CN111081762B - 一种hemt器件的外延结构 - Google Patents
一种hemt器件的外延结构 Download PDFInfo
- Publication number
- CN111081762B CN111081762B CN201911323134.6A CN201911323134A CN111081762B CN 111081762 B CN111081762 B CN 111081762B CN 201911323134 A CN201911323134 A CN 201911323134A CN 111081762 B CN111081762 B CN 111081762B
- Authority
- CN
- China
- Prior art keywords
- layer
- dimensional
- gan
- epitaxial structure
- mggan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/50—Physical imperfections
- H10D62/57—Physical imperfections the imperfections being on the surface of the semiconductor body, e.g. the body having a roughened surface
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
一种HEMT器件的外延结构,属于微电子技术领域,包括从下至上依次层叠设置的衬底、成核层、低温三维层、填平层、高阻层、沟道层以及势垒层,其中填平层是由H2处理层/MgGaN二维层/GaN恢复层2循环生长组成,包括H2处理层、MgGaN的二维层、GaN恢复层,本发明通过循环生长H2处理层/MgGaN二维层/GaN恢复层填平层可以大幅度降低材料的位错密度,提高晶格质量,从而提升HEMT器件的电子迁移率、击穿电压以及漏电流等特性。
Description
技术领域
本发明属于微电子技术领域,涉及半导体器件的外延制备,一种HEMT器件的外延结构,制备的器件主要用于高压大功率应用场合。
背景技术
第三代半导体材料即宽禁带(Wide Band Gap Semiconductor,简称WBGS)半导体材料是继第一代硅、锗和第二代砷化镓、磷化铟等以后发展起来。在第三代半导体材料中,氮化镓(GaN)具有宽带隙、直接带隙、高击穿电场、较低的介电常数、高电子饱和漂移速度、抗辐射能力强和良好的化学稳定性等优越性质,成为继锗、硅、砷化镓之后制造新一代微电子器件和电路的关键半导体材料。特别是高温、大功率、高频和抗辐照电子器件以及全波长、短波长光电器件方面具有得天独厚的优势,是实现高温与大功率、高频及抗辐射、全波长光电器件的理想材料,是微电子、电力电子、光电子等高新技术以及国防工业、信息产业、机电产业和能源产业等支柱产业进入21世纪后赖以继续发展的关键基础材料。
但由于氮化镓HEMT器件与碳化硅衬底、蓝宝石衬底或单晶硅衬底之间均存在较大的晶格失配,即使有成核层与AlGaN或GaN填平层在衬底与GaN层之间起到缓冲作用,最终生长得到的GaN层的晶体质量也不够好,进而影响HEMT的质量,这样就会降低器件击穿电压,减小电子迁移率,从而使当前氮化镓HEMT器件的性能远低于理论极限。
发明内容
本发明的目的在于克服目前氮化镓HEMT器件晶格质量较差的问题,提供了一种HEMT外延结构及其制备方法,能够提高HEMT器件的质量。为实现上述目的,本发明的器件结构各层从下至上依次排布,包括衬底、成核层、低温三维层、填平层、高阻层、沟道层和势垒层。其中填平层是由H2处理层/MgGaN二维层/GaN恢复层循环生长组成,H2处理层、MgGaN二维层、GaN恢复层。
优选的,所述衬底为可以用来外延氮化镓薄膜的所有材料,包括绝缘或半绝缘的蓝宝石、硅、碳化硅、氮化镓和金刚石等材料,尺寸范围为2-8inch。
优选的,成核层,可以是ALN、ALGaN、GAN其中任意一种或组合生长,生长温度500-1000℃,薄膜厚度10-50nm,用于为后续的填平层生长提供成核节点,提高氮化镓薄膜结晶质量。
优选的,所述低温三维层,为采用金属有机源化学气相沉积(MOCVD)生长形成的氮化镓薄膜层温度在1020~1060℃之间,厚度在0.5um-1um。
优选的,所述填平层是由H2处理层/MgGaN二维层/GaN恢复层循环生长组成,包括H2处理层、MgGaN的二维层、GaN恢复层。其生长温度在1080-1150℃,薄膜总厚度在1um-4um。其中MgGaN的二维层厚度在50~100nm,GaN恢复层厚度在50~100nm,循环数为10~20之间。
优选的,所述高阻层是采用金属有机气相外延沉积非故意掺杂生长形成的半绝缘高质量的氮化镓薄膜层,薄膜厚度范围为2um-5um。
优选的,所述沟道层采用金属有机气相外延沉积非故意掺杂生长形成的半绝缘高质量的氮化镓沟道薄膜层,薄膜厚度范围为50-200nm。
优选的,所述势垒层的结构式为AlxGa1-xN,其中0<x<1,厚度为5-35nm。
与现有技术相比,本发明具有如下优点:
本发明提供了一种HEMT器件的外延结构及其制备方法,在长填平层之前先生长一层低温三维层,低温三维层的作用是提供一个很粗糙的三维面,后续再进行二维生长这样有利于缺陷的湮灭。再提供了一种新的填平层结构,通过循环生长H2处理层/MgGaN二维层/GaN恢复层填平层,其中包括H2处理层,H2具有腐蚀还原性,将长晶不好的氮化镓腐蚀去除,为后面继续生长氮化镓生长提供晶格质量较优的氮化镓基底。再生长MgGaN的二维层,生长氮化镓时添加少量的Mg有助于往二维方向的生长,起到快速铺平的作用。继续生长GaN恢复层,其作用是在长平的晶格质量较好的基础上生长本征氮化镓,为后面的高阻层提供好的氮化镓底层。这样循环生长可以大幅度降低材料的位错密度,提高晶格质量,从而提升HEMT器件的电子迁移率、击穿电压以及漏电流等特性,适用于高压大功率电子器件应用。
附图说明
图1为本发明实施例提供的一种HEMT外延结构的结构示意图;
图2为本发明实施例提供的一种循环生长的填平层结构示意图;
图3为本发明的方法制备的氮化镓器件外延层的X射线衍射测试结果图。
其中:L1-衬底、L2-成核层、L3-低温三维层、L4-填平层、L5-高阻层、L6-沟道层,L7-势垒层,L41-H2处理层、L42-MgGaN二维层、L43-GaN恢复层。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明的外延器件结构各层从下至上依次排布,包括:衬底L1、成核层L2、低温三维层L3、填平层L4、高阻层L5、沟道层L6和势垒层L7,填平层L4是由H2处理层L41、MgGaN二维层L42、GaN恢复层L43。均采用金属有机源化学气相沉积MOCVD制备而成,本发明的器件外延结构采用以下方法制得:
实施例1
1、提供衬底L1,其衬底L1是用来外延氮化镓薄膜的所有材料,包括绝缘或半绝缘的蓝宝石、硅、碳化硅、氮化镓和金刚石等材料,尺寸范围为2-8inch。
2、在温度500-1000℃之间生长成核层L2,可以是ALN、ALGaN、GAN其中任意一种或组合生长,其总厚度在10-50nm。
3、在成核层上生长低温三维层L3,温度在1020~1060℃之间,厚度在0.5um-1um。
4、在低温三维层上生长填平层L4,填平层L4是由H2处理层/MgGaN二维层/GaN恢复层循环生长组成,包括H2处理层L41、MgGaN二维层L42、GaN恢复层L43。其生长温度在1100℃,薄膜厚度在2um,MgGaN二维层L42厚度在100nm,GaN恢复层L43厚度也在100nm,循环数为10次。
5、在填平层生继续生长非故意掺杂的氮化镓高阻层L5,薄膜厚度范围为2um-5um。
6、在填平层上生长氮化镓沟道层L6,薄膜厚度范围为50-200nm。
7、在沟道层上生铝镓氮势垒层L7的结构式为AlxGa1-xN,其中0<x<1,厚度为5-35nm。
实施例2
1、提供衬底L1,其衬底L1是用来外延氮化镓薄膜的所有材料,包括绝缘或半绝缘的蓝宝石、硅、碳化硅、氮化镓和金刚石等材料,尺寸范围为2-8inch。
2、在温度500-1000℃之间生长成核层L2,可以是ALN、ALGaN、GAN其中任意一种或组合生长,其总厚度在10-50nm。
3、在成核层上生长低温三维层L3,温度在1020~1060℃之间,厚度在0.5um-1um。
4、在低温三维层上生长填平层L4,填平层L4是由H2处理层/MgGaN二维层/GaN恢复层循环生长组成,包括H2处理层L41、MgGaN二维层L42、GaN恢复层L43。其生长温度在1100℃,薄膜厚度在3um,MgGaN二维层L42厚度在150nm,GaN恢复层L43厚度也在150nm,循环数为10次。
5、在填平层生继续生长非故意掺杂的氮化镓高阻层L5,薄膜厚度范围为2um-5um。
6、在填平层上生长氮化镓沟道层L6,薄膜厚度范围为50-200nm。
7、在沟道层上生铝镓氮势垒层L7的结构式为AlxGa1-xN,其中0<x<1,厚度为5-35nm。
实施例3
1、提供衬底L1,其衬底L1是用来外延氮化镓薄膜的所有材料,包括绝缘或半绝缘的蓝宝石、硅、碳化硅、氮化镓和金刚石等材料,尺寸范围为2-8inch。
2、在温度500-1000℃之间生长成核层L2,可以是ALN、ALGaN、GAN其中任意一种或组合生长,其总厚度在10-50nm。
3、在成核层上生长低温三维层L3,温度在1020~1060℃之间,厚度在0.5um-1um。
4、在低温三维层上生长填平层L4,填平层L4是由H2处理层/MgGaN二维层/GaN恢复层循环生长组成,包括H2处理层L41、MgGaN二维层L42、GaN恢复层L43。其生长温度在1130℃,薄膜厚度在4um,MgGaN二维层L42厚度在100nm,GaN恢复层L43厚度也在100nm,循环数为20次。
5、在填平层生继续生长非故意掺杂的氮化镓高阻层L5,薄膜厚度范围为2um-5um。
6、在填平层上生长氮化镓沟道层L6,薄膜厚度范围为50-200nm。
7、在沟道层上生铝镓氮势垒层L7的结构式为AlxGa1-xN,其中0<x<1,厚度为5-35nm。
图3出示了在实施案例1条件下制备的特定填平层的氮化镓器件外延层与常规氮化镓器件外延层的X射线衍射(XRD)测试结果对比图,在相同的测试条件下数据对比,测试数据显示,在实施案例1条件下制备的填平层由H2处理层/MgGaN二维层/GaN恢复层循环生长组成的氮化镓器件外延层(002)面衍射峰的半高宽较常规氮化镓器件外延层的(002)面半高宽小15%~20%左右,外延层晶格质量明显得到改善。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。
Claims (7)
1.一种HEMT器件的外延结构,其特征在于,包括从下至上依次层叠设置的衬底(L1)、成核层(L2)、低温三维层(L3)、填平层(L4)、高阻层(L5)、沟道层(L6)和势垒层(L7),其中,填平层(L4)是由H2处理层/MgGaN二维层/GaN恢复层循环生长组成,包括H2处理层(L41)、MgGaN二维层(L42)、GaN恢复层(L43);
所述低温三维层(L3)是由MOCVD生长的非故意掺杂的本征氮化镓层,温度在1020~1060℃之间,厚度在0.5um-1um。
2.根据权利要求1所述的一种HEMT器件的外延结构,其特征在于,所述衬底(L1)尺寸大小为2-6inch,材质为硅、碳化硅、氮化镓和金刚石中的任意一种。
3.根据权利要求1所述的一种HEMT器件的外延结构,其特征在于,所述成核层(L2)为ALN、ALGaN、GaN其中任意一种或组合,生长温度500-1000℃,薄膜厚度10-50nm。
4.根据权利要求1所述的一种HEMT器件的外延结构,其特征在于,所述填平层(L4)是由H2处理层/MgGaN二维层/GaN恢复层循环生长组成,包括H2处理层(L41)、MgGaN二维层(L42)、GaN恢复层(L43),其生长温度在1080-1150℃,薄膜厚度在1um-3um。
5.根据权利要求1所述的一种HEMT器件的外延结构,其特征在于,所述高阻层(L5)是采用金属有机气相外延沉积非故意掺杂生长形成的半绝缘高质量的氮化镓薄膜层,薄膜厚度范围为2um-5um。
6.根据权利要求1所述的一种HEMT器件的外延结构,其特征在于,所述沟道层(L6)采用金属有机气相外延沉积非故意掺杂生长形成的半绝缘高质量的氮化镓沟道薄膜层,薄膜厚度范围为50-200nm。
7.根据权利要求1所述的一种HEMT器件的外延结构,其特征在于,所述势垒层(L7)的结构式为AlxGa1-xN,其中0<x<1,厚度为5-35nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911323134.6A CN111081762B (zh) | 2019-12-20 | 2019-12-20 | 一种hemt器件的外延结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911323134.6A CN111081762B (zh) | 2019-12-20 | 2019-12-20 | 一种hemt器件的外延结构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111081762A CN111081762A (zh) | 2020-04-28 |
CN111081762B true CN111081762B (zh) | 2022-12-13 |
Family
ID=70316133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911323134.6A Active CN111081762B (zh) | 2019-12-20 | 2019-12-20 | 一种hemt器件的外延结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111081762B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114725256B (zh) * | 2022-06-09 | 2022-09-16 | 江西兆驰半导体有限公司 | 一种iii族氮化物外延结构及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08148718A (ja) * | 1994-09-19 | 1996-06-07 | Toshiba Corp | 化合物半導体装置 |
JP2008205203A (ja) * | 2007-02-20 | 2008-09-04 | Toyota Central R&D Labs Inc | p型半導体結晶とその製造方法、並びにそれらを用いた半導体素子 |
CN105742416A (zh) * | 2016-03-09 | 2016-07-06 | 太原理工大学 | 一种高发光效率氮化镓基led外延片的制备方法 |
CN108389894A (zh) * | 2018-03-29 | 2018-08-10 | 南昌大学 | 一种高电子迁移率晶体管外延结构 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100471096B1 (ko) * | 2004-04-26 | 2005-03-14 | (주)에피플러스 | 금속 아일랜드를 이용한 반도체 에피택시층 제조방법 |
-
2019
- 2019-12-20 CN CN201911323134.6A patent/CN111081762B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08148718A (ja) * | 1994-09-19 | 1996-06-07 | Toshiba Corp | 化合物半導体装置 |
JP2008205203A (ja) * | 2007-02-20 | 2008-09-04 | Toyota Central R&D Labs Inc | p型半導体結晶とその製造方法、並びにそれらを用いた半導体素子 |
CN105742416A (zh) * | 2016-03-09 | 2016-07-06 | 太原理工大学 | 一种高发光效率氮化镓基led外延片的制备方法 |
CN108389894A (zh) * | 2018-03-29 | 2018-08-10 | 南昌大学 | 一种高电子迁移率晶体管外延结构 |
Non-Patent Citations (1)
Title |
---|
Micro Epitaxial lateral overgrowth of GaN/sapphire by Metal Organic Vapour Phase Epitaxy;E. Frayssinet et al;《InternetJournal Research》;20021231;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111081762A (zh) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102484049B (zh) | 半导体元件用外延基板、半导体元件用外延基板的制造方法以及半导体元件 | |
CN100555660C (zh) | 宽带隙氮化镓基异质结场效应晶体管结构及制作方法 | |
CN101266999B (zh) | 氮化镓基双异质结场效应晶体管结构及制作方法 | |
CN100495724C (zh) | 氮化镓基异质结场效应晶体管结构及制作方法 | |
CN104576714B (zh) | 一种硅上高迁移率GaN基异质结构及其制备方法 | |
CN102427084B (zh) | 氮化镓基高电子迁移率晶体管及制作方法 | |
CN103633134B (zh) | 一种厚膜高阻氮化物半导体外延结构及其生长方法 | |
CN103123934A (zh) | 具势垒层的氮化镓基高电子迁移率晶体管结构及制作方法 | |
CN111063726A (zh) | 一种Si基氮化镓器件的外延结构 | |
CN112133749A (zh) | 一种p型帽层增强型hemt器件及其制备方法 | |
CN111081762B (zh) | 一种hemt器件的外延结构 | |
JP6925117B2 (ja) | 化合物半導体基板の製造方法および化合物半導体基板 | |
CN111863945A (zh) | 一种高阻氮化镓及其异质结构的制备方法 | |
CN110600547A (zh) | 氮化镓基半导体器件及其制作方法 | |
CN111584627A (zh) | 一种近似同质外延hemt器件结构及其制备方法 | |
CN110993689A (zh) | 一种氮化镓器件的外延结构 | |
CN110429128B (zh) | 一种低势垒多量子阱高阻缓冲层外延结构及其制备方法 | |
CN111584626B (zh) | 一种增强型hemt器件结构及其制备方法 | |
JP7487726B2 (ja) | 窒化物半導体基板及びその製造方法 | |
EP4393015A2 (en) | Semiconductor heterostructures with scandium iii-nitride layer | |
CN212209534U (zh) | 一种氮化镓外延芯片 | |
CN108511326A (zh) | 一种化合物半导体材料InGaN及其外延制备方法 | |
CN112018199B (zh) | 一种高质量非极性AlGaN微纳复合结构及其加工方法 | |
CN111063736A (zh) | 一种高质量的hemt器件外延结构 | |
CN106449375B (zh) | 含有硅掺杂氮化铝层的半导体器件及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 241000 building 7, science and Technology Industrial Park, high tech Industrial Development Zone, Yijiang District, Wuhu City, Anhui Province Applicant after: Wuhu Research Institute of Xidian University Address before: No. 8, Wen Jin Xi Road, Yijiang District, Wuhu, Anhui Province Applicant before: Wuhu Research Institute of Xidian University |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |