[go: up one dir, main page]

CN111725332A - A high-performance triple-junction gallium arsenide solar cell - Google Patents

A high-performance triple-junction gallium arsenide solar cell Download PDF

Info

Publication number
CN111725332A
CN111725332A CN202010528211.8A CN202010528211A CN111725332A CN 111725332 A CN111725332 A CN 111725332A CN 202010528211 A CN202010528211 A CN 202010528211A CN 111725332 A CN111725332 A CN 111725332A
Authority
CN
China
Prior art keywords
type doped
layer
thickness
type
gainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010528211.8A
Other languages
Chinese (zh)
Inventor
杜伟
何键华
黄嘉敬
陈柯
方亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co ltd
Original Assignee
Zhongshan Dehua Chip Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co ltd filed Critical Zhongshan Dehua Chip Technology Co ltd
Priority to CN202010528211.8A priority Critical patent/CN111725332A/en
Publication of CN111725332A publication Critical patent/CN111725332A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • H10F77/315Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/19Photovoltaic cells having multiple potential barriers of different types, e.g. tandem cells having both PN and PIN junctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种高性能三结砷化镓太阳电池,包括Ge衬底,采用MOCVD技术在所述Ge衬底上外延生长Ge底电池、第一隧穿结、GaInAs中电池、第二隧穿结和GaInP顶电池;其中,在所述GaInP顶电池的发射区上沉积暂态金属氧化物TMO,得到TMO窗口层,该TMO窗口层的禁带宽度大于3.0eV,其暂态金属氧化物能够与GaInP顶电池的金属上电极形成良好的欧姆接触,其折射系数通过在1.4‑2.0的范围内变化调整,能够有效起到减反射膜的作用,并且通过优化暂态金属氧化物的光电性能,可以提高电池的短路电流和光电转换效率,同时也可以简化电池的结构,减少芯片工艺步奏,有效降低成本。

Figure 202010528211

The invention discloses a high-performance triple-junction gallium arsenide solar cell, comprising a Ge substrate, on which a Ge bottom cell, a first tunnel junction, a GaInAs middle cell, and a second tunnel junction are epitaxially grown by using MOCVD technology. Through junction and GaInP top cell; wherein, a transient metal oxide TMO is deposited on the emitter region of the GaInP top cell to obtain a TMO window layer, the band gap of the TMO window layer is greater than 3.0eV, and the transient metal oxide It can form a good ohmic contact with the metal upper electrode of the GaInP top cell, and its refractive index can be adjusted in the range of 1.4‑2.0, which can effectively play the role of an anti-reflection film, and optimize the photoelectric properties of the transient metal oxide. , can improve the short-circuit current and photoelectric conversion efficiency of the battery, and can also simplify the structure of the battery, reduce the chip process step, and effectively reduce the cost.

Figure 202010528211

Description

一种高性能三结砷化镓太阳电池A high-performance triple-junction gallium arsenide solar cell

技术领域technical field

本发明涉及太阳电池的技术领域,尤其是指一种高性能三结砷化镓太阳电池。The invention relates to the technical field of solar cells, in particular to a high-performance triple-junction gallium arsenide solar cell.

背景技术Background technique

目前,三结砷化镓由于光电转换效率高、抗辐照性能好已经被广泛的应用在空间电源系统。对于砷化镓太阳电池,传统的窗口层材料禁带宽度普遍在2.0eV左右,对蓝光有着明显的光吸收,因此有必要采用新的窗口层材料或者新的器件结构来提升顶电池的短波响应,改善中顶电池之间的电流匹配,进一步提升电池的整体性能。At present, triple-junction gallium arsenide has been widely used in space power systems due to its high photoelectric conversion efficiency and good radiation resistance. For GaAs solar cells, the band gap of traditional window layer materials is generally around 2.0 eV, which has obvious light absorption to blue light. Therefore, it is necessary to adopt new window layer materials or new device structures to improve the short-wave response of top cells. , to improve the current matching between the middle and top batteries, and further improve the overall performance of the battery.

砷化镓太阳电池的窗口层通常采用GaInP、AlGaInP、AlInP、AlCaAs等宽禁带材料来抑制界面复合和限制电荷反向扩散(窗口层位于减反膜和发射层之间)。为了提高电池对于光谱的利用,通常采用Al2O3/TiO2、ZnS/MgF2等双层膜作为砷化镓太阳电池的减反膜。然而以上的减反膜和理想的100%的透过效果还有相当的距离,而且成本较高。The window layer of gallium arsenide solar cells usually adopts wide bandgap materials such as GaInP, AlGaInP, AlInP, AlCaAs, etc. to suppress the interface recombination and limit the reverse diffusion of charges (the window layer is located between the anti-reflection film and the emission layer). In order to improve the utilization of the spectrum by the battery, double-layer films such as Al 2 O 3 /TiO 2 and ZnS/MgF 2 are usually used as the anti-reflection film of the gallium arsenide solar cell. However, the above anti-reflection film still has a considerable distance from the ideal 100% transmission effect, and the cost is relatively high.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术的缺点与不足,提出了一种高性能三结砷化镓太阳电池,采用宽禁带的暂态金属氧化物作为三结砷化镓太阳电池的窗口层,其良好的光电性能可以替代传统的基于化合物半导体的窗口层材料,同时可以有效的减少入射光的反射。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and propose a high-performance triple-junction gallium arsenide solar cell, which adopts a wide bandgap transient metal oxide as the window layer of the triple-junction gallium arsenide solar cell, Its good optoelectronic properties can replace traditional window layer materials based on compound semiconductors, and at the same time can effectively reduce the reflection of incident light.

为实现上述目的,本发明所提供的技术方案为:一种高性能三结砷化镓太阳电池,包括Ge衬底,采用MOCVD技术在所述Ge衬底上外延生长Ge底电池、第一隧穿结、GaInAs中电池、第二隧穿结和GaInP顶电池;其中,在所述GaInP顶电池的发射区上沉积暂态金属氧化物TMO,得到TMO窗口层,该TMO窗口层的禁带宽度大于3.0eV,其暂态金属氧化物能够与GaInP顶电池的金属上电极形成良好的欧姆接触,其折射系数通过在1.4-2.0的范围内变化调整,能够起到减反射膜的作用,并且通过优化暂态金属氧化物的光电性能,能够提高电池的短路电流和光电转换效率。In order to achieve the above purpose, the technical solution provided by the present invention is: a high-performance triple-junction gallium arsenide solar cell, comprising a Ge substrate, and using MOCVD technology to epitaxially grow a Ge bottom cell and a first tunnel on the Ge substrate. Through junction, GaInAs middle cell, second tunnel junction and GaInP top cell; wherein, transient metal oxide TMO is deposited on the emitter region of the GaInP top cell to obtain a TMO window layer, the forbidden band width of the TMO window layer More than 3.0eV, its transient metal oxide can form a good ohmic contact with the metal upper electrode of the GaInP top cell, and its refractive index can be adjusted in the range of 1.4-2.0, which can play the role of anti-reflection film, and through Optimizing the photoelectric properties of transient metal oxides can improve the short-circuit current and photoelectric conversion efficiency of batteries.

进一步,所述暂态金属氧化物为氧化钼或氧化钨。Further, the transient metal oxide is molybdenum oxide or tungsten oxide.

进一步,所述Ge底电池、GaInAs中电池和GaInP顶电池晶格匹配;Further, the Ge bottom cell, the GaInAs middle cell and the GaInP top cell are lattice matched;

所述GaInP顶电池包括按照层状结构依次叠加的P型掺杂AlInP或AlGaInP背场层,P型掺杂GaInP基区、n型掺杂GaInP发射区、TMO窗口层;其中,所述P型掺杂AlInP或AlGaInP背场层的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInP基区的厚度300-600nm,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-100nm,掺杂浓度为1×1017-1×1019cm-3;所述TMO窗口层的厚度30-200nm;The GaInP top cell includes a P-type doped AlInP or AlGaInP back field layer, a P-type doped GaInP base region, an n-type doped GaInP emitter region, and a TMO window layer, which are sequentially stacked according to the layered structure; wherein, the P-type doped GaInP The thickness of the back field layer doped with AlInP or AlGaInP is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInP base region is 300-600 nm, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the TMO window layer The thickness of 30-200nm;

所述第二隧穿结包括按照层状结构叠加的n型GaInP层和p型AlGaAs层;其中,所述n型GaInP层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The second tunnel junction includes an n-type GaInP layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaInP layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ;

所述GaInAs中电池包括按照层状结构依次叠加的P型掺杂AlGaAs背场层、P型掺杂GaInAs基区、n型掺杂GaInP发射区、n型掺杂AlInP窗口层;其中,所述P型掺杂AlGaAs背场层的厚度500-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInAs基区的厚度1um-2um,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述n型掺杂AlInP窗口层的厚度30-100nm,掺杂浓度为1×1017-1×1019cm-3The GaInAs medium cell includes a P-type doped AlGaAs back field layer, a P-type doped GaInAs base region, an n-type doped GaInP emitter region, and an n-type doped AlInP window layer, which are sequentially stacked according to the layered structure; wherein, the The thickness of the P-type doped AlGaAs back field layer is 500-200nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInAs base region is 1um-2um, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the n-type doping The thickness of the hetero AlInP window layer is 30-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ;

所述第一隧穿结与GaInAs中电池之间设置有分布式布拉格反射器DBR,所述DBR包括依次交替生长的10-20个周期的n型掺杂AlGaAs和n型掺杂GaAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3A distributed Bragg reflector DBR is arranged between the first tunnel junction and the GaInAs middle cell, and the DBR includes 10-20 cycles of n-type doped AlGaAs and n-type doped GaAs alternately grown in sequence; wherein, The thickness of the n-type doped AlGaAs and the n-type doped GaAs is 30-100 nm, and the n-type doping concentration is 1×10 17 -1×10 19 cm -3 ;

所述第一隧穿结包括按照层状结构叠加的n型GaAs层和p型AlGaAs层;其中,所述n型GaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The first tunneling junction includes an n-type GaAs layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 .

进一步,所述GaInAs中电池和GaInP顶电池晶格匹配,所述Ge底电池与GaInAs中电池和GaInP顶电池晶格失配,并通过渐变缓冲层GB连接;Further, the GaInAs middle cell and the GaInP top cell are lattice matched, and the Ge bottom cell is lattice mismatched with the GaInAs middle cell and the GaInP top cell, and is connected through a graded buffer layer GB;

所述GaInP顶电池包括按照层状结构依次叠加的P型掺杂AlInP或AlGaInP背场层,P型掺杂GaInP基区、n型掺杂GaInP发射区、TMO窗口层;其中,所述P型掺杂AlInP或AlGaInP背场层的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInP基区的厚度300-600nm,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-100nm,掺杂浓度为1×1017-1×1019cm-3;所述TMO窗口层的厚度30-200nm;The GaInP top cell includes a P-type doped AlInP or AlGaInP back field layer, a P-type doped GaInP base region, an n-type doped GaInP emitter region, and a TMO window layer, which are sequentially stacked according to the layered structure; wherein, the P-type doped GaInP The thickness of the back field layer doped with AlInP or AlGaInP is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInP base region is 300-600 nm, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the TMO window layer The thickness of 30-200nm;

所述第二隧穿结包括按照层状结构叠加的n型GaInP层和p型AlGaAs层;其中,所述n型GaInP层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The second tunnel junction includes an n-type GaInP layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaInP layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ;

所述GaInAs中电池包括按照层状结构依次叠加的P型掺杂AlGaAs背场层、P型掺杂GaInAs基区、n型掺杂GaInP发射区、n型掺杂AlInP窗口层;其中,所述P型掺杂AlGaAs背场层的厚度500-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInAs基区的厚度1um-2um,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述n型掺杂AlInP窗口层的厚度30-100nm,掺杂浓度为1×1017-1×1019cm-3The GaInAs medium cell includes a P-type doped AlGaAs back field layer, a P-type doped GaInAs base region, an n-type doped GaInP emitter region, and an n-type doped AlInP window layer, which are sequentially stacked according to the layered structure; wherein, the The thickness of the P-type doped AlGaAs back field layer is 500-200nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInAs base region is 1um-2um, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the n-type doping The thickness of the hetero AlInP window layer is 30-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ;

所述第一隧穿结与GaInAs中电池之间依次设置有分布式布拉格反射器DBR和渐变缓冲层GB;所述DBR包括依次交替生长的10-20个周期的n型掺杂Aly(GaxIn1-x)1-yAs和n型掺杂GaxIn1-xAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3,y为0.9-1.0,x为0.9-1.0;所述GB包括多个依次叠加的GaxIn1-xAs子电池,采用In组分线性渐进和/或步进的方法将Ge底电池和GaxIn1-xAs子电池串联,x为0.9-1.0;A distributed Bragg reflector DBR and a graded buffer layer GB are sequentially arranged between the first tunnel junction and the GaInAs middle cell; the DBR includes 10-20 cycles of n-type doped Al y (Ga x In 1-x ) 1-y As and n-type doped Ga x In 1-x As; wherein, the thickness of the n-type doped AlGaAs and n-type doped GaAs is 30-100 nm, and the n-type doping concentration is 1×10 17 -1×10 19 cm -3 , y is 0.9-1.0, and x is 0.9-1.0; the GB includes a plurality of successively stacked Ga x In 1-x As sub-cells, using In composition linearity A progressive and/or step-by-step approach connects a Ge bottom cell and a Ga x In 1-x As sub-cell in series with x of 0.9-1.0;

所述第一隧穿结包括按照层状结构叠加的n型GaAs层和p型AlGaAs层;其中,所述n型GaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The first tunneling junction includes an n-type GaAs layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 .

进一步,所述Ge底电池、GaInAs中电池和GaInP顶电池的禁带宽度分别为0.67eV、1.3eV、1.8eV。Further, the forbidden band widths of the Ge bottom cell, the GaInAs middle cell and the GaInP top cell are 0.67eV, 1.3eV, and 1.8eV, respectively.

本发明与现有技术相比,具有如下优点与有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:

1、采用导电性良好的宽禁带暂态金属氧化物可以明显减少窗口层对入射光的吸收。1. The use of wide bandgap transient metal oxides with good conductivity can significantly reduce the absorption of incident light by the window layer.

2、暂态金属氧化物能够和金属电极形成良好的欧姆接触,可以减少传统工艺中砷化镓帽层外延生长,同时避免了芯片工艺中的帽层腐蚀工艺。2. The transient metal oxide can form a good ohmic contact with the metal electrode, which can reduce the epitaxial growth of the gallium arsenide cap layer in the traditional process, and avoid the cap layer corrosion process in the chip process.

3、暂态金属氧化物的折射系数可以通过工艺参数的调整在1.4-2.0的范围内变化,可以有效的起到减反射膜的作用。3. The refractive index of the transient metal oxide can be changed in the range of 1.4-2.0 by adjusting the process parameters, which can effectively play the role of anti-reflection film.

4、通过优化暂态金属氧化物窗口层材料的光电性能,可以明显地提高电池的短路电流和光电转换效率,同时也可以简化电池的结构,减少芯片工艺步奏,有效的降低成本。4. By optimizing the photoelectric properties of the transient metal oxide window layer material, the short-circuit current and photoelectric conversion efficiency of the battery can be significantly improved, and the structure of the battery can also be simplified, the chip process pace can be reduced, and the cost can be effectively reduced.

附图说明Description of drawings

图1是实施例1中正向晶格匹配的三结砷化镓太阳电池结构示意图。FIG. 1 is a schematic structural diagram of a triple-junction gallium arsenide solar cell with forward lattice matching in Example 1. FIG.

图2是实施例2中正向晶格失配的三结砷化镓太阳电池结构示意图。FIG. 2 is a schematic structural diagram of a triple-junction gallium arsenide solar cell with forward lattice mismatch in Example 2. FIG.

具体实施方式Detailed ways

下面结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific embodiments.

实施例1Example 1

参见图1所示,本实施例所提供的正向晶格匹配的三结砷化镓太阳电池,包括Ge衬底,将Ge衬底置于MOCVD操作室内,生长温度设置为500℃~800℃,在衬底上依次外延生长Ge底电池(亦可简称为Ge电池)、第一隧穿结、GaInAs中电池(亦可简称为GaInAs电池)、第二隧穿结和GaInP顶电池(亦可简称为GaInP电池),将完成外延生长后的衬底放入离子辅助沉积(IAD)或磁控溅射(Sputter)等设备,在GaInP顶电池的发射区上沉积暂态金属氧化物(TMO),得到TMO窗口层,其中,该暂态金属氧化物为氧化钼或氧化钨,该TMO窗口层的禁带宽度大于3.0eV,相同厚度的氧化钼、氧化钨等用作窗口层时在400nm波长的光吸收不超过1%,可以有效改善电池在400nm-550nm的量子效应,另外,该暂态金属氧化物可以与GaInP顶电池的金属上电极形成良好的欧姆接触,其折射系数通过在1.4-2.0的范围内变化调整,能够起到减反射膜的作用,并且通过优化暂态金属氧化物窗口层材料的光电性能,可以明显地提高电池的短路电流和光电转换效率,同时也可以简化电池的结构,减少芯片工艺步奏,有效降低成本。Referring to FIG. 1 , the forward lattice matched triple-junction gallium arsenide solar cell provided in this embodiment includes a Ge substrate. The Ge substrate is placed in a MOCVD operating chamber, and the growth temperature is set at 500° C. to 800° C. , on the substrate sequentially epitaxially grow Ge bottom cell (also referred to as Ge cell), first tunnel junction, GaInAs middle cell (also referred to as GaInAs cell), second tunnel junction and GaInP top cell (also referred to as GaInAs cell) GaInP cell for short), put the substrate after epitaxial growth into ion-assisted deposition (IAD) or magnetron sputtering (Sputter) and other equipment to deposit transient metal oxide (TMO) on the emitter area of GaInP top cell , obtain a TMO window layer, wherein, the transient metal oxide is molybdenum oxide or tungsten oxide, the forbidden band width of the TMO window layer is greater than 3.0eV, when molybdenum oxide, tungsten oxide, etc. of the same thickness are used as the window layer at a wavelength of 400nm The light absorption is not more than 1%, which can effectively improve the quantum effect of the battery at 400nm-550nm. In addition, the transient metal oxide can form a good ohmic contact with the metal upper electrode of the GaInP top battery, and its refractive index passes through 1.4- The adjustment within the range of 2.0 can play the role of an anti-reflection film, and by optimizing the photoelectric properties of the transient metal oxide window layer material, the short-circuit current and photoelectric conversion efficiency of the battery can be significantly improved, and the battery can also be simplified. Structure, reduce chip process steps, effectively reduce costs.

所述Ge底电池、GaInAs中电池和GaInP顶电池晶格匹配。The Ge bottom cell, GaInAs middle cell and GaInP top cell are lattice matched.

所述GaInP顶电池包括按照层状结构依次叠加的P型掺杂AlInP或AlGaInP背场层,P型掺杂GaInP基区、n型掺杂GaInP发射区、TMO窗口层;其中,所述P型掺杂AlInP或AlGaInP背场层的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInP基区的厚度300-600nm,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-100nm,掺杂浓度为1×1017-1×1019cm-3;所述TMO窗口层的厚度30-200nm。The GaInP top cell includes a P-type doped AlInP or AlGaInP back field layer, a P-type doped GaInP base region, an n-type doped GaInP emitter region, and a TMO window layer, which are sequentially stacked according to the layered structure; wherein, the P-type doped GaInP The thickness of the back field layer doped with AlInP or AlGaInP is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInP base region is 300-600 nm, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the TMO window layer The thickness of 30-200nm.

所述第二隧穿结包括按照层状结构叠加的n型GaInP层和p型AlGaAs层;其中,所述n型GaInP层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The second tunnel junction includes an n-type GaInP layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaInP layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 .

所述GaInAs中电池包括按照层状结构依次叠加的P型掺杂AlGaAs背场层、P型掺杂GaInAs基区、n型掺杂GaInP发射区、n型掺杂AlInP窗口层;其中,所述P型掺杂AlGaAs背场层的厚度500-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInAs基区的厚度1um-2um,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述n型掺杂AlInP窗口层的厚度30-100nm,掺杂浓度为1×1017-1×1019cm-3The GaInAs medium cell includes a P-type doped AlGaAs back field layer, a P-type doped GaInAs base region, an n-type doped GaInP emitter region, and an n-type doped AlInP window layer, which are sequentially stacked according to the layered structure; wherein, the The thickness of the P-type doped AlGaAs back field layer is 500-200nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInAs base region is 1um-2um, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the n-type doping The thickness of the hetero-AlInP window layer is 30-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 .

所述第一隧穿结与GaInAs中电池之间设置有分布式布拉格反射器(DBR),所述DBR包括依次交替生长的10-20个周期的n型掺杂AlGaAs和n型掺杂GaAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3A distributed Bragg reflector (DBR) is arranged between the first tunnel junction and the GaInAs middle cell, and the DBR includes 10-20 cycles of n-type doped AlGaAs and n-type doped GaAs grown alternately in sequence; Wherein, the thickness of the n-type doped AlGaAs and the n-type doped GaAs is 30-100 nm, and the n-type doping concentration is 1×10 17 -1×10 19 cm -3 .

所述第一隧穿结包括按照层状结构叠加的n型GaAs层和p型AlGaAs层;其中,所述n型GaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The first tunneling junction includes an n-type GaAs layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 .

实施例2Example 2

参见图2所示,本实施例所提供的正向晶格失配的三结砷化镓太阳电池与实施例1不同的是所述GaInAs中电池和GaInP顶电池晶格匹配,所述Ge底电池与GaInAs中电池和GaInP顶电池晶格失配,并通过渐变缓冲层(GB)连接,Ge底电池、GaInAs中电池和GaInP顶电池的禁带宽度优选为0.67eV、1.3eV、1.8eV;所述第一隧穿结与GaInAs中电池之间依次设置有分布式布拉格反射器(DBR)和渐变缓冲层(GB);所述DBR包括依次交替生长的10-20个周期的n型掺杂Aly(GaxIn1-x)1-yAs和n型掺杂GaxIn1-xAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3,y为0.9-1.0,x为0.9-1.0;所述GB包括多个依次叠加的GaxIn1-xAs子电池,采用In组分线性渐进和/或步进的方法将Ge底电池和GaxIn1-xAs子电池串联,x为0.9-1.0。Referring to FIG. 2 , the difference between the forward lattice mismatched triple-junction GaAs solar cell provided in this embodiment and Embodiment 1 is that the GaInAs middle cell and the GaInP top cell are lattice matched, and the Ge bottom cell is lattice-matched. The cell is lattice mismatched with the GaInAs middle cell and the GaInP top cell, and is connected through a graded buffer layer (GB). The forbidden band widths of the Ge bottom cell, the GaInAs middle cell and the GaInP top cell are preferably 0.67eV, 1.3eV, and 1.8eV; A distributed Bragg reflector (DBR) and a graded buffer layer (GB) are arranged between the first tunnel junction and the GaInAs middle cell in sequence; the DBR includes 10-20 cycles of n-type doping that alternately grow in sequence Aly(GaxIn1 -x ) 1- yAs and n-type doped GaxIn1 - xAs ; wherein, the thickness of the n-type doped AlGaAs and n-type doped GaAs is 30-100nm, n The doping concentration is 1×10 17 -1×10 19 cm -3 , y is 0.9-1.0, and x is 0.9-1.0; the GB includes a plurality of Ga x In 1-x As sub-cells stacked in sequence, using The In composition linearly progressive and/or stepped approach connects the Ge bottom cell and the Ga x In 1-x As sub-cell in series with x ranging from 0.9 to 1.0.

以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。The above-mentioned embodiments are only preferred embodiments of the present invention, and are not intended to limit the scope of implementation of the present invention. Therefore, any changes made according to the shape and principle of the present invention should be included within the protection scope of the present invention.

Claims (5)

1.一种高性能三结砷化镓太阳电池,包括Ge衬底,采用MOCVD技术在所述Ge衬底上外延生长Ge底电池、第一隧穿结、GaInAs中电池、第二隧穿结和GaInP顶电池;其特征在于:在所述GaInP顶电池的发射区上沉积暂态金属氧化物TMO,得到TMO窗口层,该TMO窗口层的禁带宽度大于3.0eV,其暂态金属氧化物能够与GaInP顶电池的金属上电极形成良好的欧姆接触,其折射系数通过在1.4-2.0的范围内变化调整,能够起到减反射膜的作用,并且通过优化暂态金属氧化物的光电性能,能够提高电池的短路电流和光电转换效率。1. A high-performance triple-junction gallium arsenide solar cell, comprising a Ge substrate, and using MOCVD technology to epitaxially grow a Ge bottom cell, a first tunnel junction, a GaInAs middle cell, and a second tunnel junction on the Ge substrate and a GaInP top cell; it is characterized in that: a transient metal oxide TMO is deposited on the emitter region of the GaInP top cell to obtain a TMO window layer, the band gap of the TMO window layer is greater than 3.0eV, and the transient metal oxide It can form a good ohmic contact with the metal upper electrode of the GaInP top cell, and its refractive index can be adjusted by changing in the range of 1.4-2.0, which can play the role of an anti-reflection film, and by optimizing the photoelectric properties of the transient metal oxide, The short-circuit current and photoelectric conversion efficiency of the battery can be improved. 2.根据权利要求1所述的一种高性能三结砷化镓太阳电池,其特征在于:所述暂态金属氧化物为氧化钼或氧化钨。2 . The high-performance triple-junction gallium arsenide solar cell according to claim 1 , wherein the transient metal oxide is molybdenum oxide or tungsten oxide. 3 . 3.根据权利要求1所述的一种高性能三结砷化镓太阳电池,其特征在于:所述Ge底电池、GaInAs中电池和GaInP顶电池晶格匹配;3. A high-performance triple-junction gallium arsenide solar cell according to claim 1, wherein the Ge bottom cell, the GaInAs middle cell and the GaInP top cell are lattice matched; 所述GaInP顶电池包括按照层状结构依次叠加的P型掺杂AlInP或AlGaInP背场层,P型掺杂GaInP基区、n型掺杂GaInP发射区、TMO窗口层;其中,所述P型掺杂AlInP或AlGaInP背场层的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInP基区的厚度300-600nm,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-100nm,掺杂浓度为1×1017-1×1019cm-3;所述TMO窗口层的厚度30-200nm;The GaInP top cell includes a P-type doped AlInP or AlGaInP back field layer, a P-type doped GaInP base region, an n-type doped GaInP emitter region, and a TMO window layer, which are sequentially stacked according to the layered structure; wherein, the P-type doped GaInP The thickness of the back field layer doped with AlInP or AlGaInP is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInP base region is 300-600 nm, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the TMO window layer The thickness of 30-200nm; 所述第二隧穿结包括按照层状结构叠加的n型GaInP层和p型AlGaAs层;其中,所述n型GaInP层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The second tunnel junction includes an n-type GaInP layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaInP layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; 所述GaInAs中电池包括按照层状结构依次叠加的P型掺杂AlGaAs背场层、P型掺杂GaInAs基区、n型掺杂GaInP发射区、n型掺杂AlInP窗口层;其中,所述P型掺杂AlGaAs背场层的厚度500-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInAs基区的厚度1um-2um,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述n型掺杂AlInP窗口层的厚度30-100nm,掺杂浓度为1×1017-1×1019cm-3The GaInAs medium cell includes a P-type doped AlGaAs back field layer, a P-type doped GaInAs base region, an n-type doped GaInP emitter region, and an n-type doped AlInP window layer, which are sequentially stacked according to the layered structure; wherein, the The thickness of the P-type doped AlGaAs back field layer is 500-200nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInAs base region is 1um-2um, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the n-type doping The thickness of the hetero AlInP window layer is 30-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; 所述第一隧穿结与GaInAs中电池之间设置有分布式布拉格反射器DBR,所述DBR包括依次交替生长的10-20个周期的n型掺杂AlGaAs和n型掺杂GaAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3A distributed Bragg reflector DBR is arranged between the first tunnel junction and the GaInAs middle cell, and the DBR includes 10-20 cycles of n-type doped AlGaAs and n-type doped GaAs alternately grown in sequence; wherein, The thickness of the n-type doped AlGaAs and the n-type doped GaAs is 30-100 nm, and the n-type doping concentration is 1×10 17 -1×10 19 cm -3 ; 所述第一隧穿结包括按照层状结构叠加的n型GaAs层和p型AlGaAs层;其中,所述n型GaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The first tunneling junction includes an n-type GaAs layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 . 4.根据权利要求1所述的一种高性能三结砷化镓太阳电池,其特征在于:所述GaInAs中电池和GaInP顶电池晶格匹配,所述Ge底电池与GaInAs中电池和GaInP顶电池晶格失配,并通过渐变缓冲层GB连接;4. A high-performance triple-junction GaAs solar cell according to claim 1, wherein the GaInAs middle cell is lattice matched with the GaInP top cell, and the Ge bottom cell is matched with the GaInAs middle cell and the GaInP top cell. The cell lattice is mismatched and connected through the graded buffer layer GB; 所述GaInP顶电池包括按照层状结构依次叠加的P型掺杂AlInP或AlGaInP背场层,P型掺杂GaInP基区、n型掺杂GaInP发射区、TMO窗口层;其中,所述P型掺杂AlInP或AlGaInP背场层的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInP基区的厚度300-600nm,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-100nm,掺杂浓度为1×1017-1×1019cm-3;所述TMO窗口层的厚度30-200nm;The GaInP top cell includes a P-type doped AlInP or AlGaInP back field layer, a P-type doped GaInP base region, an n-type doped GaInP emitter region, and a TMO window layer, which are sequentially stacked according to the layered structure; wherein, the P-type doped GaInP The thickness of the back field layer doped with AlInP or AlGaInP is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInP base region is 300-600 nm, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the TMO window layer The thickness of 30-200nm; 所述第二隧穿结包括按照层状结构叠加的n型GaInP层和p型AlGaAs层;其中,所述n型GaInP层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The second tunnel junction includes an n-type GaInP layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaInP layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; 所述GaInAs中电池包括按照层状结构依次叠加的P型掺杂AlGaAs背场层、P型掺杂GaInAs基区、n型掺杂GaInP发射区、n型掺杂AlInP窗口层;其中,所述P型掺杂AlGaAs背场层的厚度500-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInAs基区的厚度1um-2um,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述n型掺杂AlInP窗口层的厚度30-100nm,掺杂浓度为1×1017-1×1019cm-3The GaInAs medium cell includes a P-type doped AlGaAs back field layer, a P-type doped GaInAs base region, an n-type doped GaInP emitter region, and an n-type doped AlInP window layer, which are sequentially stacked according to the layered structure; wherein, the The thickness of the P-type doped AlGaAs back field layer is 500-200nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInAs base region is 1um-2um, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the n-type doping The thickness of the hetero AlInP window layer is 30-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; 所述第一隧穿结与GaInAs中电池之间依次设置有分布式布拉格反射器DBR和渐变缓冲层GB;所述DBR包括依次交替生长的10-20个周期的n型掺杂Aly(GaxIn1-x)1-yAs和n型掺杂GaxIn1-xAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3,y为0.9-1.0,x为0.9-1.0;所述GB包括多个依次叠加的GaxIn1-xAs子电池,采用In组分线性渐进和/或步进的方法将Ge底电池和GaxIn1-xAs子电池串联,x为0.9-1.0;A distributed Bragg reflector DBR and a graded buffer layer GB are sequentially arranged between the first tunnel junction and the GaInAs middle cell; the DBR includes 10-20 cycles of n-type doped Al y (Ga x In 1-x ) 1-y As and n-type doped Ga x In 1-x As; wherein, the thickness of the n-type doped AlGaAs and n-type doped GaAs is 30-100 nm, and the n-type doping concentration is 1×10 17 -1×10 19 cm -3 , y is 0.9-1.0, and x is 0.9-1.0; the GB includes a plurality of successively stacked Ga x In 1-x As sub-cells, using In composition linearity A progressive and/or step-by-step approach connects a Ge bottom cell and a Ga x In 1-x As sub-cell in series with x of 0.9-1.0; 所述第一隧穿结包括按照层状结构叠加的n型GaAs层和p型AlGaAs层;其中,所述n型GaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3The first tunneling junction includes an n-type GaAs layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 . 5.根据权利要求4所述的一种高性能三结砷化镓太阳电池,其特征在于:所述Ge底电池、GaInAs中电池和GaInP顶电池的禁带宽度分别为0.67eV、1.3eV、1.8eV。5. A high-performance triple-junction GaAs solar cell according to claim 4, wherein the band gaps of the Ge bottom cell, the GaInAs middle cell and the GaInP top cell are respectively 0.67eV, 1.3eV, 1.8eV.
CN202010528211.8A 2020-06-11 2020-06-11 A high-performance triple-junction gallium arsenide solar cell Pending CN111725332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010528211.8A CN111725332A (en) 2020-06-11 2020-06-11 A high-performance triple-junction gallium arsenide solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010528211.8A CN111725332A (en) 2020-06-11 2020-06-11 A high-performance triple-junction gallium arsenide solar cell

Publications (1)

Publication Number Publication Date
CN111725332A true CN111725332A (en) 2020-09-29

Family

ID=72566432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010528211.8A Pending CN111725332A (en) 2020-06-11 2020-06-11 A high-performance triple-junction gallium arsenide solar cell

Country Status (1)

Country Link
CN (1) CN111725332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863466A (en) * 2023-03-02 2023-03-28 南昌凯迅光电股份有限公司 Gallium arsenide solar cell chip and preparation method thereof
EP4231362A1 (en) * 2022-02-21 2023-08-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751341A (en) * 2012-06-20 2012-10-24 常州天合光能有限公司 Transparent conductive film and preparation method thereof
CN102956738A (en) * 2012-11-28 2013-03-06 中国电子科技集团公司第十八研究所 Compound semiconductor laminated film solar cell
US9018521B1 (en) * 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
CN105355680A (en) * 2015-11-19 2016-02-24 中山德华芯片技术有限公司 A lattice-matched six-junction solar cell
CN105810760A (en) * 2016-05-12 2016-07-27 中山德华芯片技术有限公司 A lattice-matched five-junction solar cell and manufacturing method thereof
CN107871799A (en) * 2016-09-27 2018-04-03 中国电子科技集团公司第十八研究所 A forward-mismatched four-junction solar cell
CN207320126U (en) * 2017-08-22 2018-05-04 南昌凯迅光电有限公司 A kind of high-efficiency three-joint cascade gallium arsenide solar cell with new Window layer
WO2019237155A1 (en) * 2018-06-13 2019-12-19 Newsouth Innovations Pty Limited A photovoltaic cell structure
CN110634984A (en) * 2019-09-04 2019-12-31 中国电子科技集团公司第十八研究所 A forward-mismatched five-junction solar cell
US10541349B1 (en) * 2008-12-17 2020-01-21 Solaero Technologies Corp. Methods of forming inverted multijunction solar cells with distributed Bragg reflector

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018521B1 (en) * 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US10541349B1 (en) * 2008-12-17 2020-01-21 Solaero Technologies Corp. Methods of forming inverted multijunction solar cells with distributed Bragg reflector
CN102751341A (en) * 2012-06-20 2012-10-24 常州天合光能有限公司 Transparent conductive film and preparation method thereof
CN102956738A (en) * 2012-11-28 2013-03-06 中国电子科技集团公司第十八研究所 Compound semiconductor laminated film solar cell
CN105355680A (en) * 2015-11-19 2016-02-24 中山德华芯片技术有限公司 A lattice-matched six-junction solar cell
CN105810760A (en) * 2016-05-12 2016-07-27 中山德华芯片技术有限公司 A lattice-matched five-junction solar cell and manufacturing method thereof
CN107871799A (en) * 2016-09-27 2018-04-03 中国电子科技集团公司第十八研究所 A forward-mismatched four-junction solar cell
CN207320126U (en) * 2017-08-22 2018-05-04 南昌凯迅光电有限公司 A kind of high-efficiency three-joint cascade gallium arsenide solar cell with new Window layer
WO2019237155A1 (en) * 2018-06-13 2019-12-19 Newsouth Innovations Pty Limited A photovoltaic cell structure
CN110634984A (en) * 2019-09-04 2019-12-31 中国电子科技集团公司第十八研究所 A forward-mismatched five-junction solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANG II PARK等: ""Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide"", 《APPLIED PHYSICS LETTERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4231362A1 (en) * 2022-02-21 2023-08-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cell
CN115863466A (en) * 2023-03-02 2023-03-28 南昌凯迅光电股份有限公司 Gallium arsenide solar cell chip and preparation method thereof

Similar Documents

Publication Publication Date Title
US5316593A (en) Heterojunction solar cell with passivated emitter surface
US5342453A (en) Heterojunction solar cell
CN106067493B (en) Micro-lattice mismatch quantum well solar cell and preparation method thereof
CN107527967B (en) High-efficiency three-junction cascading gallium arsenide solar cell with anti-radiation structure and manufacturing method thereof
CN101740663A (en) Method of manufacturing solar cell
Wanlass Systems and methods for advanced ultra-high-performance InP solar cells
CN103346191B (en) GaInP/GaAs/InGaAsP/InGaAs four-knot cascade solar cell and preparation method thereof
TW200941741A (en) Heterojunction subcells in inverted metamorphic multijunction solar cells
CN105097977A (en) Multi-junction solar cell epitaxial structure
CN112103356B (en) High-efficiency three-junction gallium arsenide solar cell and manufacturing method thereof
CN111725332A (en) A high-performance triple-junction gallium arsenide solar cell
CN110224036B (en) Lattice mismatch multi-junction solar cell
CN103219414B (en) GaInP/GaAs/InGaAsP/InGaAs tetra-ties the manufacture method of cascade solar cell
CN103346190B (en) Four knot tandem solar cell of Si substrate and preparation method thereof
CN106784037B (en) A kind of more statement of account coloured light batteries in the longitudinal direction of GaAs materials and its cell array
JP4868820B2 (en) Compound solar cell and manufacturing method
CN109638089B (en) A method for manufacturing a spatial GaInP/GaAs/CuInGaSe triple junction cell epitaxial wafer
CN111146305A (en) Solar cell
CN114566560B (en) A gallium arsenide laser photovoltaic cell and its preparation method
CN111276560B (en) Gallium arsenide solar cell and its manufacturing method
CN105355668A (en) An In0.3Ga0.7As battery with an amorphous buffer layer structure and its preparation method
CN103311354B (en) Si substrate three-junction cascade solar cell and fabrication method thereof
CN111785806A (en) A solar cell and method of making the same
CN106206825B (en) The multijunction solar cell of Window layer and launch site containing low optical refringence
JP2737705B2 (en) Solar cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200929