[go: up one dir, main page]

CN111083079A - Constellation Diagram Based Quadrature Modulation Format Identification Method - Google Patents

Constellation Diagram Based Quadrature Modulation Format Identification Method Download PDF

Info

Publication number
CN111083079A
CN111083079A CN201911314896.XA CN201911314896A CN111083079A CN 111083079 A CN111083079 A CN 111083079A CN 201911314896 A CN201911314896 A CN 201911314896A CN 111083079 A CN111083079 A CN 111083079A
Authority
CN
China
Prior art keywords
sub
cluster
degree
constellation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911314896.XA
Other languages
Chinese (zh)
Inventor
何晶
周奕君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201911314896.XA priority Critical patent/CN111083079A/en
Publication of CN111083079A publication Critical patent/CN111083079A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种基于星座图的正交调制格式识别方法,在均衡接收的信号后,取少量的均衡归一化的符号作为识别方法的输入,匹配归一化M正交幅度调制QAM信号模板进行聚类,对每个聚类星座团进行二维高斯模型分析得到该聚类中每个符号的概率值,分别计算得到可能的MQAM归一化信号模板的切合度,最后根据预设的模板的切合度范围判断待识别信号调制格式阶数。本发明提出的识别方法用到机器学习中的聚类分析方法,建立二维高斯模型进行分析,该方法原理简单,复杂度低,适用范围大。

Figure 201911314896

The invention discloses a method for identifying a quadrature modulation format based on a constellation diagram. After equalizing a received signal, a small amount of equalized and normalized symbols are taken as the input of the identification method to match a normalized M quadrature amplitude modulation QAM signal. The template is clustered, and two-dimensional Gaussian model analysis is performed on each clustered constellation to obtain the probability value of each symbol in the cluster, and the fit degree of the possible MQAM normalized signal templates is calculated separately. Finally, according to the preset The fit range of the template determines the modulation format order of the signal to be identified. The identification method proposed by the invention uses the cluster analysis method in machine learning to establish a two-dimensional Gaussian model for analysis. The method has simple principle, low complexity and wide application range.

Figure 201911314896

Description

基于星座图的正交调制格式识别方法Constellation Diagram Based Quadrature Modulation Format Identification Method

(一)技术领域(1) Technical field

本发明涉及通信技术领域,尤指一种基于星座图的正交调制格式识别方法。The present invention relates to the technical field of communications, in particular to a method for identifying an orthogonal modulation format based on a constellation diagram.

(二)背景技术(2) Background technology

随着通信技术的发展,通信信号的体制和调制样式变得更加复杂多样,自动 调制格式识别方法日益受到人们的重视。调制格式识别已经发展了几十年,但是 还没有一个统一的完整解决该问题的理论体系,也很难找到识别全部调制格式 的统一方法。因为调制格式识别不是一个孤立的问题,融合了检测,估计,特征 选取和分类识别等各方面内容。With the development of communication technology, the system and modulation patterns of communication signals have become more complex and diverse, and the automatic modulation format identification method has been paid more and more attention by people. Modulation format identification has been developed for decades, but there is not a unified and complete theoretical system to solve this problem, and it is difficult to find a unified method to identify all modulation formats. Because modulation format recognition is not an isolated problem, it integrates various aspects such as detection, estimation, feature selection and classification and recognition.

目前已提出的正交调制格式的识别方法主要有:(1)以调制信号的高阶累 积量(High-Order Component HOC)作为特征,采用有监督的机器学习算法作为分 类器,分类该调制信号的调制格式[M.W.Aslam,Z.Zhu and A.K.Nandi, “Automatic modulationclassification using combination of genetic programming and KNN,”IEEE T WIRELCOMMUN,vol.11,no.8,pp.2742-2750,AUG.2012]。(2) 通过计算功率归一化调制信号的功率分布特征值,将该功率分布特征值与预设 的多个门限进行比较,确定该正交调制信号的调制格式[CN 104756456B]。(3) 利用无监督机器学习算法,例如K均值聚类算法,对星座图进行聚类分析,根 据得到的质心数估计出调制格式的阶数[G.Jajoo,Y.Kumar,S.K.Yadav,B. Adhikari,and A.Kumar,“Blind signal modulation recognition throughclustering analysis of constellation signature,”EXPERT SYST APPL,vol.90,pp.13-22,Aug. 2017]。The identification methods of orthogonal modulation formats that have been proposed so far mainly include: (1) Using the high-order cumulant (High-Order Component HOC) of the modulated signal as a feature, using a supervised machine learning algorithm as a classifier to classify the modulated signal The modulation format of [M.W.Aslam, Z.Zhu and A.K.Nandi, “Automatic modulationclassification using combination of genetic programming and KNN,” IEEE T WIRELCOMMUN, vol.11, no.8, pp.2742-2750, AUG.2012]. (2) By calculating the power distribution characteristic value of the power normalized modulation signal, and comparing the power distribution characteristic value with a plurality of preset thresholds, the modulation format of the quadrature modulation signal is determined [CN 104756456B]. (3) Use unsupervised machine learning algorithms, such as K-means clustering algorithm, to perform cluster analysis on the constellation diagram, and estimate the order of the modulation format according to the obtained number of centroids [G.Jajoo, Y.Kumar, S.K.Yadav, B . Adhikari, and A. Kumar, "Blind signal modulation recognition throughclustering analysis of constellation signature," EXPERT SYST APPL, vol. 90, pp. 13-22, Aug. 2017].

上述方法中,采用监督学习算法需要较大的训练开销;采用K均值计算质 心数需要多次迭代,且初始质心的选择会影响K均值聚类结果;采用计算功率 分布特征值的方法对于光信噪比要求较高,其适用范围有限。Among the above methods, the use of supervised learning algorithm requires a large training overhead; the use of K-means to calculate the number of centroids requires multiple iterations, and the selection of the initial centroids will affect the K-means clustering results; the method of calculating the eigenvalues of power distribution is used for optical information. Noise ratio requirements are high, and its scope of application is limited.

(三)发明内容(3) Contents of the invention

根据现有技术存在的问题,本发明给出了一种基于星座图的正交调制格式 识别方法,在均衡接收的信号后,取少量的归一化的符号序列,通过匹配可能的 调制格式的归一化星座图进行聚类;再对形成的每个聚类进行二维高斯模型分 析,得到每个聚类的聚拢程度;然后通过计算所有聚类的平均聚拢程度作为该匹 配模板的切合度,根据预设的切合度范围分布判断信号的调制格式。由于不同信 噪比(SNR)下,聚类的聚拢程度不同,因此切合度会随信噪比的变化而变化,信 噪比越低,切合度越小。该发明的计算复杂度低,光信噪比适用范围大,具有创 新性的实用价值。According to the problems existing in the prior art, the present invention provides a method for identifying an orthogonal modulation format based on a constellation diagram. After equalizing the received signal, a small number of normalized symbol sequences are taken, and the Normalize the constellation diagram for clustering; then analyze each cluster formed by a two-dimensional Gaussian model to obtain the degree of aggregation of each cluster; then calculate the average degree of aggregation of all clusters as the fit of the matching template , and determine the modulation format of the signal according to the preset fit range distribution. Because the clustering degree is different under different signal-to-noise ratio (SNR), the fit degree will change with the change of signal-to-noise ratio. The lower the signal-to-noise ratio, the smaller the fit degree. The invention has low computational complexity, wide application range of optical signal-to-noise ratio, and innovative practical value.

为了达到上述目的,本发明所采用的技术方案如下,包括以下内容:In order to achieve the above object, the technical scheme adopted in the present invention is as follows, including the following content:

首先,接收调制信号,经过数字信号处理得到均衡后的信号,为了降低计算 复杂度,从均衡后的信号中取1000个符号进行识别,并将实部虚部范围限制在 (-1.3~1.3)以内(将受噪声影响过大的符号剔除),最后得到的用于识别的符号 个数为H。然后将所取的用于识别的H个符号分别匹配可能的标准归一化 MQAM信号模板进行聚类,分别得到M个聚类星座团。聚类后,对每一个聚类 星座团进行二维高斯模型分析得到该聚类中每个符号的概率值。再分别计算聚 类星座团中符号概率值的平均值得到该聚类星座团的凝聚程度。最后通过这M 个星座团的凝聚程度得到相应MQAM归一化模板的切合度

Figure BDA0002325578850000021
(T2,T4,T5,T6)。切合度值大小可以代表匹配该模板的程度;例如:T2越大,代表这H个符号为 4QAM调制格式的可能性越大。最后根据预设的四种模板的切合度范围判断待 测信号调制格式阶数。在SNR较高时,正确的模板匹配得到的切合度值会较大, 因此可以通过MQAM匹配模板切合度值就能准确区分M的值;当SNR较小 时,由于用来识别的H符号数较少(H<=1000),使得每一个星座团的信号数量大 约为1000/M,且由于受噪声影响较大,凝聚度不高,得到的某个切合度值不能 准确判断,通过多个切合度值组合进行判定,可以提高识别准确度。First, the modulated signal is received, and the equalized signal is obtained through digital signal processing. In order to reduce the computational complexity, 1000 symbols are taken from the equalized signal for identification, and the range of the real part and the imaginary part is limited to (-1.3~1.3) Within (the symbols that are too much affected by noise are eliminated), the number of symbols finally obtained for identification is H. Then, the H symbols taken for identification are matched with possible standard normalized MQAM signal templates respectively to perform clustering, and M clustered constellations are obtained respectively. After clustering, a two-dimensional Gaussian model analysis is performed on each cluster constellation to obtain the probability value of each symbol in the cluster. Then, the average value of the symbol probability values in the cluster constellation group is calculated separately to obtain the agglomeration degree of the cluster constellation group. Finally, the degree of fit of the corresponding MQAM normalized template is obtained through the degree of aggregation of the M constellation clusters
Figure BDA0002325578850000021
(T 2 , T 4 , T 5 , T 6 ). The size of the fit value can represent the degree of matching the template; for example, the larger T 2 is, the higher the probability that the H symbols are in the 4QAM modulation format is. Finally, the order of the modulation format of the signal to be tested is determined according to the fit range of the preset four templates. When the SNR is high, the fit value obtained by correct template matching will be large, so the value of M can be accurately distinguished by matching the template fit value through MQAM; when the SNR is small, the number of H symbols used for identification is relatively large. less (H<=1000), so that the number of signals in each constellation group is about 1000/M, and due to the large influence of noise, the degree of cohesion is not high, and a certain fit value obtained cannot be accurately judged. The combination of degree values can be judged, which can improve the recognition accuracy.

(四)附图说明(4) Description of drawings

图1为本发明实施例提供的调制格式的识别过程;1 is an identification process of a modulation format provided by an embodiment of the present invention;

图2为本发明实施例中采用的多种归一化QAM调制方案的星座图;2 is a constellation diagram of multiple normalized QAM modulation schemes adopted in the embodiment of the present invention;

图3为本发明实施例中接收的均衡后的归一化4QAM信号星座图,用于识别调 制格式的H个符号序列的星座图,及其匹配4QAM归一化模板聚类的结果示意 图;Fig. 3 is the normalized 4QAM signal constellation diagram after the equalization received in the embodiment of the present invention, the constellation diagram for identifying the three symbol sequences of modulation format, and the result schematic diagram of matching 4QAM normalization template clustering;

图4A为本发明实施例中接收的归一化的4QAM信号匹配归一化4QAM信号模 板的第一个聚类星座团的一级凝聚程度ε1和二级凝聚程度β1的示意图;4A is a schematic diagram of the first-order cohesion degree ε 1 and the second-level cohesion degree β 1 of the first cluster constellation group in which the normalized 4QAM signal received matches the normalized 4QAM signal template in the embodiment of the present invention;

图4B(a)为图4A中第一个聚类星座团的二维高斯模型分布的3D视图,图4B (b)为图4B(a)中概率值大于ε1的部分,图4B(c)为图4B(a)中概率值 大于β1的部分;Fig. 4B(a) is a 3D view of the 2D Gaussian model distribution of the first clustered constellation in Fig. 4A, Fig. 4B(b) is the part of Fig. 4B(a) where the probability value is greater than ε 1 , Fig. 4B(c) ) is the part where the probability value is greater than β 1 in Fig. 4B(a);

图5为本发明实施例中接收的信号为SNR=20dB时的16QAM信号,采样H个 符号用于识别调制格式的分步示意图;Fig. 5 is the 16QAM signal when the signal received in the embodiment of the present invention is SNR=20dB, and sampling H symbols is used to identify the step-by-step schematic diagram of the modulation format;

图6为本发明中实施例预设的切合度范围判决流程图。FIG. 6 is a flow chart of determining a suitability range preset in an embodiment of the present invention.

(五)具体实施方式(5) Specific implementation methods

下面结合具体实施例和附图,对本发明作详细说明,应当理解,以下所说明 的实施例仅用于说明和解释本发明,并不用于限定本发明:Below in conjunction with specific embodiment and accompanying drawing, the present invention is described in detail, it should be understood that the embodiment described below is only used to illustrate and explain the present invention, and is not intended to limit the present invention:

图1为本发明实施例提供的调制格式的识别过程,具体包括以下步骤:1 is an identification process of a modulation format provided by an embodiment of the present invention, which specifically includes the following steps:

S1:接收调制信号,经过数字信号处理得到均衡后的信号,以图3(a)为 例,显示了本发明中将接收的信号进行数字信号处理,得到的均衡后的星座图, 该星座图为SNR=10dB时,发送的4QAM调制的信号,横坐标为信号的实部, 纵坐标为信号的虚部。为了降低计算复杂度,从均衡后的信号中取1000个符号 进行识别,并将实部虚部范围限制在(-1.3~1.3)以内(将受噪声影响过大的符 号剔除),最后得到的用于识别的符号个数为H,星座图如图3(b)所示。S1: Receive a modulated signal, and obtain an equalized signal through digital signal processing. Taking FIG. 3(a) as an example, it shows an equalized constellation diagram obtained by performing digital signal processing on the received signal in the present invention. The constellation diagram When SNR=10dB, for the transmitted 4QAM modulated signal, the abscissa is the real part of the signal, and the ordinate is the imaginary part of the signal. In order to reduce the computational complexity, 1000 symbols are taken from the equalized signal for identification, and the range of the real and imaginary parts is limited within (-1.3 to 1.3) (symbols that are too affected by noise are eliminated). The number of symbols used for identification is H, and the constellation diagram is shown in Figure 3(b).

S2:将所取的用于识别的H个符号分别匹配可能的标准归一化MQAM信 号模板进行聚类,聚类质心分别标记为cj={c1 (j),c2 (j)},j∈{1,2,…,M},然后,计算 每个初始质心与每个符号xi={x1,x2},i∈{1,2,…,H}之间的欧氏距离:S2: The H symbols taken for identification are respectively matched with possible standard normalized MQAM signal templates for clustering, and the cluster centroids are marked as c j ={c 1 (j) ,c 2 (j) } ,j∈{1,2,…,M}, then calculate the Euclidean between each initial centroid and each symbol x i ={x 1 ,x 2 },i∈{1,2,…,H} Shi's distance:

Figure BDA0002325578850000041
Figure BDA0002325578850000041

若有

Figure BDA0002325578850000042
则判定xi属于质心cj形成的聚类星座团,最后得到M个聚类星座团(匹配4QAM/16QAM/32QAM/64QAM模板进行聚类,分 别会得到4/16/32/64个星座团)。如图3(c)所示,形成的四个聚类星座团分 别用四种颜色表示。假设第j个星座团的符号个数为mj,有:if any
Figure BDA0002325578850000042
Then determine that x i belongs to the cluster constellation cluster formed by the centroid c j , and finally get M cluster constellation clusters (matching the 4QAM/16QAM/32QAM/64QAM template for clustering, you will get 4/16/32/64 constellation clusters respectively. ). As shown in Fig. 3(c), the formed four cluster constellations are represented by four colors respectively. Assuming that the number of symbols in the jth constellation group is m j , there are:

Figure BDA0002325578850000043
Figure BDA0002325578850000043

S3:聚类后,若mj<2,则无需S4和S5直接判断匹配该模板的切合度为0。 若mj>=2,则对每一个聚类星座团进行二维高斯模型分析得到该聚类中每个符号 的概率值,以第j个聚类星座团为例:S3: After clustering, if m j < 2, no need for S4 and S5 to directly determine that the matching degree of the template is 0. If m j >= 2, perform two-dimensional Gaussian model analysis on each cluster constellation to obtain the probability value of each symbol in the cluster, taking the jth cluster constellation as an example:

S301:计算第j个聚类星座团的二维高斯模型的参数

Figure BDA0002325578850000044
n为维数:S301: Calculate the parameters of the two-dimensional Gaussian model of the jth cluster constellation cluster
Figure BDA0002325578850000044
n is the dimension:

Figure BDA0002325578850000045
Figure BDA0002325578850000045

Figure BDA0002325578850000046
Figure BDA0002325578850000046

其中i∈{1,2,…,mj},

Figure BDA0002325578850000047
为第i个信号的横坐标x1
Figure BDA0002325578850000048
为第i个信号的纵坐 标x2,建立一个二维高斯模型;where i∈{1,2,…,m j },
Figure BDA0002325578850000047
is the abscissa x 1 of the i-th signal,
Figure BDA0002325578850000048
Establish a two-dimensional Gaussian model for the ordinate x 2 of the i-th signal;

S302:计算每一个信号在所属的聚类星座团中的概率值pjiS302: Calculate the probability value p ji of each signal in the cluster constellation to which it belongs:

Figure BDA0002325578850000049
Figure BDA0002325578850000049

其中,

Figure BDA0002325578850000051
i∈{1,2,…,mj},T表示转置。in,
Figure BDA0002325578850000051
i∈{1,2,…,m j }, T stands for transpose.

S4:分别计算聚类星座团中符号概率值pji的平均值得到该聚类星座团的凝 聚程度:εj=mean{pji}。S4: Calculate the average value of the symbol probability values p ji in the clustered constellation group respectively to obtain the degree of agglomeration of the clustered constellation group: ε j =mean{p ji }.

S5:通过这M个星座团的凝聚程度得到相应模板的切合度

Figure BDA0002325578850000052
(T2,T4,T5, T6)。切合度值大小可以代表匹配该模板的程度;例如:T2越大,代表这H个符 号为4QAM调制格式的可能性越大。S5: Obtain the fit degree of the corresponding template through the degree of aggregation of the M constellation clusters
Figure BDA0002325578850000052
(T 2 , T 4 , T 5 , T 6 ). The size of the fit value can represent the degree of matching the template; for example, the larger T 2 is, the higher the probability that the H symbols are in the 4QAM modulation format is.

S501计算T2:由于4QAM的每一个聚类星座团符号数较多,我们计算二级 凝聚程度βj来计算4QAM模板切合度。取pji>εj的符号,计算剩余部分的符号 概率均值βj=mean{pji},pji∈{pji>εj}得到二阶凝聚程度。在图4A中黑色圆圈标 示第一个聚类星座团的二级凝聚程度β1的大小,其中红色符号的pji小于εj,黑 色符号的pji大于εj且小于βj,蓝色符号的pji大于βj。图4B显示了4QAM中第一 个聚类星座团的二维高斯模型的3D视图,其中图4B(a)中底面中心是(μ11, μ12),图4B(b)显示了pji>εj的部分,图4B(c)显示了pji>βj的部分。计 算j个聚类星座团的二阶凝聚程度的平均值作为匹配4QAM模板切合度: T2=mean(β)。S501 calculates T 2 : Since each cluster constellation cluster of 4QAM has a large number of symbols, we calculate the second-order agglomeration degree β j to calculate the fit degree of the 4QAM template. Take the symbol of p jij , calculate the mean probability of the remaining part of the symbol β j =mean{p ji }, p ji ∈{p jij } to obtain the second-order cohesion degree. In Fig. 4A, the black circles indicate the size of the second degree of cohesion β 1 of the first cluster constellation group, where p ji of red symbols is less than ε j , p ji of black symbols is greater than ε j and less than β j , blue symbols p ji is greater than β j . Fig. 4B shows a 3D view of the 2D Gaussian model of the first clustered constellation cluster in 4QAM, where the bottom center in Fig. 4B(a) is (μ 11 , μ 12 ), and Fig. 4B(b) shows p ji > The part of ε j , Fig. 4B(c) shows the part of p ji > β j . Calculate the average of the second-order cohesion degrees of the j cluster constellations as the fit degree of the matching 4QAM template: T 2 =mean(β).

S502计算T4:计算出第j个聚类星座团的凝聚程度εj后,我们取较大的

Figure BDA0002325578850000053
个εj作为βk,k∈{1,2,…,12}。计算βk的平均值作为匹配16QAM模板切合度: T4=mean(β)。S502 Calculate T 4 : after calculating the degree of agglomeration ε j of the jth cluster constellation group, we take the larger
Figure BDA0002325578850000053
ε j as β k , k∈{1,2,…,12}. The mean value of βk was calculated as matching 16QAM template fit: T 4 = mean(β).

S503计算T5:计算出第j个聚类星座团的凝聚程度εj后,我们取较大的

Figure BDA0002325578850000054
个εj作为βk,k∈{1,2,…,24},计算βk的平均值作为匹配32QAM模板切合度: T5=mean(β)。S503 calculates T 5 : after calculating the degree of agglomeration ε j of the jth cluster constellation group, we take the larger
Figure BDA0002325578850000054
Each ε j is taken as β k , k∈{1,2,...,24}, and the average value of β k is calculated as the fit degree of the matching 32QAM template: T 5 =mean(β).

S504计算T6:为了提高64QAM与32QAM信号识别准确度,计算匹配 64QAM模板后四个角的聚类星座团的符号个数之和,即第1、5、33和37个聚 类星座团中符号个数之和:sum(m1+m5+m33+m37),若和小于H/32,则判断匹配 64QAM模板的切合度为0,即T6=0,若和大于或等于H/32,计算出第j个聚类 星座团的凝聚程度εj后,我们取较大的

Figure BDA0002325578850000061
个εj作为βk,k∈{1,2,…,48},计算βk的 平均值作为匹配64QAM模板切合度:T6=mean(β)。图5显示了接收的信号为 SNR=20dB时的16QAM信号,采样H个符号用于识别调制格式的分步示意图; 其中黑色符号的pji大于βj,红色符号的pji大于εj,蓝色符号的pji小于εj。从图 5中可以看出,匹配相同阶数的调制模板得到的各个聚类的符号分布较均匀,切 合度较高。匹配不同阶数的调制模板得到的某些聚类的符号个数可能为0,切合 度小。S504 calculates T 6 : in order to improve the recognition accuracy of the 64QAM and 32QAM signals, calculate the sum of the symbols of the cluster constellation clusters matching the four corners of the 64QAM template, that is, in the 1st, 5th, 33rd and 37th cluster constellation clusters The sum of the number of symbols: sum(m 1 +m 5 +m 33 +m 37 ), if the sum is less than H/32, it is judged that the matching degree of the matching 64QAM template is 0, that is, T 6 =0, if the sum is greater than or equal to H/32, after calculating the agglomeration degree εj of the jth cluster constellation group, we take the larger
Figure BDA0002325578850000061
Each ε j is taken as β k , k∈{1,2,...,48}, and the average value of β k is calculated as the matching degree of 64QAM template: T 6 =mean(β). Fig. 5 shows the step-by-step schematic diagram of sampling H symbols for identifying the modulation format when the received signal is a 16QAM signal with SNR=20dB; the p ji of the black symbol is greater than β j , the p ji of the red symbol is greater than ε j , and the blue symbol p ji is greater than ε j . p ji of color symbols is smaller than ε j . It can be seen from Fig. 5 that the symbols of each cluster obtained by matching modulation templates of the same order are relatively uniform and have a high degree of fit. The number of symbols of some clusters obtained by matching modulation templates of different orders may be 0, and the degree of fit is small.

S6:根据预设的四种模板的切合度范围判断待测信号调制格式阶数。在SNR 较高时,正确的模板匹配得到的切合度值会较大,因此可以通过MQAM匹配模 板切合度值就能准确区分M的值;当SNR较小时,由于用来识别的H符号数 较少(H<=1000),使得每一个星座团的信号数量大约为1000/M,且由于受噪声 影响较大,凝聚度不高,得到的某个切合度值不能准确判断,通过多个切合度值 组合进行判定,可以提高识别准确度。详细的阈值判决过程如图6所示,图6中 的序号A~S对应于表1中的序号:S6: Determine the modulation format order of the signal to be tested according to the fit ranges of the preset four templates. When the SNR is high, the fit value obtained by correct template matching will be large, so the value of M can be accurately distinguished by MQAM matching the template fit value; when the SNR is small, the number of H symbols used for identification is relatively large. less (H<=1000), so that the number of signals in each constellation group is about 1000/M, and due to the large influence of noise, the degree of cohesion is not high, and a certain fit value obtained cannot be accurately judged. The combination of degree values can be judged, which can improve the recognition accuracy. The detailed threshold judgment process is shown in Figure 6, and the sequence numbers A to S in Figure 6 correspond to the sequence numbers in Table 1:

S601:分别识别4QAM和32QAM;S601: Identify 4QAM and 32QAM respectively;

S602:识别较高信噪比下的16QAM和64QAM;S602: Identify 16QAM and 64QAM under higher SNR;

S603:较低信噪比下16QAM和64QAM的识别准确率;S603: The recognition accuracy of 16QAM and 64QAM under lower SNR;

S604:进一步提高较低信噪比下16QAM和64QAM的识别准确率;S604: further improve the recognition accuracy of 16QAM and 64QAM under lower signal-to-noise ratio;

S605:确保16QAM在较高信噪比下的识别准确率;S605: Ensure the recognition accuracy of 16QAM under higher signal-to-noise ratio;

S606:确保32QAM在较高信噪比下的识别准确率;S606: Ensure the recognition accuracy of 32QAM under a higher signal-to-noise ratio;

S607:确保64QAM在较高信噪比下的识别准确率。S607: Ensure the recognition accuracy of 64QAM under a higher signal-to-noise ratio.

表1Table 1

序号serial number 切合度范围fit range MM AA T<sub>2</sub>&gt;=0.95T<sub>2</sub>&gt;=0.95 44 BB T<sub>5</sub>&gt;5&amp;T<sub>6</sub>=0&amp;T<sub>4</sub>&lt;2.4T<sub>5</sub>&gt;5&amp;T<sub>6</sub>=0&amp;T<sub>4</sub>&lt;2.4 3232 CC T<sub>6</sub>&gt;12&amp;T<sub>4</sub>&lt;2.6T<sub>6</sub>&gt;12&amp;T<sub>4</sub>&lt;2.6 6464 DD T<sub>6</sub>&gt;13&amp;T<sub>4</sub>&lt;2.65T<sub>6</sub>&gt;13&amp;T<sub>4</sub>&lt;2.65 6464 EE T<sub>4</sub>&gt;=2.65T<sub>4</sub>&gt;=2.65 1616 FF T<sub>6</sub>&lt;10.4&amp;T<sub>6</sub>&gt;9.7&amp;T<sub>4</sub>&lt;2.36&amp;T<sub>5</sub>&gt;4.5T<sub>6</sub>&lt;10.4&amp;T<sub>6</sub>&gt;9.7&amp;T<sub>4</sub>&lt;2.36&amp;T<sub>5</sub >>4.5 6464 GG T<sub>6</sub>&gt;10.4&amp;T<sub>4</sub>&gt;2.36&amp;T<sub>4</sub>&lt;2.38&amp;T<sub>5</sub>&gt;4.5T<sub>6</sub>&gt;10.4&amp;T<sub>4</sub>&gt;2.36&amp;T<sub>4</sub>&lt;2.38&amp;T<sub>5</sub >>4.5 6464 HH T<sub>6</sub>&lt;=10.2&amp;T<sub>6</sub>&gt;=9&amp;T<sub>4</sub>&gt;2.3T<sub>6</sub>&lt;=10.2&amp;T<sub>6</sub>&gt;=9&amp;T<sub>4</sub>&gt;2.3 1616 II T<sub>6</sub>&gt;9.5&amp;T<sub>6</sub>&lt;10&amp;T<sub>4</sub>&lt;2.6&amp;T<sub>5</sub>&gt;4.5&amp;T<sub>5</sub>&lt;5.2T<sub>6</sub>&gt;9.5&amp;T<sub>6</sub>&lt;10&amp;T<sub>4</sub>&lt;2.6&amp;T<sub>5</sub> &gt;4.5&amp;T<sub>5</sub>&lt;5.2 1616 JJ T<sub>6</sub>&gt;10&amp;T<sub>4</sub>&lt;2.3&amp;T<sub>5</sub>&gt;4.5T<sub>6</sub>&gt;10&amp;T<sub>4</sub>&lt;2.3&amp;T<sub>5</sub>&gt;4.5 6464 KK T<sub>6</sub>&gt;11&amp;T<sub>4</sub>&lt;2.45T<sub>6</sub>&gt;11&amp;T<sub>4</sub>&lt;2.45 6464 LL T<sub>6</sub>&gt;12&amp;T<sub>4</sub>&lt;2.5T<sub>6</sub>&gt;12&amp;T<sub>4</sub>&lt;2.5 6464 MM T<sub>6</sub>&lt;11&amp;T<sub>4</sub>&gt;2.2&amp;T<sub>5</sub>&lt;4.5T<sub>6</sub>&lt;11&amp;T<sub>4</sub>&gt;2.2&amp;T<sub>5</sub>&lt;4.5 1616 NN T<sub>6</sub>&lt;10.3&amp;T<sub>4</sub>&gt;2.3T<sub>6</sub>&lt;10.3&amp;T<sub>4</sub>&gt;2.3 1616 OO T<sub>6</sub>&lt;11.2&amp;T<sub>4</sub>&gt;2.4T<sub>6</sub>&lt;11.2&amp;T<sub>4</sub>&gt;2.4 1616 PP T<sub>4</sub>&gt;4&amp;T<sub>5</sub>&lt;30&amp;T<sub>2</sub>&lt;0.95T<sub>4</sub>&gt;4&amp;T<sub>5</sub>&lt;30&amp;T<sub>2</sub>&lt;0.95 1616 QQ T<sub>5</sub>&gt;4.9&amp;T<sub>6</sub>=0&amp;T<sub>4</sub>&lt;2.5&amp;T<sub>2</sub>&lt;0.95T<sub>5</sub>&gt;4.9&amp;T<sub>6</sub>=0&amp;T<sub>4</sub>&lt;2.5&amp;T<sub>2</sub>&lt ;0.95 3232 RR T<sub>5</sub>&gt;6&amp;T<sub>6</sub>=0T<sub>5</sub>&gt;6&amp;T<sub>6</sub>=0 3232 SS T<sub>6</sub>&gt;14&amp;&amp;T<sub>4</sub>&lt;4T<sub>6</sub>&gt;14&amp;&amp;T<sub>4</sub>&lt;4 64 64

本发明实施例提供的上述对4QAM格式、16QAM格式、32QAM格式、 64QAM格式的识别方法所适用的光信噪比范围如表2所示,在适用范围识别准 确率达到100%。The optical signal-to-noise ratio range applicable to the above-mentioned identification methods for 4QAM format, 16QAM format, 32QAM format, and 64QAM format provided by the embodiment of the present invention is shown in Table 2, and the identification accuracy reaches 100% in the applicable range.

表2Table 2

Figure BDA0002325578850000071
Figure BDA0002325578850000071

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明 的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围 之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or change of the inventive concept thereof shall be included within the protection scope of the present invention.

(六)主要技术优势(6) Main technical advantages

现有的自动调制格式识别致力于找到足以区分不同调制格式的特征或者特 征组合,本发明提出的识别方法采用二维高斯模型,该方法原理简单,复杂度低, 在信噪比较高时,高斯模型分析得到的模板切合度高,易于识别。Existing automatic modulation format identification is devoted to finding features or feature combinations that are sufficient to distinguish different modulation formats. The identification method proposed by the present invention adopts a two-dimensional Gaussian model. The method is simple in principle and low in complexity. When the signal-to-noise ratio is high, The template obtained by the Gaussian model analysis has a high degree of fit and is easy to identify.

Claims (5)

1.一种基于星座图的正交调制格式的识别方法,其特征在于,包括:1. a method for identifying an orthogonal modulation format based on a constellation diagram, is characterized in that, comprising: 对接收的正交调制信号的符号序列进行归一化处理,经过数字信号处理得到均衡后的信号;从均衡后的信号中取1000个符号进行识别,并将实部虚部范围限制在(-1.3~1.3)以内(将受噪声影响过大的符号剔除),最后得到的用于识别的符号个数为H;将所取的用于识别的H个符号分别匹配可能的标准归一化MQAM信号模板进行聚类,分别得到M个聚类星座团;聚类后,对每一个聚类星座团进行二维高斯模型分析得到该聚类中每个符号的概率值。再分别计算聚类星座团中符号概率值的平均值得到该聚类星座团的凝聚程度;通过这M个星座团的凝聚程度计算得到相应MQAM归一化模板的切合度
Figure FDA0002325578840000011
根据预设的四种模板的切合度范围判断待测信号调制格式阶数。
Normalize the symbol sequence of the received quadrature modulation signal, and obtain an equalized signal through digital signal processing; take 1000 symbols from the equalized signal for identification, and limit the real part and imaginary part range to (- 1.3~1.3) (the symbols that are too much affected by noise will be eliminated), the number of symbols finally obtained for identification is H; the H symbols taken for identification are respectively matched with possible standard normalized MQAM The signal templates are clustered to obtain M cluster constellations respectively; after clustering, a two-dimensional Gaussian model analysis is performed on each cluster constellation to obtain the probability value of each symbol in the cluster. Then calculate the average value of the symbol probability values in the cluster constellation group to obtain the cohesion degree of the cluster constellation group; calculate the degree of fit of the corresponding MQAM normalization template through the aggregation degree of the M constellation groups
Figure FDA0002325578840000011
Determine the modulation format order of the signal to be tested according to the fit range of the preset four templates.
2.根据权利要求1所述的方法,将所取的用于识别的H个符号分别匹配可能的标准归一化MQAM信号模板进行聚类,分别得到M个聚类星座团,具体包括:2. the method according to claim 1, the H symbols that are taken for identification are matched with possible standard normalized MQAM signal templates respectively and carry out clustering, respectively, obtain M cluster constellations, specifically include: 生成归一化MQAM信号作为初始质心cj={c1 (j),c2 (j)},j∈{1,2,…,M}。计算每个初始质心与每个信号xi={x1,x2},i∈{1,2,…,H}之间的欧氏距离:A normalized MQAM signal is generated as the initial centroids c j ={c 1 (j) ,c 2 (j) },j∈{1,2,...,M}. Calculate the Euclidean distance between each initial centroid and each signal x i ={x 1 ,x 2 },i∈{1,2,…,H}:
Figure FDA0002325578840000012
Figure FDA0002325578840000012
若有
Figure FDA0002325578840000013
则判定xi属于质心cj形成的聚类星座团。
if any
Figure FDA0002325578840000013
Then it is determined that x i belongs to the cluster constellation group formed by the centroid c j .
3.根据权利要求1所述的方法,对每一个聚类星座团进行二维高斯模型分析得到该聚类中每个符号的概率值,计算聚类星座团中符号概率值的平均值得到该聚类星座团的凝聚程度,具体包括:3. method according to claim 1, carries out two-dimensional Gaussian model analysis to each cluster constellation group and obtains the probability value of each symbol in this cluster, calculates the mean value of symbol probability value in the cluster constellation group to obtain this. The degree of cohesion of the clustered constellation, including: 计算第j,j∈{1,2,…,M}个聚类星座团的二维高斯模型参数
Figure FDA0002325578840000014
Calculate the parameters of the 2D Gaussian model of the j,j∈{1,2,…,M}th cluster constellation
Figure FDA0002325578840000014
Figure FDA0002325578840000015
Figure FDA0002325578840000015
Figure FDA0002325578840000016
Figure FDA0002325578840000016
其中n是维度,i∈{1,2,…,mj},
Figure FDA0002325578840000021
为第j个聚类星座团中第i个信号的横坐标x1
Figure FDA0002325578840000022
为第i个信号的纵坐标x2;再计算每一个信号在所属的聚类星座团中的概率值pji
where n is the dimension, i∈{1,2,…,m j },
Figure FDA0002325578840000021
is the abscissa x 1 of the i-th signal in the j-th cluster constellation group,
Figure FDA0002325578840000022
is the ordinate x 2 of the i-th signal; then calculate the probability value p ji of each signal in the cluster constellation to which it belongs:
Figure FDA0002325578840000023
Figure FDA0002325578840000023
其中,
Figure FDA0002325578840000024
n是维度,i∈{1,2,…,mj},T表示转置。该聚类星座团的凝聚程度εj=mean{pji}。
in,
Figure FDA0002325578840000024
n is the dimension, i∈{1,2,…,m j }, and T denotes the transpose. The degree of agglomeration of the cluster constellation ε j =mean{p ji }.
4.根据权利要求1所述的方法,通过这M个星座团的凝聚程度计算相应MQAM归一化模板的切合度
Figure FDA0002325578840000025
具体包括:
4. method according to claim 1, calculates the fit degree of corresponding MQAM normalization template by the degree of agglomeration of these M constellation clusters
Figure FDA0002325578840000025
Specifically include:
计算T2:计算二级凝聚程度βj来计算4QAM模板切合度。取pijjε的符号,计算剩余部分的符号概率均值βj=mean{pji},pji∈{pji>εj}得到二阶凝聚程度。计算j个聚类星座团的二阶凝聚程度的平均值作为匹配4QAM模板切合度:T2=mean(β)。Calculate T 2 : Calculate the second degree of aggregation β j to calculate the 4QAM template fit. Take the symbol of p ij > j ε, and calculate the symbol probability mean β j =mean{p ji },p ji ∈{p jij } of the remaining part to obtain the second-order agglomeration degree. Calculate the average of the second-order agglomeration degrees of the j cluster constellations as the fit degree of the matching 4QAM template: T 2 =mean(β). 计算T4:计算出第j个聚类星座团的凝聚程度εj后,我们取较大的
Figure FDA0002325578840000026
个εj作为βk,k∈{1,2,…,12},计算βk的平均值作为匹配16QAM模板切合度:T4=mean(β)。
Calculate T 4 : After calculating the agglomeration degree ε j of the jth cluster constellation group, we take the larger
Figure FDA0002325578840000026
Each ε j is taken as β k , k∈{1,2,...,12}, and the average value of β k is calculated as the fit degree of the matching 16QAM template: T 4 =mean(β).
计算T5:计算出第j个聚类星座团的凝聚程度εj后,我们取较大的
Figure FDA0002325578840000027
个εj作为βk,k∈{1,2,…,24},计算βk的平均值作为匹配32QAM模板切合度:T5=mean(β)。
Calculate T 5 : After calculating the agglomeration degree ε j of the jth cluster constellation group, we take the larger
Figure FDA0002325578840000027
Each ε j is taken as β k , k∈{1,2,...,24}, and the average value of β k is calculated as the fit degree of the matching 32QAM template: T 5 =mean(β).
计算T6:计算匹配64QAM模板后四个角的聚类星座团的符号个数之和,即第1、5、33和37个聚类星座团中符号个数之和:sum(m1+m5+m33+m37),若和小于H/32,则判断匹配64QAM模板的切合度为0,即T6=0,若和大于或等于H/32,计算出第j个聚类星座团的凝聚程度εj后,我们取较大的
Figure FDA0002325578840000028
个εj作为βk,k∈{1,2,…,48},计算βk的平均值作为匹配64QAM模板切合度:T6=mean(β)。
Calculate T 6 : Calculate the sum of the number of symbols in the cluster constellation clusters matching the back four corners of the 64QAM template, that is, the sum of the symbols in the 1st, 5th, 33rd and 37th cluster constellation clusters: sum(m 1 + m5+m 33 +m 37 ), if the sum is less than H/32, then judge that the degree of fit of the matching 64QAM template is 0, that is, T 6 =0, if the sum is greater than or equal to H/32, calculate the jth cluster constellation After the degree of aggregation εj of the cluster, we take the larger
Figure FDA0002325578840000028
Each ε j is taken as β k , k∈{1,2,...,48}, and the average value of β k is calculated as the matching degree of 64QAM template: T 6 =mean(β).
5.根据权利要求1所述的根据预设的四种模板的切合度范围判断待测信号调制格式阶数,具体包括:5. according to the fit degree scope of the preset four kinds of templates according to claim 1, judge the modulation format order of the signal to be tested, specifically comprising: 通过预设的表1中显示的切合度范围判断调制格式的阶数。The order of the modulation format is determined according to the pre-set fit range shown in Table 1. 表1Table 1 序号serial number 切合度范围fit range MM AA T<sub>2</sub>&gt;=0.95T<sub>2</sub>&gt;=0.95 44 BB T<sub>5</sub>&gt;5&amp;T<sub>6</sub>=0&amp;T<sub>4</sub>&lt;2.4T<sub>5</sub>&gt;5&amp;T<sub>6</sub>=0&amp;T<sub>4</sub>&lt;2.4 3232 CC T<sub>6</sub>&gt;12&amp;T<sub>4</sub>&lt;2.6T<sub>6</sub>&gt;12&amp;T<sub>4</sub>&lt;2.6 6464 DD T<sub>6</sub>&gt;13&amp;T<sub>4</sub>&lt;2.65T<sub>6</sub>&gt;13&amp;T<sub>4</sub>&lt;2.65 6464 EE T<sub>4</sub>&gt;=2.65T<sub>4</sub>&gt;=2.65 1616 FF T<sub>6</sub>&lt;10.4&amp;T<sub>6</sub>&gt;9.7&amp;T<sub>4</sub>&lt;2.36&amp;T<sub>5</sub>&gt;4.5T<sub>6</sub>&lt;10.4&amp;T<sub>6</sub>&gt;9.7&amp;T<sub>4</sub>&lt;2.36&amp;T<sub>5</sub >>4.5 6464 GG T<sub>6</sub>&gt;10.4&amp;T<sub>4</sub>&gt;2.36&amp;T<sub>4</sub>&lt;2.38&amp;T<sub>5</sub>&gt;4.5T<sub>6</sub>&gt;10.4&amp;T<sub>4</sub>&gt;2.36&amp;T<sub>4</sub>&lt;2.38&amp;T<sub>5</sub >>4.5 6464 HH T<sub>6</sub>&lt;=10.2&amp;T<sub>6</sub>&gt;=9&amp;T<sub>4</sub>&gt;2.3T<sub>6</sub>&lt;=10.2&amp;T<sub>6</sub>&gt;=9&amp;T<sub>4</sub>&gt;2.3 1616 II T<sub>6</sub>&gt;9.5&amp;T<sub>6</sub>&lt;10&amp;T<sub>4</sub>&lt;2.6&amp;T<sub>5</sub>&gt;4.5&amp;T<sub>5</sub>&lt;5.2T<sub>6</sub>&gt;9.5&amp;T<sub>6</sub>&lt;10&amp;T<sub>4</sub>&lt;2.6&amp;T<sub>5</sub> &gt;4.5&amp;T<sub>5</sub>&lt;5.2 1616 JJ T<sub>6</sub>&gt;10&amp;T<sub>4</sub>&lt;2.3&amp;T<sub>5</sub>&gt;4.5T<sub>6</sub>&gt;10&amp;T<sub>4</sub>&lt;2.3&amp;T<sub>5</sub>&gt;4.5 6464 KK T<sub>6</sub>&gt;11&amp;T<sub>4</sub>&lt;2.45T<sub>6</sub>&gt;11&amp;T<sub>4</sub>&lt;2.45 6464 LL T<sub>6</sub>&gt;12&amp;T<sub>4</sub>&lt;2.5T<sub>6</sub>&gt;12&amp;T<sub>4</sub>&lt;2.5 6464 MM T<sub>6</sub>&lt;11&amp;T<sub>4</sub>&gt;2.2&amp;T<sub>5</sub>&lt;4.5T<sub>6</sub>&lt;11&amp;T<sub>4</sub>&gt;2.2&amp;T<sub>5</sub>&lt;4.5 1616 NN T<sub>6</sub>&lt;10.3&amp;T<sub>4</sub>&gt;2.3T<sub>6</sub>&lt;10.3&amp;T<sub>4</sub>&gt;2.3 1616 OO T<sub>6</sub>&lt;11.2&amp;T<sub>4</sub>&gt;2.4T<sub>6</sub>&lt;11.2&amp;T<sub>4</sub>&gt;2.4 1616 PP T<sub>4</sub>&gt;4&amp;T<sub>5</sub>&lt;30&amp;T<sub>2</sub>&lt;0.95T<sub>4</sub>&gt;4&amp;T<sub>5</sub>&lt;30&amp;T<sub>2</sub>&lt;0.95 1616 QQ T<sub>5</sub>&gt;4.9&amp;T<sub>6</sub>=0&amp;T<sub>4</sub>&lt;2.5&amp;T<sub>2</sub>&lt;0.95T<sub>5</sub>&gt;4.9&amp;T<sub>6</sub>=0&amp;T<sub>4</sub>&lt;2.5&amp;T<sub>2</sub>&lt ;0.95 3232 RR T<sub>5</sub>&gt;6&amp;T<sub>6</sub>=0T<sub>5</sub>&gt;6&amp;T<sub>6</sub>=0 3232 SS T<sub>6</sub>&gt;14&amp;&amp;T<sub>4</sub>&lt;4T<sub>6</sub>&gt;14&amp;&amp;T<sub>4</sub>&lt;4 6464
若满足条件A,则M赋值为4;若不满足条件A但满足条件B,则M赋值为32;若满足条件C或D,则M赋值为64,若满足条件E,则M赋值为16;若满足条件F或G,则M赋值为64,若满足条件H或I,则M赋值为16;若满足条件J或K或L,则M赋值为64,若满足条件M或N或O,则M赋值为16;若满足条件P,则M赋值为16;若满足条件Q或R,则M赋值为32;若满足条件S,则M赋值为64。最后,得到识别方法输出的调制阶数M的值。If condition A is met, M is assigned a value of 4; if condition A is not met but condition B is met, M is assigned a value of 32; if condition C or D is met, M is assigned a value of 64, and if condition E is met, M is assigned a value of 16 ; If conditions F or G are met, M is assigned a value of 64, if conditions H or I are met, then M is assigned a value of 16; if conditions J or K or L are met, then M is assigned a value of 64, if conditions M or N or O are met , then M is assigned a value of 16; if the condition P is satisfied, M is assigned a value of 16; if the condition Q or R is satisfied, M is assigned a value of 32; if the condition S is satisfied, M is assigned a value of 64. Finally, the value of the modulation order M output by the identification method is obtained.
CN201911314896.XA 2019-12-19 2019-12-19 Constellation Diagram Based Quadrature Modulation Format Identification Method Pending CN111083079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911314896.XA CN111083079A (en) 2019-12-19 2019-12-19 Constellation Diagram Based Quadrature Modulation Format Identification Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911314896.XA CN111083079A (en) 2019-12-19 2019-12-19 Constellation Diagram Based Quadrature Modulation Format Identification Method

Publications (1)

Publication Number Publication Date
CN111083079A true CN111083079A (en) 2020-04-28

Family

ID=70315547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911314896.XA Pending CN111083079A (en) 2019-12-19 2019-12-19 Constellation Diagram Based Quadrature Modulation Format Identification Method

Country Status (1)

Country Link
CN (1) CN111083079A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865848A (en) * 2020-06-16 2020-10-30 武汉邮电科学研究院有限公司 Signal modulation format identification method and system
CN111935042A (en) * 2020-07-20 2020-11-13 武汉邮电科学研究院有限公司 Probability shaping identification system and method based on machine learning and receiving end
CN112270263A (en) * 2020-10-28 2021-01-26 电子科技大学 Modulation Identification Method Based on Differential Density Constellation
CN113872903A (en) * 2021-09-18 2021-12-31 北京理工大学 Method, device and equipment for identifying signal modulation order and storage medium
CN118300942A (en) * 2024-06-05 2024-07-05 四川轻化工大学 Modulation format identification method based on polar constellation diagram characteristics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340410A (en) * 2008-08-20 2009-01-07 中国电子科技集团公司第五十四研究所 Millimeter wave modem
US20140321582A1 (en) * 2013-04-28 2014-10-30 International Business Machines Corporation Parallel data processing
US20150222368A1 (en) * 2012-08-09 2015-08-06 Zte (Usa) Inc. Methods and apparatus for coherent duobinary shaped pm-qpsk signal processing
CN106791728A (en) * 2016-12-26 2017-05-31 湖南大学 SDI Video transmission systems based on laser visible light communication
CN109274630A (en) * 2018-11-29 2019-01-25 西安电子科技大学 Multi-carrier signal vector diversity combining method against frequency selective fading

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340410A (en) * 2008-08-20 2009-01-07 中国电子科技集团公司第五十四研究所 Millimeter wave modem
US20150222368A1 (en) * 2012-08-09 2015-08-06 Zte (Usa) Inc. Methods and apparatus for coherent duobinary shaped pm-qpsk signal processing
US20140321582A1 (en) * 2013-04-28 2014-10-30 International Business Machines Corporation Parallel data processing
CN106791728A (en) * 2016-12-26 2017-05-31 湖南大学 SDI Video transmission systems based on laser visible light communication
CN109274630A (en) * 2018-11-29 2019-01-25 西安电子科技大学 Multi-carrier signal vector diversity combining method against frequency selective fading

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIE MA: "Nonlinear Compensation Based on K-Means Clustering Algorithm for Nyquist PAM-4 VLC System", 《IEEE PHOTONICS TECHNOLOGY LETTERS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865848A (en) * 2020-06-16 2020-10-30 武汉邮电科学研究院有限公司 Signal modulation format identification method and system
CN111865848B (en) * 2020-06-16 2023-03-24 武汉邮电科学研究院有限公司 Signal modulation format identification method and system
CN111935042A (en) * 2020-07-20 2020-11-13 武汉邮电科学研究院有限公司 Probability shaping identification system and method based on machine learning and receiving end
CN111935042B (en) * 2020-07-20 2023-04-25 武汉邮电科学研究院有限公司 Probability shaping recognition system and method based on machine learning and receiving end
CN112270263A (en) * 2020-10-28 2021-01-26 电子科技大学 Modulation Identification Method Based on Differential Density Constellation
CN112270263B (en) * 2020-10-28 2022-03-25 电子科技大学 Modulation identification method based on differential density constellation diagram
CN113872903A (en) * 2021-09-18 2021-12-31 北京理工大学 Method, device and equipment for identifying signal modulation order and storage medium
CN118300942A (en) * 2024-06-05 2024-07-05 四川轻化工大学 Modulation format identification method based on polar constellation diagram characteristics

Similar Documents

Publication Publication Date Title
CN111083079A (en) Constellation Diagram Based Quadrature Modulation Format Identification Method
Jdid et al. Machine learning based automatic modulation recognition for wireless communications: A comprehensive survey
CN107707494B (en) Optical fiber nonlinear equalization method for 64-QAM coherent optical communication system
CN109660297B (en) Physical layer visible light communication method based on machine learning
CN107770108A (en) A Joint Modulation Recognition Method for K‑Means Clustering and Hierarchical Training SVM Classifier
CN109802905A (en) Digital signal Automatic Modulation Recognition method based on CNN convolutional neural networks
CN102497343A (en) Combined modulation recognition method based on clustering and support vector machine
CN108052956A (en) Wireless light communication subcarrier modulation constellation recognition methods under a kind of atmospheric turbulance
CN109617845B (en) Design and demodulation method of wireless communication demodulator based on deep learning
CN102647391A (en) A Cooperative Modulation Signal Recognition Method Based on Decision-Making Data Fusion
CN115913850B (en) Open set modulation identification method based on residual error network
CN109309640B (en) A blind signal format recognition method based on machine learning
CN111817803A (en) A spectrum sensing method, system and computer-readable storage medium based on correlation coefficient and K-means clustering algorithm
CN114298113B (en) A dual-path machine learning modulation pattern recognition method for the Internet of Things
Li et al. The importance of expert knowledge for automatic modulation open set recognition
CN109120563A (en) A kind of Modulation Identification method based on Artificial neural network ensemble
CN113095162A (en) Spectrum sensing method based on semi-supervised deep learning
CN112270263A (en) Modulation Identification Method Based on Differential Density Constellation
CN112347844A (en) A Design Method of Signal Adversarial Sample Detector Based on LID
CN111310719B (en) A method for individual identification and detection of unknown radiation source
CN109547376A (en) A kind of Modulation Identification method of the gauss hybrid models based on modulating characteristic
CN109981507B (en) QAM signal in-class identification method
CN107707497A (en) Communication signal recognition method based on subtractive clustering and fuzzy clustering algorithm
CN113033486B (en) Signal Feature Extraction and Modulation Type Identification Method Based on Generalized Fractal Theory
CN110222756B (en) Hyperspectral complex background-oriented iterative clustering anomaly detection method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200428

WD01 Invention patent application deemed withdrawn after publication