CN111129123B - Combined etch stop layer for contact field plate etching, integrated chip and forming method thereof - Google Patents
Combined etch stop layer for contact field plate etching, integrated chip and forming method thereof Download PDFInfo
- Publication number
- CN111129123B CN111129123B CN201910454866.2A CN201910454866A CN111129123B CN 111129123 B CN111129123 B CN 111129123B CN 201910454866 A CN201910454866 A CN 201910454866A CN 111129123 B CN111129123 B CN 111129123B
- Authority
- CN
- China
- Prior art keywords
- field plate
- layer
- etch stop
- stop layer
- dielectric material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域Technical field
本发明的实施例一般地涉及半导体技术领域,更具体地,涉及接触场板蚀刻的组合蚀刻停止层、集成芯片、及其形成方法。Embodiments of the present invention generally relate to the field of semiconductor technology, and more specifically, to a combined etch stop layer for contact field plate etching, an integrated chip, and a method of forming the same.
背景技术Background technique
现代集成芯片包括在半导体衬底(例如,硅)上形成的数百万或数十亿半导体器件。集成芯片(IC)可以根据IC的应用使用许多不同类型的晶体管器件。近年来,蜂窝和RF(射频)器件的市场不断增长导致高压晶体管器件的使用显著增加。例如,由于高压晶体管处理高击穿电压(例如,大于约50V)和高频的能力,高压晶体管器件通常用于RF发送/接收链中的功率放大器。Modern integrated chips include millions or billions of semiconductor devices formed on a semiconductor substrate (eg, silicon). Integrated chips (ICs) can use many different types of transistor devices depending on the IC's application. In recent years, the growing market for cellular and RF (radio frequency) devices has led to a significant increase in the use of high-voltage transistor devices. For example, high voltage transistor devices are commonly used in power amplifiers in RF transmit/receive chains due to their ability to handle high breakdown voltages (eg, greater than about 50 V) and high frequencies.
发明内容Contents of the invention
根据本发明的一方面,提供了一种集成芯片,包括:栅极结构,在衬底上方设置在源极区域和漏极区域之间;介电层,从所述栅极结构上方横向地延伸至所述栅极结构和所述漏极区域之间;组合蚀刻停止层,包括堆叠在所述介电层上方的多种不同的介电材料;接触蚀刻停止层,与所述组合蚀刻停止层的上表面和侧壁直接接触;以及场板,由第一层间介电(ILD)层横向地围绕并且从所述第一层间介电层的顶部、垂直地延伸穿过所述接触蚀刻停止层、并且进入所述组合蚀刻停止层中。According to an aspect of the present invention, an integrated chip is provided, including: a gate structure disposed between a source region and a drain region above a substrate; and a dielectric layer laterally extending from above the gate structure to between the gate structure and the drain region; a combined etch stop layer including a plurality of different dielectric materials stacked over the dielectric layer; a contact etch stop layer with the combined etch stop layer and a field plate laterally surrounded by a first interlayer dielectric (ILD) layer and extending vertically from the top of the first interlayer dielectric layer through the contact etch stop layer, and into the combined etch stop layer.
根据本发明的另一方面,提供了一种集成芯片,包括:栅极结构,设置在衬底上方;抗蚀保护氧化物,从所述栅极结构上方横向地延伸越过所述栅极结构的最外侧壁;组合蚀刻停止层,包括位于所述抗蚀保护氧化物上方的第一介电材料和接触所述第一介电材料的上表面的第二介电材料;多个导电接触件,通过所述衬底上方的第一层间介电(ILD)层横向围绕;以及场板,从所述第一层间介电层的顶部延伸至所述组合蚀刻停止层,并且包括与所述多个导电接触件相同的材料,其中,所述组合蚀刻停止层横向地接触所述场板的侧壁并且将所述场板与所述抗蚀保护氧化物垂直地分离。According to another aspect of the present invention, an integrated chip is provided, including: a gate structure disposed above a substrate; a resist protective oxide extending laterally across the gate structure from above the gate structure an outermost wall; a combined etch stop layer including a first dielectric material located above the resist protective oxide and a second dielectric material contacting an upper surface of the first dielectric material; a plurality of conductive contacts, Surrounded laterally by a first interlayer dielectric (ILD) layer over the substrate; and a field plate extending from the top of the first interlayer dielectric layer to the combined etch stop layer and including the A plurality of conductive contacts are of the same material, wherein the combined etch stop layer laterally contacts sidewalls of the field plate and vertically separates the field plate from the resist protective oxide.
根据本发明的又一方面,提供了一种形成集成芯片的方法,包括:在衬底内的源极区域和漏极区域之间的所述衬底上方形成栅极结构;在所述栅极结构上方以及所述栅极结构和所述漏极区域之间形成介电层;在所述介电层上方形成组合蚀刻停止层,其中,所述组合蚀刻停止层包括多种堆叠的介电材料;在所述组合蚀刻停止层上方形成第一层间介电(ILD)层;选择性地蚀刻所述第一层间介电层,以同时限定延伸到所述衬底的接触件开口和延伸到所述组合蚀刻停止层的场板开口;以及通过一种或多种导电材料填充所述接触件开口和所述场板开口。According to yet another aspect of the present invention, a method for forming an integrated chip is provided, including: forming a gate structure above the substrate between a source region and a drain region within the substrate; A dielectric layer is formed over the structure and between the gate structure and the drain region; a combined etch stop layer is formed over the dielectric layer, wherein the combined etch stop layer includes a plurality of stacked dielectric materials ; forming a first interlayer dielectric (ILD) layer over the combined etch stop layer; selectively etching the first interlayer dielectric layer to simultaneously define contact openings and extensions extending to the substrate a field plate opening to the combined etch stop layer; and filling the contact opening and the field plate opening with one or more conductive materials.
附图说明Description of drawings
当结合附图阅读时,从以下详细描述中可以最好地理解本发明的各方面。应注意,根据工业中的标准实践,各种部件未按比例绘制。实际上,为了清楚讨论,可以任意增加或减少各种部件的尺寸。Aspects of the invention are best understood from the following detailed description when read in conjunction with the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, various components are not drawn to scale. In fact, the dimensions of the various components may be arbitrarily increased or decreased for clarity of discussion.
图1示出了具有场板的所公开的高压晶体管器件的一些实施例的截面图。Figure 1 shows a cross-sectional view of some embodiments of the disclosed high voltage transistor device with a field plate.
图2至图4示出了具有场板的所公开的高压横向扩散MOSFET(LDMOS)器件的一些附加实施例的截面图。2-4 illustrate cross-sectional views of some additional embodiments of the disclosed high voltage laterally diffused MOSFET (LDMOS) devices with field plates.
图5至图6示出了通过金属互连布线实现的高压LDMOS器件的场板偏置配置的一些实施例的截面图。5-6 illustrate cross-sectional views of some embodiments of field plate biasing configurations of high voltage LDMOS devices implemented through metal interconnect routing.
图7A至图7C示出了处于不同开关隔离配置中的高压LDMOS器件的一些实施例的截面图。7A-7C illustrate cross-sectional views of some embodiments of high voltage LDMOS devices in different switch isolation configurations.
图8示出了具有场板的源极向下(即,源极位于下方)的高压晶体管器件的截面图。Figure 8 shows a cross-sectional view of a high-voltage transistor device with a field plate source-down (ie, the source is underneath).
图9A至图9B示出了在金属线层上具有场板的所公开的高压LDMOS的一些实施例。9A-9B illustrate some embodiments of the disclosed high voltage LDMOS with field plates on metal line layers.
图10示出了具有自对准漂移区域的高压LDMOS器件的一些实施例。Figure 10 shows some embodiments of high voltage LDMOS devices with self-aligned drift regions.
图11示出了形成具有场板的高压晶体管器件的方法的一些实施例的流程图。Figure 11 illustrates a flowchart of some embodiments of a method of forming a high voltage transistor device with a field plate.
图12至图19示出了形成具有场板的高压晶体管器件的方法的一些实施例的截面图。12-19 illustrate cross-sectional views of some embodiments of methods of forming high voltage transistor devices with field plates.
图20至图24示出了具有限定场板的组合蚀刻停止层的所公开的高压晶体管器件的一些实施例。20-24 illustrate some embodiments of the disclosed high voltage transistor device having a combined etch stop layer defining a field plate.
图25至图32示出了形成具有限定场板的组合蚀刻停止层的高压晶体管器件的方法的一些实施例的截面图。25-32 illustrate cross-sectional views of some embodiments of a method of forming a high voltage transistor device having a combined etch stop layer defining a field plate.
图33示出了形成具有限定场板的组合蚀刻停止层的高压晶体管器件的方法的一些实施例的流程图。33 illustrates a flowchart of some embodiments of a method of forming a high voltage transistor device with a combined etch stop layer defining a field plate.
具体实施方式Detailed ways
以下公开内容提供了用于实现所提供主题的不同特征的许多不同实施例或示例。以下描述组件和布置的具体示例以简化本发明。当然,这些仅仅是示例,而不是限制性的。例如,在以下描述中在第二部件上方或上形成第一部件可以包括以直接接触形成第一部件和第二部件的实施例,并且还可以包括可以在第一部件和第二部件之间形成附加部件,使得第一部件和第二部件可以不直接接触的实施例。另外,本发明可以在各种示例中重复参考数字和/或字母。该重复是为了简单和清楚的目的,并且本身并不表示所讨论的各种实施例和/或配置之间的关系。The following disclosure provides many different embodiments or examples for implementing different features of the presented subject matter. Specific examples of components and arrangements are described below to simplify the present invention. Of course, these are examples only and are not limiting. For example, in the following description, forming a first component over or on a second component may include embodiments in which the first component and the second component are formed in direct contact, and may also include embodiments in which the first component and the second component may be formed in direct contact. Additional components enable embodiments in which the first component and the second component may not be in direct contact. Additionally, the present invention may repeat reference numbers and/or letters in various examples. This repetition is for purposes of simplicity and clarity and does not per se indicate a relationship between the various embodiments and/or configurations discussed.
此外,这里可以使用空间相对术语,例如“在…下方””,“在…之下”,“下部”,“在…之上”“上部”等,以便于描述以描述如图中所示的一个元件或部件与另一元件(多个元件)或部件(多个部件)的关系。除了图中所示的取向之外,空间相对术语旨在涵盖使用或操作中的装置的不同取向。装置可以以其他方式定向(旋转90度或在其他方向上),并且同样可以相应地解释在此使用的空间相对描述符。In addition, spatially relative terms may be used herein, such as “below,” “beneath,” “lower,” “above,” “upper,” etc., for convenience of description to describe what is illustrated in the figures. The relationship of one element or component to another element or components. The spatially relative terms are intended to cover different orientations of the device in use or operation in addition to the orientation illustrated in the figures. The device is used or operated. may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
高压晶体管器件通常构造成具有场板。场板是导电元件,其中,该场板放置在沟道区上以通过控制由栅电极产生的电场(例如,减小峰值电场)而增强高压晶体管器件的性能。通过控制由栅电极产生的电场,高压晶体管器件可以实现更高的击穿电压。例如,LDMOS(横向扩散金属氧化物半导体)晶体管器件通常包括场板,其中,该场板从沟道区域延伸到设置在沟道区域和漏极区域之间的相邻漂移区域。High voltage transistor devices are typically constructed with field plates. Field plates are conductive elements placed over the channel region to enhance the performance of high voltage transistor devices by controlling the electric field generated by the gate electrode (eg, reducing the peak electric field). By controlling the electric field generated by the gate electrode, high voltage transistor devices can achieve higher breakdown voltages. For example, LDMOS (Laterally Diffused Metal Oxide Semiconductor) transistor devices typically include a field plate extending from a channel region to an adjacent drift region disposed between the channel region and the drain region.
可以以多种不同方式形成场板。例如,可以通过从栅电极朝向漂移区域延伸的导电栅极材料(例如,多晶硅)来形成场板。然而,在这种配置中,场板与栅极偏置(bias,又称偏移)保持一致,这增加了栅极至漏极电容(Cgd)并且使器件的开关损耗恶化。可选地,可以图案化导电栅极材料以形成单独的场板。这种配置减小了栅极至漏极电容(Cgd),但是场板的放置通常受到设计规则的限制。在又一可选实施例中,非栅极材料可用于场板形成。然而,这种解决方案使用额外的处理步骤,这增加了所得集成芯片的制造成本。Field plates can be formed in many different ways. For example, the field plate may be formed by a conductive gate material (eg, polysilicon) extending from the gate electrode toward the drift region. However, in this configuration, the field plate is aligned with the gate bias (also known as offset), which increases the gate-to-drain capacitance (Cgd) and worsens the switching losses of the device. Alternatively, the conductive gate material can be patterned to form individual field plates. This configuration reduces the gate-to-drain capacitance (Cgd), but field plate placement is often limited by design rules. In yet another alternative embodiment, non-gate materials may be used for field plate formation. However, this solution uses additional processing steps, which increases the manufacturing cost of the resulting integrated chip.
因此,本发明涉及具有由非栅极材料制成的场板的高压晶体管器件,其中,与形成后段制程(BEOL)金属层同时地形成该场板以使得能够实现低成本制造方法。在一些实施例中,高压晶体管器件具有设置在衬底内的源极区域和漏极区域之间的衬底上的栅电极。介电层从栅电极上方横向延伸到布置在栅电极和漏极区域之间的漂移区域。场板位于覆盖衬底的第一层间介电(ILD)层内。场板从栅电极上方横向延伸到漂移区域上方,并从介电层垂直延伸到第一ILD层的顶面。具有与场板相同材料的多个金属接触件从第一ILD层的底面垂直延伸到第一ILD层的顶面。Accordingly, the present invention relates to a high voltage transistor device having a field plate made of a non-gate material, wherein the field plate is formed simultaneously with the formation of a back-end-of-line (BEOL) metal layer to enable a low-cost manufacturing method. In some embodiments, a high voltage transistor device has a gate electrode disposed on the substrate between a source region and a drain region within the substrate. The dielectric layer extends laterally from above the gate electrode to a drift region disposed between the gate electrode and the drain region. The field plate is located within a first interlayer dielectric (ILD) layer covering the substrate. The field plate extends laterally from above the gate electrode to above the drift region, and vertically from the dielectric layer to the top surface of the first ILD layer. A plurality of metal contacts of the same material as the field plate extend vertically from the bottom surface of the first ILD layer to the top surface of the first ILD layer.
图1示出了具有场板122的所公开的高压晶体管器件100的一些实施例的截面图。FIG. 1 illustrates a cross-sectional view of some embodiments of the disclosed high voltage transistor device 100 having a field plate 122 .
高压晶体管器件100包括设置在半导体衬底中的源极区域104和漏极区域106。半导体衬底102具有第一掺杂类型,而源极区域104和漏极区域106具有第二掺杂类型,具有比半导体衬底102更高的掺杂浓度。在一些实施例中,第一掺杂类型为n型掺杂并且第二掺杂为p型掺杂。High voltage transistor device 100 includes source region 104 and drain region 106 disposed in a semiconductor substrate. The semiconductor substrate 102 has a first doping type, and the source region 104 and the drain region 106 have a second doping type, with a higher doping concentration than the semiconductor substrate 102 . In some embodiments, the first doping type is n-type doping and the second doping is p-type doping.
栅极结构116在横向地布置在源极区域104和漏极区域106之间的位置处设置在半导体衬底102上方。栅极结构116包括通过栅极介电层110与半导体衬底102分离的栅电极108。在接收到偏置电压时,栅电极108被配置为生成电场,以控制横向地设置在源极区域104和漏极区域106之间的沟道区域112内的电荷载流子的移动。例如,在操作期间,栅源电压(VGS)可以选择性地施加给相对于源极区域104的栅电极108,从而在沟道区域112中形成导电沟道。在施加VGS以形成导电沟道时,施加漏源电压(VDS)以在源极区域104和漏极区域106之间移动电荷载流子(例如通过箭头105所示)。Gate structure 116 is disposed over semiconductor substrate 102 at a location laterally disposed between source region 104 and drain region 106 . Gate structure 116 includes gate electrode 108 separated from semiconductor substrate 102 by gate dielectric layer 110 . Upon receiving a bias voltage, gate electrode 108 is configured to generate an electric field to control the movement of charge carriers within channel region 112 laterally disposed between source region 104 and drain region 106 . For example, during operation, a gate-source voltage (V GS ) may be selectively applied to gate electrode 108 relative to source region 104 to form a conductive channel in channel region 112 . When V GS is applied to form a conductive channel, a drain-source voltage (V DS ) is applied to move charge carriers between source region 104 and drain region 106 (eg, as indicated by arrow 105 ).
沟道区域112横向地从源极区域104延伸至相邻的漂移区域114(例如,漏极延伸区域)。漂移区域114包括具有相对低的掺杂浓度的第二掺杂类型,从而在高工作电压下提供更高的电阻。栅极结构116设置在沟道区域112上方。在一些实施例中,栅极结构116可以从沟道区域112上方延伸至漂移区域114的部分上方的位置。Channel region 112 extends laterally from source region 104 to adjacent drift region 114 (eg, drain extension region). Drift region 114 includes a second doping type with a relatively low doping concentration, thereby providing higher resistance at high operating voltages. Gate structure 116 is disposed over channel region 112 . In some embodiments, gate structure 116 may extend from over channel region 112 to a location over a portion of drift region 114 .
第一层间介电(ILD)层118设置在半导体衬底102上方。一个或多个导电金属结构设置在ILD层118内。在一些实施例中,一个或多个导电金属结构包括多个接触件120,该接触件配置为提供源极区域104、漏极区域106或栅电极108与第一后段制程(BEOL)金属线层128之间的垂直连接,其中,第一后段制程(BEOL)金属线层128设置在第一ILD层118上方的第二ILD层126内。A first interlayer dielectric (ILD) layer 118 is disposed over the semiconductor substrate 102 . One or more conductive metal structures are disposed within ILD layer 118 . In some embodiments, the one or more conductive metal structures include a plurality of contacts 120 configured to provide source region 104, drain region 106, or gate electrode 108 with first back-end-of-line (BEOL) metal lines Vertical connections between layers 128 , where a first back-end-of-line (BEOL) metal line layer 128 is disposed within the second ILD layer 126 above the first ILD layer 118 .
一个或多个导电金属结构可以进一步包括在栅电极108和漂移区域114的部分上方的位置处设置在第一ILD层118内的场板122。场板122包括与多个接触件120相同的导电材料。场板122可以设置在介电层124上方,其中,介电层124配置为将场板122与漂移区域114和栅电极108分离。在一些实施例中,介电层124在一个或多个方向上横向地延伸越过场板122。The one or more conductive metal structures may further include a field plate 122 disposed within the first ILD layer 118 at a location over the gate electrode 108 and portions of the drift region 114 . Field plate 122 includes the same conductive material as plurality of contacts 120 . Field plate 122 may be disposed over dielectric layer 124 , where dielectric layer 124 is configured to separate field plate 122 from drift region 114 and gate electrode 108 . In some embodiments, dielectric layer 124 extends laterally across field plate 122 in one or more directions.
在操作期间,场板122被配置为作用于由栅电极108所生成的电场。场板122可以配置为改变由栅电极108所生成的电场在漂移区域114中的分布,从而增强漂移区域114的内部电场并且增加漂移区域114的漂移掺杂浓度,从而增强高压晶体管器件100的击穿电压能力。During operation, field plate 122 is configured to act on the electric field generated by gate electrode 108 . Field plate 122 may be configured to change the distribution of the electric field generated by gate electrode 108 in drift region 114 , thereby enhancing the internal electric field of drift region 114 and increasing the drift doping concentration of drift region 114 , thereby enhancing the performance of high voltage transistor device 100 . Breakthrough voltage capability.
图2示出了所公开的高压晶体管器件的一些附加的实施例的截面图,其中,高压晶体管器件包括具有场板214的高压横向扩散的MOSFET(LDMOS)器件200。2 illustrates a cross-sectional view of some additional embodiments of the disclosed high-voltage transistor device, including a high-voltage laterally diffused MOSFET (LDMOS) device 200 having a field plate 214.
LDMOS器件200包括设置在半导体衬底102中的源极区域104和漏极区域106。半导体衬底102具有第一掺杂类型,而源极区域104和漏极区域106包括不同于第一掺杂类型的第二掺杂类型的高掺杂区域。在一些实施例中,第一掺杂类型是p型,并且第二掺杂类型是n型。在一些实施例中,源极区域104和漏极区域106的掺杂浓度可以在大约1019cm-3和大约1020cm-3之间的范围内。LDMOS device 200 includes source region 104 and drain region 106 disposed in semiconductor substrate 102 . The semiconductor substrate 102 has a first doping type, and the source region 104 and the drain region 106 include highly doped regions of a second doping type different from the first doping type. In some embodiments, the first doping type is p-type and the second doping type is n-type. In some embodiments, the doping concentration of source region 104 and drain region 106 may range between approximately 10 19 cm −3 and approximately 10 20 cm −3 .
具有第一掺杂类型(例如P+掺杂)的接触区域208(例如,p型分接头或n型分接头)横向地邻接源极区域104。接触区域208提供了与半导体衬底102的欧姆连接。在一些实施例中,接触区域208的掺杂浓度可以在大约1018cm-3和大约1020cm-3之间的范围内。接触区域208和源极区域104设置在主体区域202内。主体区域202具有第一掺杂类型,并且掺杂浓度高于半导体衬底102的掺杂浓度。例如,半导体衬底102的掺杂浓度可以在大约1014cm-3和大约1016cm-3之间范围内,而主体区域202的掺杂浓度可以在大约1016cm-3和大约1018cm-3之间范围内。Contact region 208 (eg, p-type tap or n-type tap) having a first doping type (eg, P+ doping) laterally adjoins source region 104 . Contact region 208 provides an ohmic connection to semiconductor substrate 102 . In some embodiments, the doping concentration of contact region 208 may range between approximately 10 18 cm −3 and approximately 10 20 cm −3 . Contact area 208 and source area 104 are disposed within body area 202 . The body region 202 has a first doping type and a doping concentration higher than that of the semiconductor substrate 102 . For example, the doping concentration of the semiconductor substrate 102 may range between about 10 14 cm −3 and about 10 16 cm −3 , while the doping concentration of the body region 202 may range between about 10 16 cm −3 and about 10 18 Within the range between cm -3 .
漏极区域106设置在漂移区域204内,其中,漂移区域在横向邻接主体区域202的位置处配置在半导体衬底102内。漂移区域204包括具有相对较低的掺杂浓度的第二掺杂类型,其中,当LDMOS器件200在高压下工作时,漂移区域204提供更高的电阻。在一些实施例中,漂移区域204的掺杂浓度可以在大约1015cm-3和大约1017cm-3之间范围内。Drain region 106 is disposed within drift region 204 , which is disposed within semiconductor substrate 102 laterally adjacent body region 202 . The drift region 204 includes a second doping type with a relatively lower doping concentration, wherein the drift region 204 provides higher resistance when the LDMOS device 200 is operated at high voltage. In some embodiments, the doping concentration of drift region 204 may range between approximately 10 15 cm −3 and approximately 10 17 cm −3 .
栅极结构210在横向布置在源极区域104和漏极区域106之间的位置处设置在半导体衬底102上方。在一些实施例中,栅极结构210可以从主体区域202上方横向延伸到漂移区域204的部分上方的位置。栅极结构210包括栅电极108,栅电极108通过栅极介电层110与半导体衬底102分离。在一些实施例中,栅极介电层110可以包括二氧化硅(SiO2)或高k栅极介电材料,并且栅电极108可以包括多晶硅或金属栅极材料(例如,铝)。在一些实施例中,栅极结构210还可以包括设置在栅电极108的相对侧上的侧壁间隔件212。在一些实施例中,侧壁间隔件212可包括基于氮化物的侧壁间隔件(例如,包含SiN)或基于氧化物的侧壁间隔件(例如,SiO2、SiOC等)。Gate structure 210 is disposed over semiconductor substrate 102 at a location laterally disposed between source region 104 and drain region 106 . In some embodiments, gate structure 210 may extend laterally from over body region 202 to a position over a portion of drift region 204 . Gate structure 210 includes gate electrode 108 separated from semiconductor substrate 102 by gate dielectric layer 110 . In some embodiments, gate dielectric layer 110 may include silicon dioxide (SiO 2 ) or a high-k gate dielectric material, and gate electrode 108 may include polysilicon or a metal gate material (eg, aluminum). In some embodiments, gate structure 210 may also include sidewall spacers 212 disposed on opposite sides of gate electrode 108 . In some embodiments, sidewall spacers 212 may include nitride-based sidewall spacers (eg, including SiN) or oxide-based sidewall spacers (eg, SiO 2 , SiOC, etc.).
一个或多个介电层124设置在栅电极108和漂移区域204上方。在一些实施例中,一个或多个介电层124从栅电极108的一部分上方连续延伸到漂移区域204的一部分上方。在一些实施例中,一个或多个介电层124可以共形地设置在漂移区域204、栅电极108和侧壁间隔件212上。One or more dielectric layers 124 are disposed over the gate electrode 108 and the drift region 204 . In some embodiments, one or more dielectric layers 124 extend continuously from over a portion of the gate electrode 108 to over a portion of the drift region 204 . In some embodiments, one or more dielectric layers 124 may be conformally disposed over drift region 204 , gate electrode 108 , and sidewall spacers 212 .
场板214设置在一个或多个介电层124上方,并且由第一ILD层118横向围绕。场板214从栅电极108上方延伸到漂移区域204上方。场板214的尺寸可以根据LDMOS器件200的尺寸和特性而变化。在一些实施例中,场板214可具有介于约50纳米与约1微米之间的尺寸。在其他实施例中,场板214可以更大或更小。在一些实施例中,第一ILD层118可以包括具有相对低的介电常数(例如,小于或等于大约3.9)的介电材料,其提供多个接触件120和/或场板122之间的电隔离。在一些实施例中,第一ILD层118可包括超低k介电材料或低k介电材料(例如,SiCO)。Field plate 214 is disposed over one or more dielectric layers 124 and is laterally surrounded by first ILD layer 118 . Field plate 214 extends from over gate electrode 108 to over drift region 204 . The size of field plate 214 may vary depending on the size and characteristics of LDMOS device 200. In some embodiments, field plate 214 may have dimensions between about 50 nanometers and about 1 micron. In other embodiments, field plate 214 may be larger or smaller. In some embodiments, the first ILD layer 118 may include a dielectric material with a relatively low dielectric constant (eg, less than or equal to about 3.9) that provides a connection between the plurality of contacts 120 and/or the field plate 122 Electrical isolation. In some embodiments, first ILD layer 118 may include an ultra-low-k dielectric material or a low-k dielectric material (eg, SiCO).
场板214从介电层124垂直延伸到第一ILD层118的顶面。在一些实施例中,场板214可以垂直延伸到高度大于或等于接触件120和第一ILD层118的顶面的高度。场板122具有邻接一个或多个介电层124的非平坦表面。非平坦表面使得场板122在栅电极108上方的区域中具有第一厚度t1,并且在覆盖漂移区域204的区域中具有大于第一厚度t1的第二厚度t2。Field plate 214 extends vertically from dielectric layer 124 to the top surface of first ILD layer 118 . In some embodiments, field plate 214 may extend vertically to a height greater than or equal to the height of contacts 120 and the top surface of first ILD layer 118 . Field plate 122 has a non-planar surface adjacent one or more dielectric layers 124 . The non-flat surface causes the field plate 122 to have a first thickness t 1 in the area above the gate electrode 108 and a second thickness t 2 that is greater than the first thickness t 1 in the area covering the drift region 204 .
多个接触件120也被第一ILD层118围绕。多个接触件120可包括耦合到接触区域208的第一接触件120a,耦合到漏极区域106的第二接触件120b,以及耦合到栅电极108的第三接触件120c。在一些实施例中,第一接触件120a可以包括与接触区域208和源极区域104接触的对接接触件(未示出)。在一些实施例中,多个接触件120和场板122可包括相同的金属材料。例如,多个接触件120和场板122可以包括钨(W)、氮化钽(TaN)、钛(Ti)、氮化钛(TiN)、铝铜(AlCu)、铜(Cu)中的一种或多种和/或其他类似的导电材料。The plurality of contacts 120 is also surrounded by the first ILD layer 118 . The plurality of contacts 120 may include a first contact 120a coupled to the contact region 208, a second contact 120b coupled to the drain region 106, and a third contact 120c coupled to the gate electrode 108. In some embodiments, first contact 120a may include a butt contact (not shown) in contact with contact region 208 and source region 104 . In some embodiments, multiple contacts 120 and field plate 122 may include the same metallic material. For example, the plurality of contacts 120 and the field plate 122 may include one of tungsten (W), tantalum nitride (TaN), titanium (Ti), titanium nitride (TiN), aluminum copper (AlCu), copper (Cu). one or more and/or other similar conductive materials.
图3示出了具有场板214的所公开的高压LDMOS器件300的一些附加实施例的截面图。3 shows a cross-sectional view of some additional embodiments of the disclosed high voltage LDMOS device 300 having a field plate 214.
LDMOS器件300包括隔离区域302,隔离区域302在横向布置在栅极结构214和漏极区域106之间的位置处设置在漂移区域204内。隔离区域302改善栅极结构210和漏极区域106之间的隔离,以便在LDMOS器件300在大工作电压下工作时防止栅极结构210和漂移区域204之间的介电击穿。例如,隔离区域302可以被引入到LDMOS器件的漂移区域204中,该LDMOS器件被设计为在第一击穿电压下工作,以增加LDMOS器件300的击穿电压,而不会显著改变LDMOS器件的制造工艺。在一些实施例中,隔离区域302可以包括浅沟槽隔离件(STI)。在其他实施例中,隔离区域302可以包括场氧化物。LDMOS device 300 includes an isolation region 302 disposed within drift region 204 at a location laterally disposed between gate structure 214 and drain region 106 . Isolation region 302 improves the isolation between gate structure 210 and drain region 106 to prevent dielectric breakdown between gate structure 210 and drift region 204 when LDMOS device 300 is operated at large operating voltages. For example, isolation region 302 may be introduced into drift region 204 of an LDMOS device designed to operate at a first breakdown voltage to increase the breakdown voltage of LDMOS device 300 without significantly changing the LDMOS device's Manufacturing process. In some embodiments, isolation region 302 may include a shallow trench isolation (STI). In other embodiments, isolation region 302 may include field oxide.
图4示出了具有场板408的所公开的高压LDMOS器件400的一些附加实施例的截面图。4 shows a cross-sectional view of some additional embodiments of the disclosed high voltage LDMOS device 400 having a field plate 408.
LDMOS器件400包括布置在场板408与栅极结构210和/或漂移区域204之间的多个介电层402至404。多个介电层402至404被配置为将场板408与栅极结构210和/或漂移区域204电隔离。在实施例中,多个介电层402至404可包括两种或更多种不同的介电材料。在一些实施例中,多个介电层402至404可以包括在典型的CMOS制造工艺期间使用的一个或多个介电层,以便限制用于将场板408与栅极结构210和/或漂移区域204电隔离的附加制造步骤。LDMOS device 400 includes a plurality of dielectric layers 402 - 404 disposed between field plate 408 and gate structure 210 and/or drift region 204 . A plurality of dielectric layers 402 - 404 are configured to electrically isolate field plate 408 from gate structure 210 and/or drift region 204 . In embodiments, the plurality of dielectric layers 402-404 may include two or more different dielectric materials. In some embodiments, the plurality of dielectric layers 402 - 404 may include one or more dielectric layers used during typical CMOS manufacturing processes to limit the use of field plate 408 with gate structure 210 and/or drift. Additional manufacturing step for electrical isolation of region 204.
例如,多个介电层402至404可以包括硅化物阻挡层402。在一些实施例中,硅化物阻挡层402可以包括配置为防止硅化物形成的抗蚀保护氧化物(RPO)层。硅化物阻挡层402可以布置在栅电极108和漂移区域204的部分上方。在一些实施例中,硅化物阻挡层402可以从栅电极108上方连续延伸到漂移区域204上方。For example, the plurality of dielectric layers 402 - 404 may include a suicide barrier layer 402 . In some embodiments, suicide barrier layer 402 may include a resist protective oxide (RPO) layer configured to prevent suicide formation. A suicide barrier layer 402 may be disposed over gate electrode 108 and portions of drift region 204 . In some embodiments, suicide barrier layer 402 may extend continuously from over gate electrode 108 to over drift region 204 .
在一些实施例中,多个介电层402至404还可包括场板蚀刻停止层(ESL)404。场板ESL 404可以设置在硅化物阻挡层402上方,并且被配置为控制场板408的开口的蚀刻。场板ESL 404可以解释接触件120和场板408之间的蚀刻深度的差异和/或蚀刻速率的差异(例如,由于蚀刻加载效应)。在一些实施例中,场板ESL 404可包括例如氮化硅(SiN)层。In some embodiments, the plurality of dielectric layers 402 - 404 may also include a field plate etch stop layer (ESL) 404 . Field plate ESL 404 may be disposed over suicide barrier layer 402 and configured to control etching of the openings of field plate 408 . Field plate ESL 404 may account for differences in etch depth and/or differences in etch rates between contacts 120 and field plate 408 (eg, due to etch loading effects). In some embodiments, field plate ESL 404 may include, for example, a silicon nitride (SiN) layer.
在一些可选实施例(未示出)中,多个介电层402至404可以附加地或可选地包括栅极介电层。在这样的实施例中,栅极介电层可以在覆盖漂移区域204的位置处布置为横向地邻近栅极结构210。在一些实施例中,氧化物的介电层可包括二氧化硅(例如,SiO2)或高k栅极介电材料。在其他实施例中,多个介电层402至404可以附加地或可选地包括ILD层(例如,第一ILD层118)。In some alternative embodiments (not shown), the plurality of dielectric layers 402-404 may additionally or alternatively include a gate dielectric layer. In such embodiments, a gate dielectric layer may be disposed laterally adjacent gate structure 210 at a location covering drift region 204 . In some embodiments, the dielectric layer of oxide may include silicon dioxide (eg, SiO 2 ) or a high-k gate dielectric material. In other embodiments, the plurality of dielectric layers 402 - 404 may additionally or alternatively include an ILD layer (eg, first ILD layer 118 ).
接触蚀刻停止层(CESL)406设置在半导体衬底102和场板ESL 404上方。在一些实施例中,CESL 406在多个接触件120和场板408之间的位置处在半导体衬底102上方延伸,使得CESL 406邻接多个接触件120和场板408的侧壁。CESL 406覆盖栅极结构210。在一些实施例中,CESL 406还可以覆盖多个介电层402至404。在其他实施例中,多个介电层402至404中的一个或多个(例如,场板ESL 404)可以覆盖CESL 406。在一些实施例中,CESL 406可包括氮化物层。例如,CESL 406可以包括氮化硅(SiN)。Contact etch stop layer (CESL) 406 is disposed over semiconductor substrate 102 and field plate ESL 404 . In some embodiments, CESL 406 extends over semiconductor substrate 102 at a location between plurality of contacts 120 and field plate 408 such that CESL 406 abuts the sidewalls of plurality of contacts 120 and field plate 408 . CESL 406 covers gate structure 210. In some embodiments, CESL 406 may also cover multiple dielectric layers 402-404. In other embodiments, one or more of the plurality of dielectric layers 402-404 (eg, field plate ESL 404) may cover CESL 406. In some embodiments, CESL 406 may include a nitride layer. For example, CESL 406 may include silicon nitride (SiN).
场板408设置在第一ILD层118内,邻接CESL 406并邻接多个介电层402至404中的一个或多个。在一些实施例中,场板408延伸穿过CESL406以邻接多个介电层402至404中的一个或多个。在这样的实施例中,多个介电层402至404中的一个或多个将场板408与栅极结构210和漂移区域204分开。Field plate 408 is disposed within first ILD layer 118 adjacent CESL 406 and adjacent one or more of the plurality of dielectric layers 402-404. In some embodiments, the field plate 408 extends through the CESL 406 to adjoin one or more of the plurality of dielectric layers 402 - 404 . In such embodiments, one or more of the plurality of dielectric layers 402 - 404 separate the field plate 408 from the gate structure 210 and the drift region 204 .
在一些实施例中,场板408可以包括第一金属材料410和第二金属材料412。第一金属材料410可以包括沿着场板408的外边缘设置的胶层,而第二金属材料412在场板408的内部区域中嵌入第一金属材料410内(即,第二金属材料412通过第一金属材料410与CESL 406分离)。在一些实施例中,衬里层414可以设置在第一ILD层118和第一金属材料410之间。In some embodiments, field plate 408 may include first metallic material 410 and second metallic material 412 . The first metal material 410 may include a glue layer disposed along the outer edge of the field plate 408, and the second metal material 412 is embedded within the first metal material 410 in an interior area of the field plate 408 (i.e., the second metal material 412 passes through the A metallic material 410 is separated from the CESL 406). In some embodiments, liner layer 414 may be disposed between first ILD layer 118 and first metallic material 410 .
在一些实施例中,沿场板408的外边缘设置的第一金属材料410具有沿着基本平坦的表面420(即,通过平坦化工艺形成的平坦表面)布置的顶面。平坦表面420可以与多个接触件120的顶面对准。在一些实施例中,第一金属材料410包括与多个接触件120相同的材料,第二金属材料412包括与覆盖多个接触件120的第一金属线层418相同的材料。例如,在一些实施例中,第一金属材料410可包括钨(W)、钛(Ti)、氮化钽(TaN)或氮化钛(TiN)。在一些实施例中,第二金属材料412可包括铜(Cu)或铝铜(AlCu)。In some embodiments, the first metallic material 410 disposed along the outer edge of the field plate 408 has a top surface disposed along a substantially planar surface 420 (ie, a planar surface formed by a planarization process). Flat surface 420 may be aligned with the top surface of plurality of contacts 120 . In some embodiments, the first metal material 410 includes the same material as the plurality of contacts 120 and the second metal material 412 includes the same material as the first metal line layer 418 covering the plurality of contacts 120 . For example, in some embodiments, the first metal material 410 may include tungsten (W), titanium (Ti), tantalum nitride (TaN), or titanium nitride (TiN). In some embodiments, the second metal material 412 may include copper (Cu) or aluminum copper (AlCu).
应当理解,由于其与BEOL(后段制程)金属化层的集成,所公开的场板允许针对不同的设计考虑容易地实现的各种场板偏置配置。例如,可以通过改变金属布线层而不是通过改变所公开的高压器件的设计来改变场板偏置。此外,应当理解,通过BEOL金属互连布线来偏置高压晶体管器件允许使用单个制造工艺流程将各种场板偏置配置集成在同一芯片上。It should be appreciated that due to its integration with BEOL (back end of line) metallization layers, the disclosed field plates allow for various field plate biasing configurations that are easily implemented for different design considerations. For example, the field plate bias may be changed by changing the metal wiring layers rather than by changing the design of the disclosed high voltage device. Furthermore, it should be understood that biasing high voltage transistor devices via BEOL metal interconnect routing allows various field plate biasing configurations to be integrated on the same chip using a single manufacturing process flow.
图5至图6示出了通过BEOL金属互连布线实现的高压晶体管器件的场板偏置配置的一些实施例的截面图。尽管图5至图6示出了通过第一金属线层(例如,504或604)连接在场板214和接触区208或栅电极108之间,但是BEOL金属互连布线不限于此。更确切地说,应当理解,场板214可以通过BEOL金属互连层的任何组合(例如,第一金属线层、第一金属通孔层、第二金属线层等)连接到源极区域、栅电极,漏极区域或体接触件。5-6 illustrate cross-sectional views of some embodiments of field plate biasing configurations of high voltage transistor devices implemented with BEOL metal interconnect routing. Although FIGS. 5-6 illustrate connections between field plate 214 and contact region 208 or gate electrode 108 through a first metal line layer (eg, 504 or 604), BEOL metal interconnect wiring is not limited thereto. Rather, it is understood that the field plate 214 may be connected to the source region through any combination of BEOL metal interconnect layers (eg, a first metal line layer, a first metal via layer, a second metal line layer, etc.), Gate electrode, drain area or body contact.
图5示出了高压LDMOS器件500的截面图,其中,场板214沿着传导路径506电耦合到接触区域208。场板214连接到设置在第二ILD层502内的第一金属线层504。第一金属线层504耦合到邻接接触区域208的接触件120a。通过将场板214电耦合到接触区域208,场板214被源极电压(source voltage)偏置。通过源极电压偏置场板214为高压LDMOS器件500提供低导通电阻Rds(on)和低动态功耗(例如,低Rds(on)*Qgd与BV(即,击穿电压))。低动态功耗在高频开关应用期间提供了良好的性能。FIG. 5 shows a cross-sectional view of high voltage LDMOS device 500 with field plate 214 electrically coupled to contact region 208 along conductive path 506 . Field plate 214 is connected to first metal line layer 504 disposed within second ILD layer 502 . The first metal line layer 504 is coupled to the contact 120a adjacent the contact area 208. By electrically coupling field plate 214 to contact region 208, field plate 214 is biased by a source voltage. The high voltage LDMOS device 500 is provided with low on-resistance Rds(on) and low dynamic power consumption (eg, low Rds(on)*Qgd and BV (ie, breakdown voltage)) by the source voltage bias field plate 214 . Low dynamic power consumption provides good performance during high frequency switching applications.
图6示出了高压LDMOS器件600的截面图,其中,场板214沿着传导路径606电耦合到栅电极108。场板214连接到设置在第二ILD层602内的第一金属线层604。第一金属线层604连接到邻接栅电极108的接触件120b。通过将场板214电耦合到栅电极108,场板214被栅极电压偏置。通过栅极电压偏置场板214为高压LDMOS器件600提供低Rds(on)与击穿电压。FIG. 6 shows a cross-sectional view of a high voltage LDMOS device 600 in which field plate 214 is electrically coupled to gate electrode 108 along conductive path 606 . Field plate 214 is connected to first metal line layer 604 disposed within second ILD layer 602 . The first metal line layer 604 is connected to the contact 120b adjacent the gate electrode 108. By electrically coupling field plate 214 to gate electrode 108, field plate 214 is biased by the gate voltage. The high voltage LDMOS device 600 is provided with low Rds(on) and breakdown voltage by gate voltage biasing the field plate 214 .
各种场板偏置配置允许所公开的场板形成可用于不同应用的通用高压晶体管器件。例如,具有栅极偏置场板的高压晶体管器件的导通状态电阻Rds(on)低于具有源极偏置场板的高压晶体管器件的Rds(on)。然而,具有源极偏置场板的高压晶体管器件的Rds(on)*Qgd低于具有栅源偏置场板的高压晶体管器件的Rds(on)*Qgd。因此,具有栅极偏置场板(例如,高压LDMOS器件500)的高压晶体管器件可用于低频开关应用(例如,低于10MHz),而具有源极偏置场板的高压晶体管器件(例如,高压LDMOS器件600)可以用在高频开关应用中(例如,高于10MHz)。Various field plate biasing configurations allow the disclosed field plates to form versatile high voltage transistor devices that can be used in different applications. For example, the on-state resistance Rds(on) of a high-voltage transistor device with a gate-biased field plate is lower than the Rds(on) of a high-voltage transistor device with a source-biased field plate. However, the Rds(on)*Qgd of a high-voltage transistor device with a source-biased field plate is lower than that of a high-voltage transistor device with a gate-source biased field plate. Therefore, high-voltage transistor devices with gate-biased field plates (eg, high-voltage LDMOS device 500 ) may be used in low-frequency switching applications (eg, below 10 MHz), while high-voltage transistor devices with source-biased field plates (eg, high-voltage LDMOS device 600) may be used in high frequency switching applications (eg, above 10 MHz).
图7A至图7C示出了处于不同开关隔离配置中的高压LDMOS器件700a至700c的一些实施例的截面图。Figures 7A-7C illustrate cross-sectional views of some embodiments of high voltage LDMOS devices 700a-700c in different switch isolation configurations.
如图7A所示,高压LDMOS器件700a被配置为低压侧开关(例如,在变换器(inverter)中连接到地的开关)。在这样的配置中,高压LDMOS器件700a具有浮置的源极区域104,使得源极区域104上的电压可以在变换周期期间改变。As shown in Figure 7A, high voltage LDMOS device 700a is configured as a low side switch (eg, a switch connected to ground in an inverter). In such a configuration, high voltage LDMOS device 700a has a floating source region 104 such that the voltage on source region 104 can change during the conversion cycle.
如图7B所示,高压LDMOS器件700b被配置为高压侧开关(例如,在变换器中连接到VDD的开关)。在这样的配置中,高压LDMOS器件700b具有连接到源极电压的源极区域104。高压LDMOS器件700b具有在主体区域202下方延伸的漂移区域702,以通过防止电荷载流子从接触区208传送到半导体衬底102中(例如,通过遂穿)来防止源极电压升高到高于衬底电压。As shown in Figure 7B, high voltage LDMOS device 700b is configured as a high side switch (eg, a switch connected to VDD in a converter). In such a configuration, high voltage LDMOS device 700b has source region 104 connected to the source voltage. High voltage LDMOS device 700b has a drift region 702 extending beneath body region 202 to prevent the source voltage from rising to high by preventing charge carriers from being transferred from contact region 208 into semiconductor substrate 102 (eg, by tunneling). to the substrate voltage.
如图7C所示,高压LDMOS器件700c与衬底完全隔离,以允许独立的偏置。高压晶体管器件700c包括被配置为提供垂直隔离的深阱704和相反掺杂的下面的掩埋层706。在一些实施例中,深阱704可以具有第一掺杂类型(例如,与主体区域202相同的掺杂类型),并且掩埋层706可以具有第二掺杂类型。As shown in Figure 7C, high voltage LDMOS device 700c is fully isolated from the substrate to allow independent biasing. High voltage transistor device 700c includes a deep well 704 and an oppositely doped underlying buried layer 706 configured to provide vertical isolation. In some embodiments, deep well 704 may have a first doping type (eg, the same doping type as body region 202 ), and buried layer 706 may have a second doping type.
高压LDMOS器件700c还包括一个或多个附加的STI区域206,其将漏极区域与主体区域708和掩埋层710横向分隔开,其中,掩埋层710具有第二掺杂类型。主体区域708覆盖深阱704,并且掩埋层710覆盖具有第二掺杂类型并邻接掩埋层706的阱区域712。接触件120被配置为向主体区域708和掩埋层710提供偏置电压,以便在深阱704与掩埋层706和阱区域712之间形成结隔离。结隔离允许完全隔离的高压LDMOS器件700c在一定范围的偏置电压下工作。High voltage LDMOS device 700c also includes one or more additional STI regions 206 that laterally separate the drain region from the body region 708 and the buried layer 710, wherein the buried layer 710 has a second doping type. Body region 708 covers deep well 704 and buried layer 710 covers well region 712 having the second doping type and adjacent buried layer 706 . Contact 120 is configured to provide a bias voltage to body region 708 and buried layer 710 to form junction isolation between deep well 704 and buried layer 706 and well region 712 . Junction isolation allows the fully isolated high voltage LDMOS device 700c to operate over a range of bias voltages.
图8示出了具有场板214的源极向下的高压晶体管器件800的截面图。FIG. 8 shows a cross-sectional view of a high voltage transistor device 800 having a field plate 214 with source down.
高压晶体管器件800包括具有高掺杂浓度的第一掺杂类型(例如,p+掺杂类型)的衬底802。源极区域804设置为沿衬底802的背侧802b。在各种实施例中,源极区804可包括高掺杂区域或金属层。具有第一导电类型的外延层806设置在衬底802的前侧表面802f上。外延层806的掺杂剂浓度小于衬底802的掺杂剂浓度。源极接触区域810、漏极区域106、主体区域808和漂移区域204设置在外延层806的顶面内。High voltage transistor device 800 includes a substrate 802 having a high doping concentration of a first doping type (eg, a p+ doping type). Source region 804 is disposed along the backside 802b of substrate 802. In various embodiments, source region 804 may include a highly doped region or metal layer. An epitaxial layer 806 having a first conductivity type is disposed on the front side surface 802f of the substrate 802. The dopant concentration of epitaxial layer 806 is less than the dopant concentration of substrate 802 . Source contact region 810 , drain region 106 , body region 808 and drift region 204 are disposed within the top surface of epitaxial layer 806 .
导电材料812从外延层806的顶表面延伸到衬底802中。导电材料812可以包括高度掺杂的深阱区域。导电材料812允许从衬底802的背面进行源极连接,从而降低金属布线复杂性并实现各种封装兼容性。在一些实施例中,场板214可以通过电路径818由源极电压偏置,其中,电路径818延伸穿过邻接导电材料812的接触件814和耦合到场板214的上面的金属线层816。Conductive material 812 extends from the top surface of epitaxial layer 806 into substrate 802 . Conductive material 812 may include highly doped deep well regions. Conductive material 812 allows source connections to be made from the backside of substrate 802, thereby reducing metal routing complexity and enabling various package compatibility. In some embodiments, field plate 214 may be biased by the source voltage through electrical path 818 that extends through contact 814 adjacent conductive material 812 and overlying metal line layer 816 coupled to field plate 214 .
图9A至图9B示出了具有金属线层中的场板902的所公开的高压LDMOS器件的一些实施例。尽管图9A至图9B示出了场板位于第一金属线层上,但是应当理解,所公开的场板不限于第一金属线层,而是可以在BEOL金属化叠层的可选层上实施。Figures 9A-9B illustrate some embodiments of the disclosed high voltage LDMOS devices with field plates 902 in metal line layers. Although FIGS. 9A-9B illustrate the field plate on the first metal line layer, it should be understood that the disclosed field plate is not limited to the first metal line layer, but may be on optional layers of the BEOL metallization stack. implementation.
如图9A的截面图900所示,场板902设置在覆盖第一ILD层118的第二ILD层904内的第一金属线层中。在一些实施例中,场板902具有基本平坦的顶面和底面,以便为场板902提供平面拓扑结构。场板902通过第一ILD层118与栅极结构210和漂移区域204垂直分离。场板902覆盖栅电极108和漂移区域204的部分,并且与源极区域104和漏极区域106横向分离。例如,场板902可以距离d与漏极区域106横向分离。在一些实施例中,场板902可以从栅电极108上方横向延伸到漂移区域204上方。As shown in cross-sectional view 900 of FIG. 9A , a field plate 902 is disposed in a first metal line layer within a second ILD layer 904 covering the first ILD layer 118 . In some embodiments, field plate 902 has substantially flat top and bottom surfaces to provide field plate 902 with a planar topology. Field plate 902 is vertically separated from gate structure 210 and drift region 204 by first ILD layer 118 . Field plate 902 covers portions of gate electrode 108 and drift region 204 and is laterally separated from source region 104 and drain region 106 . For example, field plate 902 may be laterally separated from drain region 106 by a distance d. In some embodiments, field plate 902 may extend laterally from over gate electrode 108 to over drift region 204 .
如图9B的顶视图906所示,场板902包括覆盖栅电极108和漂移区域204的部分的金属结构。金属结构没有通过接触件120连接到下面的元件或没有连接到第一金属线层上的另一金属结构。更确切地说,金属结构将连接到上覆通孔(未示出),该上覆通孔被配置为将场板连接到上覆金属线层,使得场板902能够被偏置。As shown in top view 906 of FIG. 9B , field plate 902 includes a metal structure covering portions of gate electrode 108 and drift region 204 . The metal structure is not connected via contacts 120 to an underlying component or to another metal structure on the first metal line layer. Rather, the metal structure will be connected to overlying vias (not shown) configured to connect the field plate to the overlying metal line layer so that the field plate 902 can be biased.
图10示出了具有自对准漂移区域1002的所公开的高压LDMOS装置1000的一些实施例。Figure 10 illustrates some embodiments of the disclosed high voltage LDMOS device 1000 having a self-aligned drift region 1002.
自对准漂移区域1002具有侧壁1002s,该侧壁1002s与栅电极108和栅极介电层110的侧壁基本对齐。在一些可选实施例中,自对准漂移区域1002可以形成为具有与侧壁间隔件212的边缘基本对齐的侧壁1002s。通过将自对准漂移区域1002与栅电极108和栅极介电层110的侧壁对准,自对准漂移区域1002以及间隔s与主体区域202横向隔开,从而最小化栅极与漏极重叠并实现低栅极-漏极电荷(Qgd)和良好的高频性能。覆盖自对准漂移区域1002的场板214可以进一步减小栅极-漏极电荷(Qgd)。Self-aligned drift region 1002 has sidewalls 1002s that are substantially aligned with the sidewalls of gate electrode 108 and gate dielectric layer 110 . In some alternative embodiments, self-aligned drift region 1002 may be formed with sidewalls 1002s substantially aligned with edges of sidewall spacers 212 . By aligning the self-aligned drift region 1002 with the sidewalls of the gate electrode 108 and the gate dielectric layer 110, the self-aligned drift region 1002 and the space s are laterally separated from the body region 202, thereby minimizing the gate and drain overlap and achieve low gate-drain charge (Qgd) and good high-frequency performance. Field plate 214 covering self-aligned drift region 1002 can further reduce gate-drain charge (Qgd).
图11示出了形成具有场板的高压晶体管器件的方法1100的一些实施例的流程图。该方法可以使用在标准CMOS制造工艺期间已经使用的工艺步骤来形成场板,因此可以提供低成本的通用场板。11 illustrates a flow diagram of some embodiments of a method 1100 of forming a high voltage transistor device with a field plate. This method can use process steps already used during standard CMOS manufacturing processes to form field plates, thus providing a low-cost, universal field plate.
虽然所公开的方法(例如,方法1100和3300)在本文中被示出并描述为一系列动作或事件,但是应当理解,这些动作或事件的所示顺序不应被解释为限制意义。例如,一些动作可以按照不同的顺序发生和/或与除了这里示出和/或描述的动作或事件之外的其他动作或事件同时发生。另外,可能不需要所有示出的动作来实现本文描述的一个或多个方面或实施例。此外,本文描绘的一个或多个动作可以在一个或多个单独的动作和/或阶段中执行。Although the disclosed methods (eg, methods 1100 and 3300) are shown and described herein as a series of actions or events, it should be understood that the illustrated order of these actions or events should not be interpreted in a limiting sense. For example, some actions may occur in a different order and/or concurrently with other actions or events in addition to those shown and/or described herein. Additionally, not all illustrated acts may be required to implement one or more aspects or embodiments described herein. Additionally, one or more actions depicted herein may be performed in one or more separate actions and/or stages.
在动作1102处,提供衬底,其具有由沟道区域隔开的源极区域和漏极区域。在一些实施例中,衬底还可以包括在与沟道区相邻的位置处介于源极区域和漏极区域之间的漂移区域。At act 1102, a substrate is provided having source and drain regions separated by a channel region. In some embodiments, the substrate may further include a drift region between the source region and the drain region adjacent the channel region.
在动作1104处,在布置在源极区域和漏极区域之间的位置处在衬底上形成栅极结构。栅极结构可以包括栅极介电层和上覆栅电极。At act 1104, a gate structure is formed on the substrate at a location disposed between the source region and the drain region. The gate structure may include a gate dielectric layer and an overlying gate electrode.
在动作1106处,可以使用自对准工艺来形成漂移区域,在一些实施例中,该自对准工艺根据栅极结构选择性地注入半导体衬底以形成漂移区域。At act 1106, the drift region may be formed using a self-aligned process that, in some embodiments, selectively implants the semiconductor substrate according to the gate structure to form the drift region.
在动作1108处,在栅电极和漂移区域的一部分上选择性地形成一个或多个介电层。At act 1108, one or more dielectric layers are selectively formed over the gate electrode and a portion of the drift region.
在动作1110处,在衬底上方形成接触蚀刻停止层(CESL)和第一层间介电(ILD)层。At act 1110, a contact etch stop layer (CESL) and a first interlayer dielectric (ILD) layer are formed over the substrate.
在动作1112处,选择性地蚀刻第一ILD层以限定接触件开口和场板开口。At act 1112, the first ILD layer is selectively etched to define contact openings and field plate openings.
在动作1114处,接触件开口和场板开口填充有第一金属材料。At act 1114, the contact openings and field plate openings are filled with the first metallic material.
在动作1116处,可以执行平坦化工艺以去除覆盖第一ILD层的多余的第一金属材料。At act 1116, a planarization process may be performed to remove excess first metal material covering the first ILD layer.
在动作1118处,沉积对应于第一金属线层的第二金属材料。在一些实施例中,第二金属材料可以进一步填充场板开口。在这样的实施例中,第二金属材料嵌入场板开口内的第一金属材料内。At act 1118, a second metal material corresponding to the first metal line layer is deposited. In some embodiments, the second metallic material may further fill the field plate openings. In such embodiments, the second metallic material is embedded within the first metallic material within the field plate opening.
在动作1120处,在第一ILD层上方和第一金属线层结构上方形成第二层间介电(ILD)层。At act 1120, a second interlayer dielectric (ILD) layer is formed over the first ILD layer and over the first metal line layer structure.
图12至图19示出了形成具有场板的MOSFET器件的方法的一些实施例的截面图。尽管关于方法1100描述了图12至图19,但是应当理解,图12至图19所示的结构不限于这种方法,而是可以单独作为独立于该方法的结构。12-19 illustrate cross-sectional views of some embodiments of methods of forming MOSFET devices with field plates. Although FIGS. 12 to 19 are described with respect to method 1100, it should be understood that the structures shown in FIGS. 12 to 19 are not limited to this method, but may stand alone as structures independent of this method.
图12示出了对应于动作1102的截面示图1200的一些实施例。FIG. 12 shows some embodiments of a cross-sectional view 1200 corresponding to act 1102.
如截面图1200所示,提供半导体衬底102。半导体衬底102可以固有地掺杂有第一掺杂类型。在各种实施例中,半导体衬底102可包括任何类型的半导体主体(例如,硅、SOI),其包括但不限于半导体管芯或晶圆或晶圆上的一个或多个管芯,以及在其上形成和/或以其他方式与之相关的任何其他类型的半导体和/或外延层。As shown in cross-sectional view 1200, a semiconductor substrate 102 is provided. Semiconductor substrate 102 may be inherently doped with the first doping type. In various embodiments, semiconductor substrate 102 may include any type of semiconductor body (eg, silicon, SOI) including, but not limited to, a semiconductor die or wafer or one or more dies on a wafer, and Any other type of semiconductor and/or epitaxial layer formed thereon and/or otherwise associated therewith.
可以使用各种注入步骤选择性地注入半导体衬底102,以形成多个注入区域(例如,阱区域,接触区域等)。例如,可以选择性地注入半导体衬底102以形成主体区域202、漂移区域204、源极区域104、漏极区域106和接触区域208。可以通过选择性地掩蔽半导体衬底102(例如,使用光刻胶掩模)然后将高能量掺杂剂1204(例如,诸如硼的p型掺杂剂物质或诸如磷的n型掺杂剂)引入半导体衬底102的暴露区域来形成多个注入区域。例如,如截面图1200所示,选择性地图案化掩模层1202以暴露半导体衬底102的部分,随后将高能量掺杂剂1204注入其中以形成源极区域104和漏极区域106。Semiconductor substrate 102 may be selectively implanted using various implantation steps to form multiple implanted regions (eg, well regions, contact regions, etc.). For example, semiconductor substrate 102 may be selectively implanted to form body region 202, drift region 204, source region 104, drain region 106, and contact region 208. The high energy dopant 1204 (eg, a p-type dopant species such as boron or an n-type dopant species such as phosphorus) can be removed by selectively masking the semiconductor substrate 102 (eg, using a photoresist mask). Exposed areas of the semiconductor substrate 102 are introduced to form a plurality of implanted areas. For example, as shown in cross-sectional view 1200, mask layer 1202 is selectively patterned to expose portions of semiconductor substrate 102, and high energy dopants 1204 are subsequently implanted therein to form source region 104 and drain region 106.
应当理解,截面图1200中示出的注入区域是可能的注入区域的一个示例,并且半导体衬底102可以包括注入区域的其他配置,例如图1至图10中示出的任何配置。It should be understood that the implanted region shown in cross-sectional view 1200 is one example of possible implanted regions and that the semiconductor substrate 102 may include other configurations of implanted regions, such as any of the configurations shown in FIGS. 1-10 .
图13示出了对应于动作1104的截面示图1300的一些实施例。FIG. 13 shows some embodiments of a cross-sectional view 1300 corresponding to act 1104.
如截面图1300所示,栅极结构210在布置在源极区域104和漏极区域106之间的位置处形成在半导体衬底102上方。可以通过在半导体衬底102上方形成栅极介电层110,以及通过在栅极介电层110上方形成栅电极材料108来形成栅极结构210。在一些实施例中,可以通过气相沉积技术沉积栅极介电层110和栅电极材料108。随后可以对栅极介电层110和栅电极材料108进行图案化和蚀刻(例如,根据光刻胶掩模)以限定栅极结构210。在一些实施例中,可以通过以下步骤在栅电极108的相对侧上形成侧壁间隔件112:将氮化物基材料或氧化物基材料沉积到半导体衬底102上,并选择性地蚀刻氮化物基材料或氧化物基材料以形成侧壁间隔件112。As shown in cross-sectional view 1300 , gate structure 210 is formed over semiconductor substrate 102 at a location disposed between source region 104 and drain region 106 . Gate structure 210 may be formed by forming gate dielectric layer 110 over semiconductor substrate 102 and by forming gate electrode material 108 over gate dielectric layer 110 . In some embodiments, gate dielectric layer 110 and gate electrode material 108 may be deposited by vapor deposition techniques. Gate dielectric layer 110 and gate electrode material 108 may then be patterned and etched (eg, according to a photoresist mask) to define gate structure 210 . In some embodiments, sidewall spacers 112 may be formed on opposite sides of gate electrode 108 by depositing a nitride-based material or an oxide-based material onto semiconductor substrate 102 and selectively etching the nitride. base material or oxide-based material to form the sidewall spacers 112 .
图14示出了对应于动作1108的截面示图1400的一些实施例。FIG. 14 shows some embodiments of a cross-sectional view 1400 corresponding to act 1108.
如截面图1400所示,在栅电极108和漂移区域204上选择性地形成一个或多个介电层124。在一些实施例中,可以通过气相沉积技术沉积一个或多个介电层124,并且随后对一个或多个介电层进行图案化和蚀刻(例如,根据光刻胶掩模)。在一些实施例中,可以蚀刻一个或多个介电层124以暴露栅电极108的一部分并且与漏极区域106横向间隔开。As shown in cross-sectional view 1400, one or more dielectric layers 124 are selectively formed over the gate electrode 108 and the drift region 204. In some embodiments, one or more dielectric layers 124 may be deposited by vapor deposition techniques and subsequently patterned and etched (eg, according to a photoresist mask). In some embodiments, one or more dielectric layers 124 may be etched to expose a portion of gate electrode 108 and be laterally spaced apart from drain region 106 .
在一些实施例中,一个或多个介电层124可以包括硅化物阻挡层,例如抗蚀保护氧化物(RPO)层。在其他实施例中,一个或多个介电层124可以进一步和/或可选地包括场板蚀刻停止层(ESL)。在一些实施例中,场板ESL可以是通过气相沉积技术形成的氮化硅(SiN)层。在其他实施例中,一个或多个介电层124可以进一步和/或可选地包括栅极介电层或层间介电(ILD)层。In some embodiments, one or more dielectric layers 124 may include a suicide barrier layer, such as a resist protective oxide (RPO) layer. In other embodiments, one or more dielectric layers 124 may further and/or alternatively include a field plate etch stop layer (ESL). In some embodiments, the field plate ESL may be a silicon nitride (SiN) layer formed by vapor deposition techniques. In other embodiments, one or more dielectric layers 124 may further and/or alternatively include a gate dielectric layer or an interlayer dielectric (ILD) layer.
图15示出了对应于动作1110的截面示图1500的一些实施例。Figure 15 shows some embodiments of a cross-sectional view 1500 corresponding to act 1110.
如截面图1500所示,在半导体衬底102上形成接触蚀刻停止层(CESL)1502。在一些实施例中,可以通过气相沉积工艺形成CESL 1502。然后在CESL 1502上形成第一层间介电(ILD)层1504。在一些实施例中,第一ILD层1504可以包括超低k介电材料或低k介电材料(例如,SiCO)。在一些实施例中,也可以通过气相沉积工艺形成第一ILD层1504。在其他实施例中,可以通过旋涂工艺形成第一ILD层1504。应当理解,这里使用的术语“层间介电(ILD)层”也可以指金属间介电(IMD)层。As shown in cross-sectional view 1500 , a contact etch stop layer (CESL) 1502 is formed on the semiconductor substrate 102 . In some embodiments, CESL 1502 may be formed through a vapor deposition process. A first interlayer dielectric (ILD) layer 1504 is then formed over CESL 1502 . In some embodiments, first ILD layer 1504 may include an ultra-low-k dielectric material or a low-k dielectric material (eg, SiCO). In some embodiments, the first ILD layer 1504 may also be formed through a vapor deposition process. In other embodiments, the first ILD layer 1504 may be formed by a spin coating process. It should be understood that the term "interlayer dielectric (ILD) layer" as used herein may also refer to an intermetal dielectric (IMD) layer.
图16示出了对应于动作1112的截面示图1600的一些实施例。FIG. 16 shows some embodiments of a cross-sectional view 1600 corresponding to act 1112.
如截面图1600所示,第一ILD层1504选择性地暴露于第一蚀刻剂1602,其中,第一蚀刻剂1602被配置为形成接触件开口1606和场板开口1608。在一些实施例中,接触件开口1606可以小于场板开口1608。在一些实施例中,根据掩模层1604(例如,光刻胶层或硬掩模层),第一ILD层1504选择性地暴露于第一蚀刻剂1602。在一些实施例中,第一蚀刻剂1602可以在第一ILD层1504与一个或多个介电层124内的场板ESL之间具有大的蚀刻选择性。在一些实施例中,第一蚀刻剂1602可包括干蚀刻剂。在一些实施例中,干蚀刻剂可具有包括氧(O2)、氮(N2)、氢(H2)、氩(Ar)和/或氟物质(例如,CF4、CHF3、C4F8等)中的一种或多种的蚀刻化学物质。在其他实施例中,第一蚀刻剂1602可以包括含有稀释的氢氟酸(BHF)的湿蚀刻剂。As shown in cross-sectional view 1600 , first ILD layer 1504 is selectively exposed to first etchant 1602 , wherein first etchant 1602 is configured to form contact openings 1606 and field plate openings 1608 . In some embodiments, contact openings 1606 may be smaller than field plate openings 1608 . In some embodiments, first ILD layer 1504 is selectively exposed to first etchant 1602 based on mask layer 1604 (eg, a photoresist layer or a hard mask layer). In some embodiments, the first etchant 1602 may have a large etch selectivity between the first ILD layer 1504 and the field plate ESL within the one or more dielectric layers 124 . In some embodiments, first etchant 1602 may include a dry etchant. In some embodiments, the dry etchant may contain oxygen (O 2 ), nitrogen (N 2 ), hydrogen (H 2 ), argon (Ar), and/or fluorine species (e.g., CF 4 , CHF 3 , C 4 F 8 , etc.) one or more etching chemicals. In other embodiments, first etchant 1602 may include a wet etchant containing dilute hydrofluoric acid (BHF).
图17示出了对应于动作1114至1116的截面示图1700的一些实施例。Figure 17 shows some embodiments of a cross-sectional view 1700 corresponding to actions 1114-1116.
如截面图1700所示,接触件开口1606和场板开口1608填充有第一金属材料1702。在一些实施例中,可以通过气相沉积技术(例如,CVD、PVD、PE-CVD等)沉积第一金属材料1702。在一些实施例中,可以通过物理气相沉积沉积晶种层,然后进行镀工艺(例如,电镀或非电镀工艺)来形成第一金属材料1702。随后可以执行平坦化工艺(例如,化学机械平坦化)以去除多余的第一金属材料1702并形成沿着线1704的平坦表面。As shown in cross-sectional view 1700, contact openings 1606 and field plate openings 1608 are filled with a first metallic material 1702. In some embodiments, the first metal material 1702 may be deposited by a vapor deposition technique (eg, CVD, PVD, PE-CVD, etc.). In some embodiments, the first metal material 1702 may be formed by depositing a seed layer by physical vapor deposition and then performing a plating process (eg, electroplating or electroless plating process). A planarization process (eg, chemical mechanical planarization) may then be performed to remove excess first metal material 1702 and form a planar surface along line 1704 .
在一些实施例中,第一金属材料1702可包括钨(W)、钛(Ti)、氮化钛(TiN)或氮化钽(TaN)。在一些实施例中,在沉积第一金属材料1702之前,可以将扩散阻挡层和/或衬里层沉积到接触件开口1606和场板开口1608中。In some embodiments, first metal material 1702 may include tungsten (W), titanium (Ti), titanium nitride (TiN), or tantalum nitride (TaN). In some embodiments, a diffusion barrier layer and/or a liner layer may be deposited into contact openings 1606 and field plate openings 1608 prior to depositing first metallic material 1702 .
图18示出了对应于动作1118的截面示图1800的一些实施例。Figure 18 shows some embodiments of a cross-sectional view 1800 corresponding to act 1118.
如截面图1800所示,沉积第二金属材料1802。第二金属材料1802形成在场板开口中的剩余开口内并且形成在第一ILD层118上方。在一些实施例中,可以通过气相沉积技术(例如,CVD、PVD、PE-CVD等)沉积第二金属材料1802。在一些实施例中,可以通过物理气相沉积沉积晶种层,然后进行镀工艺来形成第二金属材料1802。在一些实施例中,第二金属材料1802可包括铜(Cu)或铝铜(AlCu)合金。As shown in cross-sectional view 1800, a second metallic material 1802 is deposited. A second metal material 1802 is formed within the remaining openings in the field plate openings and over the first ILD layer 118 . In some embodiments, the second metallic material 1802 may be deposited by a vapor deposition technique (eg, CVD, PVD, PE-CVD, etc.). In some embodiments, the second metal material 1802 may be formed by depositing a seed layer by physical vapor deposition and then performing a plating process. In some embodiments, the second metallic material 1802 may include copper (Cu) or aluminum copper (AlCu) alloy.
在形成之后,可以选择性地图案化第二金属材料1802以限定覆盖第一ILD层118的第一金属线层418的一个或多个金属结构。在一些实施例中,可以通过在第二金属材料1802上形成图案化的掩模层(例如,光致抗蚀剂层或硬掩模层)(未示出)并且随后在由图案化掩模层暴露的区域中蚀刻第二金属材料1802来选择性地图案化第二金属材料1802。After formation, the second metal material 1802 may be selectively patterned to define one or more metal structures covering the first metal line layer 418 of the first ILD layer 118 . In some embodiments, the method may be achieved by forming a patterned mask layer (eg, a photoresist layer or a hard mask layer) (not shown) on the second metal material 1802 and then masking the The second metal material 1802 is etched in the exposed areas of the layer to selectively pattern the second metal material 1802 .
图19示出了对应于动作1120的截面示图1900的一些实施例。FIG. 19 shows some embodiments of a cross-sectional view 1900 corresponding to act 1120.
如截面图1900所示,在第一ILD层118和第一金属线层418的一个或多个金属结构上方形成第二ILD层416。在各种实施例中,可以通过在第一ILD层118和第一金属线层418的一个或多个金属结构上沉积第二ILD材料来形成第二ILD层416。在形成第二ILD层416之后,执行平坦化工艺(例如,CMP)以移除多余的第二ILD层416并暴露第一金属线层418的一个或多个金属结构的顶面。在各种实施例中,第二ILD层416可包括由气相沉积工艺或旋涂工艺形成的超低k介电材料或低k介电材料(例如,SiCO)。As shown in cross-sectional view 1900 , a second ILD layer 416 is formed over the first ILD layer 118 and one or more metal structures of the first metal line layer 418 . In various embodiments, second ILD layer 416 may be formed by depositing a second ILD material on one or more metal structures of first ILD layer 118 and first metal line layer 418 . After the second ILD layer 416 is formed, a planarization process (eg, CMP) is performed to remove excess second ILD layer 416 and expose the top surface of one or more metal structures of the first metal line layer 418 . In various embodiments, the second ILD layer 416 may include an ultra-low-k dielectric material or a low-k dielectric material (eg, SiCO) formed by a vapor deposition process or a spin coating process.
应该理解,多个接触件(例如,120)和场板(例如,122)的高度差可能在所公开的晶体管器件的制造期间导致困难。例如,因为场板(例如122)形成在介电层124(例如,抗蚀保护氧化物)上方,所以场板(例如122)具有比多个接触件(例如120)更小的高度。然而,使用相同的蚀刻工艺形成场板(例如122)和多个接触件(例如120)。高度差可以导致场板开口(例如图16中的1608)的过蚀刻或者接触件开口(例如,图16的1606)的蚀刻不足,其中,场板开口的过蚀刻会导致场板(例如122)和晶体管器件的导电沟道之间的短路,而接触件开口的蚀刻不足会导致多个接触件(例如,120)与源极区域(例如,104)、漏极区域(例如,106)和/或栅极结构(例如,210)之间的不良连接。It should be appreciated that height differences among the multiple contacts (eg, 120) and field plates (eg, 122) may cause difficulties during fabrication of the disclosed transistor devices. For example, because the field plate (eg, 122) is formed over dielectric layer 124 (eg, resist protection oxide), the field plate (eg, 122) has a smaller height than the plurality of contacts (eg, 120). However, the same etching process is used to form the field plate (eg, 122) and the plurality of contacts (eg, 120). The height difference can result in over-etching of field plate openings (eg, 1608 in FIG. 16) or under-etching of contact openings (eg, 1606 in FIG. 16), where over-etching of field plate openings can result in field plate (eg, 122) and the conductive channel of the transistor device, while insufficient etching of the contact openings can result in multiple contacts (e.g., 120) to the source region (e.g., 104), drain region (e.g., 106), and/or or poor connections between gate structures (e.g., 210).
为了防止场板开口的过蚀刻或者接触件开口的蚀刻不足,在一些实施例中,组合蚀刻停止层可以用于控制场板开口的蚀刻深度。通过控制场板开口的蚀刻深度,组合蚀刻停止层允许多个接触件(例如,120)和场板(例如,122)精确地形成为不同高度。To prevent over-etching of field plate openings or under-etching of contact openings, in some embodiments, a combined etch stop layer may be used to control the etch depth of the field plate openings. The combined etch stop layer allows multiple contacts (eg, 120) and field plates (eg, 122) to be precisely formed to different heights by controlling the etch depth of the field plate openings.
图20示出了具有限定场板的组合蚀刻停止层的所公开的高压晶体管器件200的一些实施例的截面图。Figure 20 shows a cross-sectional view of some embodiments of the disclosed high voltage transistor device 200 having a combined etch stop layer defining a field plate.
高压晶体管器件2000包括设置在半导体衬底102上方的栅极结构116。栅极结构116包括栅极介电层110和上面的栅电极108。在一些实施例中,栅极结构116可以具有在约1000埃和约2000埃之间的范围内的第一厚度th1。源极区域104和漏极区域106在栅极结构116的相对侧上设置在半导体衬底102中。High voltage transistor device 2000 includes gate structure 116 disposed over semiconductor substrate 102 . Gate structure 116 includes gate dielectric layer 110 and an overlying gate electrode 108 . In some embodiments, gate structure 116 may have a first thickness th 1 in a range between about 1000 angstroms and about 2000 angstroms. Source region 104 and drain region 106 are provided in semiconductor substrate 102 on opposite sides of gate structure 116 .
抗蚀保护氧化物(RPO)2002布置在栅极结构116上方。RPO 2002从栅极结构116的正上方横向延伸越过栅极结构116的最外部侧壁。在一些实施例中,RPO 2002可以从栅极结构的上表面垂直地延伸至半导体衬底102的上表面,并且从栅极结构116的正上方横向地延伸至栅极结构116和漏极区域106之间。在一些实施例中,RPO 2002可以包括二氧化硅、氮化硅等。在一些实施例中,RPO 2002可以具有在约100埃和约1000埃之间的范围内的第二厚度th2。Resist protective oxide (RPO) 2002 is disposed over gate structure 116 . RPO 2002 extends laterally across the outermost sidewalls of gate structure 116 from directly above gate structure 116 . In some embodiments, RPO 2002 may extend vertically from the upper surface of the gate structure to the upper surface of semiconductor substrate 102 and laterally from directly above gate structure 116 to gate structure 116 and drain region 106 between. In some embodiments, RPO 2002 may include silicon dioxide, silicon nitride, and the like. In some embodiments, RPO 2002 can have a second thickness th2 in a range between about 100 Angstroms and about 1000 Angstroms.
组合蚀刻停止层2004布置在RPO 2002上方。在一些实施例中,组合蚀刻停止层2044直接接触RPO 2002的一个或多个上表面。第一层间介电(ILD)层118和场板122布置在组合蚀刻停止层2004上方。第一ILD层118围绕场板122和多个接触件120,其中,多个接触件120耦合至源极区域104、漏极区域106和栅极结构116。在一些实施例中,场板122和多个接触件120可以包括围绕包括一种或多种金属的导电芯的扩散阻挡层(未示出)。A combined etch stop layer 2004 is disposed over RPO 2002 . In some embodiments, combined etch stop layer 2044 directly contacts one or more upper surfaces of RPO 2002. A first interlayer dielectric (ILD) layer 118 and a field plate 122 are disposed over the combined etch stop layer 2004 . The first ILD layer 118 surrounds the field plate 122 and a plurality of contacts 120 coupled to the source region 104 , the drain region 106 and the gate structure 116 . In some embodiments, field plate 122 and plurality of contacts 120 may include a diffusion barrier layer (not shown) surrounding a conductive core including one or more metals.
组合蚀刻停止层2004包括堆叠在RPO 2002上方的多种不同的介电层材料2006至2008。在一些实施例中,多种不同的介电材料2006至2008可以具有沿着垂直于半导体衬底102的上表面的线基本上对准的最外部侧壁。在一些实施例中,多种不同的介电材料2006至2008可以具有与RPO2002的最外侧壁基本上对准的最外侧壁。在这样的实施例中,RPO 2002的第一宽度具有基本上等于组合蚀刻停止层2004的第二宽度。多种不同的介电材料2006至2008具有不同的蚀刻性能,从而提供相对于蚀刻剂具有不同蚀刻选择性的多种不同的介电材料2006至2008中的相应一些。不同蚀刻选择性允许组合蚀刻停止层2004缓慢蚀刻场板开口(例如,限定场板122的开口)并且因此,严密控制场板的高度并且使能多个接触件120和场板122之间的高度差异(例如,使得多个接触件120具有比场板122更高的高度)。Combined etch stop layer 2004 includes a plurality of different dielectric layer materials 2006 - 2008 stacked over RPO 2002 . In some embodiments, the plurality of different dielectric materials 2006 - 2008 may have outermost sidewalls that are substantially aligned along a line perpendicular to the upper surface of the semiconductor substrate 102 . In some embodiments, the plurality of different dielectric materials 2006 - 2008 may have outermost walls that are substantially aligned with the outermost walls of RPO 2002 . In such embodiments, the first width of RPO 2002 has a second width that is substantially equal to the combined etch stop layer 2004 . The plurality of different dielectric materials 2006-2008 have different etch properties, thereby providing respective ones of the plurality of different dielectric materials 2006-2008 with different etch selectivities relative to the etchants. Different etch selectivities allow the combined etch stop layer 2004 to slowly etch the field plate openings (eg, defining the openings of the field plate 122 ) and, therefore, tightly control the height of the field plate and enable multiple contacts 120 and the height between the field plate 122 differences (eg, such that plurality of contacts 120 have a higher height than field plate 122).
例如,在一些实施例中,场板122的底部沿着垂直地位于多个接触件120中的一个或多个(例如,耦合至源极区域104和漏极区域106的接触件)的底面之上的界面接触组合蚀刻停止层2004。在这种实施例中,在制造高压晶体管器件2000期间,组合蚀刻停止层2004降低用于形成场板开口(即,限定场板122的开口)的蚀刻剂的蚀刻速率。降低的蚀刻速率导致场板122的底面高于一个或多个接触件120的底面。For example, in some embodiments, the bottom of field plate 122 is located vertically between the bottom surfaces of one or more of plurality of contacts 120 (eg, contacts coupled to source region 104 and drain region 106 ). Etch stop layer 2004 on the interface contact combination. In such an embodiment, during fabrication of high voltage transistor device 2000, combined etch stop layer 2004 reduces the etch rate of the etchant used to form the field plate openings (ie, the openings that define field plate 122). The reduced etch rate causes the bottom surface of field plate 122 to be higher than the bottom surface of one or more contacts 120 .
在一些实施例中,组合蚀刻停止层2004可以包括直接接触RPO 2002的上表面的第一介电材料2006和直接接触第一介电材料2006的上表面的第二介电材料2008。在一些实施例中,第一介电材料2006可以具有第三厚度th3并且第二介电材料2008可以具有第四厚度th4。在一些实施例中,RPO 2002和组合蚀刻停止层2004可以分别具有介于最外部侧壁之间的基本恒定的厚度。如果第三厚度th3和第四厚度th4太小(例如,小于以下所阐述的最小值),则组合蚀刻停止层2004不能有效地停止形成场板开口的蚀刻。如果第三厚度th3和第四厚度th4太大(例如,大于以下所阐述的最大值),则降低了高压晶体管器件2000上的场板122的效果,从而对器件性能产生负面影响。In some embodiments, the combined etch stop layer 2004 may include a first dielectric material 2006 directly contacting the upper surface of the RPO 2002 and a second dielectric material 2008 directly contacting the upper surface of the first dielectric material 2006 . In some embodiments, the first dielectric material 2006 may have a third thickness th 3 and the second dielectric material 2008 may have a fourth thickness th 4 . In some embodiments, RPO 2002 and combined etch stop layer 2004 may each have a substantially constant thickness between the outermost sidewalls. If the third thickness th 3 and the fourth thickness th 4 are too small (eg, less than the minimum values set forth below), the combined etch stop layer 2004 cannot effectively stop the etch forming the field plate openings. If the third thickness th 3 and the fourth thickness th 4 are too large (eg, greater than the maximum value explained below), the effectiveness of the field plate 122 on the high voltage transistor device 2000 is reduced, thereby negatively affecting device performance.
在一些实施例中,第一介电材料2006可以包括氮化硅(SixNy)并且第二介电材料2008可以包括二氧化硅(SiO2)。在这样的实施例中,第一厚度th1可以在约50埃和约400埃之间的第一范围内,并且第二厚度th2可以在约150埃和约700埃之间的第二范围内。在其他实施例中,第一介电材料2006可以包括或者是二氧化硅(SiO2)并且第二介电材料2008可以包括或者是氮化硅(SixNy)或氮氧化硅(SiOxNy)。在这样的实施例中,第一厚度th1可以在约600埃和约900埃之间的第一范围内。在一些实施例中,第二厚度th2可以在约100埃和约500埃之间的第二范围内。In some embodiments, first dielectric material 2006 may include silicon nitride ( SixNy ) and second dielectric material 2008 may include silicon dioxide ( SiO2 ). In such embodiments, the first thickness th 1 may be in a first range between about 50 angstroms and about 400 angstroms, and the second thickness th 2 may be in a second range between about 150 angstroms and about 700 angstroms. In other embodiments, the first dielectric material 2006 may include or be silicon dioxide (SiO 2 ) and the second dielectric material 2008 may include or be silicon nitride ( Six N y ) or silicon oxynitride (SiO x N y ). In such embodiments, the first thickness th 1 may be within a first range between about 600 Angstroms and about 900 Angstroms. In some embodiments, the second thickness th 2 may be in a second range between about 100 angstroms and about 500 angstroms.
图21A至图21B示出了具有限定场板的组合蚀刻停止层的所公开的高压晶体管器件的一些附加实施例。21A-21B illustrate some additional embodiments of the disclosed high voltage transistor device having a combined etch stop layer defining a field plate.
如图21A的截面图2100所示,高压晶体管器件包括半导体衬底102,该半导体衬底具有设置在衬底2102上方的漂移区域2104内的主体区域2106。源极区域104布置在主体区域2106内并且漏极区域106布置在漂移区域2104内。在一些实施例中,源极区域104、漏极区域106和漂移区域2104可以具有第一掺杂类型(例如,n型),而主体区域2106和衬底2102具有与第一掺杂类型相反的第二掺杂类型(例如,p型)。在一些实施例中,源极区域104和漏极区域106可以包括掺杂浓度高于漂移区域2104的掺杂浓度的高掺杂区域(即,n+区域)。As shown in cross-sectional view 2100 of FIG. 21A , a high voltage transistor device includes a semiconductor substrate 102 having a body region 2106 disposed within a drift region 2104 above the substrate 2102 . Source region 104 is disposed within body region 2106 and drain region 106 is disposed within drift region 2104 . In some embodiments, source region 104 , drain region 106 , and drift region 2104 can have a first doping type (eg, n-type), while body region 2106 and substrate 2102 have a doping type opposite to the first doping type. Second doping type (eg, p-type). In some embodiments, source region 104 and drain region 106 may include highly doped regions (ie, n+ regions) with a doping concentration higher than that of drift region 2104 .
栅极结构116在半导体衬底102上方布置在源极区域104和漏极区域106之间。RPO2002布置在栅极结构116上方并且横向地延伸越过栅极结构116的最外部侧壁。组合蚀刻停止层2004布置在RPO 2002和场板122之间。在一些实施例中,RPO 2002可以一个或多个横向距离2108围绕(enclose)场板122(即,延伸越过场板122的最外部侧壁),其中,该一个或多个横向距离在约0微米至约2微米的范围内。Gate structure 116 is disposed over semiconductor substrate 102 between source region 104 and drain region 106 . RPO 2002 is disposed over gate structure 116 and extends laterally across the outermost sidewalls of gate structure 116 . Combined etch stop layer 2004 is disposed between RPO 2002 and field plate 122 . In some embodiments, the RPO 2002 may enclose the field plate 122 (ie, extend beyond the outermost sidewalls of the field plate 122 ) by one or more lateral distances 2108 , where the one or more lateral distances are between about 0 micron to about 2 micron.
在一些实施例中,场板122可以在组合蚀刻停止层2004中延伸至非零深度2110。在这样的实施例中,场板122接触组合蚀刻停止层2004的侧壁。在各种实施例中,场板122还可以接触组合蚀刻停止层2004的水平延伸表面或者RPO 2002的水平延伸表面。在一些实施例中,非零深度2110可以在约400埃至约700埃之间的范围内。因为场板122延伸到组合蚀刻停止层2004中,所以组合蚀刻停止层2004具有直接位于场板122下方的第一厚度2112和位于场板122之外的第二厚度,其中,第二厚度大于第一厚度2112。在一些实施例中,第一厚度2112在约0埃至约10000埃之间的范围内。在一些附加实施例中,第一厚度2112在约600埃和约3000埃之间的范围内。In some embodiments, field plate 122 may extend to a non-zero depth 2110 in combined etch stop layer 2004 . In such embodiments, field plate 122 contacts the sidewalls of combined etch stop layer 2004 . In various embodiments, field plate 122 may also contact a horizontally extending surface of combined etch stop layer 2004 or a horizontally extending surface of RPO 2002 . In some embodiments, non-zero depth 2110 may range between about 400 Angstroms and about 700 Angstroms. Because the field plate 122 extends into the combined etch stop layer 2004, the combined etch stop layer 2004 has a first thickness 2112 directly under the field plate 122 and a second thickness outside the field plate 122, where the second thickness is greater than the A thickness of 2112. In some embodiments, first thickness 2112 ranges between about 0 angstroms and about 10,000 angstroms. In some additional embodiments, first thickness 2112 ranges between about 600 Angstroms and about 3000 Angstroms.
如图21B的截面图2120所示(沿着图21A的截面线A-A′),场板122在第一方向上延伸的宽度2114具有约150纳米和2000纳米之间的范围的距离。场板122还具有在第二方向(垂直于第一方向)上延伸的长度2122小于约1000μm的距离。As shown in cross-sectional view 2120 of FIG. 21B (along cross-section line A-A' of FIG. 21A ), the width 2114 of the field plate 122 extending in the first direction has a distance in the range between approximately 150 nanometers and 2000 nanometers. The field plate 122 also has a length 2122 extending in a second direction (perpendicular to the first direction) a distance of less than about 1000 μm.
再次参照图21A的截面图,在一些实施例中,场板122可以距离2116与栅极结构116横向分离。例如,场板122可以约0nm和约200nm之间的范围内的距离与栅极结构116横向地分离。在其他实施例(未示出)中,场板122可以与栅极结构116横向地重叠(即,延伸至栅极结构116的正上方)。例如,场板122与栅极结构116横向地重叠的距离在约0nm和约200nm之间。Referring again to the cross-sectional view of Figure 21A, in some embodiments, field plate 122 may be laterally separated from gate structure 116 by a distance 2116. For example, field plate 122 may be laterally separated from gate structure 116 by a distance in a range between about 0 nm and about 200 nm. In other embodiments (not shown), field plate 122 may laterally overlap gate structure 116 (ie, extend directly above gate structure 116). For example, the field plate 122 laterally overlaps the gate structure 116 by a distance of between about 0 nm and about 200 nm.
在一些实施例中,硅化物层2118布置在源极区域104、漏极区域106以及栅极结构116的未被RPO 2002覆盖的部分上方。在各种实施例中,硅化物层2118可以包括具有硅和金属的化合物,诸如,镍、铂、钛、钨、镁等。在一些实施例中,硅化物层2118具有在约150埃和约400埃之间的范围内的厚度。In some embodiments, a suicide layer 2118 is disposed over the source region 104 , the drain region 106 , and portions of the gate structure 116 not covered by the RPO 2002 . In various embodiments, suicide layer 2118 may include compounds having silicon and metals, such as nickel, platinum, titanium, tungsten, magnesium, and the like. In some embodiments, suicide layer 2118 has a thickness ranging between about 150 Angstroms and about 400 Angstroms.
图22示出了具有限定场板的组合蚀刻停止层的所公开的高压晶体管器件2200的一些附加的实施例的截面图。22 illustrates a cross-sectional view of some additional embodiments of the disclosed high voltage transistor device 2200 having a combined etch stop layer defining a field plate.
高压晶体管器件2200包括布置在半导体衬底102上方的栅极结构108。RPO 2002和组合蚀刻停止层2004位于栅电极108和半导体衬底102上方。接触蚀刻停止层(CESL)406设置在组合蚀刻停止层2004上方。在一些实施例中,组合蚀刻停止层2004的底面可以直接接触RPO 2002并且组合蚀刻停止层2004的顶面可以直接接触CESL 406。CESL 406横向地延伸越过组合蚀刻停止层2004的最外部侧壁并且接触半导体衬底102。在一些实施例中,CESL406可以具有在约100埃和约1000埃之间的范围内的厚度th5。在一些实施例中,CESL 406可以包括氮化硅、碳化硅等。High voltage transistor device 2200 includes gate structure 108 disposed over semiconductor substrate 102 . RPO 2002 and combined etch stop layer 2004 are located over gate electrode 108 and semiconductor substrate 102 . A contact etch stop layer (CESL) 406 is disposed over the combined etch stop layer 2004 . In some embodiments, the bottom surface of combined etch stop layer 2004 may directly contact RPO 2002 and the top surface of combined etch stop layer 2004 may directly contact CESL 406 . CESL 406 extends laterally beyond the outermost sidewalls of combined etch stop layer 2004 and contacts semiconductor substrate 102 . In some embodiments, CESL 406 may have a thickness th 5 in a range between about 100 angstroms and about 1000 angstroms. In some embodiments, CESL 406 may include silicon nitride, silicon carbide, or the like.
场板408设置在CESL 406上方的第一ILD层118内。在一些实施例中,场板408可以包括第一金属材料410和第二金属材料412。组合蚀刻停止层2004横向地布置在场板408和栅极结构116之间并且垂直地布置在场板122和半导体衬底102之间。RPO 2002和组合蚀刻停止层2004具有接触CESL 406的侧壁。组合蚀刻停止层2004进一步具有接触CESL 406的水平延伸的表面(例如,上表面)。Field plate 408 is disposed within first ILD layer 118 above CESL 406 . In some embodiments, field plate 408 may include first metallic material 410 and second metallic material 412 . Combined etch stop layer 2004 is disposed laterally between field plate 408 and gate structure 116 and vertically between field plate 122 and semiconductor substrate 102 . RPO 2002 and combined etch stop layer 2004 have sidewalls contacting CESL 406 . The combined etch stop layer 2004 further has a horizontally extending surface (eg, an upper surface) that contacts the CESL 406 .
在一些实施例中,场板122可以延伸至组合蚀刻停止层2004内的多种不同的介电材料2006至2008中的一种或多种中。例如,在一些实施例中,组合蚀刻停止层2004可以包括第一介电材料2006和接触第一介电材料2006的上表面的第二介电材料2008。场板122可以延伸穿过第二介电材料2008(例如,氧化硅)并且具有接触第一介电材料2006(例如,氮化硅)的底面。在这样的实施例中,第一介电材料2006可以将场板122的最底部点与RPO 2002垂直地分离。在其他实施例中,场板122可以进一步延伸穿过第一介电材料2006并且具有接触RPO 2002的底面和/或侧壁。在一些实施例中,场板122可以垂直地延伸穿过第二介电材料2008并且还通过第二介电材料2008与栅极结构116横向地分离。In some embodiments, field plate 122 may extend into one or more of a plurality of different dielectric materials 2006 - 2008 within combined etch stop layer 2004 . For example, in some embodiments, the combined etch stop layer 2004 may include a first dielectric material 2006 and a second dielectric material 2008 contacting an upper surface of the first dielectric material 2006 . Field plate 122 may extend through second dielectric material 2008 (eg, silicon oxide) and have a bottom surface contacting first dielectric material 2006 (eg, silicon nitride). In such embodiments, first dielectric material 2006 may vertically separate the bottommost point of field plate 122 from RPO 2002 . In other embodiments, field plate 122 may extend further through first dielectric material 2006 and have a bottom surface and/or sidewalls contacting RPO 2002 . In some embodiments, field plate 122 may extend vertically through second dielectric material 2008 and also be laterally separated from gate structure 116 by second dielectric material 2008 .
尽管所公开的组合蚀刻停止层2004在图20至图22中示出为具有堆叠在RPO 2002上方的两种不同的介电材料2006至2008。但是应该理解,所公开的组合蚀刻停止层2004不限于这种配置。更确切地说,在各种实施例中,组合蚀刻停止层2004可以包括介电材料的附加层。图23至图24示出了所公开的组合蚀刻停止层2004的可选实施例的一些非限制性示例。Although the disclosed combined etch stop layer 2004 is shown in FIGS. 20-22 with two different dielectric materials 2006-2008 stacked over the RPO 2002. It should be understood, however, that the disclosed combined etch stop layer 2004 is not limited to this configuration. Rather, in various embodiments, combined etch stop layer 2004 may include additional layers of dielectric material. 23-24 illustrate some non-limiting examples of alternative embodiments of the disclosed combined etch stop layer 2004.
图23示出了具有限定场板的组合蚀刻停止层的所公开的高压晶体管器件2300的一些附加实施例的截面图。23 illustrates a cross-sectional view of some additional embodiments of the disclosed high voltage transistor device 2300 having a combined etch stop layer defining a field plate.
高压晶体管器件2300包括布置在RPO 2002上方的组合蚀刻停止层2004。组合蚀刻停止层2004包括第一介电材料2302、接触第一介电材料2302的上表面的第二介电材料2304、以及接触第二介电材料2304的上表面的第三介电材料2306。在一些实施例中,第一介电材料2302可以包括或是二氧化硅(SiO2),第二介电材料2304可以包括或者是氮化硅(SixNy)或氮氧化硅(SiOxNy)并且第三介电材料2306可以包括或是二氧化硅(SiO2)。High voltage transistor device 2300 includes a combined etch stop layer 2004 disposed over RPO 2002 . Combined etch stop layer 2004 includes a first dielectric material 2302 , a second dielectric material 2304 contacting an upper surface of first dielectric material 2302 , and a third dielectric material 2306 contacting an upper surface of second dielectric material 2304 . In some embodiments, the first dielectric material 2302 may include or be silicon dioxide (SiO 2 ) and the second dielectric material 2304 may include or be silicon nitride ( Six N y ) or silicon oxynitride (SiO x N y ) and the third dielectric material 2306 may include or be silicon dioxide (SiO 2 ).
在一些实施例中,第一介电材料2302可以具有第一厚度,第二介电材料2304可以具有第二厚度,并且第三介电材料2306可以具有第三厚度。在一些实施例中,第一厚度可以在约300埃和约900埃之间的第一范围内,第二厚度可以在约50埃和约200埃之间的第二范围内,以及第三厚度可以在约200埃和约600埃之间的第三范围内。In some embodiments, first dielectric material 2302 can have a first thickness, second dielectric material 2304 can have a second thickness, and third dielectric material 2306 can have a third thickness. In some embodiments, the first thickness can be in a first range between about 300 angstroms and about 900 angstroms, the second thickness can be in a second range between about 50 angstroms and about 200 angstroms, and the third thickness can be in in a third range between about 200 Angstroms and about 600 Angstroms.
图24示出了具有限定场板的组合蚀刻停止层的所公开的高压晶体管器件2400的一些附加实施例的截面图。24 illustrates a cross-sectional view of some additional embodiments of the disclosed high voltage transistor device 2400 having a combined etch stop layer defining a field plate.
高压晶体管器件2400包括布置在RPO 2002上方的组合蚀刻停止层2400。组合蚀刻停止层2400包括第一介电材料2402、接触第一介电材料2402的上表面的第二介电材料2404、接触第二介电材料2404的上表面的第三介电材料2406以及接触第三介电材料2406的上表面的第四介电材料2408。在一些实施例中,第一介电材料2402可以包括或是二氧化硅(SiO2),第二介电材料2404可以包括或者是氮化硅(SixNy)或氮氧化硅(SiOxNy)并且第三介电材料2406可以包括或是二氧化硅(SiO2)并且第四介电材料2408可以包括或者是氮化硅(SixNy)或氮氧化硅(SiOxNy)。High voltage transistor device 2400 includes a combined etch stop layer 2400 disposed over RPO 2002 . Combined etch stop layer 2400 includes a first dielectric material 2402, a second dielectric material 2404 contacting an upper surface of the first dielectric material 2402, a third dielectric material 2406 contacting an upper surface of the second dielectric material 2404, and a contact Fourth dielectric material 2408 on the upper surface of third dielectric material 2406 . In some embodiments, the first dielectric material 2402 may include or be silicon dioxide (SiO 2 ) and the second dielectric material 2404 may include or be silicon nitride ( Six N y ) or silicon oxynitride (SiO x N y ) and the third dielectric material 2406 may comprise or be silicon dioxide (SiO 2 ) and the fourth dielectric material 2408 may comprise or be silicon nitride ( Six N y ) or silicon oxynitride (SiO x N y ).
在一些实施例中,第一介电材料2402可以具有第一厚度,第二介电材料2404可以具有第二厚度,第三介电材料2406可以具有第三厚度并且第四介电材料2408可以具有第四厚度。在一些实施例中,第一厚度可以在约300埃和约900埃之间的第一范围内,第二厚度可以在约50埃和约200埃之间的第二范围内,第三厚度可以在约200埃和约600埃之间的第三范围内以及第四厚度在约50埃和约200埃之间的第四范围内。In some embodiments, first dielectric material 2402 can have a first thickness, second dielectric material 2404 can have a second thickness, third dielectric material 2406 can have a third thickness and fourth dielectric material 2408 can have Fourth thickness. In some embodiments, the first thickness can be in a first range between about 300 angstroms and about 900 angstroms, the second thickness can be in a second range between about 50 angstroms and about 200 angstroms, and the third thickness can be in about A third range is between 200 Angstroms and about 600 Angstroms and a fourth thickness is within a fourth range between about 50 Angstroms and about 200 Angstroms.
图25至图32示出了形成具有限定场板的组合蚀刻停止层的高压晶体管器件的方法的一些实施例的截面图。尽管参照方法描述了图25至图32中所示的截面图2500至3200,但是应该理解,图25至图32中所示的结构不限于该方法而是可以独立于该方法而存在。25-32 illustrate cross-sectional views of some embodiments of a method of forming a high voltage transistor device having a combined etch stop layer defining a field plate. Although the cross-sectional views 2500 to 3200 shown in Figures 25 to 32 are described with reference to a method, it should be understood that the structures shown in Figures 25 to 32 are not limited to this method but may exist independently of this method.
如图25的截面图所示,选择性地注入半导体衬底102,以形成多个注入区域(例如,阱区域、接触区域等)。在一些实施例中,可以选择性地注入半导体衬底102以形成主体区域2106、漂移区域2104、源极区域104和漏极区域106。在其他实施例中,可以选择性地注入半导体衬底102以形成不同的注入区域(例如,诸如图1至图10中所示的任何一个注入区域)。在一些实施例中,可以通过以下步骤来形成多个注入区域:选择性地掩蔽半导体衬底102(例如,使用光刻胶掩模)并且然后高能量掺杂剂(例如,诸如硼的p型掺杂剂或者诸如磷的n型掺杂剂)引入半导体衬底102的暴露区域。As shown in the cross-sectional view of FIG. 25, the semiconductor substrate 102 is selectively implanted to form a plurality of implanted regions (eg, well regions, contact regions, etc.). In some embodiments, semiconductor substrate 102 may be selectively implanted to form body region 2106, drift region 2104, source region 104, and drain region 106. In other embodiments, the semiconductor substrate 102 may be selectively implanted to form different implanted regions (eg, such as any of the implanted regions shown in FIGS. 1-10 ). In some embodiments, multiple implant regions may be formed by selectively masking the semiconductor substrate 102 (eg, using a photoresist mask) and then adding high energy dopants (eg, p-type dopants such as boron). Dopants (or n-type dopants such as phosphorus) are introduced into the exposed areas of the semiconductor substrate 102 .
栅极结构116在源极区域104和漏极区域106之间形成在半导体衬底102上方。可以通过以下步骤来形成栅极结构116:在半导体衬底102上方沉积栅极介电层110并且在栅极介电层110上方沉积栅电极108。随后可以图案化(根据光刻胶掩模和/或硬掩模进行蚀刻)栅极介电层110和栅电极材料108以限定栅极结构116。Gate structure 116 is formed over semiconductor substrate 102 between source region 104 and drain region 106 . Gate structure 116 may be formed by depositing gate dielectric layer 110 over semiconductor substrate 102 and depositing gate electrode 108 over gate dielectric layer 110 . Gate dielectric layer 110 and gate electrode material 108 may then be patterned (etched according to a photoresist mask and/or hard mask) to define gate structure 116 .
如图26的截面图所示,在栅极结构116上方形成抗蚀保护氧化物(RPO)2002。RPO2002从栅极结构116的正上方横向地延伸越过栅极结构116的最外部侧壁。RPO 2002配置为阻挡在下面的层上形成硅化物。在一些实施例中,可以通过汽相沉积技术(例如,CVD)来沉积RPO 2002。在一些实施例中,RPO 2002可以包括二氧化硅(SiO2)、氮化硅等。As shown in the cross-sectional view of FIG. 26 , a resist protective oxide (RPO) 2002 is formed over the gate structure 116 . RPO 2002 extends laterally across the outermost sidewalls of gate structure 116 from directly above gate structure 116 . RPO 2002 is configured to block silicide formation on underlying layers. In some embodiments, RPO 2002 may be deposited by vapor deposition techniques (eg, CVD). In some embodiments, RPO 2002 may include silicon dioxide (SiO 2 ), silicon nitride, and the like.
如图27的截面图2700所示,包括多种不同的介电材料2600至2800的组合蚀刻停止层2004选择性地形成在RPO 2002上方。在一些实施例中,通过汽相沉积技术可以顺序地沉积多种不同的介电材料2006至2008。在一些实施例中,组合蚀刻停止层2004可以包括堆叠层,其中,该堆叠层包括氮化硅(SixNy)层、氮氧化硅(SiOxNy)层和/或二氧化硅(SiO2)中层的两个或多个。As shown in cross-sectional view 2700 of FIG. 27 , a combined etch stop layer 2004 including a plurality of different dielectric materials 2600 - 2800 is selectively formed over the RPO 2002 . In some embodiments, a plurality of different dielectric materials 2006-2008 may be deposited sequentially via vapor deposition techniques. In some embodiments, the combined etch stop layer 2004 may include a stack of layers, wherein the stack of layers includes a silicon nitride ( SixNy ) layer, a silicon oxynitride ( SiOxNy ) layer, and/or a silicon dioxide ( SiOxNy ) layer. SiO 2 ) two or more middle layers.
在一些实施例中,可以使用相同的掩蔽层2702(例如,光刻胶层)和蚀刻工艺来图案化多种不同的介电材料2006至2008和RPO 2002。使用相同的掩蔽层2702图案化多种不同的介电材料2006至2008和RPO 2002减轻了组合蚀刻停止层2004的成本。在这样的实施例中,多种不同的介电材料2006至2008和RPO 2002可以具有基本上对准的侧壁。In some embodiments, the same masking layer 2702 (eg, photoresist layer) and etching process may be used to pattern multiple different dielectric materials 2006-2008 and RPO 2002. Patterning multiple different dielectric materials 2006-2008 and RPO 2002 using the same masking layer 2702 alleviates the cost of combining the etch stop layer 2004. In such embodiments, the plurality of different dielectric materials 2006-2008 and RPO 2002 may have substantially aligned sidewalls.
如图28的截面图所示,接触蚀刻停止层(CESL)406形成在半导体衬底102和组合蚀刻停止层2004上方。在一些实例中,可以通过汽相沉积工艺形成CESL 406。CESL可以包括氮化物层(例如,Si3N4)、碳化物层(SiC)等。As shown in the cross-sectional view of FIG. 28 , a contact etch stop layer (CESL) 406 is formed over the semiconductor substrate 102 and the combined etch stop layer 2004 . In some examples, CESL 406 may be formed through a vapor deposition process. CESL may include a nitride layer (eg, Si 3 N 4 ), a carbide layer (SiC), or the like.
如图29的截面图2900所示,第一层间介电(ILD)形成在CESL 406上方。在一些实施例中,第一ILD层118可以包括氧化物(例如,SiO2)、超低k介电材料、低k介电材料(例如,SiCO)等。在一些实施例中,可以通过汽相沉积工艺来形成第一ILD层118。As shown in cross-section 2900 of FIG. 29 , a first interlayer dielectric (ILD) is formed over CESL 406 . In some embodiments, first ILD layer 118 may include an oxide (eg, SiO2 ), an ultra-low-k dielectric material, a low-k dielectric material (eg, SiCO), or the like. In some embodiments, first ILD layer 118 may be formed through a vapor deposition process.
如图30的截面图所示,第一ILD层118可以选择性地暴露于蚀刻剂3002(例如,根据掩蔽层3003)以在第一ILD层118中形成接触件开口1606和场板开口1608。接触件开口1606和场板开口1608具有非零距离3004的蚀刻深度偏移。在一些实施例中,非零距离3004可以在约400埃和约2000埃之间的范围内。在一些实施例中,场板开口1608延伸到组合蚀刻停止层2004中,使得组合蚀刻停止层2004的侧壁限定场板开口1608。在各种实施例中,组合蚀刻停止层2004或PRO 2002可以限定场板开口1608的底部。As shown in the cross-sectional view of FIG. 30 , first ILD layer 118 may be selectively exposed to etchant 3002 (eg, in accordance with masking layer 3003 ) to form contact openings 1606 and field plate openings 1608 in first ILD layer 118 . Contact opening 1606 and field plate opening 1608 have an etch depth offset of non-zero distance 3004. In some embodiments, non-zero distance 3004 may range between about 400 Angstroms and about 2000 Angstroms. In some embodiments, the field plate opening 1608 extends into the combined etch stop layer 2004 such that the sidewalls of the combined etch stop layer 2004 define the field plate opening 1608 . In various embodiments, combined etch stop layer 2004 or PRO 2002 may define the bottom of field plate opening 1608 .
在一些实施例中,蚀刻剂3002可以在约400埃和约700埃之间的范围的量减小组合蚀刻停止层2004的厚度。在一些实施例中,直接位于场板开口1608下方的组合蚀刻停止层2004的厚度在约0埃和1000埃之间的范围内。在一些附加的实施例中,直接位于场板开口1608下方的组合蚀刻停止层2004的厚度在约300埃和衣蛾900埃之间的范围内。In some embodiments, etchant 3002 may reduce the thickness of combined etch stop layer 2004 by an amount ranging between about 400 Angstroms and about 700 Angstroms. In some embodiments, the thickness of combined etch stop layer 2004 directly beneath field plate opening 1608 ranges between approximately 0 angstroms and 1000 angstroms. In some additional embodiments, the thickness of the combined etch stop layer 2004 directly beneath the field plate opening 1608 ranges between about 300 angstroms and about 900 angstroms.
选择用于形成接触件开口1606和场板开口1608的蚀刻剂3002以蚀刻穿过CESL406的材料。然而,因为组合蚀刻停止层2004由多种不同的材料形成,所以组合蚀刻停止层2004能够以更高的程度抵抗蚀刻剂3002的蚀刻。从而组合蚀刻停止层2004允许接触件开口1606延伸至半导体衬底102,而防止场板开口1608延伸至半导体衬底102。组合蚀刻停止层2004还允许在关于相同批次衬底之间和/或关于不同批次衬底的衬底上的不同位置处的蚀刻深度的更高程度的均匀性。例如,组合蚀刻停止层2004允许不同衬底上的场板开口1608的蚀刻深度在约2%或更低的偏差内。与没有组合蚀刻停止层2004的器件相比,该蚀刻深度均匀性允许改善器件的均匀性和性能。The etchant 3002 used to form the contact openings 1606 and the field plate openings 1608 is selected to etch through the material of the CESL 406 . However, because the combined etch stop layer 2004 is formed from a variety of different materials, the combined etch stop layer 2004 is able to resist etching by the etchant 3002 to a higher degree. The combined etch stop layer 2004 thereby allows the contact openings 1606 to extend to the semiconductor substrate 102 while preventing the field plate openings 1608 from extending to the semiconductor substrate 102 . The combined etch stop layer 2004 also allows for a higher degree of uniformity in etch depth at different locations on the substrates with respect to the same batch of substrates and/or with respect to different batches of substrates. For example, the combined etch stop layer 2004 allows the etch depth of the field plate openings 1608 on different substrates to vary within approximately 2% or less. This etch depth uniformity allows for improved device uniformity and performance compared to devices without the integrated etch stop layer 2004.
如图31的截面图所示,接触件开口1606和场板开口1608填充有一种或多种导电材料。在一些实施例中,可以通过汽相沉积技术(例如CVD、PVD、PE-CVD等)和/或镀工艺(例如,电镀或非电镀)的方式来沉积一种或多种导电材料。随后可以实施平坦化工艺(例如,化学机械平坦化)以去除多余的一种或多种导电材料并且沿着线3102形成平坦表面。在一些实施例中,一种或多种导电材料可以包括钨(W)、钛(Ti)、氮化钛(TiN)和/或氮化钽((TaN)。在一些实施例中,在沉积一种或多种导电材料之前,可以在接触件开口1606和场板开口1608中沉积不同的阻挡层和/或衬里层。As shown in the cross-sectional view of Figure 31, contact openings 1606 and field plate openings 1608 are filled with one or more conductive materials. In some embodiments, one or more conductive materials may be deposited by vapor deposition techniques (eg, CVD, PVD, PE-CVD, etc.) and/or plating processes (eg, electroplating or electroless plating). A planarization process (eg, chemical mechanical planarization) may then be performed to remove excess conductive material(s) and form a planar surface along line 3102. In some embodiments, the one or more conductive materials may include tungsten (W), titanium (Ti), titanium nitride (TiN), and/or tantalum nitride (TaN). In some embodiments, during deposition Different barrier and/or liner layers may be deposited in contact openings 1606 and field plate openings 1608 prior to one or more conductive materials.
如图32的截面图所示,第二ILD层126形成在第一ILD层118上方并且第一后段制程(BEOL)金属线层128形成在第二ILD层126内。在这种实施例中,可以通过在第一ILD层118上方沉积第二ILD层材料来形成第二ILD层126。随后蚀刻第二ILD层126以形成延伸到第二ILD层126中的沟槽。沟槽填充有导电材料并且实施平坦化工艺(例如CMP)以从第二ILD层126上方去除多余的导电材料。As shown in the cross-sectional view of FIG. 32 , a second ILD layer 126 is formed over the first ILD layer 118 and a first back-end-of-line (BEOL) metal line layer 128 is formed within the second ILD layer 126 . In such embodiments, second ILD layer 126 may be formed by depositing a second ILD layer material over first ILD layer 118 . The second ILD layer 126 is then etched to form trenches extending into the second ILD layer 126 . The trenches are filled with conductive material and a planarization process (eg, CMP) is performed to remove excess conductive material from above the second ILD layer 126 .
图33示出了形成具有限定场板的组合蚀刻停止层的高压晶体管器件的方法3300的一些实施例的流程图。33 illustrates a flow diagram of some embodiments of a method 3300 of forming a high voltage transistor device having a combined etch stop layer defining a field plate.
在动作3302处,在衬底上方形成栅极结构。图25示出了与动作3302的一些实施例相对应的截面图2500。At act 3302, a gate structure is formed over the substrate. 25 illustrates a cross-sectional view 2500 corresponding to some embodiments of act 3302.
在动作3304处,在衬底内的栅极结构的相对侧上形成源极区域和漏极区域。在一些附加实施例中,一个或多种附加掺杂区域(例如,主体区域、漂移区域等)还可以形成在衬底内。图25示出了与动作3304的一些实施例相对应的截面图。At act 3304, source and drain regions are formed on opposite sides of the gate structure within the substrate. In some additional embodiments, one or more additional doped regions (eg, body regions, drift regions, etc.) may also be formed within the substrate. Figure 25 shows a cross-sectional view corresponding to some embodiments of act 3304.
在动作3306处,抗蚀保护氧化物(RPO)形成在栅极结构上方并且横向地位于栅极结构和漏极区域之间。图26示出了与动作3306的一些实施例相对应的截面图2600。At act 3306, a resist protection oxide (RPO) is formed over the gate structure and laterally between the gate structure and the drain region. 26 illustrates a cross-sectional view 2600 corresponding to some embodiments of act 3306.
在动作3308处,在RPO上方形成组合蚀刻停止层。图27示出了与动作3308的一些实施例相对应的截面图。At act 3308, a combined etch stop layer is formed over the RPO. Figure 27 shows a cross-sectional view corresponding to some embodiments of act 3308.
在动作3310处,接触蚀刻停止层(CESL)形成在组合蚀刻停止层上。图28示出了与动作3310的一些实施例相对应的截面图2800。At act 3310, a contact etch stop layer (CESL) is formed on the combined etch stop layer. 28 illustrates a cross-sectional view 2800 corresponding to some embodiments of act 3310.
在动作3312处,第一层间介电(ILD)层形成在CESL上方。图29示出了与动作3312的一些实施例相对应的截面图2900。At act 3312, a first interlayer dielectric (ILD) layer is formed over the CESL. 29 illustrates a cross-sectional view 2900 corresponding to some embodiments of act 3312.
在动作3314处,第一ILD层选择性地进行蚀刻以限定多个接触件开口和场板开口。多个接触件开口和场板开口具有不同深度。图30示出了与动作3314的一些实施例相对应的截面图3000。At act 3314, the first ILD layer is selectively etched to define a plurality of contact openings and field plate openings. The plurality of contact openings and field plate openings have different depths. 30 illustrates a cross-sectional view 3000 corresponding to some embodiments of act 3314.
在动作3316处,多个接触件开口和场板开口填充有一种或多种导电材料。图31示出了与动作3316的一些实施例相对应的截面图3100。At act 3316, the plurality of contact openings and field plate openings are filled with one or more conductive materials. 31 illustrates a cross-sectional view 3100 corresponding to some embodiments of act 3316.
在动作3318处,在第一ILD层上的第二ILD层内形成导电互连线。图32示出了与动作3318的一些实施例相对应的截面图3200。At act 3318, conductive interconnect lines are formed within the second ILD layer over the first ILD layer. 32 illustrates a cross-sectional view 3200 corresponding to some embodiments of act 3318.
因此,本发明涉及具有场板的高压晶体管器件,其中,在形成导电接触件同时形成该场板。器件具有组合蚀刻停止层,该组合蚀刻停止层用于使能场板和导电接触件的高度差异。Accordingly, the present invention relates to a high voltage transistor device having a field plate, wherein the field plate is formed simultaneously with the formation of the conductive contacts. The device has a combined etch stop layer used to enable height differences of the field plate and conductive contacts.
在一些实施例中,本发明涉及集成芯片。集成芯片包括:栅极结构,在衬底上方设置在源极区域和漏极区域之间;介电层,从所述栅极结构上方横向地延伸至所述栅极结构和所述漏极区域之间;组合蚀刻停止层,包括堆叠在所述介电层上方的多种不同的介电材料;接触蚀刻停止层,与所述组合蚀刻停止层的上表面和侧壁直接接触;场板,由第一ILD层横向地围绕并且从所述第一ILD层的顶部、垂直地延伸穿过所述接触蚀刻停止层、并且进入所述组合蚀刻停止层中。在一些实施例中,所述组合蚀刻停止层具有第一介电材料和与所述第一介电材料的上表面接触的第二介电材料。在一些实施例中,所述场板垂直地延伸穿过所述第二介电材料并且通过所述第二介电材料与所述栅极结构横向地分离。在一些实施例中,所述第一介电材料包括氮化硅并且所述第二介电材料包括二氧化硅。在一些实施例中,所述第一介电材料包括二氧化硅并且所述第二介电材料包括氮化硅或氮氧化硅。在一些实施例中,所述场板垂直地延伸穿过所述第二介电材料并且通过所述第一介电材料与所述栅极结构垂直地分离。在一些实施例中,所述组合蚀刻停止层具有直接位于所述场板下方的第一厚度以及位于所述场板之外的第二厚度。在一些实施例中,所述组合蚀刻停止层横向地与所述场板的侧壁接触。在一些实施例中,所述场板的底部通过所述组合蚀刻停止层与所述介电层分离。在一些实施例中,所述介电层包括抗蚀保护氧化物,其中,所述抗蚀保护氧化物具有接触所述栅极结构的下表面和接触所述组合蚀刻停止层的上表面。In some embodiments, the invention relates to integrated chips. The integrated chip includes: a gate structure disposed between a source region and a drain region above a substrate; and a dielectric layer laterally extending from above the gate structure to the gate structure and the drain region between; a combined etch stop layer including a plurality of different dielectric materials stacked above the dielectric layer; a contact etch stop layer in direct contact with the upper surface and sidewalls of the combined etch stop layer; a field plate, Surrounded laterally by the first ILD layer and extending vertically from the top of the first ILD layer through the contact etch stop layer and into the combined etch stop layer. In some embodiments, the combined etch stop layer has a first dielectric material and a second dielectric material in contact with an upper surface of the first dielectric material. In some embodiments, the field plate extends vertically through the second dielectric material and is laterally separated from the gate structure by the second dielectric material. In some embodiments, the first dielectric material includes silicon nitride and the second dielectric material includes silicon dioxide. In some embodiments, the first dielectric material includes silicon dioxide and the second dielectric material includes silicon nitride or silicon oxynitride. In some embodiments, the field plate extends vertically through the second dielectric material and is vertically separated from the gate structure by the first dielectric material. In some embodiments, the combined etch stop layer has a first thickness directly under the field plate and a second thickness outside the field plate. In some embodiments, the combined etch stop layer laterally contacts sidewalls of the field plate. In some embodiments, the bottom of the field plate is separated from the dielectric layer by the combined etch stop layer. In some embodiments, the dielectric layer includes a resist protection oxide, wherein the resist protection oxide has a lower surface contacting the gate structure and an upper surface contacting the combined etch stop layer.
在实施例中,所述组合蚀刻停止层包括第一介电材料和与所述第一介电材料的上表面接触的第二介电材料。In an embodiment, the combined etch stop layer includes a first dielectric material and a second dielectric material in contact with an upper surface of the first dielectric material.
在实施例中,所述场板垂直地延伸穿过所述第二介电材料并且通过所述第二介电材料与所述栅极结构横向地分离。In an embodiment, the field plate extends vertically through the second dielectric material and is laterally separated from the gate structure by the second dielectric material.
在实施例中,所述第一介电材料包括氮化硅并且所述第二介电材料包括二氧化硅。In an embodiment, the first dielectric material includes silicon nitride and the second dielectric material includes silicon dioxide.
在实施例中,所述第一介电材料包括二氧化硅并且所述第二介电材料包括氮化硅或氮氧化硅。In an embodiment, the first dielectric material includes silicon dioxide and the second dielectric material includes silicon nitride or silicon oxynitride.
在实施例中,所述场板垂直地延伸穿过所述第二介电材料并且通过所述第一介电材料与所述栅极结构垂直地分离。In an embodiment, the field plate extends vertically through the second dielectric material and is vertically separated from the gate structure by the first dielectric material.
在实施例中,所述组合蚀刻停止层具有直接位于所述场板下方的第一厚度以及位于所述场板之外的第二厚度。In an embodiment, the combined etch stop layer has a first thickness directly under the field plate and a second thickness outside the field plate.
在实施例中,所述组合蚀刻停止层横向地与所述场板的侧壁接触。In embodiments, the combined etch stop layer laterally contacts sidewalls of the field plate.
在实施例中,所述场板的底部通过所述组合蚀刻停止层与所述介电层垂直地分离。In an embodiment, the bottom of the field plate is vertically separated from the dielectric layer by the combined etch stop layer.
在实施例中,所述介电层包括抗蚀保护氧化物,其中,所述抗蚀保护氧化物具有接触所述栅极结构的下表面和接触所述组合蚀刻停止层的上表面。In an embodiment, the dielectric layer includes a resist protection oxide, wherein the resist protection oxide has a lower surface contacting the gate structure and an upper surface contacting the combined etch stop layer.
在其他实施例中,本发明涉及集成芯片。集成芯片包括:栅极结构,设置在衬底上方;抗蚀保护氧化物,从所述栅极结构上方横向地延伸穿过所述栅极结构的最外侧壁;组合蚀刻停止层,包括位于所述抗蚀保护氧化物上方的第一介电材料和接触所述第一介电材料的上表面的第二介电材料;多个导电接触件,通过所述衬底上方的第一层间介电(ILD)层横向围绕;以及场板,从所述第一ILD层的顶部延伸至所述组合蚀刻停止层,并且包括与所述多个导电接触件相同的材料,其中,所述组合蚀刻停止层横向地接触所述场板的侧壁并且将所述场板的底部与所述抗蚀保护氧化物垂直分离。在一些实施例中,所述场板垂直地延伸穿过所述第二介电材料并且通过所述第二介电材料与所述栅极结构横向地分离。在一些实施例中,所述第一介电材料是氧化物并且所述第二介电材料是氮化物。在一些实施例中,所述组合蚀刻停止层还包括:第三介电材料,与所述第二介电材料的上表面接触,其中,所述第一介电材料和所述第三介电材料具有相同材料。在一些实施例中,集成芯片,进一步包括:接触蚀刻停止层,与所述组合蚀刻停止层的上表面和侧壁直接接触,其中,所述场板延伸穿过所述接触蚀刻停止层。在一些实施例中,所述抗蚀保护氧化物具有第一宽度,所述第一宽度与所述组合蚀刻停止层的第二宽度相等。In other embodiments, the invention relates to integrated chips. The integrated chip includes: a gate structure disposed above the substrate; a resist protective oxide extending laterally from above the gate structure through the outermost side wall of the gate structure; a combined etching stop layer including a first dielectric material above the corrosion protection oxide and a second dielectric material contacting the upper surface of the first dielectric material; a plurality of conductive contacts through the first interlayer dielectric above the substrate an electrical (ILD) layer laterally surrounding; and a field plate extending from a top of the first ILD layer to the combined etch stop layer and including the same material as the plurality of conductive contacts, wherein the combined etch stop A stop layer laterally contacts the sidewalls of the field plate and vertically separates the bottom of the field plate from the resist protective oxide. In some embodiments, the field plate extends vertically through the second dielectric material and is laterally separated from the gate structure by the second dielectric material. In some embodiments, the first dielectric material is an oxide and the second dielectric material is a nitride. In some embodiments, the combined etch stop layer further includes: a third dielectric material in contact with the upper surface of the second dielectric material, wherein the first dielectric material and the third dielectric material Materials have the same material. In some embodiments, the integrated chip further includes: a contact etch stop layer in direct contact with the upper surface and sidewalls of the combined etch stop layer, wherein the field plate extends through the contact etch stop layer. In some embodiments, the resist protective oxide has a first width that is equal to a second width of the combined etch stop layer.
在实施例中,所述场板垂直地延伸穿过所述第二介电材料并且通过所述第二介电材料与所述栅极结构横向地分离。In an embodiment, the field plate extends vertically through the second dielectric material and is laterally separated from the gate structure by the second dielectric material.
在实施例中,所述第一介电材料是氧化物并且所述第二介电材料是氮化物。In an embodiment, the first dielectric material is an oxide and the second dielectric material is a nitride.
在实施例中,所述组合蚀刻停止层还包括:第三介电材料,与所述第二介电材料的上表面接触,其中,所述第一介电材料和所述第三介电材料是相同材料。In an embodiment, the combined etch stop layer further includes: a third dielectric material in contact with the upper surface of the second dielectric material, wherein the first dielectric material and the third dielectric material It's the same material.
在实施例中,集成芯片进一步包括:接触蚀刻停止层,与所述组合蚀刻停止层的上表面和侧壁直接接触,其中,所述场板延伸穿过所述接触蚀刻停止层。In an embodiment, the integrated chip further includes a contact etch stop layer in direct contact with the upper surface and sidewalls of the combined etch stop layer, wherein the field plate extends through the contact etch stop layer.
在实施例中,所述抗蚀保护氧化物具有第一宽度,所述第一宽度与所述组合蚀刻停止层的第二宽度相等。In an embodiment, the resist protective oxide has a first width equal to a second width of the combined etch stop layer.
在又一实施例中,本发明涉及形成集成芯片的方法。该方法包括:在衬底内的源极区域和漏极区域之间的所述衬底上方形成栅极结构;在所述栅极结构上方以及所述栅极结构和所述漏极区域之间形成介电层;在所述介电层上方形成组合蚀刻停止层,其中,所述组合蚀刻停止层包括多种堆叠的介电材料;在所述组合蚀刻停止层上方形成第一层间介电(ILD)层;选择性地蚀刻所述第一ILD层,以同时限定延伸到所述衬底的接触件开口和延伸到所述组合蚀刻停止层的场板开口;以及通过一种或多种导电材料填充所述接触件开口和所述场板开口。在一些实施例中,所述组合蚀刻停止层包括第一介电材料和与所述第一介电材料的上表面接触的第二介电材料。在一些实施例中,所述场板开口垂直地延伸穿过所述第二介电材料并且通过所述第二介电材料与所述栅极结构横向地分离。在一些实施例中,方法进一步包括:在所述组合蚀刻停止层上方形成掩蔽层;以及根据所述掩蔽层蚀刻所述组合蚀刻停止层和所述介电层。In yet another embodiment, the invention relates to a method of forming an integrated chip. The method includes forming a gate structure over the substrate between a source region and a drain region within the substrate; forming a dielectric layer; forming a combined etch stop layer over the dielectric layer, wherein the combined etch stop layer includes a plurality of stacked dielectric materials; forming a first interlayer dielectric over the combined etch stop layer (ILD) layer; selectively etching the first ILD layer to simultaneously define contact openings extending to the substrate and field plate openings extending to the combined etch stop layer; and by one or more Conductive material fills the contact openings and the field plate openings. In some embodiments, the combined etch stop layer includes a first dielectric material and a second dielectric material in contact with an upper surface of the first dielectric material. In some embodiments, the field plate opening extends vertically through the second dielectric material and is laterally separated from the gate structure by the second dielectric material. In some embodiments, the method further includes: forming a masking layer over the combined etch stop layer; and etching the combined etch stop layer and the dielectric layer according to the masking layer.
在实施例中,所述组合蚀刻停止层包括第一介电材料和与所述第一介电材料的上表面接触的第二介电材料。In an embodiment, the combined etch stop layer includes a first dielectric material and a second dielectric material in contact with an upper surface of the first dielectric material.
在实施例中,所述场板开口垂直地延伸穿过所述第二介电材料并且通过所述第二介电材料与所述栅极结构横向地分离。In an embodiment, the field plate opening extends vertically through the second dielectric material and is laterally separated from the gate structure by the second dielectric material.
在实施例中,方法进一步包括:在所述组合蚀刻停止层上方形成掩蔽层;以及根据所述掩蔽层蚀刻所述组合蚀刻停止层和所述介电层。In an embodiment, the method further includes: forming a masking layer over the combined etch stop layer; and etching the combined etch stop layer and the dielectric layer according to the masking layer.
上面概述了若干实施例的特征,使得本领域技术人员可以更好地理解本发明的各方面。本领域技术人员应该理解,他们可以容易地使用本发明作为基础来设计或修改用于实施与在此所介绍实施例相同的目的和/或实现相同优势的其他工艺和结构。本领域技术人员也应该意识到,这种等同构造并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,在此他们可以做出多种变化、替换以及改变。The features of several embodiments are summarized above to enable those skilled in the art to better understand various aspects of the invention. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present invention, and that they can make various changes, substitutions and alterations herein without departing from the spirit and scope of the present invention. .
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/174,626 US10756208B2 (en) | 2014-11-25 | 2018-10-30 | Integrated chip and method of forming the same |
US16/174,626 | 2018-10-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111129123A CN111129123A (en) | 2020-05-08 |
CN111129123B true CN111129123B (en) | 2023-12-19 |
Family
ID=69023172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910454866.2A Active CN111129123B (en) | 2018-10-30 | 2019-05-29 | Combined etch stop layer for contact field plate etching, integrated chip and forming method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111129123B (en) |
TW (1) | TWI719430B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11411086B2 (en) | 2020-03-17 | 2022-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Field plate and isolation structure for high voltage device |
WO2022011633A1 (en) * | 2020-07-16 | 2022-01-20 | Innoscience (Zhuhai) Technology Co., Ltd. | Semiconductor device structures and methods of manufacturing the same |
US20220037518A1 (en) * | 2020-07-31 | 2022-02-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gallium Nitride-Based Device with Step-Wise Field Plate and Method Making the Same |
US11862693B2 (en) * | 2020-08-24 | 2024-01-02 | Globalfoundries Singapore Pte. Ltd. | Semiconductor devices including a drain captive structure having an air gap and methods of forming the same |
TWI762253B (en) * | 2021-03-25 | 2022-04-21 | 力晶積成電子製造股份有限公司 | Semiconductor device |
CN115148689A (en) * | 2021-03-30 | 2022-10-04 | 华邦电子股份有限公司 | Semiconductor device and method of forming the same |
TWI848305B (en) * | 2022-06-17 | 2024-07-11 | 力晶積成電子製造股份有限公司 | Semiconductor device and method for forming the same |
US20240145533A1 (en) * | 2022-10-31 | 2024-05-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and methods of formation |
CN115513060A (en) * | 2022-11-03 | 2022-12-23 | 杭州晶丰明源半导体有限公司 | LDMOS device and its manufacturing method |
CN116504840B (en) * | 2023-06-25 | 2023-09-22 | 粤芯半导体技术股份有限公司 | Laterally diffused metal oxide semiconductor device and manufacturing method thereof |
CN119342865A (en) * | 2024-12-20 | 2025-01-21 | 晶芯成(北京)科技有限公司 | Lateral double diffused metal oxide semiconductor field effect transistor and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104867975A (en) * | 2014-02-21 | 2015-08-26 | 台湾积体电路制造股份有限公司 | Contact Etch Stop Layers Of A Field Effect Transistor |
CN104867967A (en) * | 2014-02-26 | 2015-08-26 | 台湾积体电路制造股份有限公司 | Semiconductor Device And Fabricating Method Thereof |
CN105448863A (en) * | 2014-09-04 | 2016-03-30 | 台湾积体电路制造股份有限公司 | Semiconductor structure with contact plug |
US9871132B1 (en) * | 2016-08-15 | 2018-01-16 | Globalfoundries Singapore Pte. Ltd. | Extended drain metal-oxide-semiconductor transistor |
CN107689396A (en) * | 2016-08-03 | 2018-02-13 | 台湾积体电路制造股份有限公司 | Transistor and forming method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8828824B2 (en) * | 2011-03-29 | 2014-09-09 | International Business Machines Corporation | III-V field effect transistory (FET) and III-V semiconductor on insulator (IIIVOI) FET, integrated circuit (IC) chip and method of manufacture |
JP5834520B2 (en) * | 2011-06-15 | 2015-12-24 | 富士通セミコンダクター株式会社 | Semiconductor device manufacturing method and semiconductor device |
US9024324B2 (en) * | 2012-09-05 | 2015-05-05 | Freescale Semiconductor, Inc. | GaN dual field plate device with single field plate metal |
US8962402B1 (en) * | 2013-08-14 | 2015-02-24 | International Business Machines Corporation | Lateral diffusion metal oxide semiconductor (LDMOS) device with tapered drift electrode |
JP2015122361A (en) * | 2013-12-20 | 2015-07-02 | 株式会社東芝 | Field effect transistor |
US9590053B2 (en) * | 2014-11-25 | 2017-03-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Methodology and structure for field plate design |
US10825905B2 (en) * | 2016-06-01 | 2020-11-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Thin poly field plate design |
-
2019
- 2019-03-21 TW TW108109662A patent/TWI719430B/en active
- 2019-05-29 CN CN201910454866.2A patent/CN111129123B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104867975A (en) * | 2014-02-21 | 2015-08-26 | 台湾积体电路制造股份有限公司 | Contact Etch Stop Layers Of A Field Effect Transistor |
CN104867967A (en) * | 2014-02-26 | 2015-08-26 | 台湾积体电路制造股份有限公司 | Semiconductor Device And Fabricating Method Thereof |
CN105448863A (en) * | 2014-09-04 | 2016-03-30 | 台湾积体电路制造股份有限公司 | Semiconductor structure with contact plug |
CN107689396A (en) * | 2016-08-03 | 2018-02-13 | 台湾积体电路制造股份有限公司 | Transistor and forming method thereof |
US9871132B1 (en) * | 2016-08-15 | 2018-01-16 | Globalfoundries Singapore Pte. Ltd. | Extended drain metal-oxide-semiconductor transistor |
Also Published As
Publication number | Publication date |
---|---|
TW201941428A (en) | 2019-10-16 |
TWI719430B (en) | 2021-02-21 |
CN111129123A (en) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10964810B2 (en) | Methodology and structure for field plate design | |
US11271104B2 (en) | Composite etch stop layer for contact field plate etching | |
CN111129123B (en) | Combined etch stop layer for contact field plate etching, integrated chip and forming method thereof | |
US11164970B2 (en) | Contact field plate | |
CN112786689B (en) | Integrated chip and method for forming high voltage transistor device | |
CN112216738B (en) | Integrated chip and method for forming the same | |
US10636883B2 (en) | Semiconductor device including a gate trench and a source trench | |
US10680100B2 (en) | Field structure and methodology | |
US11908891B2 (en) | High voltage device with gate extensions | |
US20220367241A1 (en) | Spacers for Semiconductor Devices Including Backside Power Rails | |
US20240097027A1 (en) | Semiconductor structure | |
CN107910266B (en) | Power semiconductor device and method of manufacturing the same | |
CN107910269B (en) | Power semiconductor device and method of manufacturing the same | |
CN108428743B (en) | Metal/polysilicon gate trench power MOSFET and method of forming the same | |
CN107910268B (en) | Power semiconductor device and method of manufacturing the same | |
TWI777225B (en) | Integrated chip and method of forming the same | |
CN107910271B (en) | Power semiconductor device and manufacturing method thereof | |
TW202405891A (en) | Semiconductor device and method for forming the same | |
US12300566B2 (en) | Integrated chip with good thermal dissipation performance | |
US20240178315A1 (en) | Semiconductor device and methods for forming the same | |
TW202324631A (en) | An integrated chip | |
CN116072711A (en) | Semiconductor device and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |