CN115236021A - Parallel double-channel infrared gas sensor - Google Patents
Parallel double-channel infrared gas sensor Download PDFInfo
- Publication number
- CN115236021A CN115236021A CN202210760500.XA CN202210760500A CN115236021A CN 115236021 A CN115236021 A CN 115236021A CN 202210760500 A CN202210760500 A CN 202210760500A CN 115236021 A CN115236021 A CN 115236021A
- Authority
- CN
- China
- Prior art keywords
- infrared
- infrared light
- light source
- gas sensor
- reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种并列式双通道红外气体传感器,包括从上至下依次层叠的反光罩、支撑板、基座和ASIC芯片;反光罩上设有反射腔和若干透气孔;支撑板上设置有第一通孔和第二通孔,其内分别嵌设有第一滤光片和两第二滤光片;基座的顶面设有红外光源和两红外探测器,红外光源位于第一滤光片的正下方,两红外探测器分别位于两第二滤光片的正下方,两红外探测器相对于红外光源并列排布;红外光源和两红外探测器与ASIC芯片电连接。本发明的并列式双通道红外气体传感器,反光罩、支撑板、基座和ASIC芯片层叠设置,从而缩小体积;反射腔为折叠式反射结构,使光程增长;红外光源和两红外探测器分布在基座两端,可隔绝红外光源对热敏元件的影响。
The invention relates to a parallel dual-channel infrared gas sensor, comprising a reflector, a support plate, a base and an ASIC chip stacked in sequence from top to bottom; a reflector cavity and a plurality of ventilation holes are arranged on the reflector; The first through hole and the second through hole are respectively embedded with a first filter and two second filters; the top surface of the base is provided with an infrared light source and two infrared detectors, and the infrared light source is located in the first filter. Directly below the light sheet, two infrared detectors are respectively located directly below the two second filters, and the two infrared detectors are arranged side by side relative to the infrared light source; the infrared light source and the two infrared detectors are electrically connected to the ASIC chip. In the parallel dual-channel infrared gas sensor of the present invention, the reflector, the support plate, the base and the ASIC chip are stacked and arranged to reduce the volume; the reflection cavity is a folded reflection structure, which increases the optical path; the infrared light source and the two infrared detectors are distributed At both ends of the base, the influence of the infrared light source on the thermal element can be isolated.
Description
技术领域technical field
本发明涉及气体传感器技术领域,更具体地涉及一种并列式双通道红外气体传感器。The invention relates to the technical field of gas sensors, and more particularly to a parallel dual-channel infrared gas sensor.
背景技术Background technique
随着科技的进步和经济的发展,目前社会正逐步跨入物联网时代,感知节点布设越来越多,进而传感器的需求越来越大,红外气体传感器以其精度高、寿命长、选择性好、不中毒等优点受到了人们广泛的关注和研究。With the advancement of science and technology and the development of economy, the current society is gradually entering the era of Internet of Things, more and more sensing nodes are deployed, and the demand for sensors is increasing. The advantages of good health and non-toxicity have received extensive attention and research.
红外气体传感器是一种微型光谱分析器件,通过检测气体分子的特征光谱吸收强弱,实现对气体的浓度进行检测。它与其它类别气体传感器如电化学式、催化燃烧式、半导体式等相比具有应用广泛、使用寿命长、灵敏度高、稳定性好、受环境干扰因素较小、不中毒、不依赖于氧气、适合气体多、性价比高、维护成本低、可在线分析等一系列优点,其广泛应用于石油化工、冶金工业、工矿开采、大气污染检测、农业、医疗卫生等领域。Infrared gas sensor is a miniature spectral analysis device, which can detect the concentration of gas by detecting the characteristic spectral absorption strength of gas molecules. Compared with other types of gas sensors such as electrochemical, catalytic combustion, semiconductor, etc., it has a wide range of applications, long service life, high sensitivity, good stability, less environmental interference, no poisoning, independent of oxygen, suitable for It has a series of advantages such as more gas, high cost performance, low maintenance cost, and online analysis. It is widely used in petrochemical, metallurgical industry, industrial and mining, air pollution detection, agriculture, medical and health and other fields.
现有的红外传感器多以加热丝或白炽灯作为红外光源,TO封装探测器作为敏感元,通过信号检测和处理实现气体成分检测,其体积较大难以满足某些特定场合微型化气体传感器的需求。Existing infrared sensors mostly use heating wires or incandescent lamps as infrared light sources, and TO packaged detectors as sensitive elements, which can detect gas components through signal detection and processing. Its large size is difficult to meet the needs of miniaturized gas sensors in some specific occasions. .
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种并列式双通道红外气体传感器,以解决现有的红外气体传感器体积过大的技术问题。The purpose of the present invention is to provide a parallel dual-channel infrared gas sensor to solve the technical problem that the existing infrared gas sensor is too large.
本发明提供一种并列式双通道红外气体传感器,包括从上至下依次层叠的反光罩、支撑板、基座和ASIC芯片;The invention provides a parallel dual-channel infrared gas sensor, comprising a reflector, a support plate, a base and an ASIC chip stacked in sequence from top to bottom;
所述反光罩上设置有反射腔和连通所述反射腔的若干透气孔;The reflector is provided with a reflection cavity and a plurality of ventilation holes communicating with the reflection cavity;
所述支撑板上设置有第一通孔和第二通孔,所述第一通孔内嵌设有第一滤光片,所述第二通孔内嵌设有两第二滤光片;The support plate is provided with a first through hole and a second through hole, a first filter is embedded in the first through hole, and two second filters are embedded in the second through hole;
所述基座的顶面设置有红外光源和两红外探测器,所述红外光源位于所述第一通孔内且位于所述第一滤光片的正下方,两红外探测器位于第二通孔内且分别位于两第二滤光片的正下方,两红外探测器相对于所述红外光源并列排布;The top surface of the base is provided with an infrared light source and two infrared detectors, the infrared light source is located in the first through hole and directly below the first filter, and the two infrared detectors are located in the second through hole. in the hole and respectively located directly below the two second filters, and two infrared detectors are arranged side by side relative to the infrared light source;
所述红外光源和两红外探测器与所述ASIC芯片电连接。The infrared light source and two infrared detectors are electrically connected to the ASIC chip.
进一步地,所述反射腔的内壁包括第一主反射面、两第二主反射面和第一辅助反射面,所述支撑板的顶面形成为第二辅助反射面,所述第一辅助反射面和所述第二辅助反射面相互平行,所述第一主反射面位于所述第一滤光片的正上方,两第二主反射面分别位于所述第二滤光片的正上方。Further, the inner wall of the reflection cavity includes a first main reflection surface, two second main reflection surfaces and a first auxiliary reflection surface, the top surface of the support plate is formed as a second auxiliary reflection surface, and the first auxiliary reflection surface is formed. The surface and the second auxiliary reflection surface are parallel to each other, the first main reflection surface is located directly above the first filter, and the two second main reflection surfaces are respectively located directly above the second filter.
进一步地,所述第一主反射面和两第二主反射面均为复合抛物面,所述第一主反射面和两第二主反射面之间的至少一部分光路的截面与所述基座的表面垂直。Further, the first main reflection surface and the two second main reflection surfaces are both compound paraboloids, and the cross section of at least a part of the optical path between the first main reflection surface and the two second main reflection surfaces is the same as that of the base. The surface is vertical.
进一步地,所述反射腔的内壁和所述支撑板的顶面均镀有金薄膜、银及银化合物薄膜或布拉格反射薄膜;和/或,Further, the inner wall of the reflective cavity and the top surface of the support plate are both coated with gold film, silver and silver compound film or Bragg reflection film; and/or,
所述反光罩和所述支撑板的材料为铝、铜、塑料、树脂、ABS材料、硅或玻璃;和/或,The material of the reflector and the support plate is aluminum, copper, plastic, resin, ABS material, silicon or glass; and/or,
所述基座为PCB且由FR-4材料或陶瓷材料制成,所述红外光源和两红外探测器在所述PCB上分两端走线。The base is a PCB and is made of FR-4 material or ceramic material, and the infrared light source and the two infrared detectors are routed at two ends of the PCB.
进一步地,所述透气孔设置在所述反光罩的顶部或对称分布在所述反光罩的两侧,所述透气孔外覆盖有防水透气膜。Further, the ventilation holes are arranged on the top of the reflector or symmetrically distributed on both sides of the reflector, and the ventilation holes are covered with a waterproof and breathable film.
进一步地,所述红外光源为MEMS光源或LED光源,所述第一滤光片为带通滤光片或M-I-M超结构。Further, the infrared light source is a MEMS light source or an LED light source, and the first filter is a bandpass filter or an M-I-M superstructure.
进一步地,所述红外探测器为热电型探测器芯片或光电型探测器芯片,所述第二滤光片为窄带滤光片或M-I-M超结构。Further, the infrared detector is a pyroelectric detector chip or a photoelectric detector chip, and the second filter is a narrow-band filter or an M-I-M superstructure.
进一步地,两第二滤光片中的一个设置为允许第一波段的红外光通过,另一个设置为允许第二波段的红外光通过,所述第一波段的红外光与待测气体吸收光谱相同,所述第二波段的红外光无法被待测气体吸收。Further, one of the two second filters is set to allow the infrared light of the first wavelength band to pass, and the other is set to allow the infrared light of the second wavelength band to pass through, and the infrared light of the first wavelength band and the gas to be measured absorb the spectrum. Likewise, the infrared light in the second wavelength band cannot be absorbed by the gas to be measured.
9、根据权利要求1所述的并列式双通道红外气体传感器,其特征在于,所述基座或ASIC芯片上设置有热敏电阻。9. The parallel dual-channel infrared gas sensor according to
进一步地,所述ASIC芯片集成有电源模块、模拟信号处理模块和数字信号处理模块,所述电源模块为所述红外光源、所述热敏电阻、所述红外探测器、所述模拟信号处理模块和所述数字信号处理模块供电。Further, the ASIC chip integrates a power supply module, an analog signal processing module and a digital signal processing module, and the power supply module is the infrared light source, the thermistor, the infrared detector, and the analog signal processing module. and power supply to the digital signal processing module.
本发明的并列式双通道红外气体传感器,反光罩、支撑板、基座和ASIC芯片一起封装,从而可达到缩小体积的效果,实现了红外气体传感器的微型化和集成化;两侧对称的透气孔使该红外气体传感器可直接集成到气体分析设备的气道中使用,使用方便,响应迅速;采用两个并列式的红外探测器,可以矫正元件老化、反射腔内部被污染带来的信号漂移问题,且耦合效率高,聚光效果好。The parallel dual-channel infrared gas sensor of the present invention is packaged together with the reflector, the support plate, the base and the ASIC chip, thereby achieving the effect of reducing the volume and realizing the miniaturization and integration of the infrared gas sensor; symmetrical ventilation on both sides The hole enables the infrared gas sensor to be directly integrated into the airway of the gas analysis equipment, which is easy to use and responds quickly; the use of two parallel infrared detectors can correct the problem of signal drift caused by the aging of components and the contamination inside the reflection cavity. , and the coupling efficiency is high, and the concentrating effect is good.
附图说明Description of drawings
图1为根据本发明实施例的并列式双通道红外气体传感器的结构示意图,其中,反光罩和支撑板为半剖图;1 is a schematic structural diagram of a parallel dual-channel infrared gas sensor according to an embodiment of the present invention, wherein a reflector and a support plate are half-section views;
图2为根据本发明实施例的并列式双通道红外气体传感器的爆炸图;2 is an exploded view of a parallel dual-channel infrared gas sensor according to an embodiment of the present invention;
图3为根据本发明实施例的并列式双通道红外气体传感器的反光罩的结构示意图,其中透气孔对称设置于反光罩的两侧;3 is a schematic structural diagram of a reflector of a parallel dual-channel infrared gas sensor according to an embodiment of the present invention, wherein the ventilation holes are symmetrically arranged on both sides of the reflector;
图4为根据本发明另一实施例的并列式双通道红外气体传感器的反光罩的结构示意图,其中透气孔设置于反光罩的顶部;4 is a schematic structural diagram of a reflector of a parallel dual-channel infrared gas sensor according to another embodiment of the present invention, wherein a ventilation hole is provided on the top of the reflector;
图5为根据本发明实施例的并列式双通道红外气体传感器的支撑板的俯视图;5 is a top view of a support plate of a parallel dual-channel infrared gas sensor according to an embodiment of the present invention;
图6为根据本发明实施例的并列式双通道红外气体传感器的基座的俯视图;6 is a top view of a base of a parallel dual-channel infrared gas sensor according to an embodiment of the present invention;
图7为根据本发明实施例的并列式双通道红外气体传感器的光路示意图;7 is a schematic diagram of an optical path of a parallel dual-channel infrared gas sensor according to an embodiment of the present invention;
图8为根据本发明实施例的并列式双通道红外气体传感器的射线追迹仿真结果图;FIG. 8 is a ray tracing simulation result diagram of a parallel dual-channel infrared gas sensor according to an embodiment of the present invention;
图9为根据本发明实施例的并列式双通道红外气体传感器的两红外探测器表面辐照度分布图;FIG. 9 is a surface irradiance distribution diagram of two infrared detectors of a parallel dual-channel infrared gas sensor according to an embodiment of the present invention;
图10为根据本发明实施例的并列式双通道红外气体传感器的ASIC芯片的内部结构示意图;10 is a schematic diagram of the internal structure of an ASIC chip of a parallel dual-channel infrared gas sensor according to an embodiment of the present invention;
图11为根据本发明实施例的并列式双通道红外气体传感器的性能测试结果图。FIG. 11 is a graph showing the performance test result of the parallel dual-channel infrared gas sensor according to the embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图,给出本发明的较佳实施例,并予以详细描述。Below in conjunction with the accompanying drawings, preferred embodiments of the present invention are given and described in detail.
此处所称的“一个实施例”或“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。Reference herein to "one embodiment" or "an embodiment" refers to a particular feature, structure, or characteristic that may be included in at least one implementation of the present application. In the description of the present application, it should be understood that the orientation or positional relationship indicated by the terms "upper", "lower", "top", "bottom", etc. is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the purpose of It is convenient to describe the application and to simplify the description, rather than indicating or implying that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as limiting the application. In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature. Also, the terms "first," "second," etc. are used to distinguish between similar objects, and are not necessarily used to describe a particular order or precedence. It is to be understood that data so used may be interchanged under appropriate circumstances so that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein.
如图1和图2所示,本发明实施例提供一种并列式双通道红外气体传感器,包括从上至下依次层叠的反光罩1、支撑板2、基座3和ASIC芯片4,如图3所示,反光罩1具有反射腔16,反射罩1的两侧对称设置有若干连通反射腔16的透气孔5,在另一实施例中,如图4所示,透气孔5也可以设置在反光罩1的顶部,透气孔5外覆盖有防水透气膜11,如图5所示,支撑板2上相对设置有第一通孔21和第二通孔22,第一通孔21内嵌设有第一滤光片6,第二通孔22内嵌设有两第二滤光片7;反射罩1和支撑板2形成光学气室;如图6所示,基座3的顶面设置有红外光源8和两红外探测器9,红外光源8位于第一通孔21内且位于第一滤光片6的正下方,两红外探测器9位于第二通孔22内且分别位于两第二滤光片7的正下方,两红外探测器9相对于红外光源8并列排布,即两红外探测器9与红外光源8的距离相同;ASIC芯片4用于提供信号处理功能,其与红外光源8和红外探测器9电连接;在测量气体浓度时,气体从透气孔5中进入反射腔16中,ASIC芯片4控制红外光源8周期性发光,红外光线通过第一滤光片6后进入反射腔16,在反射腔16中被反射后经过第二滤光片7到达红外探测器9,红外探测器9将接收到的红外光转化为电信号并传输至ASIC芯片4,经ASIC芯片4处理后即可得到气体浓度。As shown in FIG. 1 and FIG. 2, an embodiment of the present invention provides a parallel dual-channel infrared gas sensor, including a
在本实施例中,反光罩1和支撑板2以及支撑板2和基座3之间均可以通过密封胶连接,这样,在连接后,反射腔16仅通过透气孔5与外界连通,使得测量结果更准确。In the present embodiment, the
应当理解的是,反光罩1和支撑板2以及支撑板2和基座3之间也可以采用其他方式实现密封连接,例如,在两者之间设置密封圈,然后通过螺钉、卡接、销接等方式紧固,本发明对此不做限定。It should be understood that other ways can also be used to achieve sealed connection between the
基座3与ASIC芯片4可以采用倒装焊工艺或者导电胶实现电气连接,从而使ASIC芯片4与基座3上的红外光源8和红外探测器9电气连接。The
如图3和图7所示,反光罩1的反射腔16的内壁包括第一主反射面12、两第二主反射面13和第一辅助反射面14,支撑板2的顶面形成为第二辅助反射面15,第一辅助反射面14和第二辅助反射面15相互平行,第一主反射面12和两第二主反射面13相对设置,第一主反射面12位于第一滤光片6的正上方,两第二主反射面13则分别位于两第二滤光片7的正上方。As shown in FIG. 3 and FIG. 7 , the inner wall of the
光线在反射腔16的传输过程为折叠式反射,即经过多次反射后传输至两红外探测器9中。具体地,红外光源8发出的红外光经过第一滤光片6进入反射腔16后能够被第一主反射面12收集,第一主反射面12具有准直光线的功能,其将收集到的大多数红外光反射成平行于第一辅助反射面14的红外光线,反射后的红外光线呈V型向两第二主反射面13均匀传递,剩余少数红外光能够经第一辅助反射面14和第二辅助反射面15反射后向两第二主反射面13传递,两第二主反射面13具有聚焦光线的功能,能够将接收到的红外光线反射后分别经过两第二滤光片7聚焦在两红外探测器9表面的中心处。第一主反射面12和两第二主反射面13之间的至少一部分光路的截面可以设置为与基座的表面垂直,以减少反射次数,从而降低红外光的损耗。由于这种折叠式的反射设计,对光程进行了增长,其有利于待测气体分子充分吸收,加大到达红外探测器端的红外光的衰减量,从而提高灵敏度。The transmission process of the light in the
在本实施例中,第一主反射面12和两第二主反射面13均为复合抛物面,通过设定抛物面的参数可以实现上述反射功能,参数的设定为光学领域的公知常识,可参考复合抛物面聚光器,此处不再赘述。In this embodiment, the first
应当注意的是,第一主反射面12和两第二主反射面13还可以设置为平面、球面、椭球面或其他类型的曲面,只需要使经过反射面的入射光线和出射光线分别获得30°~60°之间的入射角和反射角即可。It should be noted that the first
为降低红外光在反射腔16内的传输损耗,反射腔16的内壁和支撑板2的顶面均镀有但不仅限于金薄膜、银及其化合物薄膜或布拉格反射薄膜。In order to reduce the transmission loss of infrared light in the
如图8所示,通过仿真可证明本发明的反射腔16可以将红外光源8发出的红外光收集后准直,光线平行于基座3向两个红外探测器9端呈V型分散传递,第二主反射面13能够收集传递过来的红外光线并聚焦在红外探测器9的表面;结合图7的光线传递过程,图9为本发明实施例中两个红外探测器表面辐照度分布图,通过图中明亮程度和标尺最大值可知,本发明可以提高耦合效率,在两红外探测器9表面获得大的辐照度。As shown in FIG. 8, it can be proved by simulation that the
红外光源8可以选用但不限于MEMS光源或LED光源,其可以辐射宽谱红外光,第一滤光片6为带通滤光片;第一滤光片6也可以替换为M-I-M超结构(即金属天线-介质层-金属背板三层结构),直接制作在红外光源8的表面实现相应的窄带红外光发射。例如,在本实施例中,红外光源8设置为MEMS光源,采用MEMS加工工艺实现,采用引线键合的方法与基座3连接,可以发出宽谱红外光。The infrared
红外探测器9可以选用但不限于热电型探测器芯片或光电型探测器芯片。两第二滤光片7均为窄带滤光片。第二滤光片7也可以被M-I-M超结构替代,直接制作在红外探测器9表面以实现相应的窄带红外光探测。例如,在本实施例中,红外探测器9为热电型探测器芯片,采用MEMS加工工艺实现,采用引线键合的方法与基座3连接。The
两第二滤光片7中的一个设置为允许第一波段的红外光通过,另一个设置为允许第二波段的红外光通过,第一波段的红外光设置为与待测气体吸收光谱相同,其能够被待测气体吸收,第二波段的红外光设置为无法被待测气体吸收,从而使两个红外探测器9中的一个用于探测与能够被待测气体吸收的红外光信号,另一个用于探测不被待测气体吸收的红外光信号,以探测第一波段的红外探测器9作为基准信号,另一个作为参考信号,通过对两个基准信号和参考信号进行对比(例如用差分、比例、归一化等运算方法进行处理),可以对基准信号进行补偿,得到的结果更精确,也可以矫正元件老化、反射腔16内部被污染带来的信号漂移问题。例如,以探测二氧化碳气体为例,由于二氧化碳和水分子均会吸收二氧化碳相同光谱(即第一波段)的红外光,当只设置一个红外探测器时,无法确定有多少红外光是被二氧化碳吸收的,多少是被水分子吸收的,而在本发明中,通过设置两个红外探测器,基准信号可以采集到第一波段的红外光的变化量,参考信号则可以采集到第二波段的红外光的变化量,由于二氧化碳无法吸收第二波段的红外光,因此第二波段的红外光的变化量即为水分子吸收的量,第一波段的红外光的变化量与第二波段的红外光的变化量经过归一化运算后,即为二氧化碳吸收的红外光的量,由此可得到二氧化碳的浓度。One of the two
不同气体由于其分子结构、浓度和能量分布的差异,而有各自不同的吸收光谱,因此第一波段和第二波段的具体数值可根据需要进行修改,以探测不同的待测气体的浓度,即,当将第一波段设置为二氧化碳的吸收光谱时,该气体传感器可探测二氧化碳的浓度,当将第一波段设置为氮气的吸收光谱时,该气体传感器可探测氮气的浓度。Different gases have different absorption spectra due to their differences in molecular structure, concentration and energy distribution. Therefore, the specific values of the first and second bands can be modified as needed to detect the concentration of different gases to be tested, that is, , when the first waveband is set as the absorption spectrum of carbon dioxide, the gas sensor can detect the concentration of carbon dioxide, and when the first waveband is set as the absorption spectrum of nitrogen, the gas sensor can detect the concentration of nitrogen.
第一滤光片6设置为允许两第二滤光片7对应的波段的红外光通过,即第一滤光片6允许通过的红外光的波段范围为第一波段和第二波段的合集。例如在探测CO2气体的应用中,若第一波段为4.2-4.3μm,第二波段为3.9-4.0μm,那么第一滤光片6允许通过的红外光的波段范围至少为3.9-4.3μm。The
继续参照图2和图6,基座3上还可设置有热敏电阻10,其位于两红外探测器9附近,用于提供环境温度校正系数,保证本发明的气体传感器可在各种温度下正常工作,实现气体定量探测,热敏电阻10也通过基座3与ASIC芯片实现电气连接。当然,热敏电阻10也可以直接形成在ASIC芯片上。热敏电阻10可以选用但不限于半导体或陶瓷材料。2 and 6, the
在本实施例中,热敏电阻10选用陶瓷材料,集成于基座3的两红外探测器9之间,电阻选用但不仅限于100KΩ。In this embodiment, the
反光罩1和支撑板2的材料可以选用但不限于铝、铜等金属材料,采用微机械加工的方法实现;或者选用但不限于塑料、树脂、ABS材料等,采用压膜工艺、注塑工艺或3D打印技术实现;又或者选用但不仅限于硅或玻璃材料,采用MEMS加工工艺实现。在本实施例中,反光罩1和支撑板2采用铜,由微机械加工制作而成。The materials of the
基座3可以为印制电路板(PCB),采用FR-4或陶瓷材料,PCB上通过将红外光源8和两红外探测器9分于两端走线,隔离红外光源作为主要发热元件对两红外探测器9和热敏电阻10这三个热敏感元件的影响(有电连接线方向导热系数为80W/(mK),没有电连接线方向导热系数为0.3W/(mK))。在一些可行的实施方式中,基座3也可以采用铝基座或铜基座等。The
如图10所示,ASIC芯片4集成有电源模块41、模拟信号处理模块42和数字信号处理模块43。电源模块41能够分别为红外光源8、红外探测器9、热敏电阻10、模拟信号处理模块42和数字信号处理模块43提供但不仅限于2.8V、3V、3.3V、4V、4.5V或5V电压。模拟信号处理模块42能够处理不少于两路的模拟信号,能够实现但不仅限于0.2~2Hz的带通滤波功能,能够实现在1~10000倍范围内的可调增益。模拟信号处理模块42能够实现信号采集、信号放大、信号滤波功能。数字信号处理模块43可以是但不仅限于FPGA芯片或ARM内核的芯片,数字信号处理模块43具有存储功能,可以具有但不仅限于1M、2M或4M的内部存储空间;数字信号处理模块43具有模数转换能力,具有两路以上的ADC采样通道,采样位数可以是但不仅限与12位、16位、18位或更高;数字信号处理模块43具有逻辑控制和通信功能,能够控制红外光源8的开关和实现基本的逻辑运算,能够将运算后的信号发送至外部设备,能够接受或存储外部设备发出的指令或数据。As shown in FIG. 10 , the
在本发明中,反光罩1、支撑板2、基座3和ASIC芯片层叠设置,从而将红外光源8、红外探测器9和光学气室一起封装,可达到缩小体积的效果,最后得到的红外气体传感器长小于15mm、宽小于13mm,高小于7mm,或者总体积小于1500mm3,实现了红外气体传感器的微型化和集成化。In the present invention, the
下面将介绍本实施例的并列式双通道红外气体传感器(红外光源为MEMS光源,红外探测器为热电型探测器)的工作原理:The working principle of the parallel dual-channel infrared gas sensor of the present embodiment (the infrared light source is a MEMS light source, and the infrared detector is a pyroelectric detector) will be introduced below:
上电后,ASIC芯片控制红外光源周期性开光,无待测气体时,红外光源8发出的发散红外光穿过第一滤光片6后变成包含第一波段和第二波段的红外光,它们被第一主反射面12收集然后准直向第二主反射面13传播,第二主反射面13收集准直红外光后向两红外探测器9聚焦传播,经过两第二滤光片7后分别变成第一波段和第二波段的红外光,然后分别传递至两红外探测器9中心,两红外探测器9将收到的红外光转化为电信号,电信号被模拟信号处理模块42放大后传递至数字信号处理模块43,数字信号处理模块43将模拟信号转化为数字信号,数字信号经运算后输出或存储;有待测气体时,红外光源8发出的发散红外光穿过第一滤光片6后,被第一主反射面12收集然后准直向第二主反射面13传播,传播过程中第一波段的红外光被待测气体部分吸收,剩余未被吸收的红外光(包括第二波段的红外光和部分第一波段的红外光)经两第二主反射面13收集准直后分别向两红外探测器9聚焦传播,经过两第二滤光片7后传递至两红外探测器9中心,两红外探测器9将收到的红外光转化为电信号,此时,由于有部分第一波段的红外光被待测气体吸收,所以对应的红外探测器9探测到的电信号会减弱,电信号被模拟信号处理模块42放大后传递至数字信号处理模块43,数字信号处理模块43将模拟信号转化为数字信号与无待测气体时的数字信号值对比、运算,即可以得到浓度结果,结果可使用通信功能输出或存储功能存储。After power-on, the ASIC chip controls the infrared light source to periodically turn on the light. When there is no gas to be measured, the divergent infrared light emitted by the infrared
在实施例的并列式双通道红外气体传感器中依次通入二氧化碳浓度为0%、0.5%、1%、2%、3%、4%、5%、6%、7%、8%和10%气体,结果如图11所示,从图11中可以看出,本实施例的红外气体传感器可以准确且稳定的得到对应的浓度信号响应值,且在连续工作多天后依然示数准确,在实际浓度的3%±50ppm范围内,精度好。The carbon dioxide concentrations of 0%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, and 10% are sequentially introduced into the parallel dual-channel infrared gas sensor of the embodiment. The result is shown in Figure 11. It can be seen from Figure 11 that the infrared gas sensor of this embodiment can accurately and stably obtain the corresponding concentration signal response value, and the number is still accurate after continuous operation for many days. Within the range of 3%±50ppm of concentration, the precision is good.
本发明实施例的并列式双通道红外气体传感器,反光罩1、支撑板2、基座3和ASIC芯片4层叠设置,从而将红外光源8、红外探测器9和光学气室等进行芯片级封装,可达到缩小体积的效果,实现了红外气体传感器的微型化和集成化;两侧对称的透气孔5使该红外气体传感器可直接集成到气体分析设备的气道中使用,使用方便,响应迅速;采用两个并列式的红外探测器9,可以矫正元件老化、反射腔16内部被污染带来的信号漂移问题,且耦合效率高,聚光效果好;反射腔16为折叠式反射结构,使光程增长;红外光源8和两红外探测器9分布在基座两端,可隔绝红外光源对热敏元件的影响。In the parallel dual-channel infrared gas sensor of the embodiment of the present invention, the
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Various changes can be made to the above-mentioned embodiments of the present invention. That is, all simple and equivalent changes and modifications made according to the claims and descriptions of the present invention fall into the protection scope of the claims of the present invention. What is not described in detail in the present invention is conventional technical content.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210760500.XA CN115236021A (en) | 2022-06-30 | 2022-06-30 | Parallel double-channel infrared gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210760500.XA CN115236021A (en) | 2022-06-30 | 2022-06-30 | Parallel double-channel infrared gas sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115236021A true CN115236021A (en) | 2022-10-25 |
Family
ID=83671044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210760500.XA Pending CN115236021A (en) | 2022-06-30 | 2022-06-30 | Parallel double-channel infrared gas sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115236021A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117553252A (en) * | 2024-01-12 | 2024-02-13 | 深圳市美思先端电子有限公司 | MEMS infrared light source component and detection device based on piezoelectric film modulation |
CN117664864A (en) * | 2024-01-31 | 2024-03-08 | 上海烨映微电子科技股份有限公司 | Gas detection device |
-
2022
- 2022-06-30 CN CN202210760500.XA patent/CN115236021A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117553252A (en) * | 2024-01-12 | 2024-02-13 | 深圳市美思先端电子有限公司 | MEMS infrared light source component and detection device based on piezoelectric film modulation |
CN117553252B (en) * | 2024-01-12 | 2024-05-10 | 深圳市美思先端电子有限公司 | MEMS infrared light source component and detection device based on piezoelectric film modulation |
CN117664864A (en) * | 2024-01-31 | 2024-03-08 | 上海烨映微电子科技股份有限公司 | Gas detection device |
CN117664864B (en) * | 2024-01-31 | 2024-11-26 | 上海烨映微电子科技股份有限公司 | Gas detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104122223B (en) | Double-optical-path multi-gas infrared sensor | |
CN106990065B (en) | Non-spectroscopic infrared gas sensor for multi-region and multi-gas measurement | |
CN103674883B (en) | A kind of miniature middle infrared-gas concentration monitoring method and device | |
US6989549B2 (en) | Optical gas sensor | |
CN115236021A (en) | Parallel double-channel infrared gas sensor | |
CN206725432U (en) | A kind of non-spectral formula infrared gas sensor for how regional and more gasmetries | |
CN108489924A (en) | A kind of sensing probe and non-dispersive infrared gas sensor detecting system | |
CN111929267A (en) | Gas sensor with low power consumption | |
CN205607852U (en) | Miniaturized linear light journey methane gas sensor based on infrared absorption principle | |
CN111562232A (en) | Horizontal miniature infrared gas sensor | |
CN106979824B (en) | Non-spectroscopic infrared ethylene gas sensor and measuring method thereof | |
CN110687064A (en) | Infrared detector and infrared gas sensor | |
CN207937352U (en) | A sensitive probe and non-spectral infrared gas sensor detection system | |
CN210221810U (en) | A highly sensitive multi-gas detection system with thermostatic control | |
CN115015152A (en) | A progressive dual-channel infrared gas sensor | |
CN203241337U (en) | Sensing structure for detecting infrared methane concentration | |
CN218646848U (en) | Infrared gas sensor | |
CN206725101U (en) | A kind of NDIR ethylene gas sensor | |
CN212391391U (en) | Short-distance triple-reflection high-resolution infrared absorption gas detector | |
CN110887806B (en) | Filtering-free sheet type infrared heat radiation gas concentration sensor based on metamaterial | |
CN110687066B (en) | Infrared gas sensor | |
CN114965339A (en) | Integrated infrared gas sensor with special-shaped gas chamber and using method thereof | |
CN204705609U (en) | Compound gas sensor | |
CN114460022A (en) | A towed hyperspectral absorbance sensor system and its calibration method | |
CN209979483U (en) | Non-Spectroscopic Infrared Gas Sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |