CN110887806A - Filtering-free sheet type infrared heat radiation gas concentration sensor based on metamaterial - Google Patents
Filtering-free sheet type infrared heat radiation gas concentration sensor based on metamaterial Download PDFInfo
- Publication number
- CN110887806A CN110887806A CN201911180664.XA CN201911180664A CN110887806A CN 110887806 A CN110887806 A CN 110887806A CN 201911180664 A CN201911180664 A CN 201911180664A CN 110887806 A CN110887806 A CN 110887806A
- Authority
- CN
- China
- Prior art keywords
- chip
- thermal radiation
- detector
- gas concentration
- heat radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/12—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明提供了一种基于超材料的无滤波片型红外热辐射气体浓度传感器,包括外壳、边壁、减反射膜、支撑架、探测器芯片、电路板、热辐射芯片、加热器、温控芯片以及引脚;外壳被内部设置的减反射膜分成第一气室和第二气室,第一气室通过外壳内两侧设置的边壁支撑,围成第一气室的外壳上设置有外气孔,减反射膜上设置有内气孔,第二气室内设置有支撑架,支撑架上设置有一个或多个探测器芯片,探测器芯片对面设置有热辐射芯片,热辐射芯片连接加热器,加热器连接温控芯片,电路板设置在第二气室内,电路板连接探测器芯片、热辐射芯片、温控芯片以及引脚,引脚设置在外壳外部。本发明采用超材料,集成度高,成本低,适用范围广。
The invention provides a filterless infrared thermal radiation gas concentration sensor based on metamaterials, comprising a casing, a side wall, an anti-reflection film, a support frame, a detector chip, a circuit board, a thermal radiation chip, a heater, a temperature control Chip and pins; the casing is divided into a first air chamber and a second air chamber by an anti-reflection film arranged inside, the first air chamber is supported by the side walls arranged on both sides of the casing, and the casing enclosing the first air chamber is provided with An outer air hole, an inner air hole is arranged on the anti-reflection film, a support frame is arranged in the second air chamber, and one or more detector chips are arranged on the support frame, and a heat radiation chip is arranged on the opposite side of the detector chip, and the heat radiation chip is connected to the heater The heater is connected to the temperature control chip, the circuit board is arranged in the second air chamber, the circuit board is connected to the detector chip, the heat radiation chip, the temperature control chip and the pins, and the pins are arranged outside the casing. The invention adopts metamaterial, has high integration, low cost and wide application range.
Description
技术领域technical field
本发明涉及气体浓度监测领域,具体地,涉及一种基于超材料的无滤波片型红外热辐射气体浓度传感器。The invention relates to the field of gas concentration monitoring, in particular to a filterless infrared thermal radiation gas concentration sensor based on metamaterials.
背景技术Background technique
随着人民生活水平的提高和世界对环保的日益关注,大气污染,工业废气等的监控逐步被重视起来。红外气体测量是一种灵敏度高、稳定性好、适用性广的检测手段,已被广泛应用于化工、煤炭、冶金、电力等方面,而其中的非色散红外气体传感器因为其结构简单,易于集成,性能稳定等优点被人青睐。目前的非色散红外传感器常由宽谱光源、气室和带滤波片的探测器组成,滤波片虽保证了测量过程但降低了装置的集成度,且需额外制造和安装的滤波片与加工流程不适配,增加了工业成本。而不带滤波片的传感器针对某一气体时需要配备特定的窄谱光源,这往往更加的昂贵和不便。With the improvement of people's living standards and the world's increasing attention to environmental protection, the monitoring of air pollution and industrial waste gas has gradually been paid more attention. Infrared gas measurement is a detection method with high sensitivity, good stability and wide applicability. It has been widely used in chemical industry, coal, metallurgy, electric power, etc. Among them, the non-dispersive infrared gas sensor is easy to integrate because of its simple structure. , stable performance and other advantages are favored. The current non-dispersive infrared sensor is usually composed of a broad-spectrum light source, a gas chamber and a detector with a filter. Although the filter ensures the measurement process, it reduces the integration of the device, and requires additional manufacturing and installation of filters and processing processes. Does not fit, increasing the industrial cost. The sensor without filter needs to be equipped with a specific narrow-spectrum light source for a certain gas, which is often more expensive and inconvenient.
超材料或者超表面是经过微纳米加工修饰的材料,其表面可人为刻蚀固定的图案。微纳米尺度下的图案能够显著改变材料本身的辐射特性,并在一定规律下按照人的意志设计宏观辐射特性。依靠超材料设计方法,人们可以制造出红外的热辐射光源,在普朗克定律下设计不同波段内辐射能量的大小。以一维光栅结构举例,通过设计光栅的周期和深度,可以实现某个波段内发射率为一。但超材料设计的热光源自身功率低且发射率随角度变化大,难以产生用于探测的强信号,这使得其不易应用于对气体浓度的探测,且微纳米加工产品的寿命受环境影响较大,整体的稳定性受到考验。Metamaterials or metasurfaces are materials modified by micro-nano processing, and their surfaces can be artificially etched with fixed patterns. Patterns at the micro- and nano-scale can significantly change the radiation characteristics of the material itself, and design the macro radiation characteristics according to human will under certain rules. Relying on the metamaterial design method, people can create infrared thermal radiation light sources, and design the magnitude of radiant energy in different wavelength bands under Planck's law. Taking the one-dimensional grating structure as an example, by designing the period and depth of the grating, the emissivity in a certain band can be achieved to be one. However, the thermal light source designed by metamaterials has low power and the emissivity varies greatly with the angle, so it is difficult to generate a strong signal for detection, which makes it difficult to apply to the detection of gas concentration, and the life of micro-nano processed products is relatively affected by the environment. large, the overall stability is tested.
公开号为CN1252462C的专利文献公开了一种采用纳米级微孔结构光纤的气体浓度传感器,涉及一种气体浓度传感器,尤其是一种带有纳米级微孔结构光纤的气体浓度传感器。设有至少1只发光二极管,发光二极管发出的光路上设有自聚焦透镜、在自聚焦透镜前分别设有玻璃光纤和纳米光纤,一路光经过透镜进入玻璃光纤,另一路光经透镜进入纳米光纤,两光纤的另一端分别接探测器,在光电探测器前设有光滤波片,探测器输出端经差分放大器外接气体浓度监测电路。此方案探测器设置有滤波片,滤波片虽保证了测量过程但降低了装置的集成度,且需额外制造和安装的滤波片与加工流程不适配,增加了工业成本。The patent document with publication number CN1252462C discloses a gas concentration sensor using a nano-scale microporous structure optical fiber, and relates to a gas concentration sensor, especially a gas concentration sensor with a nano-scale micro-porous structure optical fiber. At least one light-emitting diode is provided, and the light path emitted by the light-emitting diode is provided with a self-focusing lens, and a glass fiber and a nano-fiber are respectively arranged in front of the self-focusing lens. One light enters the glass fiber through the lens, and the other light enters the nano fiber through the lens. The other ends of the two optical fibers are respectively connected to the detector, an optical filter is arranged in front of the photodetector, and the output end of the detector is connected to a gas concentration monitoring circuit through a differential amplifier. In this solution, the detector is provided with a filter. Although the filter ensures the measurement process, it reduces the integration of the device, and the filter that needs to be additionally manufactured and installed is not suitable for the processing process, which increases the industrial cost.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的缺陷,本发明的目的是提供一种基于超材料的无滤波片型红外热辐射气体浓度传感器。In view of the defects in the prior art, the purpose of the present invention is to provide a filterless infrared thermal radiation gas concentration sensor based on metamaterials.
根据本发明提供的一种基于超材料的无滤波片型红外热辐射气体浓度传感器,包括外壳、边壁、减反射膜、支撑架、探测器芯片、电路板、热辐射芯片、加热器、温控芯片以及引脚;A filterless infrared thermal radiation gas concentration sensor based on metamaterials provided by the present invention includes a casing, a side wall, an anti-reflection film, a support frame, a detector chip, a circuit board, a thermal radiation chip, a heater, a temperature control chip and pins;
所述外壳被内部设置的减反射膜分成第一气室和第二气室,第一气室通过外壳内两侧设置的边壁支撑,围成第一气室的外壳上设置有外气孔,减反射膜上设置有内气孔,第二气室内设置有支撑架,支撑架上设置有一个或多个探测器芯片,探测器芯片对面设置有热辐射芯片,热辐射芯片连接加热器,加热器连接温控芯片,电路板设置在第二气室内,电路板连接探测器芯片、热辐射芯片、温控芯片以及引脚,引脚设置在外壳外部。The outer casing is divided into a first air chamber and a second air chamber by an anti-reflection film arranged inside, the first air chamber is supported by the side walls arranged on both sides of the outer casing, and an outer air hole is arranged on the outer casing surrounding the first air chamber, An inner air hole is arranged on the anti-reflection film, a support frame is arranged in the second air chamber, one or more detector chips are arranged on the support frame, a heat radiation chip is arranged opposite the detector chip, and the heat radiation chip is connected to a heater, and the heater The temperature control chip is connected, the circuit board is arranged in the second air chamber, the circuit board is connected with the detector chip, the heat radiation chip, the temperature control chip and the pins, and the pins are arranged outside the casing.
优选地,所述支撑架与外壳之间通过第一密封层连接;所述电路板与支撑架通过第一密封层连接,电路板与外壳通过第二密封层连接。Preferably, the support frame and the housing are connected by a first sealing layer; the circuit board and the support frame are connected by a first sealing layer, and the circuit board and the housing are connected by a second sealing layer.
优选地,所述加热器表面除热辐射芯片位置覆盖有第一隔热层,加热器与外壳之间从内到外依次设置第二隔热层、温控芯片和第三密封层。Preferably, the heater surface is covered with a first heat insulating layer except for the position of the heat radiation chip, and a second heat insulating layer, a temperature control chip and a third sealing layer are sequentially arranged between the heater and the casing from the inside to the outside.
优选地,所述外气孔与内气孔的位置相互错开。Preferably, the positions of the outer air holes and the inner air holes are staggered from each other.
优选地,所述探测器芯片采用宽谱光电吸收器,探测器芯片的数量为两个,分别安装在热辐射芯片不同仰角方向的位置上。Preferably, the detector chip adopts a broad-spectrum photoelectric absorber, and the number of detector chips is two, which are respectively installed at positions of different elevation angles of the heat radiation chip.
优选地,所述两个探测器芯片10与热辐射芯片17之间的距离相等,均为5-10mm。Preferably, the distances between the two
优选地,所述热辐射芯片和探测器芯片的信号经过电路板上的信号放大功能电路的处理后再由引脚输出,两探测器芯片信号之差能够反应热辐射芯片的温度情况,用来确定热辐射芯片发射功率,用垂直于热辐射方向的探测器芯片的信号变化确定待测气体浓度。Preferably, the signals of the heat radiation chip and the detector chip are processed by the signal amplification function circuit on the circuit board and then output by the pins, and the difference between the signals of the two detector chips can reflect the temperature of the heat radiation chip, and is used for Determine the emission power of the thermal radiation chip, and use the signal change of the detector chip perpendicular to the thermal radiation direction to determine the concentration of the gas to be measured.
优选地,所述热辐射芯片为金属-介电-金属的层状结构,包括防氧化膜层、金属二维阵列层、介电材料层、金属基底层;所述热辐射芯片能够使得不同仰角内不同波段的发射率不同,产生能够区分的参考信号和测量信号,经第二气室内气体衰减分别抵达不同的探测器芯片。Preferably, the heat radiation chip is a metal-dielectric-metal layered structure, including an anti-oxidation film layer, a metal two-dimensional array layer, a dielectric material layer, and a metal base layer; the heat radiation chip can make different elevation angles The emissivity of different wavelength bands is different in the inner chamber, which generates a distinguishable reference signal and a measurement signal, which reach different detector chips respectively after being attenuated by the gas in the second gas chamber.
优选地,所述金属二维阵列层的单元为边长为300-500nm的正方形,周期为800-1300nm,材料采用银、铜和钨中的任一种或任多种。Preferably, the unit of the metal two-dimensional array layer is a square with a side length of 300-500 nm, a period of 800-1300 nm, and any one or more of silver, copper and tungsten are used as materials.
优选地,所述引脚为四只,分别为Vd引脚、GND引脚、TX引脚和CX引脚,所述Vd引脚和GND引脚负责供电,所述TX引脚输出热辐射芯片温度信号,所述CX引脚输出待测气体浓度信号。Preferably, there are four pins, which are Vd pin, GND pin, TX pin and CX pin respectively, the Vd pin and GND pin are responsible for power supply, and the TX pin outputs the heat radiation chip temperature signal, the CX pin outputs the gas concentration signal to be measured.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明使用超材料的设计,使得在无滤波片的前提下也能实现双波长红外检测技术,既实现了对待测气体的浓度测量,也避免了热源老化带来的影响。1. The present invention uses the design of metamaterials, so that the dual-wavelength infrared detection technology can be realized under the premise of no filter, which not only realizes the concentration measurement of the gas to be measured, but also avoids the influence of heat source aging.
2、本发明结构简单紧凑,无滤波片的设计大大提高了气体传感器的集成度,且宽谱光电探测器相比窄谱光电探测器更为便宜,同样降低了气体传感器制造的工业成本。2. The structure of the present invention is simple and compact, and the filterless design greatly improves the integration of the gas sensor, and the wide-spectrum photodetector is cheaper than the narrow-spectrum photodetector, which also reduces the industrial cost of gas sensor manufacturing.
3、本发明能够实现对二氧化碳和水蒸气等的气体检测,稳定性好,精度高,能够被应用在石油化工、环境监测等方面的气体浓度检测。3. The present invention can realize gas detection of carbon dioxide and water vapor, has good stability and high precision, and can be applied to gas concentration detection in petrochemical industry, environmental monitoring and the like.
4、本发明供电加热设计能够和现代电子电路系统良好匹配,应用范围更加广泛。4. The power supply heating design of the present invention can be well matched with the modern electronic circuit system, and the application range is wider.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1为本发明的剖视结构示意图。FIG. 1 is a schematic cross-sectional structure diagram of the present invention.
图2为本发明的零件组成结构示意图。FIG. 2 is a schematic diagram of the component composition structure of the present invention.
图3为本发明热辐射芯片的周期单元立体结构示意图。FIG. 3 is a schematic three-dimensional structure diagram of a periodic unit of a heat radiation chip of the present invention.
图4为本发明热辐射芯片的周期单元剖视结构示意图。FIG. 4 is a schematic cross-sectional structural diagram of a periodic unit of the heat radiation chip of the present invention.
图5为本发明热辐射芯片的发射率光谱图。FIG. 5 is an emissivity spectrum diagram of the thermal radiation chip of the present invention.
图中示出:The figure shows:
边壁1 电路板11
第一气室2 第二密封层12The first air chamber 2 The
减反射膜3 引脚13Anti-Reflection Coating 3
内气孔4 第三密封层14
外气孔5 温控芯片15
外壳6 第二隔热层16
第一密封层7 热辐射芯片17First sealing layer 7
第二气室8 加热器18
支撑架9 第一隔热层19Support frame 9 First
探测器芯片10
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those skilled in the art, several changes and improvements can be made without departing from the inventive concept. These all belong to the protection scope of the present invention.
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be understood that the terms "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", The orientation or positional relationship indicated by "bottom", "inner", "outer", etc. is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying the indicated device. Or elements must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present application.
本发明提供的一种基于超材料的无滤波片型红外热辐射气体浓度传感器,采用二维金属阵列结构和双波长红外监测原理,适用于红外波段的气体浓度监测方法及装置。本发明使用超材料的制作工艺赋予热辐射芯片17特定的红外热辐射特性,使得热辐射芯片17在不同仰角区间内发射不同波段上的信号,以达到仅使用宽谱光电探测器而不使用滤光片,探测特定气体浓度的目标。两个探测器芯片10与热辐射芯片17的距离约5-10mm,置于不同的仰角区角内,可探测到不同波段的红外信号,这些信号经过标定后既可显示出待测气体浓度信息也可显示出发射芯片温度信息,有效保证了装置的精度和稳定性。本发明的供电与加热系统均可封装于元器件内,体积小、精度高、稳定可靠,能够与现代电子电路系统良好适配。The invention provides a filterless infrared thermal radiation gas concentration sensor based on metamaterials, adopts a two-dimensional metal array structure and a dual-wavelength infrared monitoring principle, and is suitable for a gas concentration monitoring method and device in the infrared band. The present invention uses the manufacturing process of metamaterials to endow the
根据本发明一种基于超材料的无滤波片型红外热辐射气体浓度传感器,如图1-2所示,包括外壳6、边壁1、减反射膜3、支撑架9、探测器芯片10、电路板11、热辐射芯片17、加热器18、温控芯片15以及引脚13;所述外壳6被内部设置的减反射膜3分成第一气室2和第二气室8,第一气室2通过外壳6内两侧设置的边壁1支撑,围成第一气室2的外壳6上设置有外气孔5,减反射膜3上设置有内气孔4,第二气室8内设置有支撑架9,支撑架9上设置有一个或多个探测器芯片10,探测器芯片10对面设置有热辐射芯片17,热辐射芯片17连接加热器18,加热器18连接温控芯片15,电路板11设置在第二气室8内,电路板11连接探测器芯片10、热辐射芯片17、温控芯片15以及引脚13,引脚13设置在外壳6外部。所述支撑架9与外壳之间通过第一密封层7连接;所述电路板11与支撑架9通过第一密封层7连接,电路板11与外壳6通过第二密封层12连接。所述加热器18表面除热辐射芯片17位置覆盖有第一隔热层19,加热器18与外壳6之间从内到外依次设置第二隔热层16、温控芯片15和第三密封层14。所述外气孔5与内气孔4的位置相互错开。所述引脚13为四只,分别为Vd引脚、GND引脚、TX引脚和CX引脚,所述Vd引脚和GND引脚负责供电,所述TX引脚输出热辐射芯片10温度信号,所述CX引脚输出待测气体浓度信号。所述减反射膜3减弱各方向的反射,防止多次反射后的辐射信号干扰探测器芯片10的探测,优选地,第二气室8的四壁均覆盖减反射膜3。优选地,所述加热器18采用金属陶瓷加热器。According to the present invention, a filter-free infrared thermal radiation gas concentration sensor based on metamaterials, as shown in Figures 1-2, includes a
所述探测器芯片10采用宽谱光电吸收器,无需滤波片,探测器芯片10的数量为两个,分别安装在热辐射芯片17不同仰角方向的位置上,优选地,所述探测器芯片10一个安装在热辐射芯片17仰角90度方向上的支撑架9上,另一个安装在热辐射芯片17仰角60度方向上的支撑架9上。所述两个探测器芯片10与热辐射芯片17之间的距离相等,均为5-10mm。所述热辐射芯片17和探测器芯片10的信号经过电路板11上的信号放大功能电路的处理后再由引脚13输出,两探测器芯片10信号之差能够反应热辐射芯片17的温度情况,用来确定热辐射芯片10发射功率,用垂直于热辐射方向的探测器芯片10的信号变化确定待测气体浓度。所述热辐射芯片17为金属-介电-金属的层状结构,包括防氧化膜层、金属二维阵列层、介电材料层、金属基底层;所述热辐射芯片17能够使得不同仰角内不同波段的发射率不同,产生能够区分的参考信号和测量信号,经第二气室8内气体衰减分别抵达不同的探测器芯片10。所述金属二维阵列层的单元为边长为300-500nm的正方形,周期为800-1300nm,材料采用银、铜和钨中的任一种或任多种。金属二维阵列层的几何参数受所用金属材料影响。介电材料层采用硅、三氧化二铝等大折射率材料,厚度在100nm左右。The
本发明两探测器芯片10的信号既可显示出待测气体浓度信息也可显示出热辐射芯片17的温度信息。在第二气室8内,不同的气体在特定波段有着随浓度变化的吸收系数,且衰减过程遵循Beer-Lambert定律。针对待测气体设计后的热辐射芯片17,其发射信号在不同角度上的信号既包含强吸收的波段也包含不吸收的波段,特别的,在九十度仰角方向只有强吸收波段,在六十度以内的仰角区域既有强吸收波段也有不吸收波段。这两个波段的选择同时应该考虑到其他气体的影响,应当避免无关气体的吸收。The signals of the two
本发明中的热辐射芯片17在较宽的角度范围内均有强吸收波段,特别的在二十度以外的仰角,强吸收波段的发射率几乎不变保持在0.9左右,而不吸收波段只在小仰角内才出现,特别的在六十度以内的仰角,不吸收波段逐步提高并达到0.6左右。强吸收波段信号反映了内部气体的浓度,不吸收波段信号反映了热辐射芯片17温度波动。因此两探测器芯片10同热辐射芯片17的距离相等时,两探测器芯片信号之差即可反映出热辐射芯片温度波动,用于校正大仰角的探测器芯片示数反映出气室内待测气体的浓度变化。The
本发明采用热辐射和无滤波片的方式提高集成度,但热辐射较低的功率对于信号探测提出了较高要求。本发明中的热辐射芯片温度设置在400-500度左右以提高普朗克极限,并集成信号滤波放大的功能电路帮助降低噪音。The present invention adopts the heat radiation and filterless method to improve the integration degree, but the lower power of heat radiation puts forward higher requirements for signal detection. The temperature of the heat radiation chip in the present invention is set at about 400-500 degrees to improve the Planck limit, and the integrated signal filtering and amplifying functional circuit helps reduce noise.
此外高温热辐射芯片的使用会使得装置内部的压力和温度发生变化,探测器芯片10在不同温度下输出信号会发生波动导致测量误差,但本发明中探测器芯片10温度主要受热辐射芯片17温度影响,而热辐射芯片17温度的影响可在标定阶段被涵盖在预测模型中,从而不需要引入温度补偿机制。具体步骤如下:首先在充入不吸收气体的环境中进行温度的标定,建立热辐射芯片17温度同两探测器芯片10信号之差的对应关系一,热辐射芯片17温度同大仰角探测器芯片10信号的对应关系二,而后再充入吸收性的样本气体,建立标准温度(如700K)下大仰角探测器芯片10信号同吸收性气体浓度的对应关系三。在实际测量中首先利用对应关系一、二获得热辐射芯片17温度和大仰角探测器芯片10的信号,而后查询对应关系三按黑体辐射下强吸收波段辐射力变化比例得到真实的吸收性气体浓度。In addition, the use of the high-temperature thermal radiation chip will cause the pressure and temperature inside the device to change, and the output signal of the
优选实施例:Preferred embodiment:
设定待测气体为二氧化碳气体。本发明的技术方案为设计超材料的红外热辐射气体浓度传感器,即一种基于超材料的无滤波片型红外热辐射气体浓度传感器,包括:带有内气孔4的减反射膜3将外壳6分成两部分,第一气室2由边壁1围成,用于外界气体经外气孔5自由扩散进入,第二气室8则作为工作区域。内气孔4与外气孔5相互错开。探测器芯片10固定于支撑架9上,其后被密封层I7密封。热辐射芯片17置于加热器18之上,前后覆盖第一隔热层19、第二隔热层16,并使得前部仅热辐射芯片17露出。第一隔热层19之后是温控芯片15用于时刻监控元器件温度,其与外壳6间用第三密封层14隔开。电路板11置于第一密封层7之下,并与外壳6用第二密封层12隔开。引脚13四只,分别为Vd,GND,TX,CX,Vd与GND负责装置的供电,TX输出热辐射芯片17温度信号,CX输出待测气体浓度信号。Set the gas to be measured as carbon dioxide gas. The technical scheme of the present invention is to design a metamaterial infrared thermal radiation gas concentration sensor, that is, a filterless infrared thermal radiation gas concentration sensor based on metamaterials, comprising: an
热辐射芯片17作为整个装置的核心被粘接于加热器18的顶部,间隙涂敷导热胶。热辐射芯片14主要有四层:防氧化膜层,金属二维阵列层,介电材料层,金属基底层。防氧化层为一层约10nm-20nm的致密氧化铝薄膜,用于隔绝空气保护金属阵列。下一层金属二维阵列层中,选用矩形钨单元,钨熔点较高能够避免长时间高温时的金属蠕变造成的破坏,单元的边长为420nm,周期为1050nm,厚度为80nm。介电材料层选择硅作为材料,硅的折射率较大能够有效缩小装置尺寸并提高目标波段的发射率,其厚度为120nm。金属基底层选用铜,可以减小高频波段的干扰。该设计的超材料热辐射芯片在4.2um、二十度以外的仰角内保持0.9左右的高发射率,在2.4um、六十度以内的仰角内保持逐步上升的发射率,并在五十度左右达到0.6,其余低频波段的发射率均在0.1-0.3,高频波段因为普朗克黑体辐射定律的限制对探测影响较小。The
在第二气室8内,不同的气体在特定波段有着随浓度变化的吸收系数,且衰减过程遵循Beer-Lambert定律。二氧化碳在4.2um左右有着较强的吸收峰,而在2.4um则几乎不吸收,且大气中诸如水、氧气、氮气等无关气体对这两个波段的干涉很小。二氧化碳气体浓度越高,信号衰减越明显,而不吸收波段的信号强度则不会变化。但热源在工作中可能会产生温度波动,不吸收波段的信号可用来监测热源的工作温度,使气体浓度测量更精确。In the
探测器芯片10选用宽谱光电探测器,如无滤波片的热电堆探测器,粘接于支撑架9上,其探测范围应覆盖2um-5um,且吸收率不发生较大变动。一探测器芯片10置于热辐射芯片17正上方(仰角90度),另一探测器芯片10置于热辐射芯片17斜上方(约仰角60度),均朝向热辐射芯片且与之距离相等。因两探测器芯片10与热辐射芯片17的距离相等,且强吸收波段与不吸收波段的位置几乎不随角度变化,两探测器芯片10信号之差反映了不吸收波段的能量大小,进而反映出热辐射芯片17温度波动情况,大仰角的探测器芯片10示数随待测气体浓度变化。The
减反射膜3将装置分为两个气室,减弱各方向的反射,防止多次反射后的辐射信号干扰探测器芯片10。为提高探测精度,本发明中的热辐射芯片17温度设置在400-500度左右以提高普朗克极限,并集成信号滤波放大的功能电路输出信号。The
此外高温热辐射芯片的使用会使得装置内部的压力和温度发生变化,探测器芯片10在不同温度下输出信号会发生波动导致测量误差,但本发明中探测器芯片10温度主要受热辐射芯片17温度影响,而热辐射芯片17温度的影响可在标定阶段被涵盖在预测模型中。首先在充入不吸收气体的环境中进行温度的标定,建立热辐射芯片17温度同两探测器芯片10信号之差的对应关系一,热辐射芯片17温度同大仰角探测器芯片10信号的对应关系二,而后再充入吸收性的样本气体,建立标准温度(如700K)下大仰角探测器芯片10信号同吸收性气体浓度的对应关系三。在实际测量中首先利用对应关系一、二获得热辐射芯片17温度和大仰角探测器芯片10信号,而后查询对应关系三按黑体辐射下强吸收波段辐射力变化比例得到真实的吸收性气体浓度。In addition, the use of the high-temperature thermal radiation chip will cause the pressure and temperature inside the device to change, and the output signal of the
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can make various changes or modifications within the scope of the claims, which do not affect the essential content of the present invention. The embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911180664.XA CN110887806B (en) | 2019-11-27 | 2019-11-27 | Filtering-free sheet type infrared heat radiation gas concentration sensor based on metamaterial |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911180664.XA CN110887806B (en) | 2019-11-27 | 2019-11-27 | Filtering-free sheet type infrared heat radiation gas concentration sensor based on metamaterial |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110887806A true CN110887806A (en) | 2020-03-17 |
CN110887806B CN110887806B (en) | 2021-10-26 |
Family
ID=69748996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911180664.XA Active CN110887806B (en) | 2019-11-27 | 2019-11-27 | Filtering-free sheet type infrared heat radiation gas concentration sensor based on metamaterial |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110887806B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117471593A (en) * | 2023-12-28 | 2024-01-30 | 迈默智塔(无锡)科技有限公司 | Selective transmission diaphragm and selective transmission glass |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010045645A1 (en) * | 2010-09-17 | 2012-03-22 | Continental Automotive Gmbh | Sensor for determination of carbon dioxide and/or water concentration in exhaust gas of combustion engine i.e. diesel engine, of motor car, has filter elements arranged in front of respective sensor elements and made of metamaterial |
CN203658255U (en) * | 2013-12-20 | 2014-06-18 | 中国科学技术大学 | Miniature mid-infrared gas concentration monitoring device |
CN105445216A (en) * | 2015-11-13 | 2016-03-30 | 华中科技大学 | Super-surface-based infrared absorption type multi-gas-concentration measurement sensor |
CN105486654A (en) * | 2015-10-23 | 2016-04-13 | 成都市亿泰科技有限公司 | Metamaterial-based adjustable non-dispersive infrared gas sensor |
CN108267482A (en) * | 2017-12-22 | 2018-07-10 | 华中科技大学 | A lithium tantalate narrow-band gas detector and its preparation method |
-
2019
- 2019-11-27 CN CN201911180664.XA patent/CN110887806B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010045645A1 (en) * | 2010-09-17 | 2012-03-22 | Continental Automotive Gmbh | Sensor for determination of carbon dioxide and/or water concentration in exhaust gas of combustion engine i.e. diesel engine, of motor car, has filter elements arranged in front of respective sensor elements and made of metamaterial |
CN203658255U (en) * | 2013-12-20 | 2014-06-18 | 中国科学技术大学 | Miniature mid-infrared gas concentration monitoring device |
CN105486654A (en) * | 2015-10-23 | 2016-04-13 | 成都市亿泰科技有限公司 | Metamaterial-based adjustable non-dispersive infrared gas sensor |
CN105445216A (en) * | 2015-11-13 | 2016-03-30 | 华中科技大学 | Super-surface-based infrared absorption type multi-gas-concentration measurement sensor |
CN108267482A (en) * | 2017-12-22 | 2018-07-10 | 华中科技大学 | A lithium tantalate narrow-band gas detector and its preparation method |
Non-Patent Citations (2)
Title |
---|
YONGKANG GONG等: "Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing", 《OPTICAL SOCIETY OF AMERICA》 * |
张二磊等: "金属/介质光栅套构超材料:从吸收到辐射 ", 《航空兵器》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117471593A (en) * | 2023-12-28 | 2024-01-30 | 迈默智塔(无锡)科技有限公司 | Selective transmission diaphragm and selective transmission glass |
CN117471593B (en) * | 2023-12-28 | 2024-04-02 | 迈默智塔(无锡)科技有限公司 | Selective transmission diaphragm and selective transmission glass |
Also Published As
Publication number | Publication date |
---|---|
CN110887806B (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2464537C2 (en) | Fibre-optic temperature sensor | |
CN103472378B (en) | A kind of all-fiber Partial Discharge in Power Transformer detection system and detection method thereof | |
US10466117B2 (en) | Temperature sensor and temperature sensing system based on active phase-shifted fibre grating | |
CN105352583B (en) | It is a kind of to measure ultrasonic wave acoustic pressure harmony strong optical means and device and its application | |
CN103674322B (en) | A kind of sapphire optical fiber temperature sensor adopting separate type probe | |
US20190101454A1 (en) | Non-contact temperature measurement sensor | |
CN105606533A (en) | Gas sensor | |
CN110132877B (en) | Integrated infrared gas sensor based on MEMS | |
US11703470B2 (en) | Sensor device for determining heat transfer parameters of a fluid | |
GB2391309A (en) | Optical gas sensor | |
CN110687064A (en) | Infrared detector and infrared gas sensor | |
CN106033054A (en) | A laser temperature and humidity measurement device and method | |
CN110954501A (en) | High-temperature-resistant tunable laser absorption spectrum probe structure | |
CN204649617U (en) | A kind of tunable laser humidity measuring instrument | |
CN112938891A (en) | Emitter package for photoacoustic sensors | |
CN103698295B (en) | A kind of miniature far infrared gas concentration inspect method and device | |
WO2004023113A1 (en) | Gas sensors | |
CN110887806B (en) | Filtering-free sheet type infrared heat radiation gas concentration sensor based on metamaterial | |
CN105319176A (en) | Four-series non-dispersive infrared gas sensor | |
CN115236021A (en) | Parallel double-channel infrared gas sensor | |
CN204389390U (en) | A kind of photoelectric gas sensor and pick-up unit | |
JP2008544263A (en) | Electromagnetic wave detection device and method for manufacturing such a device | |
CN109946234B (en) | Apparatus and method using photoacoustic effect | |
WO2024174315A1 (en) | Thermopile infrared detector and preparation method therefor, and ndir detection system | |
US20110292392A1 (en) | Absorption optical probe provided with monitoring of the emission source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |