thickness of the second optical guide layer is 40 nm.
实施例11Example 11
与实施例1不同之处在于,第一光导层厚度为210nm。The difference from Example 1 is that the thickness of the first optical guide layer is 210 nm.
实施例12Example 12
与实施例1不同之处在于在第二光导层上没有设置第三光导层,只在外延层裸露表面设置了二氧化钛。The difference from Example 1 is that the third optical guide layer is not provided on the second optical guide layer, and only titanium dioxide is provided on the exposed surface of the epitaxial layer.
对比例1Comparative Example 1
与实施例1不同之处在于,没有设置任何光导层,仅在外延层裸露表面设置了二氧化钛。The difference from Example 1 is that no optical guide layer is provided, and only titanium dioxide is provided on the exposed surface of the epitaxial layer.
采用IV测试对各实施例和对比例的太阳能电池的光电转换效率进行检测,检测结果见表1。The photoelectric conversion efficiency of the solar cells of each embodiment and the comparative example was tested by IV test, and the test results are shown in Table 1.
表1Table 1
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:From the above description, it can be seen that the above-mentioned embodiments of the present invention achieve the following technical effects:
在太阳能电池的金属电极上设置光导结构,由于光导结构的光导层沿远离金属电极的方向折射率依次增大,因此通过光的折射作用可以将投射在金属电极的太阳光引导至可以进行光吸收的位置进而对该部分原本不被吸收的太阳光加以利用,进而有效提高太阳能电池单位面积上光的利用效率。The light guide structure is arranged on the metal electrode of the solar cell. Since the refractive index of the light guide layer of the light guide structure increases in turn along the direction away from the metal electrode, the sunlight projected on the metal electrode can be guided by the refraction of light to be able to absorb light. The position of the solar cell is used to make use of the part of the sunlight that was not originally absorbed, thereby effectively improving the utilization efficiency of light per unit area of the solar cell.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811446260.6A CN111244218B (en) | 2018-11-29 | 2018-11-29 | Solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811446260.6A CN111244218B (en) | 2018-11-29 | 2018-11-29 | Solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111244218A CN111244218A (en) | 2020-06-05 |
CN111244218B true CN111244218B (en) | 2022-08-12 |
Family
ID=70863836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811446260.6A Expired - Fee Related CN111244218B (en) | 2018-11-29 | 2018-11-29 | Solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111244218B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114337520A (en) * | 2021-11-29 | 2022-04-12 | 江苏澄擎新能源有限公司 | Semi-flexible high-quality solar panel structure |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5110370A (en) * | 1990-09-20 | 1992-05-05 | United Solar Systems Corporation | Photovoltaic device with decreased gridline shading and method for its manufacture |
JPH11223707A (en) * | 1998-02-06 | 1999-08-17 | Nikon Corp | Optical member and its production |
TW200839382A (en) * | 2008-05-08 | 2008-10-01 | Quan-Long Zhuang | Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method |
CN101806927A (en) * | 2010-02-25 | 2010-08-18 | 海洋王照明科技股份有限公司 | High-reflecting film and preparation method thereof |
CN101834548A (en) * | 2010-03-11 | 2010-09-15 | 利达光电股份有限公司 | Light-guide light-gathering generating device |
CN102235640A (en) * | 2010-04-26 | 2011-11-09 | 颖台科技股份有限公司 | Multilayer light guide device |
CN102810572A (en) * | 2011-05-31 | 2012-12-05 | 初星太阳能公司 | Refractive index matching of thin film layers for photovoltaic devices and method of manufacturing the same |
CN202839704U (en) * | 2012-09-05 | 2013-03-27 | 广西天洋机电设备有限公司 | Novel low-concentrating photovoltaic power generation module |
CN103035752A (en) * | 2013-01-25 | 2013-04-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Crystalline silicon solar battery including nanometer structure antireflection film and preparation method thereof |
CN104300894A (en) * | 2014-10-30 | 2015-01-21 | 中国建材国际工程集团有限公司 | Light guide element for non-tracking concentrating photovoltaic system |
CN105068177A (en) * | 2015-09-18 | 2015-11-18 | 京东方科技集团股份有限公司 | Optical assembly and display device |
CN205845968U (en) * | 2016-07-20 | 2016-12-28 | 宁波欧达光电有限公司 | A kind of marine monitoring equipment solar module |
CN107178914A (en) * | 2017-07-10 | 2017-09-19 | 广东工业大学 | A kind of free of sun tracking energy beam condensing unit |
KR20180099613A (en) * | 2015-11-06 | 2018-09-05 | (주)에이피텍 | Solar cell module |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110277816A1 (en) * | 2010-05-11 | 2011-11-17 | Sierra Solar Power, Inc. | Solar cell with shade-free front electrode |
-
2018
- 2018-11-29 CN CN201811446260.6A patent/CN111244218B/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5110370A (en) * | 1990-09-20 | 1992-05-05 | United Solar Systems Corporation | Photovoltaic device with decreased gridline shading and method for its manufacture |
JPH11223707A (en) * | 1998-02-06 | 1999-08-17 | Nikon Corp | Optical member and its production |
TW200839382A (en) * | 2008-05-08 | 2008-10-01 | Quan-Long Zhuang | Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method |
CN101806927A (en) * | 2010-02-25 | 2010-08-18 | 海洋王照明科技股份有限公司 | High-reflecting film and preparation method thereof |
CN101834548A (en) * | 2010-03-11 | 2010-09-15 | 利达光电股份有限公司 | Light-guide light-gathering generating device |
CN102235640A (en) * | 2010-04-26 | 2011-11-09 | 颖台科技股份有限公司 | Multilayer light guide device |
CN102810572A (en) * | 2011-05-31 | 2012-12-05 | 初星太阳能公司 | Refractive index matching of thin film layers for photovoltaic devices and method of manufacturing the same |
CN202839704U (en) * | 2012-09-05 | 2013-03-27 | 广西天洋机电设备有限公司 | Novel low-concentrating photovoltaic power generation module |
CN103035752A (en) * | 2013-01-25 | 2013-04-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Crystalline silicon solar battery including nanometer structure antireflection film and preparation method thereof |
CN104300894A (en) * | 2014-10-30 | 2015-01-21 | 中国建材国际工程集团有限公司 | Light guide element for non-tracking concentrating photovoltaic system |
CN105068177A (en) * | 2015-09-18 | 2015-11-18 | 京东方科技集团股份有限公司 | Optical assembly and display device |
KR20180099613A (en) * | 2015-11-06 | 2018-09-05 | (주)에이피텍 | Solar cell module |
CN205845968U (en) * | 2016-07-20 | 2016-12-28 | 宁波欧达光电有限公司 | A kind of marine monitoring equipment solar module |
CN107178914A (en) * | 2017-07-10 | 2017-09-19 | 广东工业大学 | A kind of free of sun tracking energy beam condensing unit |
Also Published As
Publication number | Publication date |
---|---|
CN111244218A (en) | 2020-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8530739B2 (en) | Nanowire multijunction solar cell | |
JP2015073130A (en) | Four-junction inversion-modified multijunction solar cell with two modified layers | |
JP2010118666A (en) | Alternative substrate of inversion altered multi-junction solar battery | |
CN106067493A (en) | A kind of microlattice mismatch quantum well solar cell and its preparation method | |
ES2947007T3 (en) | Multi-junction laminated laser photovoltaic cell and manufacturing method thereof | |
CN101304051B (en) | Solar cells with graded superlattice structure | |
CN210073891U (en) | Multi-junction solar cell capable of improving anti-irradiation performance | |
CN111244218B (en) | Solar cell and preparation method thereof | |
CN106784037B (en) | A kind of more statement of account coloured light batteries in the longitudinal direction of GaAs materials and its cell array | |
CN111725332A (en) | A high-performance triple-junction gallium arsenide solar cell | |
KR102175147B1 (en) | Solar cell and manufacturing method thereof | |
CN103346190B (en) | Four knot tandem solar cell of Si substrate and preparation method thereof | |
CN110311006A (en) | A multi-junction solar cell with improved radiation resistance performance and its manufacturing method | |
US20120167975A1 (en) | Solar Cell And Method For Manufacturing The Same | |
US9853180B2 (en) | Inverted metamorphic multijunction solar cell with surface passivation | |
US20200365755A1 (en) | Surface passivation of iii-v optoelectronic devices | |
Fan et al. | Epitaxial GaAsP/Si tandem solar cells with integrated light trapping | |
Pan et al. | The property of ITO produced by optical thin film coating for solar cell | |
JP2017143174A (en) | Photoelectric conversion device | |
JP2737705B2 (en) | Solar cell | |
CN111200030B (en) | Solar cell and manufacturing method thereof | |
RU190887U1 (en) | SOLAR ELEMENT BASED ON PLATE NANOCRYSTALS (AL, GA) AS WITH TRANSVERSE HETERO-TRANSMISSIONS | |
US20250107309A1 (en) | Tandem solar cell and method of manufacturing the same | |
EP2996162B1 (en) | Inverted metamorphic multijunction solar cell with multiple metamorphic layers | |
KR102559479B1 (en) | Method for manufacturing a compound semiconductor solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210107 Address after: Unit 611, unit 3, 6 / F, building 1, yard 30, Yuzhi East Road, Changping District, Beijing 102208 Applicant after: Zishi Energy Co.,Ltd. Address before: Room a129-1, No. 10, Zhongxing Road, science and Technology Park, Changping District, Beijing Applicant before: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220812 |
|
CF01 | Termination of patent right due to non-payment of annual fee |