CN111063458B - Device and method for accurately calibrating plasma injection impurities - Google Patents
Device and method for accurately calibrating plasma injection impurities Download PDFInfo
- Publication number
- CN111063458B CN111063458B CN201911353478.1A CN201911353478A CN111063458B CN 111063458 B CN111063458 B CN 111063458B CN 201911353478 A CN201911353478 A CN 201911353478A CN 111063458 B CN111063458 B CN 111063458B
- Authority
- CN
- China
- Prior art keywords
- electronic balance
- vacuum chamber
- flange
- pipeline
- welded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/25—Maintenance, e.g. repair or remote inspection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Abstract
本发明公开了一种精确标定等离子体注入杂质的装置及方法,包括有真空室、电子天平、插板阀、引导管、电极法兰、抽气阀、抽气机组和操纵杆。该装置通过模拟等离子体放电时的真空环境,利用电子天平直接读出不同条件激励下杂质注入的量,不仅极大程度降低了杂质被污染而产生的影响,而且杜绝了人为因素造成的误差,提高了标定数据的准确性。本发明可以充分保护并收集杂质注入分配系统测试时坠落的杂质颗粒(粉末),实现重复利用。该发明可视性强、精确度高、节约性强,为在聚变装置上精确控制杂质注入提供了有效的数据支撑和技术保障。
The invention discloses a device and method for accurately calibrating plasma injection impurities, comprising a vacuum chamber, an electronic balance, a plug-in valve, a guide pipe, an electrode flange, an air extraction valve, an air extraction unit and a joystick. The device simulates the vacuum environment during plasma discharge and uses an electronic balance to directly read the amount of impurities injected under different excitation conditions, which not only greatly reduces the impact of impurities caused by contamination, but also eliminates errors caused by human factors. Improve the accuracy of calibration data. The present invention can fully protect and collect the impurity particles (powder) falling when the impurity is injected into the distribution system for testing, so as to realize the reuse. The invention has strong visibility, high accuracy and strong economy, and provides effective data support and technical guarantee for accurately controlling impurity injection in fusion devices.
Description
技术领域technical field
本发明涉及聚变反应堆真空技术领域,尤其涉及一种精确标定等离子体注入杂质的装置及方法。The invention relates to the technical field of fusion reactor vacuum, in particular to a device and method for accurately calibrating plasma injection impurities.
背景技术Background technique
随着聚变研究的不断推进,科研工作者们尝试利用杂质颗粒自身重力坠落的方式进行杂质注入,国、内外众多托卡马克聚变装置上开展了大量的偏滤器注入锂粉、硼粉等实验,取得丰硕实验成果。研究发现一定量的杂质注入,能够对高约束模式等离子体的边界局域模起到很好的抑制效果,然而过量的杂质注入可能会使得等离子体破裂,这就需要对杂质的注入量进行精确的控制。在杂质注入系统的台面标定实验中,传统方法通常是在大气环境下进行,这就与等离子体放电环境有着巨大的差异,尤其对于粉末状杂质而言,真空条件与大气条件下的坠落流量差别明显。此外,对于活泼金属(如锂球、锂粉)杂质颗粒,极易与空气中的O2、N2、CO、H2O、CO2等发生反应而被污染,从而会影响标定结果。虽然也有在真空条件下进行标定的方式,是用可密封的有机玻璃量筒测量出杂质体积,再换算为杂质质量,但由于其无法直接测量坠落杂质的质量。一方面,读数的个体差异性会引入误差;另一方面,受杂质本身的规则程度影响,坠落沉积在量筒中的杂质颗粒间隙并不均匀,单纯的通过体积换算成质量会存在较大误差。此外,由于等离子体注入杂质材料的稀缺性,采购成本较为高昂,如果能保护杂质颗粒不被污染,实现重复利用可以节约大量科研经费。因此,尤为迫切的需要一种能精确标定等离子体注入杂质且保护其不被污染的装置。With the continuous advancement of fusion research, scientific researchers have tried to inject impurities by using the method of impurity particles falling by their own gravity. A large number of experiments such as divertor injection of lithium powder and boron powder have been carried out on many tokamak fusion devices at home and abroad. Obtained fruitful experimental results. The study found that a certain amount of impurity implantation can effectively suppress the boundary localized mode of the highly confined mode plasma. However, excessive impurity implantation may cause the plasma to rupture, which requires precise impurity implantation. control. In the bench calibration experiment of the impurity injection system, the traditional method is usually carried out in the atmospheric environment, which is very different from the plasma discharge environment, especially for powdery impurities, the drop flow difference between vacuum conditions and atmospheric conditions obvious. In addition, the impurity particles of active metals (such as lithium balls and lithium powder) are very easy to react with O 2 , N 2 , CO, H 2 O, CO 2 , etc. in the air to be polluted, which will affect the calibration results. Although there is also a method of calibration under vacuum conditions, which is to measure the volume of impurities with a sealable plexiglass graduated cylinder, and then convert it into the mass of impurities, but because it cannot directly measure the mass of falling impurities. On the one hand, individual differences in readings will introduce errors; on the other hand, affected by the regularity of the impurities themselves, the gaps between the impurity particles falling and deposited in the measuring cylinder are not uniform, and there will be large errors in simply converting the volume into mass. In addition, due to the scarcity of plasma-implanted impurity materials, the procurement cost is relatively high. If the impurity particles can be protected from contamination, reuse can save a lot of scientific research funds. Therefore, there is an urgent need for a device that can accurately calibrate the plasma implanted impurities and protect them from contamination.
发明内容SUMMARY OF THE INVENTION
本发明目的是为了弥补已有技术的缺陷,提供一种用于精确标定等离子体注入杂质的装置及方法,以实现在聚变实验中精确控制杂质注入量。The purpose of the present invention is to make up for the defects of the prior art, and to provide a device and method for accurately calibrating the impurity injected into the plasma, so as to realize the precise control of the impurity injection amount in the fusion experiment.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种精确标定等离子体注入杂质的装置,包括有真空室、电子天平、插板阀、引导管、电极法兰、抽气阀、抽气机组、充气阀和操纵杆;所述的真空室是带玻璃面板的真空腔体,所述的真空腔体通过在长方体管的一端焊接带沟槽的固定座,用来固定玻璃面板,作为真空室正面;长方体管另一端焊接一平板,作为真空室背面;真空室背面开两个孔,分别焊接抽气管道和第一管道;选长方体管的其中一面作为真空室顶面,顶面开有三个孔,第一个孔的外侧焊接第三管道,第二个孔位于顶面中间位置,第二个孔的外侧和内侧分别焊接第二管道和引导管,第三个孔焊接第四管道;所述的电子天平放在真空室内,保持电子天平的托盘在引导管正下方,显示屏面对玻璃面板。A device for accurately calibrating plasma injection impurities, including a vacuum chamber, an electronic balance, a flapper valve, a guide tube, an electrode flange, an air extraction valve, an air extraction unit, an inflation valve and a joystick; the vacuum chamber is A vacuum chamber with a glass panel, the vacuum chamber is used to fix the glass panel by welding a grooved fixing seat at one end of the cuboid tube as the front of the vacuum chamber; the other end of the cuboid tube is welded with a flat plate as a vacuum chamber Back; two holes are opened on the back of the vacuum chamber, and the exhaust pipe and the first pipe are welded respectively; one side of the cuboid pipe is selected as the top surface of the vacuum chamber, and three holes are opened on the top surface, and the third pipe is welded on the outside of the first hole. The second hole is located in the middle of the top surface, the outside and inside of the second hole are welded with the second pipe and the guide pipe respectively, and the third hole is welded with the fourth pipe; the electronic balance is placed in the vacuum chamber to keep the electronic balance in place. The tray is directly below the guide tube, and the display faces the glass panel.
进一步的,所述的长方体管为SUS316管,所述的平板为SUS316板。Further, the rectangular parallelepiped tube is a SUS316 tube, and the flat plate is a SUS316 plate.
进一步的,所述的带沟槽的固定座为SUS316板,中间掏空,四周均匀开有螺钉孔。Further, the fixed seat with grooves is a SUS316 plate, the middle is hollowed out, and screw holes are evenly opened around.
进一步的,所述的沟槽为“跑道形”槽,用于给密封圈限位;所述的密封圈是“跑道形”氟橡胶圈,用于玻璃面板的真空密封。Further, the groove is a "racetrack-shaped" groove, which is used to limit the sealing ring; the sealing ring is a "racetrack-shaped" fluororubber ring, which is used for vacuum sealing of the glass panel.
进一步的,所述的玻璃面板为耐压有机玻璃,四周均匀开螺钉孔,与真空室正面固定座的螺钉孔对应,用于观测真空室内部,直接读出电子天平的读数。Further, the glass panel is made of pressure-resistant plexiglass, with screw holes evenly opening around it, corresponding to the screw holes of the front fixing seat of the vacuum chamber, for observing the inside of the vacuum chamber and directly reading the reading of the electronic balance.
进一步的,所述的抽气管道是SUS316无缝管,一端焊接在真空室背面其中一个开孔处,另一端焊接CF35法兰连接抽气阀。Further, the air extraction pipeline is a SUS316 seamless pipe, one end is welded at one of the openings on the back of the vacuum chamber, and the other end is welded with a CF35 flange to connect the air extraction valve.
进一步的,所述的抽气阀是CF35转KF40的手动挡板阀,CF35法兰与抽气管道上的CF35法兰对接,KF40法兰通过波纹管与抽气机组连接。Further, the air extraction valve is a manual flapper valve from CF35 to KF40, the CF35 flange is butted with the CF35 flange on the air extraction pipeline, and the KF40 flange is connected to the air extraction unit through a bellows.
进一步的,所述的抽气机组包括JTFB-300F型分子泵、TRP-12型机械泵和ZDF-5227AX型真空计,极限真空为2.0×10-5Pa。Further, the air extraction unit includes a JTFB-300F molecular pump, a TRP-12 mechanical pump and a ZDF-5227AX vacuum gauge, and the ultimate vacuum is 2.0×10 -5 Pa.
进一步的,所述的第一管道是SUS316无缝管,一端焊接在真空室背面一个孔处,另一端焊接CF35法兰连接电极法兰。Further, the first pipe is a SUS316 seamless pipe, one end is welded at a hole on the back of the vacuum chamber, and the other end is welded with a CF35 flange to connect the electrode flange.
进一步的,所述的电极法兰是2芯M3电极CF35法兰,耐压1000V,真空漏率小于5.0E-11Pam3/s;电极法兰非真空侧电极与电压转换器输出端连接,另一侧电极与电子天平的电源输入端相连。Further, the electrode flange is a 2-core M3 electrode CF35 flange, with a withstand voltage of 1000V and a vacuum leak rate of less than 5.0E-11Pam 3 /s; the non-vacuum side electrode of the electrode flange is connected to the output end of the voltage converter, and the other is One electrode is connected to the power input terminal of the electronic balance.
进一步的,所述的电子天平通过电压转换器供电后,精确测量落入托盘的杂质重量。Further, after the electronic balance is powered by a voltage converter, the weight of impurities falling into the tray can be accurately measured.
进一步的,所述的电压转换器为输入是AC 220V/0.6A,50Hz,输出为DC 12V/1.5A;电压转换器利用电极法兰转接后持续为电子天平供电。Further, the voltage converter is that the input is AC 220V/0.6A, 50Hz, and the output is DC 12V/1.5A; the voltage converter continues to supply power to the electronic balance after being switched by the electrode flange.
进一步的,所述的第二管道是SUS316无缝管,一端焊接在真空室顶面第二个孔处外侧,另一端焊接CF50法兰连接插板阀。Further, the second pipe is a SUS316 seamless pipe, one end is welded on the outside of the second hole on the top surface of the vacuum chamber, and the other end is welded with a CF50 flange to connect the plug-in valve.
进一步的,所述的插板阀是超高真空CF50手动插板阀,两侧为CF50法兰接口,真空漏率小于1.3E-10Pam3/s;插板阀真空密封侧与第二管道上CF50法兰连接,另一侧与杂质注入分配系统相连。Further, the plug-in valve is an ultra-high vacuum CF50 manual plug-in valve, with CF50 flange interfaces on both sides, and the vacuum leak rate is less than 1.3E-10Pam 3 /s; the vacuum-sealed side of the plug-in valve is on the second pipeline. CF50 flange connection, and the other side is connected to the impurity injection distribution system.
进一步的,所述的引导管是喇叭状变径SUS316管,大口φ35,小口φ26,小口下方焊接SUS316无缝管。Further, the guide tube is a trumpet-shaped variable diameter SUS316 tube, with a large mouth of φ35 and a small mouth of φ26, and a SUS316 seamless tube welded below the small mouth.
进一步的,所述的第三管道是SUS316无缝管,一端焊接在真空室顶面第一个孔处,另一端焊接CF35法兰连接操纵杆;所述第一个孔位于真空室顶面靠近正面侧。Further, the third pipe is a SUS316 seamless pipe, one end is welded at the first hole on the top surface of the vacuum chamber, and the other end is welded with a CF35 flange to connect the joystick; the first hole is located near the top surface of the vacuum chamber. front side.
进一步的,所述的操纵杆为磁控传动结构,通过旋转真空室外侧的操纵杆,对电子天平启动/校准键进行操作。Further, the joystick is a magnetic control transmission structure, and the start/calibration key of the electronic balance is operated by rotating the joystick outside the vacuum chamber.
进一步的,所述的第四管道是SUS316无缝管,一端焊接在真空室顶面第三个孔处,另一端焊接CF35法兰连接充气阀;所述第三个孔可以位于真空室顶面靠近背面侧或左侧面或右侧面。Further, the fourth pipe is a SUS316 seamless pipe, one end is welded at the third hole on the top surface of the vacuum chamber, and the other end is welded with a CF35 flange to connect the inflation valve; the third hole can be located on the top surface of the vacuum chamber Close to the back side or the left side or the right side.
进一步的,所述的充气阀是CF35转KF40的超高真空手动挡板阀,CF35法兰与第四管道上的CF35法兰对接,KF40法兰连接惰性气体。Further, the inflation valve is a CF35 to KF40 ultra-high vacuum manual flapper valve, the CF35 flange is connected to the CF35 flange on the fourth pipeline, and the KF40 flange is connected to the inert gas.
进一步的,所述的惰性气体为氩气。Further, the inert gas is argon.
根据本发明的另一个方面,提出一种精确标定等离子体注入杂质的方法,包括如下步骤:According to another aspect of the present invention, a method for accurately calibrating plasma implanted impurities is provided, comprising the steps of:
步骤1,打开真空室正面玻璃面板,将电子天平放入真空室,保持电子天平的托盘在引导管正下方,显示屏面对玻璃面板;电压转换器利用电极法兰转接后,为电子天平供电;Step 1: Open the front glass panel of the vacuum chamber, put the electronic balance into the vacuum chamber, keep the tray of the electronic balance directly under the guide tube, and the display screen facing the glass panel; after the voltage converter is transferred by the electrode flange, it is the electronic balance powered by;
步骤2,真空室固定座的沟槽放入密封圈,合上玻璃面板,用螺钉拧紧密封,关闭充气阀和插板阀,打开抽气阀,启动抽气机组;当真空室的真空度达到5.0×10-5Pa时,打开插板阀,杂质注入分配系统与真空室连通;
步骤3,利用操纵杆按电子天平校准键,完成电子天平的校准;给杂质注入分配系统特定电压V1信号触发,触发时间连续t1,洒落的杂质经过引导管落入电子天平的托盘中,待电子天平读数稳定后,利用操纵杆按电子天平启动键,记录Data1;Step 3, use the joystick to press the electronic balance calibration key to complete the calibration of the electronic balance; inject the impurities into the distribution system to trigger the specific voltage V1 signal, the triggering time is continuous t1 , and the spilled impurities fall into the tray of the electronic balance through the guide tube, After the electronic balance reading is stable, use the joystick to press the electronic balance start button to record Data1;
步骤4,利用操纵杆按电子天平校准键,完成电子天平的校准。给杂质注入分配系统特定电压V1信号触发,触发时间连续t2,洒落的杂质经过引导管落入电子天平的托盘中,待电子天平读数稳定后,利用操纵杆按电子天平启动键,记录Data2;
步骤5,利用操纵杆按电子天平校准键,完成电子天平的校准;给杂质注入分配系统特定电压V1信号触发,触发时间连续t3,洒落的杂质经过引导管落入电子天平的托盘中,待电子天平读数稳定后,利用操纵杆按电子天平启动键,记录Data3;
步骤6,计算得出,在特定电压V1条件下,杂质注入分配系统tn时间段内的杂质注入量精确标定数据;n为自然数;Step 6: Calculate, under the condition of a specific voltage V 1 , the accurate calibration data of the impurity injection amount in the impurity injection distribution system in the time period t n ; n is a natural number;
步骤7,重复步骤3、4、5和6,得到,在特定电压Vn条件下,杂质注入分配系统中的某种杂质在tn时间段内的杂质注入量精确标定数据;
步骤8,关闭插板阀和抽气阀,停抽气机组,打开充气阀,向真空室内充入惰性气体至0.2MPa,打开玻璃面板,在惰性气体氛围保护下,回收托盘上的杂质;
步骤9,重复步骤2-8;标定杂质注入分配系统中的其他杂质。Step 9, repeat steps 2-8; the calibration impurities are injected into other impurities in the distribution system.
有益效果beneficial effect
本发明的优点是:提供了一种精确标定等离子体注入杂质的装置及方法,通过模拟等离子体放电时的真空环境,利用电子天平直接读出不同条件激励下杂质注入的量,不仅极大程度降低了杂质被污染而产生的影响,而且杜绝了人为因素造成的误差,提高了标定数据的准确性。此外,可以充分保护并收集杂质注入分配系统测试时坠落的杂质颗粒(粉末),实现重复利用。该发明可视性强、精确度高、节约性强,为在聚变装置上精确控制杂质注入提供了有效的数据支撑和技术保障。The advantages of the present invention are as follows: a device and method for accurately calibrating plasma injection impurities are provided. By simulating the vacuum environment during plasma discharge, an electronic balance can be used to directly read the amount of impurities injected under different excitation conditions, which not only maximizes It reduces the impact of impurities caused by contamination, eliminates errors caused by human factors, and improves the accuracy of calibration data. In addition, it can fully protect and collect the impurity particles (powder) that fall when the impurities are injected into the distribution system for testing, so as to realize the reuse. The invention has strong visibility, high accuracy and strong economy, and provides effective data support and technical guarantee for accurately controlling impurity injection in fusion devices.
附图说明Description of drawings
图1是标定系统的示意图;Fig. 1 is the schematic diagram of the calibration system;
图2是固定座的示意图;Fig. 2 is the schematic diagram of the fixed seat;
图3是玻璃面板和密封圈示意图。Figure 3 is a schematic diagram of the glass panel and the sealing ring.
附图标记说明:1真空室,2抽气管道,3抽气阀,4抽气机组,5第一管道,6电极法兰,7第二管道,8引导管,9插板阀,10电子天平,11托盘,12电压转换器,13第三管道,14操纵杆,15第四管道,16充气阀,17惰性气体,18杂质注入分配系统,19固定座,20沟槽,21玻璃面板,22密封圈。Description of reference numerals: 1 vacuum chamber, 2 suction pipe, 3 suction valve, 4 suction unit, 5 first pipe, 6 electrode flange, 7 second pipe, 8 guide pipe, 9 flapper valve, 10 electronic Balance, 11 Tray, 12 Voltage Converter, 13 Third Pipe, 14 Joystick, 15 Fourth Pipe, 16 Gas Fill Valve, 17 Inert Gas, 18 Impurity Injection Distribution System, 19 Fixture, 20 Groove, 21 Glass Panel, 22 seals.
具体实施方式Detailed ways
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations. Thus, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present invention.
如图1所示(所述的图1为示意图,不是本发明装置的正视图),一种精确标定等离子体注入杂质的装置,包括有真空室1、电子天平10、插板阀9、引导管8、电极法兰6、抽气阀3、抽气机组4、充气阀16和操纵杆14。As shown in Figure 1 (the Figure 1 is a schematic diagram, not a front view of the device of the present invention), a device for accurately calibrating plasma injection impurities includes a vacuum chamber 1, an
所述的真空室1是带玻璃面板21的真空腔体,长450mm,宽400mm,高500mm,长方体SUS316管壁厚2mm,一端焊接带沟槽20的固定座19,用来固定玻璃面板21,作为真空室1正面;另一端焊接500mm×400mm×2mm的SUS316板,作为真空室1背面。真空室1背面左右开有两个φ38的孔,分别焊接抽气管道2和第一管道5。选长方体SUS316管尺寸为450mm×400mm的其中一面作为真空室1顶面,顶面短边中位线上开有三孔,第一个孔为φ38孔,第一个孔外侧焊接第三管道13;第二个孔位于顶面中间位置,是φ55孔,第二个孔外侧和内侧分别焊接第二管道7和引导管8;第三个孔为φ38孔,第三个孔外侧焊接第四管道15;第三个孔可以位于真空室顶面靠近背面侧,或位于真空室左侧面或右侧面;所述的电子天平10放在真空室1内,保持电子天平10的托盘11在引导管8正下方,显示屏面对玻璃面板21。The vacuum chamber 1 is a vacuum chamber with a
所述的带沟槽20的固定座19为长530mm,宽430mm,壁厚10mm的SUS316板,中间开500mm×400mm孔,四周均匀开φ10的螺钉孔。The fixing
所述的沟槽20为宽5mm,深3mm的“跑道形”槽,中心线尺寸为510mm×410mm,给密封圈22限位。The
所述的密封圈22是φ5的“跑道形”氟橡胶圈,其周长为1835mm,用于玻璃面板21的真空密封。The sealing
所述的玻璃面板21为长530mm,宽430mm,壁厚20mm的耐压有机玻璃,四周均匀开φ10的螺钉孔,与真空室1正面固定座19的螺钉孔对应。用于观测真空室1内部,直接读出电子天平10的读数。The
所述的抽气管道2是φ38×50mm,壁厚2mm的SUS316无缝管,一端焊接在真空室1背面开孔处,另一端焊接CF35法兰连接抽气阀3。The
所述的抽气阀3是CF35转KF40的超高真空手动挡板阀,CF35法兰与抽气管道2上的CF35法兰对接,KF40法兰通过波纹管与抽气机组4连接。The air extraction valve 3 is an ultra-high vacuum manual flapper valve from CF35 to KF40. The CF35 flange is connected to the CF35 flange on the
所述的抽气机组4包括JTFB-300F型分子泵、TRP-12型机械泵和ZDF-5227AX型真空计等,极限真空为2.0×10-5Pa。The
所述的第一管道5是φ38×50mm,壁厚2mm的SUS316无缝管,一端焊接在真空室1背面开孔处,另一端焊接CF35法兰连接电极法兰6。The
所述的电极法兰6是2芯M3电极CF35法兰,耐压1000V,真空漏率小于5.0E-11Pam3/s。电极法兰6非真空侧电极与电压转换器12输出端连接,另一侧电极与电子天平10的电源输入端相连。The
所述的电子天平10为AP225WD型电子天平,量程102g,精度0.01mg,平均响应时间8s,托盘尺寸91mm。通过电压转换器12供电后,精确测量落入托盘11的杂质重量。The
所述的电压转换器12为NBS18C120150HC型电源适配器,输入是AC 220V/0.6A,50Hz,输出为DC 12V/1.5A。电压转换器12在真空环境中易“爆浆”而不能正常供电,利用电极法兰6转接后可以持续为电子天平10供电。The
所述的第二管道7是φ55×80mm,壁厚2mm的SUS316无缝管,一端焊接在真空室1顶面开孔处外侧,另一端焊接CF50法兰连接插板阀9。The
所述的插板阀9是超高真空CF50手动插板阀,阀门通径为50mm,两侧为CF50法兰接口,真空漏率小于1.3E-10Pam3/s。插板阀9真空密封侧与第二管道7上CF50法兰连接,另一侧与杂质注入分配系统18相连。The plug-in valve 9 is an ultra-high vacuum CF50 manual plug-in valve, the valve diameter is 50mm, the two sides are CF50 flange interfaces, and the vacuum leak rate is less than 1.3E-10Pam 3 /s. The vacuum sealing side of the plug-in valve 9 is connected with the CF50 flange on the
所述的引导管8是喇叭状变径SUS316管,大口φ35,小口φ26,竖直高度20mm,壁厚2mm,小口下方焊接φ26×30mm,壁厚2mm的SUS316无缝管。The
所述的第三管道13是φ38×40mm,壁厚2mm的SUS316无缝管,一端焊接在真空室1顶面第一个孔处,另一端焊接CF35法兰连接操纵杆14。所述第一个孔位于真空室顶面靠近正面侧。The
所述的操纵杆14为磁控传动结构,通过旋转真空室1外侧的操纵杆14,可以对电子天平10启动/校准键进行操作。The
所述的第四管道15是φ38×40mm,壁厚2mm的SUS316无缝管,一端焊接在真空室顶面第三个孔处,另一端焊接CF35法兰连接充气阀16。所述第三个孔可以位于真空室顶面靠近背面侧或左侧面或右侧面。The
所述的充气阀16是CF35转KF40的超高真空手动挡板阀,CF35法兰与第四管道15上的CF35法兰对接,KF40法兰连接惰性气体17。The
所述的惰性气体17为氩气。The
本发明还提出一种精确标定等离子体注入杂质的方法,包括如下步骤:The present invention also provides a method for accurately calibrating plasma implanted impurities, comprising the following steps:
①打开真空室1正面玻璃面板21,将电子天平10放入真空室1,保持电子天平10的托盘11在引导管8正下方,显示屏面对玻璃面板21。电压转换器12利用电极法兰6转接后,为电子天平10供电。①Open the
②真空室1固定座19的沟槽20放入密封圈22,合上玻璃面板21,用螺钉拧紧密封。关闭充气阀16和插板阀9,打开抽气阀3,启动抽气机组4。当真空室1的真空度达到5.0×10- 5Pa时,打开插板阀9,杂质注入分配系统18与真空室1连通。② Put the sealing
③利用操纵杆14按电子天平10校准键,完成电子天平10的校准。给杂质注入分配系统18特定电压V1信号触发,触发时间连续t1,洒落的杂质经过引导管8落入电子天平10的托盘11中,待电子天平10读数稳定后,利用操纵杆14按电子天平10启动键,记录Data1。③ Use the
④利用操纵杆14按电子天平10校准键,完成电子天平10的校准。给杂质注入分配系统18特定电压V1信号触发,触发时间连续t2,洒落的杂质经过引导管8落入电子天平10的托盘11中,待电子天平10读数稳定后,利用操纵杆14按电子天平10启动键,记录Data2。④ Use the
⑤利用操纵杆14按电子天平10校准键,完成电子天平10的校准。给杂质注入分配系统18特定电压V1信号触发,触发时间连续t3,洒落的杂质经过引导管8落入电子天平10的托盘11中,待电子天平10读数稳定后,利用操纵杆14按电子天平10启动键,记录Data3。⑤ Use the
⑥计算得出,在特定电压V1条件下,杂质注入分配系统18在tn时间段内的杂质注入量精确标定数据;n为自然数。⑥ Calculated, under the condition of a specific voltage V 1 , the accurate calibration data of the impurity injection amount of the impurity
⑦重复③、④、⑤和⑥,可以得到,在特定电压Vn条件下,杂质注入分配系统18在tn时间段内的杂质注入量精确标定数据。⑦ Repeating ③, ④, ⑤ and ⑥, can obtain accurate calibration data of the impurity implantation amount of the impurity
⑧关闭插板阀9和抽气阀3,停抽气机组4,打开充气阀16,向真空室1内充入惰性气体17至0.2MPa,打开玻璃面板21,在惰性气体17氛围保护下,回收托盘11上的杂质。⑧Close the flap valve 9 and the air extraction valve 3, stop the
⑨重复②-⑧,可以精确标定杂质注入分配系统18中的其他杂质。⑨ Repeat ②-⑧ to accurately calibrate other impurities in the impurity
以上实施例仅用以说明而非限制本发明的技术方案,尽管上述实施例对本发明进行了详细说明,本领域的相关技术人员应当理解:可以对本发明进行修改或者同等替换,但不脱离本发明精神和范围的任何修改和局部替换均应涵盖在本发明的权利要求范围内。The above embodiments are only used to illustrate rather than limit the technical solutions of the present invention. Although the above embodiments describe the present invention in detail, those skilled in the art should understand that the present invention can be modified or equivalently replaced without departing from the present invention. Any modifications and partial substitutions of the spirit and scope should be included within the scope of the claims of the present invention.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911353478.1A CN111063458B (en) | 2019-12-25 | 2019-12-25 | Device and method for accurately calibrating plasma injection impurities |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911353478.1A CN111063458B (en) | 2019-12-25 | 2019-12-25 | Device and method for accurately calibrating plasma injection impurities |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111063458A CN111063458A (en) | 2020-04-24 |
CN111063458B true CN111063458B (en) | 2022-08-16 |
Family
ID=70303739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911353478.1A Active CN111063458B (en) | 2019-12-25 | 2019-12-25 | Device and method for accurately calibrating plasma injection impurities |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111063458B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114620505A (en) * | 2020-12-10 | 2022-06-14 | 新奥科技发展有限公司 | A material transmission device, a material injection device and a fusion reaction device |
CN112783033B (en) * | 2020-12-30 | 2022-08-19 | 核工业西南物理研究院 | Magnetic confinement nuclear fusion plasma edge local area mode real-time control system and method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0836076A (en) * | 1994-07-22 | 1996-02-06 | Hitachi Ltd | Plasma emergency stop device for fusion reactor |
JP2002202391A (en) * | 2000-11-20 | 2002-07-19 | Pelin Inc | Impurity pellet injector accompanied by solid hydrogen isotope shell for fusion device |
CN1977352A (en) * | 2004-06-02 | 2007-06-06 | 瓦里安半导体设备联合公司 | Plasma ion implantation monitoring systems for fault detection and process control |
JP2008282749A (en) * | 2007-05-14 | 2008-11-20 | Ihi Corp | Mass spectrometry system and its correcting method for ion implanting device |
CN101899646A (en) * | 2010-06-03 | 2010-12-01 | 复旦大学 | Detection apparatus for plasma immersion implantation dosage |
CN103165376A (en) * | 2011-12-12 | 2013-06-19 | 中国科学院微电子研究所 | Plasma immersion injection device |
CN103822532A (en) * | 2014-02-26 | 2014-05-28 | 中国科学院等离子体物理研究所 | Multi-lithium-ball-projectile accurate automatic supply system special for plasma fracturing protecting |
CN106597519A (en) * | 2016-11-29 | 2017-04-26 | 华中科技大学 | Foreign particle concentration measuring system for J-TEXT Tokamak device |
CN108320815A (en) * | 2018-01-19 | 2018-07-24 | 中国科学院合肥物质科学研究院 | A kind of liquid lithium injection device with sealing structure for fusion facility |
CN109773199A (en) * | 2019-01-15 | 2019-05-21 | 中国科学院合肥物质科学研究院 | A rapid preparation method of multi-scale lithium spheres |
-
2019
- 2019-12-25 CN CN201911353478.1A patent/CN111063458B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0836076A (en) * | 1994-07-22 | 1996-02-06 | Hitachi Ltd | Plasma emergency stop device for fusion reactor |
JP2002202391A (en) * | 2000-11-20 | 2002-07-19 | Pelin Inc | Impurity pellet injector accompanied by solid hydrogen isotope shell for fusion device |
CN1977352A (en) * | 2004-06-02 | 2007-06-06 | 瓦里安半导体设备联合公司 | Plasma ion implantation monitoring systems for fault detection and process control |
JP2008282749A (en) * | 2007-05-14 | 2008-11-20 | Ihi Corp | Mass spectrometry system and its correcting method for ion implanting device |
CN101899646A (en) * | 2010-06-03 | 2010-12-01 | 复旦大学 | Detection apparatus for plasma immersion implantation dosage |
CN103165376A (en) * | 2011-12-12 | 2013-06-19 | 中国科学院微电子研究所 | Plasma immersion injection device |
CN103822532A (en) * | 2014-02-26 | 2014-05-28 | 中国科学院等离子体物理研究所 | Multi-lithium-ball-projectile accurate automatic supply system special for plasma fracturing protecting |
CN106597519A (en) * | 2016-11-29 | 2017-04-26 | 华中科技大学 | Foreign particle concentration measuring system for J-TEXT Tokamak device |
CN108320815A (en) * | 2018-01-19 | 2018-07-24 | 中国科学院合肥物质科学研究院 | A kind of liquid lithium injection device with sealing structure for fusion facility |
CN109773199A (en) * | 2019-01-15 | 2019-05-21 | 中国科学院合肥物质科学研究院 | A rapid preparation method of multi-scale lithium spheres |
Non-Patent Citations (2)
Title |
---|
Development of lithium vapor injector for boundary control;Hayato Tsuchiya,等;《Fusion Engineering and Design》;20101027;全文 * |
EAST锂化系统的优化及其对等离子体性能的影响;徐伟,等;《真空科学与技术学报》;20180430;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111063458A (en) | 2020-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111063458B (en) | Device and method for accurately calibrating plasma injection impurities | |
CN102435402B (en) | Device for detecting leak rate of sealing ring | |
CN204461695U (en) | A kind of feeder and lithium battery leak detection system | |
CN101738294A (en) | Atmosphere accumulation leak detection system and leak detection method thereof | |
CN103674448B (en) | Control pressurer system and space capsule junction device for detecting leak rate and method | |
CN205826241U (en) | Air-tightness detection device | |
CN101629891A (en) | Fixedly coupled three-shaft servo seepage pressure chamber containing gas coal thermal flow | |
CN102928578A (en) | High-temperature and high-pressure volume expansion and shrinkage tester of oil well cement | |
CN103471780A (en) | System and method for detecting welding seam of end cover of sealed container | |
CN101556199A (en) | Original position metering and calibrating device for pressure gauge | |
CN109612899A (en) | A pressure-corrected gas permeability calculation method | |
CN104634716A (en) | Testing device for porosity and permeability of polluted soil and testing method thereof | |
CN117388136A (en) | A self-calibrating portable oscillating balance dust detector and method of use | |
CN106523903A (en) | High-pressure gas automatic supply and gas quantity measuring system special for plasma disruption protection | |
CN110553802B (en) | Leakage detection device and method for large leakage measurement | |
CN116698696A (en) | Full process permeation parameter measurement research platform and method for saturated ultralow permeation medium gas | |
CN115752933A (en) | A low-temperature leak detection system for liquid rocket engine seals | |
CN206583585U (en) | A kind of measurement and analytical equipment for magnet Dewar condition of high vacuum degree | |
CN206583584U (en) | A fully automatic air tightness testing machine for valve body | |
CN102937559A (en) | Device and method utilizing double vacuum gauge gas circuit conversion to measure material air discharge rate | |
CN209117287U (en) | A kind of valve valve casing vacuum checking device | |
CN204731128U (en) | A kind of pollution earth porosity and permeability test device | |
CN113654477B (en) | Coal body deformation testing device, testing system and testing method | |
CN207764355U (en) | Pointer type sulfur hexafluoride density relay compensation function detection device | |
CN204988605U (en) | Rubbish body opening crack atmospheric pressure measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |