CN111725332A - A high-performance triple-junction gallium arsenide solar cell - Google Patents
A high-performance triple-junction gallium arsenide solar cell Download PDFInfo
- Publication number
- CN111725332A CN111725332A CN202010528211.8A CN202010528211A CN111725332A CN 111725332 A CN111725332 A CN 111725332A CN 202010528211 A CN202010528211 A CN 202010528211A CN 111725332 A CN111725332 A CN 111725332A
- Authority
- CN
- China
- Prior art keywords
- type doped
- layer
- thickness
- type
- gainp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910001218 Gallium arsenide Inorganic materials 0.000 title claims abstract description 39
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims abstract description 39
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 20
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 20
- 230000001052 transient effect Effects 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims abstract description 4
- 238000005516 engineering process Methods 0.000 claims abstract description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 39
- 230000005641 tunneling Effects 0.000 claims description 5
- 125000005842 heteroatom Chemical group 0.000 claims description 4
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 4
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical group [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 4
- 230000000750 progressive effect Effects 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000869 ion-assisted deposition Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
- H10F77/315—Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/19—Photovoltaic cells having multiple potential barriers of different types, e.g. tandem cells having both PN and PIN junctions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种高性能三结砷化镓太阳电池,包括Ge衬底,采用MOCVD技术在所述Ge衬底上外延生长Ge底电池、第一隧穿结、GaInAs中电池、第二隧穿结和GaInP顶电池;其中,在所述GaInP顶电池的发射区上沉积暂态金属氧化物TMO,得到TMO窗口层,该TMO窗口层的禁带宽度大于3.0eV,其暂态金属氧化物能够与GaInP顶电池的金属上电极形成良好的欧姆接触,其折射系数通过在1.4‑2.0的范围内变化调整,能够有效起到减反射膜的作用,并且通过优化暂态金属氧化物的光电性能,可以提高电池的短路电流和光电转换效率,同时也可以简化电池的结构,减少芯片工艺步奏,有效降低成本。
The invention discloses a high-performance triple-junction gallium arsenide solar cell, comprising a Ge substrate, on which a Ge bottom cell, a first tunnel junction, a GaInAs middle cell, and a second tunnel junction are epitaxially grown by using MOCVD technology. Through junction and GaInP top cell; wherein, a transient metal oxide TMO is deposited on the emitter region of the GaInP top cell to obtain a TMO window layer, the band gap of the TMO window layer is greater than 3.0eV, and the transient metal oxide It can form a good ohmic contact with the metal upper electrode of the GaInP top cell, and its refractive index can be adjusted in the range of 1.4‑2.0, which can effectively play the role of an anti-reflection film, and optimize the photoelectric properties of the transient metal oxide. , can improve the short-circuit current and photoelectric conversion efficiency of the battery, and can also simplify the structure of the battery, reduce the chip process step, and effectively reduce the cost.
Description
技术领域technical field
本发明涉及太阳电池的技术领域,尤其是指一种高性能三结砷化镓太阳电池。The invention relates to the technical field of solar cells, in particular to a high-performance triple-junction gallium arsenide solar cell.
背景技术Background technique
目前,三结砷化镓由于光电转换效率高、抗辐照性能好已经被广泛的应用在空间电源系统。对于砷化镓太阳电池,传统的窗口层材料禁带宽度普遍在2.0eV左右,对蓝光有着明显的光吸收,因此有必要采用新的窗口层材料或者新的器件结构来提升顶电池的短波响应,改善中顶电池之间的电流匹配,进一步提升电池的整体性能。At present, triple-junction gallium arsenide has been widely used in space power systems due to its high photoelectric conversion efficiency and good radiation resistance. For GaAs solar cells, the band gap of traditional window layer materials is generally around 2.0 eV, which has obvious light absorption to blue light. Therefore, it is necessary to adopt new window layer materials or new device structures to improve the short-wave response of top cells. , to improve the current matching between the middle and top batteries, and further improve the overall performance of the battery.
砷化镓太阳电池的窗口层通常采用GaInP、AlGaInP、AlInP、AlCaAs等宽禁带材料来抑制界面复合和限制电荷反向扩散(窗口层位于减反膜和发射层之间)。为了提高电池对于光谱的利用,通常采用Al2O3/TiO2、ZnS/MgF2等双层膜作为砷化镓太阳电池的减反膜。然而以上的减反膜和理想的100%的透过效果还有相当的距离,而且成本较高。The window layer of gallium arsenide solar cells usually adopts wide bandgap materials such as GaInP, AlGaInP, AlInP, AlCaAs, etc. to suppress the interface recombination and limit the reverse diffusion of charges (the window layer is located between the anti-reflection film and the emission layer). In order to improve the utilization of the spectrum by the battery, double-layer films such as Al 2 O 3 /TiO 2 and ZnS/MgF 2 are usually used as the anti-reflection film of the gallium arsenide solar cell. However, the above anti-reflection film still has a considerable distance from the ideal 100% transmission effect, and the cost is relatively high.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的缺点与不足,提出了一种高性能三结砷化镓太阳电池,采用宽禁带的暂态金属氧化物作为三结砷化镓太阳电池的窗口层,其良好的光电性能可以替代传统的基于化合物半导体的窗口层材料,同时可以有效的减少入射光的反射。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and propose a high-performance triple-junction gallium arsenide solar cell, which adopts a wide bandgap transient metal oxide as the window layer of the triple-junction gallium arsenide solar cell, Its good optoelectronic properties can replace traditional window layer materials based on compound semiconductors, and at the same time can effectively reduce the reflection of incident light.
为实现上述目的,本发明所提供的技术方案为:一种高性能三结砷化镓太阳电池,包括Ge衬底,采用MOCVD技术在所述Ge衬底上外延生长Ge底电池、第一隧穿结、GaInAs中电池、第二隧穿结和GaInP顶电池;其中,在所述GaInP顶电池的发射区上沉积暂态金属氧化物TMO,得到TMO窗口层,该TMO窗口层的禁带宽度大于3.0eV,其暂态金属氧化物能够与GaInP顶电池的金属上电极形成良好的欧姆接触,其折射系数通过在1.4-2.0的范围内变化调整,能够起到减反射膜的作用,并且通过优化暂态金属氧化物的光电性能,能够提高电池的短路电流和光电转换效率。In order to achieve the above purpose, the technical solution provided by the present invention is: a high-performance triple-junction gallium arsenide solar cell, comprising a Ge substrate, and using MOCVD technology to epitaxially grow a Ge bottom cell and a first tunnel on the Ge substrate. Through junction, GaInAs middle cell, second tunnel junction and GaInP top cell; wherein, transient metal oxide TMO is deposited on the emitter region of the GaInP top cell to obtain a TMO window layer, the forbidden band width of the TMO window layer More than 3.0eV, its transient metal oxide can form a good ohmic contact with the metal upper electrode of the GaInP top cell, and its refractive index can be adjusted in the range of 1.4-2.0, which can play the role of anti-reflection film, and through Optimizing the photoelectric properties of transient metal oxides can improve the short-circuit current and photoelectric conversion efficiency of batteries.
进一步,所述暂态金属氧化物为氧化钼或氧化钨。Further, the transient metal oxide is molybdenum oxide or tungsten oxide.
进一步,所述Ge底电池、GaInAs中电池和GaInP顶电池晶格匹配;Further, the Ge bottom cell, the GaInAs middle cell and the GaInP top cell are lattice matched;
所述GaInP顶电池包括按照层状结构依次叠加的P型掺杂AlInP或AlGaInP背场层,P型掺杂GaInP基区、n型掺杂GaInP发射区、TMO窗口层;其中,所述P型掺杂AlInP或AlGaInP背场层的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInP基区的厚度300-600nm,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-100nm,掺杂浓度为1×1017-1×1019cm-3;所述TMO窗口层的厚度30-200nm;The GaInP top cell includes a P-type doped AlInP or AlGaInP back field layer, a P-type doped GaInP base region, an n-type doped GaInP emitter region, and a TMO window layer, which are sequentially stacked according to the layered structure; wherein, the P-type doped GaInP The thickness of the back field layer doped with AlInP or AlGaInP is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInP base region is 300-600 nm, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the TMO window layer The thickness of 30-200nm;
所述第二隧穿结包括按照层状结构叠加的n型GaInP层和p型AlGaAs层;其中,所述n型GaInP层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;The second tunnel junction includes an n-type GaInP layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaInP layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ;
所述GaInAs中电池包括按照层状结构依次叠加的P型掺杂AlGaAs背场层、P型掺杂GaInAs基区、n型掺杂GaInP发射区、n型掺杂AlInP窗口层;其中,所述P型掺杂AlGaAs背场层的厚度500-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInAs基区的厚度1um-2um,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述n型掺杂AlInP窗口层的厚度30-100nm,掺杂浓度为1×1017-1×1019cm-3;The GaInAs medium cell includes a P-type doped AlGaAs back field layer, a P-type doped GaInAs base region, an n-type doped GaInP emitter region, and an n-type doped AlInP window layer, which are sequentially stacked according to the layered structure; wherein, the The thickness of the P-type doped AlGaAs back field layer is 500-200nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInAs base region is 1um-2um, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the n-type doping The thickness of the hetero AlInP window layer is 30-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ;
所述第一隧穿结与GaInAs中电池之间设置有分布式布拉格反射器DBR,所述DBR包括依次交替生长的10-20个周期的n型掺杂AlGaAs和n型掺杂GaAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3;A distributed Bragg reflector DBR is arranged between the first tunnel junction and the GaInAs middle cell, and the DBR includes 10-20 cycles of n-type doped AlGaAs and n-type doped GaAs alternately grown in sequence; wherein, The thickness of the n-type doped AlGaAs and the n-type doped GaAs is 30-100 nm, and the n-type doping concentration is 1×10 17 -1×10 19 cm -3 ;
所述第一隧穿结包括按照层状结构叠加的n型GaAs层和p型AlGaAs层;其中,所述n型GaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3。The first tunneling junction includes an n-type GaAs layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 .
进一步,所述GaInAs中电池和GaInP顶电池晶格匹配,所述Ge底电池与GaInAs中电池和GaInP顶电池晶格失配,并通过渐变缓冲层GB连接;Further, the GaInAs middle cell and the GaInP top cell are lattice matched, and the Ge bottom cell is lattice mismatched with the GaInAs middle cell and the GaInP top cell, and is connected through a graded buffer layer GB;
所述GaInP顶电池包括按照层状结构依次叠加的P型掺杂AlInP或AlGaInP背场层,P型掺杂GaInP基区、n型掺杂GaInP发射区、TMO窗口层;其中,所述P型掺杂AlInP或AlGaInP背场层的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInP基区的厚度300-600nm,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-100nm,掺杂浓度为1×1017-1×1019cm-3;所述TMO窗口层的厚度30-200nm;The GaInP top cell includes a P-type doped AlInP or AlGaInP back field layer, a P-type doped GaInP base region, an n-type doped GaInP emitter region, and a TMO window layer, which are sequentially stacked according to the layered structure; wherein, the P-type doped GaInP The thickness of the back field layer doped with AlInP or AlGaInP is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInP base region is 300-600 nm, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the TMO window layer The thickness of 30-200nm;
所述第二隧穿结包括按照层状结构叠加的n型GaInP层和p型AlGaAs层;其中,所述n型GaInP层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;The second tunnel junction includes an n-type GaInP layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaInP layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ;
所述GaInAs中电池包括按照层状结构依次叠加的P型掺杂AlGaAs背场层、P型掺杂GaInAs基区、n型掺杂GaInP发射区、n型掺杂AlInP窗口层;其中,所述P型掺杂AlGaAs背场层的厚度500-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInAs基区的厚度1um-2um,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述n型掺杂AlInP窗口层的厚度30-100nm,掺杂浓度为1×1017-1×1019cm-3;The GaInAs medium cell includes a P-type doped AlGaAs back field layer, a P-type doped GaInAs base region, an n-type doped GaInP emitter region, and an n-type doped AlInP window layer, which are sequentially stacked according to the layered structure; wherein, the The thickness of the P-type doped AlGaAs back field layer is 500-200nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInAs base region is 1um-2um, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the n-type doping The thickness of the hetero AlInP window layer is 30-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ;
所述第一隧穿结与GaInAs中电池之间依次设置有分布式布拉格反射器DBR和渐变缓冲层GB;所述DBR包括依次交替生长的10-20个周期的n型掺杂Aly(GaxIn1-x)1-yAs和n型掺杂GaxIn1-xAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3,y为0.9-1.0,x为0.9-1.0;所述GB包括多个依次叠加的GaxIn1-xAs子电池,采用In组分线性渐进和/或步进的方法将Ge底电池和GaxIn1-xAs子电池串联,x为0.9-1.0;A distributed Bragg reflector DBR and a graded buffer layer GB are sequentially arranged between the first tunnel junction and the GaInAs middle cell; the DBR includes 10-20 cycles of n-type doped Al y (Ga x In 1-x ) 1-y As and n-type doped Ga x In 1-x As; wherein, the thickness of the n-type doped AlGaAs and n-type doped GaAs is 30-100 nm, and the n-type doping concentration is 1×10 17 -1×10 19 cm -3 , y is 0.9-1.0, and x is 0.9-1.0; the GB includes a plurality of successively stacked Ga x In 1-x As sub-cells, using In composition linearity A progressive and/or step-by-step approach connects a Ge bottom cell and a Ga x In 1-x As sub-cell in series with x of 0.9-1.0;
所述第一隧穿结包括按照层状结构叠加的n型GaAs层和p型AlGaAs层;其中,所述n型GaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3。The first tunneling junction includes an n-type GaAs layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 .
进一步,所述Ge底电池、GaInAs中电池和GaInP顶电池的禁带宽度分别为0.67eV、1.3eV、1.8eV。Further, the forbidden band widths of the Ge bottom cell, the GaInAs middle cell and the GaInP top cell are 0.67eV, 1.3eV, and 1.8eV, respectively.
本发明与现有技术相比,具有如下优点与有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
1、采用导电性良好的宽禁带暂态金属氧化物可以明显减少窗口层对入射光的吸收。1. The use of wide bandgap transient metal oxides with good conductivity can significantly reduce the absorption of incident light by the window layer.
2、暂态金属氧化物能够和金属电极形成良好的欧姆接触,可以减少传统工艺中砷化镓帽层外延生长,同时避免了芯片工艺中的帽层腐蚀工艺。2. The transient metal oxide can form a good ohmic contact with the metal electrode, which can reduce the epitaxial growth of the gallium arsenide cap layer in the traditional process, and avoid the cap layer corrosion process in the chip process.
3、暂态金属氧化物的折射系数可以通过工艺参数的调整在1.4-2.0的范围内变化,可以有效的起到减反射膜的作用。3. The refractive index of the transient metal oxide can be changed in the range of 1.4-2.0 by adjusting the process parameters, which can effectively play the role of anti-reflection film.
4、通过优化暂态金属氧化物窗口层材料的光电性能,可以明显地提高电池的短路电流和光电转换效率,同时也可以简化电池的结构,减少芯片工艺步奏,有效的降低成本。4. By optimizing the photoelectric properties of the transient metal oxide window layer material, the short-circuit current and photoelectric conversion efficiency of the battery can be significantly improved, and the structure of the battery can also be simplified, the chip process pace can be reduced, and the cost can be effectively reduced.
附图说明Description of drawings
图1是实施例1中正向晶格匹配的三结砷化镓太阳电池结构示意图。FIG. 1 is a schematic structural diagram of a triple-junction gallium arsenide solar cell with forward lattice matching in Example 1. FIG.
图2是实施例2中正向晶格失配的三结砷化镓太阳电池结构示意图。FIG. 2 is a schematic structural diagram of a triple-junction gallium arsenide solar cell with forward lattice mismatch in Example 2. FIG.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific embodiments.
实施例1Example 1
参见图1所示,本实施例所提供的正向晶格匹配的三结砷化镓太阳电池,包括Ge衬底,将Ge衬底置于MOCVD操作室内,生长温度设置为500℃~800℃,在衬底上依次外延生长Ge底电池(亦可简称为Ge电池)、第一隧穿结、GaInAs中电池(亦可简称为GaInAs电池)、第二隧穿结和GaInP顶电池(亦可简称为GaInP电池),将完成外延生长后的衬底放入离子辅助沉积(IAD)或磁控溅射(Sputter)等设备,在GaInP顶电池的发射区上沉积暂态金属氧化物(TMO),得到TMO窗口层,其中,该暂态金属氧化物为氧化钼或氧化钨,该TMO窗口层的禁带宽度大于3.0eV,相同厚度的氧化钼、氧化钨等用作窗口层时在400nm波长的光吸收不超过1%,可以有效改善电池在400nm-550nm的量子效应,另外,该暂态金属氧化物可以与GaInP顶电池的金属上电极形成良好的欧姆接触,其折射系数通过在1.4-2.0的范围内变化调整,能够起到减反射膜的作用,并且通过优化暂态金属氧化物窗口层材料的光电性能,可以明显地提高电池的短路电流和光电转换效率,同时也可以简化电池的结构,减少芯片工艺步奏,有效降低成本。Referring to FIG. 1 , the forward lattice matched triple-junction gallium arsenide solar cell provided in this embodiment includes a Ge substrate. The Ge substrate is placed in a MOCVD operating chamber, and the growth temperature is set at 500° C. to 800° C. , on the substrate sequentially epitaxially grow Ge bottom cell (also referred to as Ge cell), first tunnel junction, GaInAs middle cell (also referred to as GaInAs cell), second tunnel junction and GaInP top cell (also referred to as GaInAs cell) GaInP cell for short), put the substrate after epitaxial growth into ion-assisted deposition (IAD) or magnetron sputtering (Sputter) and other equipment to deposit transient metal oxide (TMO) on the emitter area of GaInP top cell , obtain a TMO window layer, wherein, the transient metal oxide is molybdenum oxide or tungsten oxide, the forbidden band width of the TMO window layer is greater than 3.0eV, when molybdenum oxide, tungsten oxide, etc. of the same thickness are used as the window layer at a wavelength of 400nm The light absorption is not more than 1%, which can effectively improve the quantum effect of the battery at 400nm-550nm. In addition, the transient metal oxide can form a good ohmic contact with the metal upper electrode of the GaInP top battery, and its refractive index passes through 1.4- The adjustment within the range of 2.0 can play the role of an anti-reflection film, and by optimizing the photoelectric properties of the transient metal oxide window layer material, the short-circuit current and photoelectric conversion efficiency of the battery can be significantly improved, and the battery can also be simplified. Structure, reduce chip process steps, effectively reduce costs.
所述Ge底电池、GaInAs中电池和GaInP顶电池晶格匹配。The Ge bottom cell, GaInAs middle cell and GaInP top cell are lattice matched.
所述GaInP顶电池包括按照层状结构依次叠加的P型掺杂AlInP或AlGaInP背场层,P型掺杂GaInP基区、n型掺杂GaInP发射区、TMO窗口层;其中,所述P型掺杂AlInP或AlGaInP背场层的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInP基区的厚度300-600nm,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-100nm,掺杂浓度为1×1017-1×1019cm-3;所述TMO窗口层的厚度30-200nm。The GaInP top cell includes a P-type doped AlInP or AlGaInP back field layer, a P-type doped GaInP base region, an n-type doped GaInP emitter region, and a TMO window layer, which are sequentially stacked according to the layered structure; wherein, the P-type doped GaInP The thickness of the back field layer doped with AlInP or AlGaInP is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInP base region is 300-600 nm, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the TMO window layer The thickness of 30-200nm.
所述第二隧穿结包括按照层状结构叠加的n型GaInP层和p型AlGaAs层;其中,所述n型GaInP层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3。The second tunnel junction includes an n-type GaInP layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaInP layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 .
所述GaInAs中电池包括按照层状结构依次叠加的P型掺杂AlGaAs背场层、P型掺杂GaInAs基区、n型掺杂GaInP发射区、n型掺杂AlInP窗口层;其中,所述P型掺杂AlGaAs背场层的厚度500-200nm,掺杂浓度为1×1017-1×1019cm-3;所述P型掺杂GaInAs基区的厚度1um-2um,掺杂浓度为1×1016-1×1017cm-3;所述n型掺杂GaInP发射区的厚度50-200nm,掺杂浓度为1×1017-1×1019cm-3;所述n型掺杂AlInP窗口层的厚度30-100nm,掺杂浓度为1×1017-1×1019cm-3。The GaInAs medium cell includes a P-type doped AlGaAs back field layer, a P-type doped GaInAs base region, an n-type doped GaInP emitter region, and an n-type doped AlInP window layer, which are sequentially stacked according to the layered structure; wherein, the The thickness of the P-type doped AlGaAs back field layer is 500-200nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the thickness of the P-type doped GaInAs base region is 1um-2um, and the doping concentration is 1×10 16 -1×10 17 cm -3 ; the thickness of the n-type doped GaInP emission region is 50-200 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 ; the n-type doping The thickness of the hetero-AlInP window layer is 30-100 nm, and the doping concentration is 1×10 17 -1×10 19 cm -3 .
所述第一隧穿结与GaInAs中电池之间设置有分布式布拉格反射器(DBR),所述DBR包括依次交替生长的10-20个周期的n型掺杂AlGaAs和n型掺杂GaAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3。A distributed Bragg reflector (DBR) is arranged between the first tunnel junction and the GaInAs middle cell, and the DBR includes 10-20 cycles of n-type doped AlGaAs and n-type doped GaAs grown alternately in sequence; Wherein, the thickness of the n-type doped AlGaAs and the n-type doped GaAs is 30-100 nm, and the n-type doping concentration is 1×10 17 -1×10 19 cm -3 .
所述第一隧穿结包括按照层状结构叠加的n型GaAs层和p型AlGaAs层;其中,所述n型GaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3;所述p型AlGaAs层的厚度5-30nm,掺杂浓度为1×1018-1×1020cm-3。The first tunneling junction includes an n-type GaAs layer and a p-type AlGaAs layer superimposed in a layered structure; wherein, the thickness of the n-type GaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 ; the thickness of the p-type AlGaAs layer is 5-30 nm, and the doping concentration is 1×10 18 -1×10 20 cm -3 .
实施例2Example 2
参见图2所示,本实施例所提供的正向晶格失配的三结砷化镓太阳电池与实施例1不同的是所述GaInAs中电池和GaInP顶电池晶格匹配,所述Ge底电池与GaInAs中电池和GaInP顶电池晶格失配,并通过渐变缓冲层(GB)连接,Ge底电池、GaInAs中电池和GaInP顶电池的禁带宽度优选为0.67eV、1.3eV、1.8eV;所述第一隧穿结与GaInAs中电池之间依次设置有分布式布拉格反射器(DBR)和渐变缓冲层(GB);所述DBR包括依次交替生长的10-20个周期的n型掺杂Aly(GaxIn1-x)1-yAs和n型掺杂GaxIn1-xAs;其中,所述n型掺杂AlGaAs和n型掺杂GaAs的厚度为30-100nm,n型掺杂浓度为1×1017-1×1019cm-3,y为0.9-1.0,x为0.9-1.0;所述GB包括多个依次叠加的GaxIn1-xAs子电池,采用In组分线性渐进和/或步进的方法将Ge底电池和GaxIn1-xAs子电池串联,x为0.9-1.0。Referring to FIG. 2 , the difference between the forward lattice mismatched triple-junction GaAs solar cell provided in this embodiment and Embodiment 1 is that the GaInAs middle cell and the GaInP top cell are lattice matched, and the Ge bottom cell is lattice-matched. The cell is lattice mismatched with the GaInAs middle cell and the GaInP top cell, and is connected through a graded buffer layer (GB). The forbidden band widths of the Ge bottom cell, the GaInAs middle cell and the GaInP top cell are preferably 0.67eV, 1.3eV, and 1.8eV; A distributed Bragg reflector (DBR) and a graded buffer layer (GB) are arranged between the first tunnel junction and the GaInAs middle cell in sequence; the DBR includes 10-20 cycles of n-type doping that alternately grow in sequence Aly(GaxIn1 -x ) 1- yAs and n-type doped GaxIn1 - xAs ; wherein, the thickness of the n-type doped AlGaAs and n-type doped GaAs is 30-100nm, n The doping concentration is 1×10 17 -1×10 19 cm -3 , y is 0.9-1.0, and x is 0.9-1.0; the GB includes a plurality of Ga x In 1-x As sub-cells stacked in sequence, using The In composition linearly progressive and/or stepped approach connects the Ge bottom cell and the Ga x In 1-x As sub-cell in series with x ranging from 0.9 to 1.0.
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。The above-mentioned embodiments are only preferred embodiments of the present invention, and are not intended to limit the scope of implementation of the present invention. Therefore, any changes made according to the shape and principle of the present invention should be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010528211.8A CN111725332A (en) | 2020-06-11 | 2020-06-11 | A high-performance triple-junction gallium arsenide solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010528211.8A CN111725332A (en) | 2020-06-11 | 2020-06-11 | A high-performance triple-junction gallium arsenide solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111725332A true CN111725332A (en) | 2020-09-29 |
Family
ID=72566432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010528211.8A Pending CN111725332A (en) | 2020-06-11 | 2020-06-11 | A high-performance triple-junction gallium arsenide solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111725332A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115863466A (en) * | 2023-03-02 | 2023-03-28 | 南昌凯迅光电股份有限公司 | Gallium arsenide solar cell chip and preparation method thereof |
EP4231362A1 (en) * | 2022-02-21 | 2023-08-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cell |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102751341A (en) * | 2012-06-20 | 2012-10-24 | 常州天合光能有限公司 | Transparent conductive film and preparation method thereof |
CN102956738A (en) * | 2012-11-28 | 2013-03-06 | 中国电子科技集团公司第十八研究所 | Compound semiconductor laminated film solar cell |
US9018521B1 (en) * | 2008-12-17 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell |
CN105355680A (en) * | 2015-11-19 | 2016-02-24 | 中山德华芯片技术有限公司 | A lattice-matched six-junction solar cell |
CN105810760A (en) * | 2016-05-12 | 2016-07-27 | 中山德华芯片技术有限公司 | A lattice-matched five-junction solar cell and manufacturing method thereof |
CN107871799A (en) * | 2016-09-27 | 2018-04-03 | 中国电子科技集团公司第十八研究所 | A forward-mismatched four-junction solar cell |
CN207320126U (en) * | 2017-08-22 | 2018-05-04 | 南昌凯迅光电有限公司 | A kind of high-efficiency three-joint cascade gallium arsenide solar cell with new Window layer |
WO2019237155A1 (en) * | 2018-06-13 | 2019-12-19 | Newsouth Innovations Pty Limited | A photovoltaic cell structure |
CN110634984A (en) * | 2019-09-04 | 2019-12-31 | 中国电子科技集团公司第十八研究所 | A forward-mismatched five-junction solar cell |
US10541349B1 (en) * | 2008-12-17 | 2020-01-21 | Solaero Technologies Corp. | Methods of forming inverted multijunction solar cells with distributed Bragg reflector |
-
2020
- 2020-06-11 CN CN202010528211.8A patent/CN111725332A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9018521B1 (en) * | 2008-12-17 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell |
US10541349B1 (en) * | 2008-12-17 | 2020-01-21 | Solaero Technologies Corp. | Methods of forming inverted multijunction solar cells with distributed Bragg reflector |
CN102751341A (en) * | 2012-06-20 | 2012-10-24 | 常州天合光能有限公司 | Transparent conductive film and preparation method thereof |
CN102956738A (en) * | 2012-11-28 | 2013-03-06 | 中国电子科技集团公司第十八研究所 | Compound semiconductor laminated film solar cell |
CN105355680A (en) * | 2015-11-19 | 2016-02-24 | 中山德华芯片技术有限公司 | A lattice-matched six-junction solar cell |
CN105810760A (en) * | 2016-05-12 | 2016-07-27 | 中山德华芯片技术有限公司 | A lattice-matched five-junction solar cell and manufacturing method thereof |
CN107871799A (en) * | 2016-09-27 | 2018-04-03 | 中国电子科技集团公司第十八研究所 | A forward-mismatched four-junction solar cell |
CN207320126U (en) * | 2017-08-22 | 2018-05-04 | 南昌凯迅光电有限公司 | A kind of high-efficiency three-joint cascade gallium arsenide solar cell with new Window layer |
WO2019237155A1 (en) * | 2018-06-13 | 2019-12-19 | Newsouth Innovations Pty Limited | A photovoltaic cell structure |
CN110634984A (en) * | 2019-09-04 | 2019-12-31 | 中国电子科技集团公司第十八研究所 | A forward-mismatched five-junction solar cell |
Non-Patent Citations (1)
Title |
---|
SANG II PARK等: ""Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide"", 《APPLIED PHYSICS LETTERS》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4231362A1 (en) * | 2022-02-21 | 2023-08-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cell |
CN115863466A (en) * | 2023-03-02 | 2023-03-28 | 南昌凯迅光电股份有限公司 | Gallium arsenide solar cell chip and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5316593A (en) | Heterojunction solar cell with passivated emitter surface | |
US5342453A (en) | Heterojunction solar cell | |
CN106067493B (en) | Micro-lattice mismatch quantum well solar cell and preparation method thereof | |
CN107527967B (en) | High-efficiency three-junction cascading gallium arsenide solar cell with anti-radiation structure and manufacturing method thereof | |
CN101740663A (en) | Method of manufacturing solar cell | |
Wanlass | Systems and methods for advanced ultra-high-performance InP solar cells | |
CN103346191B (en) | GaInP/GaAs/InGaAsP/InGaAs four-knot cascade solar cell and preparation method thereof | |
TW200941741A (en) | Heterojunction subcells in inverted metamorphic multijunction solar cells | |
CN105097977A (en) | Multi-junction solar cell epitaxial structure | |
CN112103356B (en) | High-efficiency three-junction gallium arsenide solar cell and manufacturing method thereof | |
CN111725332A (en) | A high-performance triple-junction gallium arsenide solar cell | |
CN110224036B (en) | Lattice mismatch multi-junction solar cell | |
CN103219414B (en) | GaInP/GaAs/InGaAsP/InGaAs tetra-ties the manufacture method of cascade solar cell | |
CN103346190B (en) | Four knot tandem solar cell of Si substrate and preparation method thereof | |
CN106784037B (en) | A kind of more statement of account coloured light batteries in the longitudinal direction of GaAs materials and its cell array | |
JP4868820B2 (en) | Compound solar cell and manufacturing method | |
CN109638089B (en) | A method for manufacturing a spatial GaInP/GaAs/CuInGaSe triple junction cell epitaxial wafer | |
CN111146305A (en) | Solar cell | |
CN114566560B (en) | A gallium arsenide laser photovoltaic cell and its preparation method | |
CN111276560B (en) | Gallium arsenide solar cell and its manufacturing method | |
CN105355668A (en) | An In0.3Ga0.7As battery with an amorphous buffer layer structure and its preparation method | |
CN103311354B (en) | Si substrate three-junction cascade solar cell and fabrication method thereof | |
CN111785806A (en) | A solar cell and method of making the same | |
CN106206825B (en) | The multijunction solar cell of Window layer and launch site containing low optical refringence | |
JP2737705B2 (en) | Solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200929 |