CN110880599A - A kind of preparation method of high performance fluorinated peanut shell hard carbon electrode material - Google Patents
A kind of preparation method of high performance fluorinated peanut shell hard carbon electrode material Download PDFInfo
- Publication number
- CN110880599A CN110880599A CN201811038837.XA CN201811038837A CN110880599A CN 110880599 A CN110880599 A CN 110880599A CN 201811038837 A CN201811038837 A CN 201811038837A CN 110880599 A CN110880599 A CN 110880599A
- Authority
- CN
- China
- Prior art keywords
- fluorinated
- gas
- hours
- fluorination
- peanut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000017060 Arachis glabrata Nutrition 0.000 title claims abstract description 97
- 235000010777 Arachis hypogaea Nutrition 0.000 title claims abstract description 97
- 235000018262 Arachis monticola Nutrition 0.000 title claims abstract description 97
- 235000020232 peanut Nutrition 0.000 title claims abstract description 97
- 229910021385 hard carbon Inorganic materials 0.000 title claims abstract description 42
- 239000007772 electrode material Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 241001553178 Arachis glabrata Species 0.000 title claims abstract 37
- 239000007789 gas Substances 0.000 claims abstract description 65
- 238000003682 fluorination reaction Methods 0.000 claims abstract description 54
- 239000000463 material Substances 0.000 claims abstract description 47
- 238000001035 drying Methods 0.000 claims abstract description 30
- 239000002296 pyrolytic carbon Substances 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000000197 pyrolysis Methods 0.000 claims abstract description 22
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 20
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000011737 fluorine Substances 0.000 claims abstract description 20
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 20
- 239000008367 deionised water Substances 0.000 claims abstract description 19
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 17
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000005406 washing Methods 0.000 claims abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 11
- 230000004913 activation Effects 0.000 claims abstract description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- 239000011888 foil Substances 0.000 claims abstract description 11
- 238000000227 grinding Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000006229 carbon black Substances 0.000 claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 10
- 238000002791 soaking Methods 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 230000007935 neutral effect Effects 0.000 claims abstract description 7
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract 6
- 239000011248 coating agent Substances 0.000 claims abstract 4
- 238000000576 coating method Methods 0.000 claims abstract 4
- 238000002156 mixing Methods 0.000 claims abstract 4
- 238000004321 preservation Methods 0.000 claims abstract 3
- 238000004140 cleaning Methods 0.000 claims abstract 2
- 239000000243 solution Substances 0.000 claims description 28
- 239000002033 PVDF binder Substances 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 11
- 239000003575 carbonaceous material Substances 0.000 claims description 9
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 9
- 238000001291 vacuum drying Methods 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 4
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 claims 3
- 230000003213 activating effect Effects 0.000 claims 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052744 lithium Inorganic materials 0.000 abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 244000105624 Arachis hypogaea Species 0.000 description 60
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000002002 slurry Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical group CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- 229910001290 LiPF6 Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 239000011267 electrode slurry Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/5835—Comprising fluorine or fluoride salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/10—Carbon fluorides, e.g. [CF]nor [C2F]n
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于碳复合材料技术领域,具体涉及一种高性能氟化花生壳硬碳电极材料的制备方法。The invention belongs to the technical field of carbon composite materials, and in particular relates to a preparation method of a high-performance fluorinated peanut shell hard carbon electrode material.
背景技术Background technique
近年来,由于全球对清洁可持续能源的需求,电动汽车,便携式电子产品和大型电能存储器的可充电电池的储能技术备受关注。可充电锂离子电池(LIBs)在以下领域占据主导地位。手提电子设备,被认为是电动汽车能源供应的首选候选者。然而,由于有限的矿物储量和高成本的锂基化合物,LIB不适合大规模的电能储存。为了解决这个问题,可充电钠离子电池(NIBs)最近由于成本低而引起了研究人员的注意,丰富的钠资源。由于锂离子和钠离子的类似插入化学,各种碳质材料如石墨碳,无定形碳(硬碳和软碳等,纳米结构碳,石墨烯和碳纳米管等))已被广泛用于NIB应用。在这些碳质材料中,具有大的层间距离和无序取向的硬碳(非石墨化碳)吸引了大量的碳质材料由于其对Li+/Na+插入—提取的益处,高容量的优点和快速的速率能力而受到极大的关注,然而它的倍率性能并不令人满意。此外,硬碳通常通过蔗糖,葡萄糖,聚氯乙烯(PVC)等重要工业产品的热解获得。研究者们寻求并且寻求适当的热解过程,以提高循环性能。In recent years, energy storage technologies for rechargeable batteries for electric vehicles, portable electronics, and large-scale electrical energy storage have attracted much attention due to the global demand for clean and sustainable energy. Rechargeable lithium-ion batteries (LIBs) dominate the following fields. Handheld electronic devices are considered to be the preferred candidates for electric vehicle energy supply. However, LIBs are not suitable for large-scale electrical energy storage due to limited mineral reserves and high cost of lithium-based compounds. To address this issue, rechargeable sodium-ion batteries (NIBs) have recently attracted the attention of researchers due to their low cost, abundant sodium resources. Various carbonaceous materials such as graphitic carbon, amorphous carbon (hard and soft carbon, etc., nanostructured carbon, graphene, and carbon nanotubes, etc.) have been widely used in NIBs due to the similar intercalation chemistry of lithium and sodium ions application. Among these carbonaceous materials, hard carbons (non-graphitized carbons) with large interlayer distances and disordered orientations attract a large number of carbonaceous materials due to their benefits for Li + /Na + intercalation-extraction, high-capacity It has received great attention due to its advantages and fast rate capability, however its rate performance is not satisfactory. In addition, hard carbon is usually obtained by the pyrolysis of important industrial products such as sucrose, glucose, polyvinyl chloride (PVC). Researchers have sought and sought appropriate pyrolysis processes to improve cycle performance.
近年来,作为碳源的生物质废弃物因其丰富,低成本和可持续性而备受关注。由竹子,泥炭苔,香蕉皮和柚皮制成的碳质材料已被证明是用于LIB和/或NIB应用的优异电极材料。作为重要的生物质废弃物产品之一,全世界每年产生约600万吨花生壳,其中大部分尚未得到充分利用。先前已经研究了用于LIB应用的花生壳的热解,并且发现获得的碳在70圈的循环下具有超过380mAh g-1的比容量。In recent years, biomass waste as a carbon source has attracted much attention due to its abundance, low cost and sustainability. Carbonaceous materials made from bamboo, peat moss, banana peels, and pomelo peels have been shown to be excellent electrode materials for LIB and/or NIB applications. As one of the important biomass waste products, about 6 million tons of peanut shells are produced worldwide each year, most of which are underutilized. The pyrolysis of peanut shells for LIB applications has been studied previously, and the obtained carbon was found to have a specific capacity of over 380 mAh g -1 under 70 cycles.
一维(1D)纳米结构为沿其微尺度轴的有效电荷传输提供了直接途径,而两个极小的纳米尺度尺寸极大地减少了离子扩散长度。由于其独特的优点,1D纳米结构具有快速的速率能力,并且已经被深入研究用于电化学能量存储装置中。碳纳米管(CNT)具有独特的结构和电子性质,例如良好的导电性和高的表面积重量比以及形成三维导电网络的能力。可以预期氟化碳纳米管(F-CNT)作为Li/CFx电池的高能量密度阴极材料的潜在用途,特别是对于深度氟化的电池。已经证明F-CNTs在低放电速率下表现出稳定的操作电位和法拉第产率。然而,碳纳米管价格昂贵,不适宜大量投入使用,来源广泛的生物质制备硬碳成为了众多科学家们的研究焦点。One-dimensional (1D) nanostructures provide a direct pathway for efficient charge transport along their microscale axes, while the two extremely small nanoscale dimensions greatly reduce the ion diffusion length. Due to their unique advantages, 1D nanostructures have fast rate capability and have been intensively studied for use in electrochemical energy storage devices. Carbon nanotubes (CNTs) have unique structural and electronic properties, such as good electrical conductivity and high surface area-to-weight ratio and the ability to form three-dimensional conductive networks. The potential use of fluorinated carbon nanotubes (F-CNTs) as high-energy-density cathode materials for Li/CFx batteries can be expected, especially for deeply fluorinated batteries. F-CNTs have been demonstrated to exhibit stable operating potential and Faradaic yield at low discharge rates. However, carbon nanotubes are expensive and not suitable for large-scale use. The preparation of hard carbon from a wide range of biomass has become the research focus of many scientists.
上述现有技术存在以下缺点:The above-mentioned prior art has the following disadvantages:
1、倍率性能差;1. Poor rate performance;
2、生产成本高;2. High production cost;
3、容量小。3. Small capacity.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提供一种高性能氟化花生壳硬碳电极材料的制备方法,本发明采用花生壳热解碳材料作为前驱体,经过氟化以后得到具有高能量密度的氟化碳,作为锂原电池正极材料。The object of the present invention is to overcome the deficiencies of the prior art and provide a preparation method of a high-performance fluorinated peanut shell hard carbon electrode material. Density of carbon fluoride as a positive electrode material for lithium primary batteries.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种高性能氟化花生壳硬碳电极材料的制备方法,包括以下步骤:A preparation method of a high-performance fluorinated peanut shell hard carbon electrode material, comprising the following steps:
步骤1,花生壳粉碎,将花生壳粉碎至5mm以下,将粉碎后的所述花生壳用去离子水清洗一遍,以除去部分水溶性杂质;Step 1, crushing the peanut shells, crushing the peanut shells to less than 5 mm, and washing the crushed peanut shells with deionized water to remove some water-soluble impurities;
步骤2,活化,将完成步骤1得到的花生壳浸泡在5~7wt%KOH溶液中浸泡活化,之后烘干,所述KOH溶液用量为所述花生壳质量的2~4倍;
步骤3,热解,将完成步骤2得到的花生壳在惰性气体保护下700~900摄氏度热解4~6小时,热解完成后降温至室温得到热解碳材料;
步骤4,水洗干燥,将所述热解碳材料用去离子水洗至中性,干燥后研磨成粉末;Step 4, washing and drying, washing the pyrolytic carbon material with deionized water to neutrality, and grinding into powder after drying;
步骤5,氟化,采用气相氟化法对步骤4完成后得到的热解碳材料进行氟化,氟化气体为氟气与氮气的混合气体,所述混合气体中氟气的体积分数为15~20vol%,氟化温度200~300摄氏度,保温时间3~5小时,氟化完成后降至室温,得到氟化碳材料;Step 5, fluorination, adopt the gas phase fluorination method to fluorinate the pyrolytic carbon material obtained after the completion of step 4, the fluorinated gas is a mixed gas of fluorine gas and nitrogen gas, and the volume fraction of fluorine gas in the mixed gas is 15 ~20vol%, the fluorination temperature is 200~300 degrees Celsius, the holding time is 3~5 hours, and the temperature is lowered to room temperature after the fluorination is completed to obtain the carbon fluoride material;
步骤6,电极制备,将所述氟化碳材料与炭黑、粘结剂按照质量比为7~8:1:1的比例混合均匀,利用N-甲基吡咯烷酮(NMP)均匀涂布在铝箔上,真空干燥箱烘干10~12小时,相对真空度为-110~-90KPa,温度为90~110摄氏度,得到高性能氟化花生壳硬碳电极材料。Step 6, electrode preparation, the carbon fluoride material, carbon black, and binder are uniformly mixed in a ratio of 7-8:1:1 by mass, and evenly coated on aluminum foil with N-methylpyrrolidone (NMP) Then, drying in a vacuum drying oven for 10 to 12 hours, the relative vacuum degree is -110 to -90KPa, and the temperature is 90 to 110 degrees Celsius to obtain a high-performance fluorinated peanut shell hard carbon electrode material.
在上述技术方案中,所述步骤1,花生壳粉碎,将花生壳粉碎至2~4mm,将粉碎后的所述花生壳用去离子水浸泡2~3小时,以除去部分水溶性杂质。In the above technical solution, in the step 1, peanut shells are pulverized, the peanut shells are pulverized to 2-4 mm, and the pulverized peanut shells are soaked in deionized water for 2-3 hours to remove some water-soluble impurities.
在上述技术方案中,所述步骤2,活化,将完成步骤1得到的花生壳浸泡在7wt%KOH溶液中浸泡活化1.5~3小时后,置于50~80℃烘箱中烘干2~3小时,所述KOH溶液用量为所述花生壳质量的2~4倍;In the above technical solution, in the
在上述技术方案中,所述步骤3,将完成步骤2得到的花生壳在氩气保护下700~900摄氏度热解4~6小时,升温速率5~10摄氏度/分钟,热解完成后自然降温至室温得到热解碳材料。In the above technical solution, in the
在上述技术方案中,所述步骤4,将所述热解碳材料用去离子水洗至中性,置于50~80摄氏度下烘干2~3小时,干燥后研磨成粉末。In the above technical solution, in step 4, the pyrolytic carbon material is washed with deionized water until neutral, dried at 50-80 degrees Celsius for 2-3 hours, and ground into powder after drying.
在上述技术方案中,所述步骤5,将步骤4完成后得到的热解碳材料置入氟化炉,将所述氟化炉内压力降至相对真空度-0.10~-0.12MPa,升温至200~300摄氏度,升温速率5~10摄氏度/分钟,升温结束后再次对氟化炉抽真空至相对真空度-0.1~-0.12MPa,以除去水蒸汽等气体杂质,通入氟化气体至氟化炉内的压力上升至一个大气压,所述氟化气体为氟气与氮气的混合气体,所述混合气体中氟气的体积分数为15~20vol%,保温时间3~5小时,氟化完成后降至室温,得到氟化碳材料。In the above technical solution, in step 5, the pyrolytic carbon material obtained after step 4 is placed into a fluorination furnace, the pressure in the fluorination furnace is reduced to a relative vacuum of -0.10 to -0.12MPa, and the temperature is increased to 200 to 300 degrees Celsius, the heating rate is 5 to 10 degrees Celsius/min. After the heating is completed, the fluorination furnace is evacuated again to a relative vacuum of -0.1 to -0.12MPa to remove gas impurities such as water vapor, and fluorinated gas is introduced to fluorine. The pressure in the furnace rises to one atmospheric pressure, the fluorinated gas is a mixed gas of fluorine gas and nitrogen gas, the volume fraction of fluorine gas in the mixed gas is 15-20 vol%, the holding time is 3-5 hours, and the fluorination is completed. Then, the temperature is lowered to room temperature to obtain a carbon fluoride material.
在上述技术方案中,所述步骤6,所述粘结剂为聚偏氟乙烯的水溶液,所述聚偏氟乙烯的水溶液浓度0.1~0.2克/毫升。In the above technical solution, in the step 6, the binder is an aqueous solution of polyvinylidene fluoride, and the concentration of the aqueous solution of polyvinylidene fluoride is 0.1-0.2 g/ml.
在上述技术方案中,所述步骤6,电极制备,将所述氟化碳材料与炭黑、0.1克/毫升聚偏氟乙烯的水溶液按照质量比为8:1:1的比例混合均匀,利用N-甲基吡咯烷酮(NMP)均匀涂布在铝箔上,真空干燥箱烘干12小时,相对真空度为-0.1MPa,温度为110摄氏度,得到高性能氟化花生壳硬碳电极材料。In the above technical solution, in the step 6, electrode preparation, the carbon fluoride material, carbon black, and an aqueous solution of 0.1 g/ml polyvinylidene fluoride are uniformly mixed in a mass ratio of 8:1:1, using N-methylpyrrolidone (NMP) was evenly coated on the aluminum foil, dried in a vacuum drying oven for 12 hours, the relative vacuum degree was -0.1MPa, and the temperature was 110 degrees Celsius to obtain a high-performance fluorinated peanut shell hard carbon electrode material.
一种高性能氟化花生壳硬碳电极材料的制备方法,包括以下步骤:A preparation method of a high-performance fluorinated peanut shell hard carbon electrode material, comprising the following steps:
步骤1,花生壳粉碎,将花生壳粉碎至3mm以下,将粉碎后的所述花生壳用去离子水浸泡2小时,以除去部分水溶性杂质;Step 1, crushing the peanut shells, crushing the peanut shells to less than 3 mm, and soaking the crushed peanut shells in deionized water for 2 hours to remove some water-soluble impurities;
步骤2,活化,将完成步骤1得到的花生壳浸泡在7wt%KOH溶液中浸泡活化2小时后,置于80℃烘箱中烘干2小时,所述KOH溶液用量为所述花生壳质量的2~4倍;
步骤3,热解,将完成步骤2得到的花生壳在惰性气体保护下800摄氏度热解5小时,升温速率5~10摄氏度/分钟,热解完成后降温至室温得到热解碳材料;
步骤4,水洗干燥,将所述热解碳材料用去离子水洗至中性,置于80摄氏度下烘干3小时,干燥后研磨成粉末;Step 4, washing and drying, washing the pyrolytic carbon material with deionized water to neutrality, drying at 80 degrees Celsius for 3 hours, and grinding into powder after drying;
步骤5,氟化,将步骤4完成后得到的热解碳材料置入氟化炉,将所述氟化炉内压力降至相对真空度-0.1MPa,升温至300摄氏度,升温速率10摄氏度/分钟,升温结束后再次对氟化炉抽真空至相对真空度-0.1MPa,以除去水蒸汽等气体杂质,通入氟化气体至氟化炉内的压力上升至一个大气压,所述氟化气体为氟气与氮气的混合气体,所述混合气体中氟气的体积分数为15~20vol%,保温时间4小时,氟化完成后降至室温,得到氟化碳材料;Step 5, fluorination, put the pyrolytic carbon material obtained after the completion of step 4 into a fluorination furnace, reduce the pressure in the fluorination furnace to a relative vacuum of -0.1MPa, heat up to 300 degrees Celsius, and heat up at a rate of 10 degrees Celsius/ minutes, after the temperature rise is completed, the fluorination furnace is evacuated to a relative vacuum degree of -0.1MPa again to remove gas impurities such as water vapor, and the fluorinated gas is introduced to the pressure in the fluorination furnace to rise to an atmospheric pressure, and the fluorinated gas It is a mixed gas of fluorine gas and nitrogen gas, the volume fraction of fluorine gas in the mixed gas is 15-20 vol%, the holding time is 4 hours, and after the fluorination is completed, it is lowered to room temperature to obtain a fluorocarbon material;
步骤6,电极制备,将所述氟化碳材料与炭黑、浓度为0.1克/毫升的聚偏氟乙烯的水溶液按照质量比为8:1:1的比例混合均匀,利用N-甲基吡咯烷酮(NMP)均匀涂布在铝箔上,真空干燥箱烘干12小时,相对真空度为-0.1MPa,温度为110摄氏度,得到高性能氟化花生壳硬碳电极材料。Step 6, electrode preparation, mix the carbon fluoride material, carbon black, and an aqueous solution of polyvinylidene fluoride with a concentration of 0.1 g/ml uniformly in a ratio of 8:1:1 by mass, using N-methylpyrrolidone (NMP) was evenly coated on the aluminum foil, dried in a vacuum drying oven for 12 hours, the relative vacuum degree was -0.1MPa, and the temperature was 110 degrees Celsius to obtain a high-performance fluorinated peanut shell hard carbon electrode material.
一种按照上述高性能氟化花生壳硬碳电极材料的制备方法制备的高性能氟化花生壳硬碳电极材料。A high-performance fluorinated peanut shell hard carbon electrode material prepared according to the above-mentioned preparation method of the high-performance fluorinated peanut shell hard carbon electrode material.
本发明的优点和有益效果为:容量高,成本低。The advantages and beneficial effects of the invention are: high capacity and low cost.
附图说明Description of drawings
图1是本发明实施例1的循环伏安特性曲线。FIG. 1 is a cyclic voltammetry characteristic curve of Example 1 of the present invention.
实线、点划线与虚线分别代表第1、2、3次的循环伏安特性曲线。上面的三条曲线代表还原峰,下面的三条曲线代表氧化峰。The solid line, the dashed-dotted line and the dashed line represent the 1st, 2nd, and 3rd cyclic voltammetry characteristic curves, respectively. The upper three curves represent reduction peaks, and the lower three curves represent oxidation peaks.
图2是本发明实施例1的恒电流充放电曲线。FIG. 2 is a constant current charge-discharge curve of Example 1 of the present invention.
充电曲线由右到左依次对应第1次充电曲线,第2次充电曲线,第3次充电曲线,第5次充电曲线和第10次充电曲线。The charging curves correspond to the 1st charging curve, the 2nd charging curve, the 3rd charging curve, the 5th charging curve and the 10th charging curve from right to left.
对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据以上附图获得其他的相关附图。For those of ordinary skill in the art, other related drawings can be obtained from the above drawings without any creative effort.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面结合具体实施例进一步说明本发明的技术方案。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions of the present invention are further described below with reference to specific embodiments.
实施例一Example 1
一种高性能氟化花生壳硬碳电极材料的制备方法,包括以下步骤:A preparation method of a high-performance fluorinated peanut shell hard carbon electrode material, comprising the following steps:
步骤1,花生壳粉碎,将花生壳粉碎至3mm以下,将粉碎后的所述花生壳用去离子水浸泡2小时,以除去部分水溶性杂质;Step 1, crushing the peanut shells, crushing the peanut shells to less than 3 mm, and soaking the crushed peanut shells in deionized water for 2 hours to remove some water-soluble impurities;
步骤2,活化,将完成步骤1得到的花生壳浸泡在7wt%KOH溶液中浸泡活化2小时后,置于80℃烘箱中烘干2小时,所述KOH溶液用量为所述花生壳质量的3倍;
步骤3,热解,将完成步骤2得到的花生壳在氩气气体保护下800摄氏度热解5小时,热解完成后降温至室温得到热解碳材料;
步骤4,水洗干燥,将所述热解碳材料用去离子水洗至中性,置于80摄氏度下烘干3小时,干燥后研磨成粉末;Step 4, washing and drying, washing the pyrolytic carbon material with deionized water to neutrality, drying at 80 degrees Celsius for 3 hours, and grinding into powder after drying;
步骤5,氟化,将步骤4完成后得到的热解碳材料置入氟化炉,将所述氟化炉内压力降至相对真空度-0.1MPa,升温至300摄氏度,升温速率10摄氏度/分钟,升温结束后再次对氟化炉抽真空至相对真空度-0.1MPa,以除去水蒸汽等气体杂质,通入氟化气体至氟化炉内的压力上升至一个大气压,所述氟化气体为氟气与氮气的混合气体,所述混合气体中氟气的体积分数为15vol%,保温时间4小时,氟化完成后降至室温,得到氟化碳材料;Step 5, fluorination, put the pyrolytic carbon material obtained after the completion of step 4 into a fluorination furnace, reduce the pressure in the fluorination furnace to a relative vacuum of -0.1MPa, heat up to 300 degrees Celsius, and heat up at a rate of 10 degrees Celsius/ minutes, after the temperature rise is completed, the fluorination furnace is evacuated to a relative vacuum degree of -0.1MPa again to remove gas impurities such as water vapor, and the fluorinated gas is introduced to the pressure in the fluorination furnace to rise to an atmospheric pressure, and the fluorinated gas It is a mixed gas of fluorine gas and nitrogen gas, the volume fraction of fluorine gas in the mixed gas is 15vol%, the holding time is 4 hours, and after the fluorination is completed, it is lowered to room temperature to obtain a fluorocarbon material;
步骤6,电极制备,将所述氟化碳材料80mg与炭黑10mg置于研钵中研磨充分、然后滴加几滴N-甲基吡咯烷酮(NMP),目的是形成粘稠的浆料,再用移液枪加入100微升的0.1克/毫升的聚偏氟乙烯的水溶液,继续研磨,把浆料倒在铝箔上,在上面垫一层塑料隔膜,用擀棒将电极浆料擀薄,置于真空干燥箱烘干12小时,相对真空度为-0.1MPa,温度为110摄氏度,得到高性能氟化花生壳硬碳电极材料。Step 6, electrode preparation, 80 mg of the carbon fluoride material and 10 mg of carbon black are placed in a mortar and fully ground, and then a few drops of N-methylpyrrolidone (NMP) are added dropwise to form a viscous slurry. Add 100 microliters of 0.1 g/ml polyvinylidene fluoride aqueous solution with a pipette gun, continue grinding, pour the slurry on aluminum foil, put a plastic membrane on it, and use a rolling pin to roll out the electrode slurry. It was dried in a vacuum drying oven for 12 hours, the relative vacuum degree was -0.1 MPa, and the temperature was 110 degrees Celsius to obtain a high-performance fluorinated peanut shell hard carbon electrode material.
将步骤6制得的剪成高性能氟化花生壳硬碳电极材料12mm的圆片,组装成纽扣电池。电池由正负极盖、锂片、隔膜、正极片(高性能氟化花生壳硬碳电极材料圆片)、电解液(LiPF6作为溶质,溶剂是碳酸二乙酯:碳酸二甲酯=1:1体积比),组装好电池进行测试。Cut the high-performance fluorinated peanut shell hard carbon electrode material obtained in step 6 into a 12mm disc, and assemble it into a button battery. The battery consists of positive and negative electrode cover, lithium sheet, separator, positive electrode sheet (high-performance fluorinated peanut shell hard carbon electrode material disc), electrolyte (LiPF6 as solute, solvent is diethyl carbonate: dimethyl carbonate = 1: 1 volume ratio), assemble the battery for testing.
从图1循环伏安特性曲线中可以看出:From the cyclic voltammetry characteristic curve in Figure 1, it can be seen that:
实线为第一圈扫描,从氧化峰曲线的上凸部分可以知道,SEI(固态电解质膜)膜形成,在此后的循环中,曲线光滑表明电极反应正常进行,循环性能稳定。The solid line is the first scan. From the convex part of the oxidation peak curve, it can be known that the SEI (solid electrolyte membrane) film is formed. In the subsequent cycles, the smooth curve indicates that the electrode reaction proceeds normally and the cycle performance is stable.
从图2恒电流充放电曲线可以看出:It can be seen from the constant current charge-discharge curve in Figure 2 that:
首圈放电可以看到,容量达到350mAh/g,这表明氟化花生壳热解硬碳具有很高的比容量,在接下来的放电测试中,容量均保持在200mAh/g左右,下降的原因可能是因为氟化碳晶格畸变导致锂离子插入的活性位点数量下降所致。It can be seen from the first cycle of discharge that the capacity reaches 350mAh/g, which indicates that the fluorinated peanut shell pyrolysis hard carbon has a high specific capacity. In the subsequent discharge tests, the capacity is maintained at about 200mAh/g. It may be caused by the decrease in the number of active sites for lithium ion insertion due to the lattice distortion of the carbon fluoride.
本实施例的优点主要在于可以获得高能量密度的氟化碳材料,这种氟化碳材料用于锂原电池,可以显著提高电池的比容量。The advantage of this embodiment is mainly that a carbon fluoride material with high energy density can be obtained, and the carbon fluoride material is used in a lithium primary battery, which can significantly improve the specific capacity of the battery.
实施例2Example 2
一种高性能氟化花生壳硬碳电极材料的制备方法,包括以下步骤:A preparation method of a high-performance fluorinated peanut shell hard carbon electrode material, comprising the following steps:
步骤1,花生壳粉碎,将花生壳粉碎至5mm以下,将粉碎后的所述花生壳用去离子水浸泡3小时,以除去部分水溶性杂质;Step 1, crushing the peanut shells, crushing the peanut shells to less than 5 mm, and soaking the crushed peanut shells in deionized water for 3 hours to remove some water-soluble impurities;
步骤2,活化,将完成步骤1得到的花生壳浸泡在7wt%KOH溶液中浸泡活化3小时后,置于70℃烘箱中烘干3小时,所述KOH溶液用量为所述花生壳质量的4倍;
步骤3,热解,将完成步骤2得到的花生壳在氩气保护下700摄氏度热解6小时,升温速率10摄氏度/分钟,热解完成后降温至室温得到热解碳材料;
步骤4,水洗干燥,将所述热解碳材料用去离子水洗至中性,置于60摄氏度下烘干3小时,干燥后研磨成粉末;Step 4, washing and drying, washing the pyrolytic carbon material with deionized water until neutral, drying at 60 degrees Celsius for 3 hours, and grinding into powder after drying;
步骤5,氟化,将步骤4完成后得到的热解碳材料置入氟化炉,将所述氟化炉内压力降至相对真空度-0.12MPa,升温至300摄氏度,升温速率10摄氏度/分钟,升温结束后再次对氟化炉抽真空至相对真空度-0.12MPa,以除去水蒸汽等气体杂质,通入氟化气体至氟化炉内的压力上升至一个大气压,所述氟化气体为氟气与氮气的混合气体,所述混合气体中氟气的体积分数为20vol%,保温时间5小时,氟化完成后降至室温,得到氟化碳材料;Step 5, fluorination, put the pyrolytic carbon material obtained after the completion of step 4 into a fluorination furnace, reduce the pressure in the fluorination furnace to a relative vacuum of -0.12MPa, heat up to 300 degrees Celsius, and heat up at a rate of 10 degrees Celsius/ 10 minutes, the fluorination furnace is evacuated to relative vacuum degree-0.12MPa again after the temperature rise is completed, to remove gas impurities such as water vapor, and the pressure in the fluorination furnace is fed into the fluorination furnace to an atmospheric pressure, and the fluorinated gas is It is a mixed gas of fluorine gas and nitrogen gas, the volume fraction of fluorine gas in the mixed gas is 20 vol%, the holding time is 5 hours, and after the fluorination is completed, it is lowered to room temperature to obtain a fluorocarbon material;
步骤6,电极制备,将所述氟化碳材料80mg与炭黑10mg置于研钵中研磨充分、然后滴加几滴N-甲基吡咯烷酮(NMP),目的是形成粘稠的浆料,再用移液枪加入100微升的0.1克/毫升的聚偏氟乙烯的水溶液,继续研磨,把浆料倒在铝箔上,在上面垫一层塑料隔膜,用擀棒将电极浆料擀薄,置于真空干燥箱烘干12小时,相对真空度为-0.1MPa,温度为110摄氏度,得到高性能氟化花生壳硬碳电极材料。Step 6, electrode preparation, 80 mg of the carbon fluoride material and 10 mg of carbon black are placed in a mortar and fully ground, and then a few drops of N-methylpyrrolidone (NMP) are added dropwise to form a viscous slurry. Add 100 microliters of 0.1 g/ml polyvinylidene fluoride aqueous solution with a pipette gun, continue grinding, pour the slurry on aluminum foil, put a plastic membrane on it, and use a rolling pin to roll out the electrode slurry. It was dried in a vacuum drying oven for 12 hours, the relative vacuum degree was -0.1 MPa, and the temperature was 110 degrees Celsius to obtain a high-performance fluorinated peanut shell hard carbon electrode material.
将步骤6制得的剪成高性能氟化花生壳硬碳电极材料12mm的圆片,组装成纽扣电池。电池由正负极盖、锂片、隔膜、正极片(高性能氟化花生壳硬碳电极材料12mm的圆片)、电解液(LiPF6作为溶质,溶剂是碳酸二乙酯:碳酸二甲酯=1:1体积比),组装好电池进行测试。Cut the high-performance fluorinated peanut shell hard carbon electrode material obtained in step 6 into a 12mm disc, and assemble it into a button battery. The battery consists of positive and negative electrode caps, lithium sheets, separators, positive electrode sheets (12mm disc of high-performance fluorinated peanut shell hard carbon electrode material), electrolyte (LiPF6 as a solute, and the solvent is diethyl carbonate: dimethyl carbonate = 1:1 volume ratio), assemble the battery for testing.
实施例3Example 3
一种高性能氟化花生壳硬碳电极材料的制备方法,包括以下步骤:A preparation method of a high-performance fluorinated peanut shell hard carbon electrode material, comprising the following steps:
步骤1,花生壳粉碎,将花生壳粉碎至2mm以下,将粉碎后的所述花生壳用去离子水浸泡3小时,以除去部分水溶性杂质;Step 1, crushing the peanut shells, crushing the peanut shells to less than 2 mm, and soaking the crushed peanut shells in deionized water for 3 hours to remove some water-soluble impurities;
步骤2,活化,将完成步骤1得到的花生壳浸泡在7wt%KOH溶液中浸泡活化3小时后,置于80℃烘箱中烘干3小时,所述KOH溶液用量为所述花生壳质量的2倍;
步骤3,热解,将完成步骤2得到的花生壳在惰性气体保护下750摄氏度热解6小时,升温速率8摄氏度/分钟,热解完成后降温至室温得到热解碳材料;
步骤4,水洗干燥,将所述热解碳材料用去离子水洗至中性,置于70摄氏度下烘干3小时,干燥后研磨成粉末;Step 4, washing and drying, washing the pyrolytic carbon material with deionized water until neutral, drying at 70 degrees Celsius for 3 hours, and grinding into powder after drying;
步骤5,氟化,将步骤4完成后得到的热解碳材料置入氟化炉,将所述氟化炉内压力降至相对真空度-0.10MPa,升温至300摄氏度,升温速率10摄氏度/分钟,升温结束后再次对氟化炉抽真空至相对真空度-0.10MPa,以除去水蒸汽等气体杂质,通入氟化气体至氟化炉内的压力上升至一个大气压,所述氟化气体为氟气与氮气的混合气体,所述混合气体中氟气的体积分数为18vol%,保温时间3.5小时,氟化完成后降至室温,得到氟化碳材料;Step 5, fluorination, put the pyrolytic carbon material obtained after the completion of step 4 into a fluorination furnace, reduce the pressure in the fluorination furnace to a relative vacuum of -0.10MPa, heat up to 300 degrees Celsius, and heat up at a rate of 10 degrees Celsius/ 10 minutes, the fluorination furnace is evacuated to relative vacuum degree-0.10MPa again after the temperature rise is completed, to remove gas impurities such as water vapor, and the pressure in the fluorination furnace is fed into the fluorination furnace to an atmospheric pressure, and the fluorinated gas is It is a mixed gas of fluorine gas and nitrogen gas, the volume fraction of fluorine gas in the mixed gas is 18vol%, the holding time is 3.5 hours, and after the fluorination is completed, it is lowered to room temperature to obtain a fluorocarbon material;
步骤6,电极制备,将所述氟化碳材料80mg与炭黑10mg置于研钵中研磨充分、然后滴加几滴N-甲基吡咯烷酮(NMP),目的是形成粘稠的浆料,再用移液枪加入100微升的0.1克/毫升的聚偏氟乙烯的水溶液,继续研磨,把浆料倒在铝箔上,在上面垫一层塑料隔膜,用擀棒将电极浆料擀薄,置于真空干燥箱烘干12小时,相对真空度为-0.1MPa,温度为110摄氏度,得到高性能氟化花生壳硬碳电极材料。Step 6, electrode preparation, 80 mg of the carbon fluoride material and 10 mg of carbon black are placed in a mortar and fully ground, and then a few drops of N-methylpyrrolidone (NMP) are added dropwise to form a viscous slurry. Add 100 microliters of 0.1 g/ml polyvinylidene fluoride aqueous solution with a pipette gun, continue grinding, pour the slurry on aluminum foil, put a plastic membrane on it, and use a rolling pin to roll out the electrode slurry. It was dried in a vacuum drying oven for 12 hours, the relative vacuum degree was -0.1 MPa, and the temperature was 110 degrees Celsius to obtain a high-performance fluorinated peanut shell hard carbon electrode material.
将步骤6制得的剪成高性能氟化花生壳硬碳电极材料12mm的圆片,组装成纽扣电池。电池由正负极盖、锂片、隔膜、正极片(高性能氟化花生壳硬碳电极材料12mm的圆片)、电解液(LiPF6作为溶质,溶剂是碳酸二乙酯:碳酸二甲酯=1:1体积比),组装好电池进行测试。Cut the high-performance fluorinated peanut shell hard carbon electrode material obtained in step 6 into a 12mm disc, and assemble it into a button battery. The battery consists of positive and negative electrode caps, lithium sheets, separators, positive electrode sheets (12mm disc of high-performance fluorinated peanut shell hard carbon electrode material), electrolyte (LiPF6 as a solute, and the solvent is diethyl carbonate: dimethyl carbonate = 1:1 volume ratio), assemble the battery for testing.
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。The present invention has been exemplarily described above. It should be noted that, without departing from the core of the present invention, any simple deformation, modification, or other equivalent replacements that can be performed by those skilled in the art without any creative effort fall into the scope of the present invention. the scope of protection of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811038837.XA CN110880599A (en) | 2018-09-06 | 2018-09-06 | A kind of preparation method of high performance fluorinated peanut shell hard carbon electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811038837.XA CN110880599A (en) | 2018-09-06 | 2018-09-06 | A kind of preparation method of high performance fluorinated peanut shell hard carbon electrode material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110880599A true CN110880599A (en) | 2020-03-13 |
Family
ID=69727580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811038837.XA Pending CN110880599A (en) | 2018-09-06 | 2018-09-06 | A kind of preparation method of high performance fluorinated peanut shell hard carbon electrode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110880599A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111969201A (en) * | 2020-08-21 | 2020-11-20 | 天津大学 | Preparation method of fluorine-doped phenolic resin-based hard carbon negative electrode material |
CN112002881A (en) * | 2020-07-30 | 2020-11-27 | 国网浙江省电力有限公司电力科学研究院 | A kind of hard carbon composite material and its preparation method and application |
CN112331848A (en) * | 2020-11-10 | 2021-02-05 | 厦门永力鑫新能源科技有限公司 | Carbon fluoride material with core-shell structure, preparation method thereof and lithium battery |
CN113422059A (en) * | 2021-06-17 | 2021-09-21 | 贵州梅岭电源有限公司 | High-voltage carbon fluoride composite cathode material and preparation method thereof |
CN113451561A (en) * | 2021-08-30 | 2021-09-28 | 北京壹金新能源科技有限公司 | Silicon-based composite material and preparation method and application thereof |
CN114148998A (en) * | 2021-12-06 | 2022-03-08 | 电子科技大学长三角研究院(湖州) | A kind of precise fluorinated ginkgo biloba and purification method and functional application of lithium primary battery |
CN114335455A (en) * | 2021-12-06 | 2022-04-12 | 电子科技大学长三角研究院(湖州) | A method for precise fluorination of soft carbon with adjustable crystallinity and research on primary battery performance |
CN115939342A (en) * | 2022-12-05 | 2023-04-07 | 浙江凌骁能源科技有限公司 | Nano silicon-carbon composite material, preparation method thereof and lithium ion battery negative plate |
CN116040606A (en) * | 2022-12-30 | 2023-05-02 | 惠州亿纬锂能股份有限公司 | Ultra-microporous fluorine-doped hard carbon negative electrode material and preparation method thereof |
CN116632233A (en) * | 2023-07-19 | 2023-08-22 | 成都锂能科技有限公司 | High-performance sodium ion battery doped hard carbon negative electrode material and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106299365A (en) * | 2016-11-04 | 2017-01-04 | 郑州大学 | A kind of sodium-ion battery biomass hard carbon cathode material, preparation method and sodium-ion battery |
CN106898746A (en) * | 2017-03-14 | 2017-06-27 | 天津大学 | Hierarchical porous structure nano-sized carbon/sulphur composite and the application in lithium-sulfur cell are prepared by raw material of Hawaii shell |
CN106941178A (en) * | 2017-05-12 | 2017-07-11 | 厦门希弗新能源科技有限公司 | A kind of fluorocarbons and its preparation method and application |
CN107689445A (en) * | 2017-07-31 | 2018-02-13 | 西安理工大学 | The preparation method of biomass porous carbon and carbon sulphur composite based on bracteal leaf of corn |
CN108123134A (en) * | 2016-11-28 | 2018-06-05 | 中国科学院大连化学物理研究所 | A kind of porous fluorinated carbon material of Heteroatom doping and preparation method thereof |
-
2018
- 2018-09-06 CN CN201811038837.XA patent/CN110880599A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106299365A (en) * | 2016-11-04 | 2017-01-04 | 郑州大学 | A kind of sodium-ion battery biomass hard carbon cathode material, preparation method and sodium-ion battery |
CN108123134A (en) * | 2016-11-28 | 2018-06-05 | 中国科学院大连化学物理研究所 | A kind of porous fluorinated carbon material of Heteroatom doping and preparation method thereof |
CN106898746A (en) * | 2017-03-14 | 2017-06-27 | 天津大学 | Hierarchical porous structure nano-sized carbon/sulphur composite and the application in lithium-sulfur cell are prepared by raw material of Hawaii shell |
CN106941178A (en) * | 2017-05-12 | 2017-07-11 | 厦门希弗新能源科技有限公司 | A kind of fluorocarbons and its preparation method and application |
CN107689445A (en) * | 2017-07-31 | 2018-02-13 | 西安理工大学 | The preparation method of biomass porous carbon and carbon sulphur composite based on bracteal leaf of corn |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112002881A (en) * | 2020-07-30 | 2020-11-27 | 国网浙江省电力有限公司电力科学研究院 | A kind of hard carbon composite material and its preparation method and application |
CN112002881B (en) * | 2020-07-30 | 2021-10-01 | 国网浙江省电力有限公司电力科学研究院 | A kind of hard carbon composite material and its preparation method and application |
CN111969201A (en) * | 2020-08-21 | 2020-11-20 | 天津大学 | Preparation method of fluorine-doped phenolic resin-based hard carbon negative electrode material |
CN112331848A (en) * | 2020-11-10 | 2021-02-05 | 厦门永力鑫新能源科技有限公司 | Carbon fluoride material with core-shell structure, preparation method thereof and lithium battery |
CN112331848B (en) * | 2020-11-10 | 2021-10-26 | 厦门永力鑫新能源科技有限公司 | Carbon fluoride material with core-shell structure, preparation method thereof and lithium battery |
CN113422059A (en) * | 2021-06-17 | 2021-09-21 | 贵州梅岭电源有限公司 | High-voltage carbon fluoride composite cathode material and preparation method thereof |
CN113451561A (en) * | 2021-08-30 | 2021-09-28 | 北京壹金新能源科技有限公司 | Silicon-based composite material and preparation method and application thereof |
CN113451561B (en) * | 2021-08-30 | 2022-02-15 | 北京壹金新能源科技有限公司 | Silicon-based composite material and preparation method and application thereof |
CN114148998A (en) * | 2021-12-06 | 2022-03-08 | 电子科技大学长三角研究院(湖州) | A kind of precise fluorinated ginkgo biloba and purification method and functional application of lithium primary battery |
CN114335455A (en) * | 2021-12-06 | 2022-04-12 | 电子科技大学长三角研究院(湖州) | A method for precise fluorination of soft carbon with adjustable crystallinity and research on primary battery performance |
CN114148998B (en) * | 2021-12-06 | 2023-08-04 | 电子科技大学长三角研究院(湖州) | Precise fluorinated ginkgo leaf, purification method and functional application of lithium primary battery |
CN114335455B (en) * | 2021-12-06 | 2023-11-10 | 电子科技大学长三角研究院(湖州) | A method for precise fluorination of soft carbon with adjustable crystallinity and research on primary battery performance |
CN115939342A (en) * | 2022-12-05 | 2023-04-07 | 浙江凌骁能源科技有限公司 | Nano silicon-carbon composite material, preparation method thereof and lithium ion battery negative plate |
CN116040606A (en) * | 2022-12-30 | 2023-05-02 | 惠州亿纬锂能股份有限公司 | Ultra-microporous fluorine-doped hard carbon negative electrode material and preparation method thereof |
CN116040606B (en) * | 2022-12-30 | 2025-06-03 | 惠州亿纬锂能股份有限公司 | Ultra-microporous fluorine-doped hard carbon negative electrode material and preparation method thereof |
CN116632233A (en) * | 2023-07-19 | 2023-08-22 | 成都锂能科技有限公司 | High-performance sodium ion battery doped hard carbon negative electrode material and preparation method thereof |
CN116632233B (en) * | 2023-07-19 | 2023-09-29 | 成都锂能科技有限公司 | High-performance sodium ion battery doped hard carbon negative electrode material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110880599A (en) | A kind of preparation method of high performance fluorinated peanut shell hard carbon electrode material | |
CN110336034B (en) | A kind of nitrogen-doped lithium-sulfur battery cathode material, preparation method and application thereof | |
CN107799757B (en) | MoS2Nitrogen-doped carbon tube composite material and preparation method and application thereof | |
CN105489901B (en) | A kind of preparation method and applications of lithium-sulfur cell three-dimensional carbon collector | |
CN107221654B (en) | A three-dimensional porous bird's nest silicon carbon composite negative electrode material and preparation method thereof | |
Ou et al. | Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries | |
Liu et al. | Biomass-derived Activated Carbon for Rechargeable Lithium-Sulfur Batteries. | |
CN103700859A (en) | Graphene-based nitrogen-doped hierachical-pore carbon nanosheet/sulfur composite material for cathode of lithium sulfur battery, as well as preparation method and application of graphene-based nitrogen-doped hierachical-pore carbon nanosheet/sulfur composite material | |
CN105609777B (en) | A kind of preparation method of phosphorus doping two dimension carbon material and its application in sodium-ion battery | |
CN114702022B (en) | Preparation method and application of hard carbon anode material | |
CN107275578A (en) | A kind of method that use nitrogen-doped porous carbon material makes kalium ion battery negative pole | |
Mu et al. | 3D binder-free nanoarchitecture design of porous silicon/graphene fibers for ultrastable lithium storage | |
WO2022153326A1 (en) | High performance sodium ion battery (sib) anode material using rice straw and its method of synthesis | |
CN105226244A (en) | Three-dimensional porous silicon-nano silver composite material and preparation thereof and the application as lithium ion battery negative material | |
CN113193196A (en) | Multifunctional aqueous binder for sodium ion battery and application thereof | |
CN111370656B (en) | Silicon-carbon composite material and preparation method and application thereof | |
Shaji et al. | Efficient conversion of non-biodegradable waste into hard carbon as a cost-effective anode for sodium-ion batteries | |
CN110620226A (en) | Preparation method of nitrogen and boron co-doped carbon fiber loaded molybdenum selenide electrode material | |
CN108767203B (en) | Titanium dioxide nanotube-graphene-sulfur composite material and preparation method and application thereof | |
CN113839034A (en) | Sodium ion battery negative electrode material, preparation method thereof and sodium ion battery | |
CN105680016B (en) | One kind contains addition of C o3O4Lithium sulfur battery anode material and preparation method | |
CN118579759A (en) | A sodium ion battery hard carbon negative electrode material and its preparation method and application | |
CN110877908B (en) | A kind of preparation method of corn starch pyrolysis hard carbon electrode material | |
CN111725502A (en) | Positive electrode material and preparation method thereof, positive electrode sheet, and ion battery | |
CN116789099A (en) | A method of preparing hard carbon materials using anthracite coal and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200313 |
|
RJ01 | Rejection of invention patent application after publication |