[go: up one dir, main page]

CN110857449A - Improved method for producing polyhydroxyalkanoate - Google Patents

Improved method for producing polyhydroxyalkanoate Download PDF

Info

Publication number
CN110857449A
CN110857449A CN201810971946.0A CN201810971946A CN110857449A CN 110857449 A CN110857449 A CN 110857449A CN 201810971946 A CN201810971946 A CN 201810971946A CN 110857449 A CN110857449 A CN 110857449A
Authority
CN
China
Prior art keywords
halomonas
acetic acid
bluephagenesis
pha
acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810971946.0A
Other languages
Chinese (zh)
Other versions
CN110857449B (en
Inventor
陈国强
凌晨
乔冠清
帅博闻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201810971946.0A priority Critical patent/CN110857449B/en
Publication of CN110857449A publication Critical patent/CN110857449A/en
Application granted granted Critical
Publication of CN110857449B publication Critical patent/CN110857449B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供一种改进的微生物生产聚羟基脂肪酸酯(PHA)的方法,所述方法包括向包含碳源以供微生物合成PHA的基础培养基中添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物;优选添加乙酸或乙酸盐。该方法可以用于提高微生物合成PHA聚合物的产量和/或控制PHA共聚物产物中的单体比例。The present invention provides an improved method for microbial production of polyhydroxyalkanoates (PHA), the method comprising adding acetic acid, acetate, acetate or other basal medium to a basal medium comprising a carbon source for microbial synthesis of PHA acetic acid derivatives; preferably acetic acid or an acetate salt is added. This method can be used to increase the yield of microbially synthesized PHA polymers and/or to control the monomer ratio in the PHA copolymer product.

Description

一种改进的生产聚羟基脂肪酸酯的方法An improved method for producing polyhydroxyalkanoates

技术领域technical field

本发明涉及生物技术领域,具体地,本发明涉及一种改进的生产聚羟基脂肪酸酯(PHA)的方法。更具体地,本发明涉及一种提高微生物合成PHA的产量和/或控制PHA共聚物产物中单体比例的方法,其是通过在培养基中添加一定量的乙酸来实现的。The present invention relates to the field of biotechnology, in particular, the present invention relates to an improved method for producing polyhydroxyalkanoates (PHA). More specifically, the present invention relates to a method for increasing the yield of microbially synthesized PHA and/or controlling the ratio of monomers in the PHA copolymer product by adding a certain amount of acetic acid to the culture medium.

背景技术Background technique

目前工业上大规模生产生物聚合物通常是利用葡萄糖或者葡萄糖酸钠作为碳源,其中葡萄糖或者葡萄糖酸钠首先通过糖酵解途径生成丙酮酸,然后再从丙酮酸出发生成乙酰辅酶A,然后进入从乙酰辅酶A出发合成各种聚合物单体的合成途径。糖酵解会产生大量的NADH和ATP,从丙酮酸生成乙酰辅酶A这一过程也会产生NADH,在高密度的细胞培养下由于氧气的缺乏会导致NADH积累,进而影响产物合成,造成资源浪费。因此,现有技术中需要一种能够缓解或解决这种问题的方法。At present, the large-scale production of biopolymers in industry usually uses glucose or sodium gluconate as a carbon source, wherein glucose or sodium gluconate first generates pyruvate through the glycolysis pathway, and then starts from pyruvate to generate acetyl-CoA, and then enters Synthetic pathways for the synthesis of various polymer monomers starting from acetyl-CoA. Glycolysis will produce a large amount of NADH and ATP, and the process of generating acetyl-CoA from pyruvate will also produce NADH. Under high-density cell culture, the lack of oxygen will lead to the accumulation of NADH, which will affect product synthesis and waste resources. . Therefore, there is a need in the art for a method that can alleviate or solve this problem.

聚合物按照单体的组成可以分为共聚物(copolymer)和均聚物(homopolymer),均聚物由一种单体组成,而共聚物由两种以上的单体组成。均聚物的材料性能单一并且不可调节,而共聚物的材料性能可以通过改变其中的单体比例来进行调节。共聚物由于更加优良的材料性能具有更高的附加值,其中单体的比例很大程度上决定了其材料性能。According to the composition of monomers, polymers can be divided into copolymers and homopolymers. Homopolymers are composed of one kind of monomers, while copolymers are composed of two or more kinds of monomers. The material properties of homopolymers are single and not adjustable, while the material properties of copolymers can be adjusted by changing the proportion of monomers in them. Copolymers have higher added value due to better material properties, in which the proportion of monomers largely determines their material properties.

此外,已知有很多微生物通过代谢改造能够生产PHA共聚物,但是其中单体的比例控制比较困难。目前控制单体比例的方法主要分为两类,其中一类是通过基因工程改造微生物的代谢通路,通过特定基因表达优化以提高特定单体的比例,或者通过抑制特定基因的表达降低特定单体的比例。另外一类是通过直接控制特定的相关前体的添加量来改变聚合物中相应单体的比例,但是大多数单体的相关前体价格都很昂贵,有些前体甚至对细胞有毒性,导致这样的方法很难大规模应用到工业生产中。因此,找到一种低成本调节共聚物中单体比例的方法在工业生产中有重要意义。In addition, many microorganisms are known to be able to produce PHA copolymers through metabolic engineering, but it is difficult to control the ratio of monomers. The current methods for controlling the proportion of monomers are mainly divided into two categories, one of which is to genetically engineer the metabolic pathways of microorganisms, optimize the expression of specific genes to increase the proportion of specific monomers, or reduce the expression of specific genes to reduce specific monomers proportion. The other type is to change the proportion of the corresponding monomers in the polymer by directly controlling the amount of specific related precursors added, but the related precursors of most monomers are expensive, and some precursors are even toxic to cells, resulting in Such a method is difficult to apply to industrial production on a large scale. Therefore, finding a low-cost method to adjust the ratio of monomers in copolymers is of great significance in industrial production.

发明内容SUMMARY OF THE INVENTION

为了解决现有技术的前述问题而作出本发明。The present invention has been made in order to solve the aforementioned problems of the prior art.

对于微生物合成PHA聚合物的糖酵解途径,本发明的发明人经过反复实验研究和分析,发现高细胞密度发酵下聚合物产物合成受抑制是因为NADH的积累导致丙酮酸生成乙酰辅酶A这一途径受抑制,进而导致从乙酰辅酶A出发合成各种PHA聚合物单体的合成途径受抑制,最终导致聚合物产物合成受限。鉴于此,找到一种价格低廉的方法降低或解除对丙酮酸代谢的抑制对工业生产聚合物有重要的意义。Regarding the glycolytic pathway of microbial synthesis of PHA polymers, the inventors of the present invention have repeatedly conducted experimental research and analysis and found that the synthesis of polymer products is inhibited under high cell density fermentation because the accumulation of NADH leads to the formation of acetyl-CoA from pyruvate. The pathway is inhibited, which in turn leads to the inhibition of the synthetic pathway for the synthesis of various PHA polymer monomers from acetyl-CoA, which ultimately results in limited polymer product synthesis. In view of this, finding an inexpensive method to reduce or relieve the inhibition of pyruvate metabolism is of great significance for the industrial production of polymers.

为降低或解除对丙酮酸代谢的抑制,发明人经过研究发现,向微生物发酵的培养基中添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物能够减轻NADH积累对丙酮酸生成乙酰辅酶A这一途径的抑制,减少丙酮酸积累,提高产物产量。并且,本发明还意外地发现,添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物甚至还能起到调节共聚物中单体比例的效果。In order to reduce or release the inhibition of pyruvate metabolism, the inventors have found through research that adding acetic acid, acetate, acetate or other acetic acid derivatives to the microbial fermentation medium can reduce the accumulation of NADH on pyruvate to generate acetyl coenzyme. A Inhibition of this pathway reduces pyruvate accumulation and increases product yield. Furthermore, the present inventors unexpectedly found that the addition of acetic acid, acetate salt, acetate ester or other acetic acid derivatives can even have the effect of adjusting the proportion of monomers in the copolymer.

基于上述发现,本发明涉及以下方面。Based on the above findings, the present invention relates to the following aspects.

(一)(one)

本发明的一个目的是提高微生物合成聚合物比如聚羟基脂肪酸酯(PHA)方法中得到的聚合物产量。本发明的发明人发现,该目的可以通过在基础培养基中添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物来实现,并且本发明的生产工艺简单,成本低廉,具有广阔的应用前景。It is an object of the present invention to increase the yield of polymers obtained in processes for microbial synthesis of polymers such as polyhydroxyalkanoates (PHA). The inventors of the present invention found that the purpose can be achieved by adding acetic acid, acetate, acetate or other acetic acid derivatives to the basal medium, and the production process of the present invention is simple, low in cost, and has wide application prospect.

因此,在一个方面,本发明提供一种改进的生产聚羟基脂肪酸酯(PHA)的方法,其包括向包含碳源的用于培养微生物以生产聚合物的基础培养基中添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物,优选添加乙酸或乙酸盐。通过这样的方法,微生物生产聚合物的过程中所产生的丙酮酸代谢抑制得以减轻,碳源的利用率得到提高,最终可实现提高微生物细胞中的聚合物含量和终产量的目的。Accordingly, in one aspect, the present invention provides an improved method for the production of polyhydroxyalkanoates (PHA) comprising adding acetic acid, acetic acid to a basal medium comprising a carbon source for culturing microorganisms to produce polymers Salts, acetates or other acetic acid derivatives, preferably acetic acid or acetates are added. Through such a method, the inhibition of pyruvic acid metabolism produced in the process of microbial production of polymers can be alleviated, the utilization rate of carbon sources can be improved, and finally the purpose of increasing the polymer content and final yield in microbial cells can be achieved.

本发明的方法所涉及的微生物是能够合成生物聚合物的革兰氏阳性或阴性细菌。所述细菌包括但不限于,埃希氏杆菌属(Escherichia)、嗜盐菌属(Halophile)、盐单胞菌属(Halomonas)、假单胞菌属(Pseudomonas)、或芽孢杆菌属(Bacillus)等属的细菌、或者它们的组合。优选所述微生物是盐单胞菌属(Halomonas)属的细菌。更具体地,所述的微生物可以是,例如,大肠杆菌(Escherichia coli)、恶臭假单胞菌(Pseudomonas putida)、Halomonas campaniensis、或Halomonas bluephagenesis等等或者其组合,优选Halomonascampaniensis或Halomonas bluephagenesis或者其组合。The microorganisms involved in the method of the present invention are Gram-positive or negative bacteria capable of synthesizing biopolymers. The bacteria include, but are not limited to, Escherichia, Halophile, Halomonas, Pseudomonas, or Bacillus bacteria of the same genus, or a combination thereof. Preferably the microorganism is a bacterium of the genus Halomonas. More specifically, the microorganism can be, for example, Escherichia coli (Escherichia coli), Pseudomonas putida (Pseudomonas putida), Halomonas campaniensis, or Halomonas bluephagenesis, etc. or a combination thereof, preferably Halomonascampaniensis or Halomonas bluephagenesis or a combination thereof .

本发明的方法所涉及的上述微生物可以野生型(即以其天然形式在合适的培养条件下能够利用适当的底物合成聚合物,比如PHA),也可以是经过人工改造的重组型,包括但不限于通过诱变、基因工程改造等得到的菌。例如,在重组型的情况下,上述微生物可以是在自身不能够合成PHA的微生物中通过人工方式(比如导入PHA合成相关的基因)改造、进而使其能够在合适的培养条件下能够利用适当的底物合成聚合物的重组微生物,例如通过在大肠杆菌中引入聚羟基丁酸酯的合成基因phaC基因而得到的重组微生物。其还可以是在能够合成PHA的野生型微生物(如Halomonas bluephagenesis TD01)的基础上通过破坏/敲除etf基因而获得,例如通过破坏/敲除etf-α或etf-β基因而获得,更具体地,例如通过在Halomonas bluephagenesis、Halomonas campaniensis和恶臭假单胞菌(Pseudomonasputida)的基础上敲除etf-α或etf-β基因而获得的细菌。例如,本发明的方法所涉及的微生物可以是Halomonas bluephagenesis TD01,或者是在Halomonas bluephagenesis TD01的基础上通过诱变、基因工程改造等方法得到的工程菌。The above-mentioned microorganisms involved in the method of the present invention can be wild-type (that is, in their natural form, capable of synthesizing polymers, such as PHA, using suitable substrates under suitable culture conditions), or they can be artificially engineered recombinant types, including but not limited to: It is not limited to bacteria obtained by mutagenesis, genetic engineering, or the like. For example, in the case of a recombinant type, the above-mentioned microorganisms may be artificially modified (such as introducing genes related to PHA synthesis) in microorganisms that are not capable of synthesizing PHA by themselves, so that they can utilize suitable A recombinant microorganism for synthesizing a polymer as a substrate, for example, a recombinant microorganism obtained by introducing the phaC gene, a synthetic gene of polyhydroxybutyrate, into Escherichia coli. It can also be obtained by disrupting/knockout etf gene on the basis of wild-type microorganism capable of synthesizing PHA (such as Halomonas bluephagenesis TD01), for example, by disrupting/knockout etf-alpha or etf-beta gene, more specifically Ground, for example, bacteria obtained by knocking out etf-alpha or etf-beta genes on the basis of Halomonas bluephagenesis, Halomonas campaniensis and Pseudomonas putida. For example, the microorganism involved in the method of the present invention may be Halomonas bluephagenesis TD01, or an engineered bacteria obtained by mutagenesis, genetic engineering and other methods on the basis of Halomonas bluephagenesis TD01.

更优选地,所述微生物可以选自以下的一种或多种:More preferably, the microorganism can be selected from one or more of the following:

Escherichia coli JM109-pBHR68;Escherichia coli JM109-pBHR68;

Escherichia coli JM109SG-p68orfZ+pMCSH5;Escherichia coli JM109SG-p68orfZ+pMCSH5;

Halomonas bluephagenesis TD01;Halomonas bluephagenesis TD01;

Halomonas bluephagenesis TD08AB;Halomonas bluephagenesis TD08AB;

Halomonas bluephagenesis TD△gabD2-D2;Halomonas bluephagenesis TD△gabD2-D2;

Halomonas bluephagenesis TDΔβ;Halomonas bluephagenesis TDΔβ;

Halomonas bluephagenesis TDΔα。Halomonas bluephagenesis TDΔα.

本发明所涉及的微生物可以在适当的培养条件(温度、转速、溶氧、pH等等)下培养,只要该培养能够使其合成期望的PHA聚合物即可。例如,培养过程中的温度和转速可以由本领域技术人员根据微生物的特性来适当地设定,或常规的优化实验来进行选择。The microorganisms involved in the present invention can be cultured under appropriate culture conditions (temperature, rotational speed, dissolved oxygen, pH, etc.) as long as the culture enables them to synthesize the desired PHA polymer. For example, the temperature and rotational speed during the cultivation process can be appropriately set by those skilled in the art according to the characteristics of microorganisms, or selected by routine optimization experiments.

在上述方法中,用于发酵培养的培养基可通过在基础培养基的基础上添加与产物合成相关的底物(也称为碳源)和调节物质(如乙酸)而获得。例如最终的培养基可包含葡萄糖、葡萄糖酸、葡萄糖酸盐、葡萄糖酸酯或者其组合作为微生物培养的碳源。为了区分,本文所述的碳源不涵盖乙酸。优选地,所述培养基包含葡萄糖作为碳源。任选地,所述培养基还可以含有或者不含有葡萄糖以外的碳源。In the above method, the medium for fermentation culture can be obtained by adding substrates (also called carbon sources) related to product synthesis and regulating substances (eg, acetic acid) on the basis of basal medium. For example, the final medium may contain glucose, gluconic acid, gluconate, gluconate, or a combination thereof as a carbon source for microbial culture. For the sake of distinction, the carbon sources described herein do not encompass acetic acid. Preferably, the medium contains glucose as carbon source. Optionally, the medium may or may not also contain carbon sources other than glucose.

以上提及的葡萄糖酸盐可以是任意一种或多种葡萄糖酸盐,只要其可以用作本发明所涉及微生物的碳源用于聚合物生产即可,例如,葡萄糖酸钠、葡萄糖酸钾、葡萄糖酸钙等。作为碳源的葡萄糖、葡萄糖酸、葡萄糖酸盐或葡萄糖酸酯的浓度可以由本领域技术人员根据使用的培养条件和微生物来适当调整,并且可以在,例如,约1-100g/L、约1-90g/L、约1-80g/L、约1-70g/L、或约1-60g/L的范围内;优选地,该浓度可以在约3-60g/L、约3-50g/L或约3-40g/L的范围内;更优选约5-60g/L、约10-60g/L、约20-40g/L的范围内,包括例如约25.5-34.5g/L。需理解,以上浓度范围并非是穷尽式列举,而是可以由本领域技术人员根据发酵体系的条件通过实验进行适当的调整,这些浓度范围均涵盖在本发明的范围内,只要其不会不利地影响本发明目的即可。The gluconate mentioned above may be any one or more gluconates as long as it can be used as a carbon source for the microorganism involved in the present invention for polymer production, for example, sodium gluconate, potassium gluconate, Calcium gluconate, etc. The concentration of glucose, gluconic acid, gluconate or gluconate as a carbon source can be appropriately adjusted by those skilled in the art according to the culture conditions and microorganisms used, and can be, for example, about 1-100 g/L, about 1- 90g/L, about 1-80g/L, about 1-70g/L, or about 1-60g/L; preferably, the concentration may be about 3-60g/L, about 3-50g/L or In the range of about 3-40 g/L; more preferably in the range of about 5-60 g/L, about 10-60 g/L, about 20-40 g/L, including, for example, about 25.5-34.5 g/L. It should be understood that the above concentration ranges are not an exhaustive enumeration, but can be appropriately adjusted by those skilled in the art through experiments according to the conditions of the fermentation system, and these concentration ranges are all covered within the scope of the present invention, as long as they will not adversely affect The purpose of the present invention is sufficient.

在上述方法中,乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物可以是在微生物培养开始之前加入到基础培养基中。或者,乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物也可以是在微生物培养过程中一次、分批多次或流加到培养基中。再或者,乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物还可以是在将微生物接种到培养基的同时加入到培养基中。乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物的添加浓度可以为,例如在约1-12g/L、约1-11g/L、约1-10g/L、约1-9g/L或约1-8g/L的范围内;优选约1-8g/L,例如在约2-8g/L、约2-7g/L、约2-6g/L、约2-5g/L、约2-4g/L、或2-3g/L的范围内;更优选2-6g/L,例如在约3-6g/L或约3-5g/L的范围内。这些浓度可以在本发明的基础上根据培养基的组成和培养条件等因素而适当地调整,只要其不影响本发明的效果即可。In the above method, acetic acid, acetate salts, acetate esters or other acetic acid derivatives may be added to the basal medium prior to the initiation of microbial culture. Alternatively, acetic acid, acetate salts, acetate esters, or other acetic acid derivatives can also be added to the medium once, in multiple batches, or as a stream during microbial cultivation. Still alternatively, acetic acid, acetate salts, acetate esters or other acetic acid derivatives may be added to the medium at the same time as the microorganisms are inoculated into the medium. Acetic acid, acetate salts, acetate esters or other acetic acid derivatives can be added at concentrations, for example, at about 1-12 g/L, about 1-11 g/L, about 1-10 g/L, about 1-9 g/L or in the range of about 1-8 g/L; preferably about 1-8 g/L, for example at about 2-8 g/L, about 2-7 g/L, about 2-6 g/L, about 2-5 g/L, about In the range of 2-4 g/L, or 2-3 g/L; more preferably 2-6 g/L, for example in the range of about 3-6 g/L or about 3-5 g/L. These concentrations can be appropriately adjusted on the basis of the present invention according to factors such as the composition of the medium and the culturing conditions, as long as they do not affect the effects of the present invention.

以上提及的乙酸盐可以是任意一种或多种乙酸盐,只要本领域技术人员可以合理地预期其添加不会不利地影响本发明的目的即可,例如,乙酸盐可以是,但不限于:乙酸钠、乙酸钾、乙酸钙等。同样地,上述提及的乙酸酯可以是任意一种或多种乙酸酯,只要本领域技术人员可以合理地预期其添加不会不利地影响本发明的目的即可,例如,乙酸甲酯、乙酸乙酯、乙酸丙酯等。The acetate salts mentioned above may be any one or more of the acetate salts, as long as those skilled in the art can reasonably expect that their addition will not adversely affect the purpose of the present invention, for example, the acetate salts may be, But not limited to: sodium acetate, potassium acetate, calcium acetate, etc. Likewise, the above-mentioned acetates may be any one or more acetates, as long as those skilled in the art can reasonably expect their addition to not adversely affect the purposes of the present invention, for example, methyl acetate , ethyl acetate, propyl acetate, etc.

以上提及的基础培养基是指包含营养物质可以用于支持本发明微生物的生长的培养基。上述基础培养基可以是本领域常规用于微生物培养的培养基,比如矿物质培养基、LB培养基、MM培养基或牛肉膏蛋白胨等等,也可以是在这些培养基的基础上根据期望目的进行改良的培养基。也就是说,本领域技术人员可以常规选择合适的基础培养基,只要其能够允许微生物的生长即可。The basal medium mentioned above refers to a medium containing nutrients that can be used to support the growth of the microorganisms of the present invention. The above-mentioned basal medium can be the medium conventionally used in the art for microbial culture, such as mineral medium, LB medium, MM medium or beef extract peptone, etc., or can be based on these mediums according to the desired purpose. modified medium. That is, those skilled in the art can routinely select a suitable basal medium as long as it can allow the growth of microorganisms.

在本发明的方法中,所合成的聚合物可以是聚羟基脂肪酸酯(PHA),但不仅限于此。具体地,该PHA可以是共聚物或均聚物,或者其组合。在均聚物的情况下,其可包括但不限于聚羟基丙酸酯、聚羟基丁酸酯、聚羟基戊酸酯等等,例如,聚-3-羟基丁酸酯(P3HB)、聚-4-羟基丁酸酯(P4HB)、聚-3-羟基丙酸酯(P3HP)或聚-3-羟基戊酸酯(P3HV)等。在共聚物的情况下,所述共聚物可以是二聚物、三聚物,但不限于此,例如,共聚物可以是羟基丙酸酯与羟基丁酸酯的共聚物;羟基丙酸酯与羟基戊酸酯的共聚物;羟基丁酸酯与羟基戊酸酯的共聚物;羟基丙酸酯、羟基丁酸酯、羟基戊酸酯三者的共聚物等等。更具体地,其可以是聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(P3HB4HB)、聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(P3HB3HV)、聚(3-羟基丁酸酯-co-4-羟基丁酸酯-co-3-羟基戊酸酯)(P3HB4HB3HV)等等。In the method of the present invention, the synthesized polymer may be polyhydroxyalkanoate (PHA), but is not limited thereto. Specifically, the PHA can be a copolymer or a homopolymer, or a combination thereof. In the case of homopolymers, it may include, but is not limited to, polyhydroxypropionate, polyhydroxybutyrate, polyhydroxyvalerate, and the like, eg, poly-3-hydroxybutyrate (P3HB), poly- 4-hydroxybutyrate (P4HB), poly-3-hydroxypropionate (P3HP) or poly-3-hydroxyvalerate (P3HV), etc. In the case of a copolymer, the copolymer may be a dimer, a trimer, but not limited thereto, for example, the copolymer may be a copolymer of hydroxypropionate and hydroxybutyrate; hydroxypropionate and hydroxybutyrate Copolymers of hydroxyvalerate; copolymers of hydroxybutyrate and hydroxyvalerate; copolymers of hydroxypropionate, hydroxybutyrate, hydroxyvalerate, etc. More specifically, it may be poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB3HV) , poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB4HB3HV) and the like.

根据本发明的技术方案,通过向用于培养微生物的包含有碳源的基础培养基中添加适量的乙酸,使得丙酮酸的代谢抑制得到缓解或消除,微生物合成聚合物的能力提高,并且细胞干重也增加,最终得到的聚合物产量也增加。According to the technical solution of the present invention, by adding an appropriate amount of acetic acid to a basal medium containing a carbon source for culturing microorganisms, the metabolic inhibition of pyruvate is alleviated or eliminated, the ability of microorganisms to synthesize polymers is improved, and cell stemness is improved. The weight also increases, as does the final polymer yield.

基于前述,本发明还提供一种用于在聚羟基脂肪酸酯的微生物合成中提高聚羟基脂肪酸酯产量的方法,其包括向包含碳源的用于培养微生物以生产聚合物的基础培养基中添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物,优选添加乙酸或乙酸盐。关于该方法中所涉及的具体微生物、碳源、培养基、乙酸(或乙酸盐、乙酸酯或其他的乙酸衍生物)的限定如前文所述。Based on the foregoing, the present invention also provides a method for increasing the yield of polyhydroxyalkanoates in the microbial synthesis of polyhydroxyalkanoates, comprising adding a carbon source to a basal medium for culturing microorganisms to produce polymers Add acetic acid, acetate, acetate or other acetic acid derivatives, preferably acetic acid or acetate. Definitions regarding the specific microorganism, carbon source, culture medium, acetic acid (or acetate, acetate or other acetic acid derivative) involved in the method are as previously described.

(二)(two)

本发明的另一个目的是调节在微生物法生产共聚物中产生的共聚物产物中的单体比例。Another object of the present invention is to adjust the monomer ratio in the copolymer product produced in the microbial production of the copolymer.

因此,在第二个方面,本发明提供一种改进的生产聚羟基脂肪酸酯(PHA)的方法,所述方法包括向包含碳源的用于所述微生物的生长和培养的基础培养基中添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物,所述聚合物为共聚聚羟基脂肪酸酯。通过这样的方法,可以改变微生物代谢流的分流,改变微生物内部环境,影响乙酰辅酶A进入不同单体合成途径的代谢流,从而改变细胞积累生物聚合物中各种单体的比例。本发明的生产工艺简单,成本低廉,应用前景广阔。Accordingly, in a second aspect, the present invention provides an improved method for the production of polyhydroxyalkanoates (PHA), said method comprising adding a carbon source to a basal medium for growth and cultivation of said microorganisms Add acetic acid, acetate, acetate or other acetic acid derivatives, and the polymer is a copolymerized polyhydroxyalkanoate. Through such an approach, it is possible to change the shunting of microbial metabolic flow, change the internal environment of the microorganism, and affect the metabolic flow of acetyl-CoA into different monomer synthesis pathways, thereby changing the ratio of various monomers in the cell-accumulated biopolymer. The production process of the invention is simple, the cost is low, and the application prospect is broad.

本发明的方法所涉及的微生物是能够合成生物聚合物的革兰氏阳性或阴性细菌。所述细菌包括但不限于,埃希氏杆菌属(Escherichia)、嗜盐菌属(Halophile)、盐单胞菌属(Halomonas)、假单胞菌属(Pseudomonas)、或芽孢杆菌属(Bacillus)等属的细菌、或者它们的组合。优选所述微生物是盐单胞菌属(Halomonas)属的细菌。更具体地,所述的微生物可以是,例如,大肠杆菌(Escherichia coli)、恶臭假单胞菌(Pseudomonas putida)、Halomonas campaniensis、或Halomonas bluephagenesis等等或者其组合,优选Halomonascampaniensis或Halomonas bluephagenesis或者其组合。The microorganisms involved in the method of the present invention are Gram-positive or negative bacteria capable of synthesizing biopolymers. The bacteria include, but are not limited to, Escherichia, Halophile, Halomonas, Pseudomonas, or Bacillus bacteria of the same genus, or a combination thereof. Preferably the microorganism is a bacterium of the genus Halomonas. More specifically, the microorganism can be, for example, Escherichia coli (Escherichia coli), Pseudomonas putida (Pseudomonas putida), Halomonas campaniensis, or Halomonas bluephagenesis, etc. or a combination thereof, preferably Halomonascampaniensis or Halomonas bluephagenesis or a combination thereof .

本发明的方法所涉及的微生物可以野生型(即以其天然形式在合适的培养条件下能够利用适当的底物合成聚合物,比如PHA),也可以是经过人工改造的重组型。在重组型的情况下,其可以是在自身不能够合成PHA的微生物中通过人工方式(比如导入PHA合成相关的基因)改造、进而使其能够在合适的培养条件下能够利用适当的底物合成聚合物的重组微生物,例如通过在大肠杆菌中引入聚羟基丁酸酯合成基因phaC基因得到的重组微生物。其还可以是在能够合成PHA的野生型微生物(如Halomonas bluephagenesis TD01)的基础上通过破坏/敲除etf基因而获得,例如通过破坏/敲除etf-α或etf-β基因而获得,更具体地,例如通过在Halomonas bluephagenesis、Halomonas campaniensis、恶臭假单胞菌(Pseudomonas putida)的基础上敲除etf-α或etf-β基因而获得的细菌。例如,本发明的方法所涉及的微生物可以是Halomonas bluephagenesis TD01,或者是在Halomonasbluephagenesis TD01的基础上通过诱变、基因工程改造等方法得到的工程菌。The microorganisms involved in the method of the present invention may be wild-type (ie, in their natural form, capable of synthesizing polymers, such as PHA, using suitable substrates under suitable culture conditions), or they may be artificially engineered recombinant types. In the case of recombinant type, it can be artificially engineered (such as introducing genes related to PHA synthesis) in microorganisms that are not capable of synthesizing PHA themselves, so that they can be synthesized using appropriate substrates under appropriate culture conditions A recombinant microorganism of a polymer, for example, a recombinant microorganism obtained by introducing a polyhydroxybutyrate synthesis gene phaC gene into Escherichia coli. It can also be obtained by disrupting/knockout etf gene on the basis of wild-type microorganism capable of synthesizing PHA (such as Halomonas bluephagenesis TD01), for example, by disrupting/knockout etf-alpha or etf-beta gene, more specifically Ground, for example, bacteria obtained by knocking out the etf-alpha or etf-beta gene on the basis of Halomonas bluephagenesis, Halomonas campaniensis, Pseudomonas putida. For example, the microorganism involved in the method of the present invention can be Halomonas bluephagenesis TD01, or an engineered bacteria obtained by mutagenesis, genetic engineering and other methods on the basis of Halomonas bluephagenesis TD01.

更优选地,所述微生物可以选自以下的一种或多种:More preferably, the microorganism can be selected from one or more of the following:

Escherichia coli JM109-pBHR68;Escherichia coli JM109-pBHR68;

Escherichia coli JM109SG-p68orfZ+pMCSH5;Escherichia coli JM109SG-p68orfZ+pMCSH5;

Halomonas bluephagenesis TD01;Halomonas bluephagenesis TD01;

Halomonas bluephagenesis TD08AB;Halomonas bluephagenesis TD08AB;

Halomonas bluephagenesis TD△gabD2-D2;Halomonas bluephagenesis TD△gabD2-D2;

Halomonas bluephagenesis TDΔβ;Halomonas bluephagenesis TDΔβ;

Halomonas bluephagenesis TDΔα。Halomonas bluephagenesis TDΔα.

本发明所涉及的微生物可以在适当的培养条件(温度、转速、溶氧、pH等等)下培养,只要该培养能够使其合成期望的聚合物即可。例如,培养过程中的温度和转速可以由本领域技术人员根据微生物的特性来适当地设定,或常规的优化实验来进行选择。The microorganisms involved in the present invention can be cultured under appropriate culture conditions (temperature, rotational speed, dissolved oxygen, pH, etc.) as long as the culture enables them to synthesize a desired polymer. For example, the temperature and rotational speed during the cultivation process can be appropriately set by those skilled in the art according to the characteristics of microorganisms, or selected by routine optimization experiments.

在上述方法中,用于发酵培养的培养基可通过在基础培养基的基础上添加与产物合成相关的底物(也称为碳源)和调节物质(如乙酸)而获得。例如最终的培养基可葡萄糖、葡萄糖酸、葡萄糖酸盐、葡萄糖酸酯或者其组合作为微生物培养的碳源。优选地,所述培养基包含葡萄糖作为碳源。为了区分,本文所述的碳源不涵盖乙酸。任选地,所述培养基还可以含有或者不含有葡萄糖以外的碳源。In the above method, the medium for fermentation culture can be obtained by adding substrates (also called carbon sources) related to product synthesis and regulating substances (eg, acetic acid) on the basis of basal medium. For example, the final medium can be glucose, gluconic acid, gluconate, gluconate, or a combination thereof as a carbon source for microbial culture. Preferably, the medium contains glucose as carbon source. For the sake of distinction, the carbon sources described herein do not encompass acetic acid. Optionally, the medium may or may not also contain carbon sources other than glucose.

以上提及的葡萄糖酸盐可以是任意一种或多种葡萄糖酸盐,只要其可以用作本发明所涉及微生物的碳源用于聚合物生产即可,例如,葡萄糖酸钠、葡萄糖酸钾、葡萄糖酸钙等。作为碳源的葡萄糖、葡萄糖酸、葡萄糖酸盐或葡萄糖酸酯的浓度可以由本领域技术人员根据使用的培养条件和微生物来适当调整,并且可以在,例如,约1-100g/L、约1-90g/L、约1-80g/L、约1-70g/L、或约1-60g/L的范围内;优选地,该浓度可以在约3-60g/L、约3-50g/L或约3-40g/L的范围内;更优选约5-60g/L、约10-60g/L、约20-40g/L的范围内,包括例如约25.5-34.5g/L。需理解,以上浓度范围并非是穷尽式列举,而是可以由本领域技术人员根据发酵体系的条件通过实验进行适当的调整,这些浓度范围均涵盖在本发明的范围内,只要其不会不利地影响本发明目的即可。The gluconate mentioned above may be any one or more gluconates as long as it can be used as a carbon source for the microorganism involved in the present invention for polymer production, for example, sodium gluconate, potassium gluconate, Calcium gluconate, etc. The concentration of glucose, gluconic acid, gluconate or gluconate as a carbon source can be appropriately adjusted by those skilled in the art according to the culture conditions and microorganisms used, and can be, for example, about 1-100 g/L, about 1- 90g/L, about 1-80g/L, about 1-70g/L, or about 1-60g/L; preferably, the concentration may be about 3-60g/L, about 3-50g/L or In the range of about 3-40 g/L; more preferably in the range of about 5-60 g/L, about 10-60 g/L, about 20-40 g/L, including, for example, about 25.5-34.5 g/L. It should be understood that the above concentration ranges are not an exhaustive enumeration, but can be appropriately adjusted by those skilled in the art through experiments according to the conditions of the fermentation system, and these concentration ranges are all covered within the scope of the present invention, as long as they will not adversely affect The purpose of the present invention is sufficient.

在上述方法中,乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物可以是在微生物培养开始之前加入到基础培养基中。或者,乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物也可以是在微生物培养过程中一次、分批多次或流加到培养基中。再或者,乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物还可以是在将微生物接种到培养基的同时加入到培养基中。乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物的添加浓度可以为,例如在约1-12g/L、约1-11g/L、约1-10g/L、约1-9g/L或约1-8g/L的范围内;优选约1-8g/L,例如在约2-8g/L、约2-7g/L、约2-6g/L、约2-5g/L、约2-4g/L、或2-3g/L的范围内;更优选2-6g/L,例如在约3-6g/L或约3-5g/L的范围内。这些浓度可以在本发明的基础上根据培养基的组成和培养条件等因素而适当地调整,只要其不影响本发明的效果即可。In the above method, acetic acid, acetate salts, acetate esters or other acetic acid derivatives may be added to the basal medium prior to the initiation of microbial culture. Alternatively, acetic acid, acetate salts, acetate esters, or other acetic acid derivatives can also be added to the medium once, in multiple batches, or as a stream during microbial cultivation. Still alternatively, acetic acid, acetate salts, acetate esters or other acetic acid derivatives may be added to the medium at the same time as the microorganisms are inoculated into the medium. Acetic acid, acetate salts, acetate esters or other acetic acid derivatives can be added at concentrations, for example, at about 1-12 g/L, about 1-11 g/L, about 1-10 g/L, about 1-9 g/L or in the range of about 1-8 g/L; preferably about 1-8 g/L, for example at about 2-8 g/L, about 2-7 g/L, about 2-6 g/L, about 2-5 g/L, about In the range of 2-4 g/L, or 2-3 g/L; more preferably 2-6 g/L, for example in the range of about 3-6 g/L or about 3-5 g/L. These concentrations can be appropriately adjusted on the basis of the present invention according to factors such as the composition of the medium and the culturing conditions, as long as they do not affect the effects of the present invention.

以上提及的乙酸盐可以是任意一种或多种乙酸盐,只要本领域技术人员可以合理地预期其添加不会不利地影响本发明的目的即可,例如,乙酸盐可以是,但不限于:乙酸钠、乙酸钾、乙酸钙等。同样地,上述提及的乙酸酯可以是任意一种或多种乙酸酯,只要本领域技术人员可以合理地预期其添加不会不利地影响本发明的目的即可,例如,乙酸甲酯、乙酸乙酯、乙酸丙酯等。The acetate salts mentioned above may be any one or more of the acetate salts, as long as those skilled in the art can reasonably expect that their addition will not adversely affect the purpose of the present invention, for example, the acetate salts may be, But not limited to: sodium acetate, potassium acetate, calcium acetate, etc. Likewise, the above-mentioned acetates may be any one or more acetates, as long as those skilled in the art can reasonably expect their addition to not adversely affect the purposes of the present invention, for example, methyl acetate , ethyl acetate, propyl acetate, etc.

以上提及的基础培养基是指包含营养物质可以用于支持本发明微生物的生长的培养基。上述基础培养基可以是本领域常规用于微生物培养的培养基,比如矿物质培养基、LB培养基、MM培养基或牛肉膏蛋白胨等等,也可以是在这些培养基的基础上根据期望目的进行改良的培养基。也就是说,本领域技术人员可以常规选择合适的基础培养基,只要其能够允许微生物的生长即可。The basal medium mentioned above refers to a medium containing nutrients that can be used to support the growth of the microorganisms of the present invention. The above-mentioned basal medium can be the medium conventionally used in the art for microbial culture, such as mineral medium, LB medium, MM medium or beef extract peptone, etc., or can be based on these mediums according to the desired purpose. modified medium. That is, those skilled in the art can routinely select a suitable basal medium as long as it can allow the growth of microorganisms.

在本发明的方法中,所合成的聚合物是共聚物,其可以是二聚物、三聚物,但不限于此,例如,共聚物可以是羟基丙酸酯与羟基丁酸酯的共聚物;羟基丙酸酯与羟基戊酸酯的共聚物;羟基丁酸酯与羟基戊酸酯的共聚物;羟基丙酸酯、羟基丁酸酯、羟基戊酸酯三者的共聚物等等。更具体地,其可以是聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(P3HB4HB)、聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(P3HB3HV)、聚(3-羟基丁酸酯-co-4-羟基丁酸酯-co-3-羟基戊酸酯)(P3HB4HB3HV)等等。In the method of the present invention, the synthesized polymer is a copolymer, which can be a dimer, a trimer, but not limited thereto, for example, the copolymer can be a copolymer of hydroxypropionate and hydroxybutyrate ; copolymers of hydroxypropionate and hydroxyvalerate; copolymers of hydroxybutyrate and hydroxyvalerate; copolymers of hydroxypropionate, hydroxybutyrate, hydroxyvalerate, etc. More specifically, it may be poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB3HV) , poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB4HB3HV) and the like.

基于前述,本发明还提供一种用于在聚羟基脂肪酸酯共聚物的微生物合成中调节共聚物中单体比例的方法,其包括向包含碳源的用于培养微生物以生产聚合物的基础培养基中添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物,优选添加乙酸或乙酸盐。关于该方法中所涉及的具体微生物、碳源、培养基、乙酸(或乙酸盐、乙酸酯或其他的乙酸衍生物)的限定如前文所述。Based on the foregoing, the present invention also provides a method for adjusting the ratio of monomers in the copolymer in the microbial synthesis of polyhydroxyalkanoate copolymers, which comprises adding a carbon source to a basis for culturing microorganisms to produce polymers comprising a carbon source Acetic acid, acetate salt, acetate ester or other acetic acid derivatives are added to the medium, preferably acetic acid or acetate salt is added. Definitions regarding the specific microorganism, carbon source, culture medium, acetic acid (or acetate, acetate or other acetic acid derivative) involved in the method are as previously described.

(三)(three)

在第三方面,本发明提供一种降低微生物生产聚羟基脂肪酸酯(PHA)过程中积累的丙酮酸的方法,所述方法包括向用于培养微生物的包含碳源的基础培养基中添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物,其浓度如前述第一至第二方面所述。此外,所述方法中的基础培养基、碳源等也如前述第一至第二方面所述。In a third aspect, the present invention provides a method of reducing pyruvic acid accumulated during the production of polyhydroxyalkanoates (PHA) by microorganisms, the method comprising adding acetic acid to a basal medium comprising a carbon source for culturing the microorganisms , acetate, acetate or other acetic acid derivatives in the concentrations described in the first to second aspects above. In addition, the basal medium, carbon source, etc. in the method are also as described in the aforementioned first to second aspects.

(四)(Four)

在第四方面,本发明提供一种重组菌,其通过在Halomonas属细菌的基础上通过敲除/失活etf基因的etf-α和etf-β亚基中的任一种或者全部而获得,所述Halomonas属细菌优选Halomonas bluephagenesis,更优选保藏号为CGMCCNo.4353的Halomonasbluephagenesis TD01。In a fourth aspect, the present invention provides a recombinant bacteria obtained by knocking out/inactivating any one or all of etf-α and etf-β subunits of etf gene on the basis of bacteria of the genus Halomonas, The bacteria belonging to the genus Halomonas are preferably Halomonas bluephagenesis, more preferably Halomonas bluephagenesis TD01 with the deposit number of CGMCC No.4353.

本发明还提供一种生产聚(3-羟基丁酸酯-co-4-羟基丁酸酯)的方法,该方法包括使用前述的etf基因被敲除/失活的重组菌在包含碳源的基础培养基中在适合培养所述重组菌以生产聚(3-羟基丁酸酯-co-4-羟基丁酸酯)的条件下进行发酵。优选地,可以向所述基础培养基中添加乙酸、乙酸盐、乙酸酯或其他的乙酸衍生物,其浓度如前述第一至第二方面所述。此外,所述方法中的基础培养基、碳源等也如前述第一至第二方面所述。The present invention also provides a method for producing poly(3-hydroxybutyrate-co-4-hydroxybutyrate), the method comprising using the aforementioned etf gene knocked out/inactivated recombinant bacteria in a carbon source containing Fermentation is carried out in a basal medium under conditions suitable for culturing the recombinant bacteria to produce poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Preferably, acetic acid, acetate salts, acetate esters or other acetic acid derivatives may be added to the basal medium at concentrations as described in the first to second aspects above. In addition, the basal medium, carbon source, etc. in the method are also as described in the aforementioned first to second aspects.

附图说明Description of drawings

图1为实施例2中敲除etf-β亚基的琼脂糖凝胶结果示意图。FIG. 1 is a schematic diagram of the agarose gel result of knocking out etf-β subunit in Example 2. FIG.

图2为在实施例2中Halomonas bluephagenesis TD01和TDΔβ积累P3HB的透射电镜图结果示意图,左图为TD01在6g/L乙酸添加条件下得到的图;右图为TDΔβ在3g/L乙酸添加条件下得到的图。Figure 2 is a schematic diagram of the results of transmission electron microscopy of the accumulation of P3HB by Halomonas bluephagenesis TD01 and TDΔβ in Example 2. The left picture is the picture obtained by TD01 under the condition of adding 6g/L acetic acid; the right picture is the picture obtained by adding TDΔβ under the condition of adding 3g/L acetic acid. obtained graph.

具体实施方式Detailed ways

本文所提及的细胞干重(CDW,g/L)是冰干菌体的质量与发酵液体积的比值。The dry cell weight (CDW, g/L) mentioned herein is the ratio of the mass of ice-dried cells to the volume of the fermentation broth.

本文所提及的PHA是指聚羟基脂肪酸酯,其根据单体组成可以分为均聚物和共聚物。根据单体的碳原子数,本发明的PHA可以是短链PHA(即,单体为C3-C5的羟基脂肪酸)或者中长链PHA(即,单体为C6-C16的羟基脂肪酸),但不限于此。在本发明的一些实施方式中,PHA可以是均聚物,包括但不限于聚羟基丙酸酯、聚羟基丁酸酯、聚羟基戊酸酯等等,例如,聚-3-羟基丁酸酯(P3HB)、聚-4-羟基丁酸酯(P4HB)、聚-3-羟基丙酸酯(P3HP)或聚-3-羟基戊酸酯(P3HV)等。在本发明的一些实施方式中,PHA可以是共聚物如二聚物、三聚物等,但不限于此,例如,共聚物可以是羟基丙酸酯与羟基丁酸酯的共聚物;羟基丙酸酯与羟基戊酸酯的共聚物;羟基丁酸酯与羟基戊酸酯的共聚物;羟基丙酸酯、羟基丁酸酯、羟基戊酸酯三者的共聚物等等。更具体地,在本发明的一些实施方式中,PHA可以是聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(P3HB4HB)、聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(P3HB3HV)或聚(3-羟基丁酸酯-co-4-羟基丁酸酯-co-3-羟基戊酸酯)(P3HB4HB3HV)、或其组合等等。在本发明的一些实施方式中,PHA可以是P3HB(即,聚β-羟基丁酸酯或聚3-羟基丁酸酯)。在本发明的另一些实施方式中,PHA可以是P3HB3HV(即,3-羟基丁酸3-羟基戊酸共聚物)。The PHA referred to herein refers to polyhydroxyalkanoate, which can be divided into homopolymers and copolymers according to the monomer composition. Depending on the number of carbon atoms in the monomer, the PHA of the present invention can be a short-chain PHA (ie, a hydroxy fatty acid whose monomer is C3-C5) or a medium-to-long-chain PHA (ie, a hydroxy fatty acid whose monomer is C6-C16), but Not limited to this. In some embodiments of the invention, the PHA may be a homopolymer including, but not limited to, polyhydroxypropionate, polyhydroxybutyrate, polyhydroxyvalerate, and the like, eg, poly-3-hydroxybutyrate (P3HB), poly-4-hydroxybutyrate (P4HB), poly-3-hydroxypropionate (P3HP) or poly-3-hydroxyvalerate (P3HV), etc. In some embodiments of the present invention, PHA may be a copolymer such as dimer, trimer, etc., but not limited thereto, for example, the copolymer may be a copolymer of hydroxypropionate and hydroxybutyrate; hydroxypropionate Copolymers of acid esters and hydroxyvalerates; copolymers of hydroxybutyrate and hydroxyvalerate; copolymers of hydroxypropionate, hydroxybutyrate, hydroxyvalerate, etc. More specifically, in some embodiments of the present invention, the PHA may be poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly(3-hydroxybutyrate-co-3 -hydroxyvalerate) (P3HB3HV) or poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB4HB3HV), or a combination thereof, and the like. In some embodiments of the invention, the PHA may be P3HB (ie, poly-beta-hydroxybutyrate or poly-3-hydroxybutyrate). In other embodiments of the invention, the PHA may be P3HB3HV (ie, 3-hydroxybutyric acid 3-hydroxyvaleric acid copolymer).

本文所提及的P3HB3HV含量(wt%)为冰干菌体中P3HB3HV的质量与参与酯化的冰干菌体质量的百分比,其中P3HB3HV质量为酯化后得到的3HV质量与3HB的质量和,在实施例中,如无相反说明,则“%”表示“wt%”。The P3HB3HV content (wt%) mentioned in this paper is the percentage of the mass of P3HB3HV in the ice-dried cells and the mass of the ice-dried cells involved in esterification, wherein the mass of P3HB3HV is the mass of 3HV and 3HB obtained after esterification. In the Examples, unless otherwise stated, "%" means "wt%".

本文所提及的P3HB含量(wt%)为P3HB的质量与参与酯化的冰干菌体质量的百分比,其中P3HB质量为酯化后得到的3HB总质量。在实施例中,如无相反说明,则“%”表示“wt%”。The P3HB content (wt%) mentioned in this paper is the percentage of the mass of P3HB to the mass of the ice-dried cells involved in esterification, wherein the mass of P3HB is the total mass of 3HB obtained after esterification. In the Examples, unless otherwise stated, "%" means "wt%".

本文实施例3所提及的3HV(mol%)为3HV单体的摩尔数与P3HB3HV单体总摩尔数的百分比,其中P3HB3HV单体总摩尔数为3HV单体的摩尔数+3HB单体的摩尔数,其中3HV表示3-羟基戊酸(酯),3HB表示3-羟基丁酸(酯)。同理,本文实施例3所提及的4HB(mol%)表示4HB单体的摩尔数与P3HB4HB单体总摩尔数的百分比。The 3HV (mol%) mentioned in Example 3 herein is the percentage of the moles of 3HV monomers to the total moles of P3HB3HV monomers, wherein the total moles of P3HB3HV monomers are the moles of 3HV monomers+the moles of 3HB monomers number, where 3HV represents 3-hydroxyvaleric acid (ester) and 3HB represents 3-hydroxybutyric acid (ester). Similarly, the 4HB (mol%) mentioned in Example 3 herein represents the percentage of the moles of 4HB monomers to the total moles of P3HB4HB monomers.

本文所提及的“基础培养基”是指适用于培养微生物并适合该微生物利用向培养基中添加的碳源合成聚羟基脂肪酸酯的培养基,这样的培养基比如MM培养基、LB培养基、矿物质培养基等等,但不限于此。这些培养基的配方是本领域技术人员常规知晓的,并且本领域技术人员可以常规地对其组分或组分浓度进行适当地调整。在本文中,除特殊说明外,用于培养微生物以合成目的产物的培养基或基础培养基是指液体培养基。The "basal medium" referred to herein refers to a medium suitable for culturing microorganisms and suitable for the microorganisms to synthesize polyhydroxyalkanoates using a carbon source added to the medium, such as MM medium, LB culture medium base, mineral medium, etc., but not limited thereto. The formulations of these media are routinely known to those skilled in the art, and those skilled in the art can routinely adjust their components or component concentrations appropriately. Herein, unless otherwise specified, the medium or basal medium used for culturing microorganisms to synthesize target products refers to liquid medium.

LB液体培养基的一般配方为:4-6g/L酵母提取物,8-12g/L蛋白胨,8-12g/L NaCl,其余为蒸馏水(pH调至7.0-7.2);优选为:5g/L酵母提取物,10g/L蛋白胨,10g/L NaCl,其余为蒸馏水(pH调至7.0-7.2)。The general formula of LB liquid medium is: 4-6g/L yeast extract, 8-12g/L peptone, 8-12g/L NaCl, the rest are distilled water (pH adjusted to 7.0-7.2); preferably: 5g/L Yeast extract, 10g/L peptone, 10g/L NaCl, the rest are distilled water (pH adjusted to 7.0-7.2).

MM液体培养基的一般配方为:0.1‰-2‰(NH4)2SO4或者尿素,0.1‰-1‰MgSO4,5‰-10‰Na2HPO4·12H2O,0.5‰-2‰KH2PO4,不超过0.1%的其他微量元素(Fe(III)-NH4-Citrate,CaCl2·2H2O,ZnSO4·7H2O,MnCl2·4H2O,H3BO3,CoCl2·6H2O,CuSO4·5H2O,NiCl2·6H2O,NaMoO4·2H2O微量)(pH调至约9.0)。优选为:0.1%(NH4)2SO4或者0.2%尿素,0.02%MgSO4,1.0%Na2HPO4·12H2O,0.15%KH2PO4,不超过0.1%的其他微量元素(Fe(III)-NH4-Citrate,CaCl2·2H2O,ZnSO4·7H2O,MnCl2·4H2O,H3BO3,CoCl2·6H2O,CuSO4·5H2O,NiCl2·6H2O,NaMoO4·2H2O)(pH调至约9.0)。The general formula of MM liquid medium is: 0.1‰-2‰(NH 4 ) 2 SO 4 or urea, 0.1‰-1‰ MgSO 4 , 5‰-10‰ Na 2 HPO 4 ·12H 2 O, 0.5‰-2 ‰KH 2 PO 4 , other trace elements not exceeding 0.1% (Fe(III)-NH 4 -Citrate, CaCl 2 2H 2 O, ZnSO 4 7H 2 O, MnCl 2 4H 2 O, H 3 BO 3 , CoCl 2 ·6H 2 O, CuSO 4 ·5H 2 O, NiCl 2 ·6H 2 O, NaMoO 4 ·2H 2 O trace) (pH adjusted to about 9.0). Preferably: 0.1% (NH 4 ) 2 SO 4 or 0.2% urea, 0.02% MgSO 4 , 1.0% Na 2 HPO 4 ·12H 2 O, 0.15% KH 2 PO 4 , no more than 0.1% of other trace elements (Fe ( III ) -NH4 - Citrate , CaCl2.2H2O , ZnSO4.7H2O , MnCl2.4H2O , H3BO3 , CoCl2.6H2O , CuSO4.5H2O , NiCl 2.6H2O , NaMoO4.2H2O ) ( pH adjusted to about 9.0).

“碳源”是为微生物提供生长繁殖所需碳元素的营养物质。在本发明中,“碳源”是本发明的微生物用以合成PHA的底物来源,排除乙酸。因此,“碳源”在本文中可以与“底物”可互换地使用。所述碳源可以是:葡萄糖、葡萄糖酸、葡萄糖酸盐、葡萄糖酸酯、淀粉、蔗糖等等或者它们的组合,但不限于此。优先使用葡萄糖作为本发明的碳源。A "carbon source" is a nutrient that provides carbon for the growth and reproduction of microorganisms. In the present invention, "carbon source" is a source of substrates used by the microorganisms of the present invention to synthesize PHA, excluding acetic acid. Thus, "carbon source" may be used interchangeably with "substrate" herein. The carbon source can be: glucose, gluconic acid, gluconate, gluconate, starch, sucrose, etc., or a combination thereof, but is not limited thereto. Glucose is preferably used as the carbon source in the present invention.

本文所提及的etf基因是编码电子转运黄素蛋白(electron transferflavoprotein,ETF)的基因,该基因已知存在于例如盐单胞菌属和假单胞菌属中,其包含两个亚基etf-α和etf-β,在盐单胞菌Halomonas bluephagenesis TD01里面的NCBI编号分别为:WP_009724031.1,WP_009724032.1。The etf gene referred to herein is the gene encoding the electron transfer flavoprotein (ETF), which is known to exist in, for example, Halomonas and Pseudomonas, which comprises two subunits etf -α and etf-β, the NCBI numbers in Halomonas bluephagenesis TD01 are: WP_009724031.1, WP_009724032.1, respectively.

实施例Example

下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.

除特殊说明外,所用酶试剂均购自Thermo Scientific Fermentas公司,提取质粒所用的试剂盒购自北京博迈德科技发展公司,回收DNA片段所用的试剂盒购自美国omega公司,相应的操作步骤按照产品说明书进行;所有培养基如无特别说明均用去离子水配制;PCR的相关试剂和酶均来源于NEB公司(USA)。Unless otherwise specified, the enzyme reagents used were purchased from Thermo Scientific Fermentas Company, the kit used for plasmid extraction was purchased from Beijing Bomed Technology Development Company, and the kit used for DNA fragment recovery was purchased from U.S. omega Company. The corresponding operation steps were as follows: All media were prepared with deionized water unless otherwise specified; PCR-related reagents and enzymes were sourced from NEB Company (USA).

实验材料:Experimental Materials:

LB培养基含:5g/L酵母提取物(购自英国OXID公司,产品目录号LP0021),10g/L蛋白胨(购自英国OXID公司,产品目录号LP0042),10g/L NaCl,其余为蒸馏水;调pH值至7.0-7.2;然后高压蒸汽灭菌。LB medium contains: 5g/L yeast extract (purchased from British OXID company, product catalog number LP0021), 10g/L peptone (purchased from British OXID company, product catalog number LP0042), 10g/L NaCl, and the rest are distilled water; Adjust pH to 7.0-7.2; then autoclave.

LB60培养基含:5g/L酵母提取物(购自英国OXID公司,产品目录号LP0021),10g/L蛋白胨(购自英国OXID公司,产品目录号LP0042),60g/L NaCl,其余为蒸馏水;调pH值至7.0-7.2;然后高压蒸汽灭菌。LB60 medium contains: 5g/L yeast extract (purchased from British OXID company, product catalog number LP0021), 10g/L peptone (purchased from British OXID company, product catalog number LP0042), 60g/L NaCl, and the rest are distilled water; Adjust pH to 7.0-7.2; then autoclave.

MM60培养基配置方法:配制酵母提取物(购自英国OXID公司,产品目录号LP0021)的NaCl溶液,酵母提取物浓度为1g/L,NaCl浓度为60g/L;溶解后高压灭菌;冷却后每50ml溶液加入1ml组分I(向10g(NH4)2SO4和2g MgSO4加蒸馏水定容至200ml,然后高压蒸汽灭菌)和1mL组分II(向96.5g Na2HPO4·12H2O和15g KH2PO4加蒸馏水定容至200ml,然后高压蒸汽灭菌);最后用5M的NaOH水溶液将体系的pH值调整为约9.0。MM60 medium configuration method: prepare a NaCl solution of yeast extract (purchased from OXID, UK, product catalog number LP0021), the concentration of yeast extract is 1g/L, and the concentration of NaCl is 60g/L; autoclave after dissolving; after cooling Add 1 ml of component I (to 10 g (NH 4 ) 2 SO 4 and 2 g of MgSO 4 to 200 ml with distilled water, then autoclave) and 1 mL of component II (to 96.5 g of Na 2 HPO 4 ·12H) per 50 ml of solution 2 O and 15g KH 2 PO 4 were added to distilled water to make up to 200ml, and then autoclaved); finally, the pH value of the system was adjusted to about 9.0 with 5M aqueous NaOH solution.

上述配制过程中使用的(NH4)2SO4、NaCl、MgSO4、Na2HPO4·12H2O、KH2PO4购自国药集团化学试剂有限公司,目录号分别为10002992、10019308、10034998、10020392、1017628;葡萄糖购自国药集团化学试剂有限公司,目录号为63005518;葡萄糖酸钠购自美国SIGMA-ALDRICH公司,目录号为S2054-1KG。(NH 4 ) 2 SO 4 , NaCl, MgSO 4 , Na 2 HPO 4 ·12H 2 O, KH 2 PO 4 used in the above preparation process were purchased from Sinopharm Chemical Reagent Co., Ltd., catalog numbers are 10002992, 10019308, 10034998 , 10020392, 1017628; glucose was purchased from Sinopharm Chemical Reagent Co., Ltd., catalog number 63005518; sodium gluconate was purchased from SIGMA-ALDRICH company in the United States, catalog number S2054-1KG.

在培养过程中,根据实际需求向培养基中再添加一定浓度的抗生素以维持质粒的稳定性,如100μg/mL的氨苄青霉素。乙酸和葡萄糖在培养基灭菌后添加,并调节pH至合适值。During the culturing process, a certain concentration of antibiotics, such as 100 μg/mL ampicillin, was added to the medium according to actual needs to maintain the stability of the plasmid. Acetic acid and glucose were added after the medium was sterilized, and the pH was adjusted to an appropriate value.

实施例中使用了下列菌株:The following strains were used in the examples:

E.coli S17-1:记载于Simon R,Priefer U,Pühler A.A broad host rangemobilization system for in vivo genetic engineering:transposon mutagenesis ingram negative bacteria[J].Nature biotechnology,1983,1(9):784.由瑞士苏黎世理工大学Uwe Sauer教授馈赠;公众可以从清华大学获得该菌。E.coli S17-1: described in Simon R,Priefer U,Pühler A.A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis ingram negative bacteria[J].Nature biotechnology,1983,1(9):784. By Switzerland Gift from Prof. Uwe Sauer of ETH Zurich; public can obtain the bacteria from Tsinghua University.

Halomonas bluephagenesis TD01:该菌株于2010年11月19日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏登记号为CGMCCNo.4353,分类命名为盐单胞菌Halomonas sp.TD01(也称为Halomonas bluephagenesis TD01,见XB Chen et al.(2017),Construction of Halomonas bluephagenesis capable of high cell density growthfor efficient PHA production.Appl Microbiol Biotechnol.Volume 244,Part 1,534-541页);其记载于专利申请公开号CN102120973A;公众可以从清华大学获得该菌。Halomonas bluephagenesis TD01: This strain was deposited in the General Microbiology Center of the China Microbial Culture Collection Management Committee on November 19, 2010, and the deposit registration number is CGMCCNo.4353, and the classification name is Halomonas sp.TD01 (also known as Halomonas sp. bluephagenesis TD01, see XB Chen et al. (2017), Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production. Appl Microbiol Biotechnol. Volume 244, Part 1, pages 534-541); it is described in Patent Application Publication No. CN102120973A; The public can obtain the bacteria from Tsinghua University.

Escherichia coli JM109-pBHR68:通过将pBHR68质粒转化到Escherichia coliJM109(购自北京博迈德基因技术有限公司)中而制得,其中pBHR68为含有合成聚羟基丁酸酯相关基因的质粒,其记载在如下文献中:Spiekermann P,Rehm BHA,Kalscheuer R,Baumeister D,Steinbüchel A(1999)A sensitive,viable-colony staining methodusing Nile red for direct screening of bacteria that accumulatepolyhydroxyalkanoic acids and other storage com-pounds.Arch Microbiol 171:73-80,该质粒中含有来源于罗氏真养杆菌Ralstonia eutropha的聚羟基丁酸酯合成基因phaC基因、β-酮基硫解酶phaA和NADPH依赖的乙酰乙酰辅酶A还原酶phaB,公众可以从清华大学获得该菌,本领域技术人员也可以按照上述公开内容通过常规的分子生物学手段获得Escherichia coli JM109-pBHR68。Escherichia coli JM109-pBHR68: prepared by transforming the pBHR68 plasmid into Escherichia coli JM109 (purchased from Beijing Bomed Gene Technology Co., Ltd.), wherein pBHR68 is a plasmid containing a gene related to the synthesis of polyhydroxybutyrate, which is described in the following In the literature: Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viaable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other storage com-pounds. Arch Microbiol 171:73 -80, the plasmid contains the polyhydroxybutyrate synthesis gene phaC gene, β-ketothiolase phaA and NADPH-dependent acetoacetyl-CoA reductase phaB derived from Ralstonia eutropha. The public can download it from Tsinghua University The bacteria are obtained from universities, and those skilled in the art can also obtain Escherichia coli JM109-pBHR68 by conventional molecular biological means according to the above disclosure.

Escherichia coli JM109SG-p68orfZ+pMCSH5:该菌株记载在Li Z J,Shi Z Y,Jian J,et al.Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)fromunrelated carbon sources by metabolically engineered Escherichia coli[J].Metabolic engineering,2010,12(4):352-359.中,其能够利用葡萄糖作为单一碳源生产P3HB4HB,其保存于清华大学且公众可以从清华大学获得该菌。Escherichia coli JM109SG-p68orfZ+pMCSH5: This strain was described in Li Z J, Shi Z Y, Jian J, et al.Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)fromunrelated carbon sources by metabolically engineered Escherichia coli[J]. Metabolic engineering, 2010, 12(4): 352-359. It can produce P3HB4HB using glucose as a single carbon source, which is preserved in Tsinghua University and publicly available from Tsinghua University.

Halomonas bluephagenesis TD08AB:该菌株记载在Yin J,Wang H,Fu X Z,etal.Effects of chromosomal gene copy number and locations onpolyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp[J].Applied Microbiology and Biotechnology,2015,99(13):5523-5534.中,能够利用葡萄糖作为单一碳源生产P3HB3HV,其保存于清华大学且公众可以从清华大学获得该菌。Halomonas bluephagenesis TD08AB: This strain was described in Yin J, Wang H, Fu X Z, et al. Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp[J]. Applied Microbiology and Biotechnology, 2015, 99(13) : 5523-5534., can utilize glucose as a single carbon source to produce P3HB3HV, which is preserved in Tsinghua University and the bacteria can be obtained from Tsinghua University by the public.

Halomonas bluephagenesis TD△gabD2-D2:该菌株记载在Ye J,Hu D,Che X,etal.Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)from glucose[J].Metabolic Engineering,2018,47:143-152.中,该菌能够利用葡萄糖作为单一碳源生产P3HB4HB,其保存于清华大学且公众可以从清华大学获得该菌。Halomonas bluephagenesis TD△gabD2-D2: This strain was documented in Ye J, Hu D, Che X, et al. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose[J]. In Metabolic Engineering, 2018, 47:143-152., the bacteria can use glucose as a single carbon source to produce P3HB4HB, which is preserved in Tsinghua University and the bacteria can be obtained from Tsinghua University by the public.

Halomonas bluephagenesis TDΔβ:以Halomonas bluephagenesis TD01为出发菌株经etf-β亚基敲除而获得,该菌株在本申请的实验中构建并保藏于清华大学,具体的构建过程见实施例2。本领域技术人员可以根据本申请的公开内容制备该菌,并且公众可以从清华大学获得该菌。Halomonas bluephagenesis TDΔβ: obtained by taking Halomonas bluephagenesis TD01 as the starting strain and knocking out etf-β subunit, this strain was constructed in the experiments of this application and stored in Tsinghua University. The specific construction process is shown in Example 2. Those skilled in the art can prepare the bacteria according to the disclosure of the present application, and the public can obtain the bacteria from Tsinghua University.

Halomonas bluephagenesis TDΔα:以Halomonas bluephagenesis TD01为出发菌株经etf-α亚基敲除而获得,该菌株在本申请的实验中构建并保藏于清华大学,具体的构建过程见实施例2。本领域技术人员可以根据本申请的公开内容制备该菌,并且公众可以从清华大学获得该菌。Halomonas bluephagenesis TDΔα: obtained by taking Halomonas bluephagenesis TD01 as the starting strain and knocking out etf-α subunit, this strain was constructed in the experiments of this application and stored in Tsinghua University. The specific construction process is shown in Example 2. Those skilled in the art can prepare the bacteria according to the disclosure of the present application, and the public can obtain the bacteria from Tsinghua University.

气相色谱检测聚羟基脂肪酸酯(PHA)含量的方法:Method for detecting the content of polyhydroxyalkanoates (PHA) by gas chromatography:

设定炉温为80℃,进样器温度为200℃,检测器温度为220℃,柱头压力为0.25Mpa,程序升温条件为:80℃停留1.5分钟,以30℃/min的速度升温至140℃,接着以40℃/min的速度升温至220℃并在此温度保持0.5分钟。样品的进样量为1μl,使用安捷伦公司生产的微量进样器。Set the furnace temperature to 80°C, the injector temperature to 200°C, the detector temperature to 220°C, the column head pressure to be 0.25Mpa, and the temperature programmed conditions to be: dwell at 80°C for 1.5 minutes, and increase the temperature to 140°C at a rate of 30°C/min. °C, followed by raising the temperature to 220 °C at a rate of 40 °C/min and holding at this temperature for 0.5 minutes. The injection volume of the sample was 1 μl, and a microinjector produced by Agilent was used.

气相样品准备:取40-60mg待测样品的干细胞(取菌液于10000rpm下常温离心10分钟,所得细胞沉淀水洗一次之后,冰干,得到干细胞,均聚物产于细胞中),加2ml氯仿,2ml酯化液(纯甲醇中含3%(v/v)的浓硫酸及2g/L苯甲酸作内标)于酯化管中,加盖密封后于100℃下加热4小时。冷却后加入1ml蒸馏水,充分振荡后静置,待氯仿相与水相完全分层后,取下层氯仿相1μl注入气相色谱仪(HP公司Hewlett Packard 6890)中进行色谱分析。依照HP公司Hewlett Packard 6890气相色谱仪的说明书操作气相色谱仪。Gas-phase sample preparation: take 40-60 mg of stem cells of the sample to be tested (take the bacterial solution and centrifuge it at room temperature for 10 minutes at 10,000 rpm, and wash the obtained cell pellet once with water, then freeze-dried to obtain stem cells, and homopolymers are produced in the cells), add 2 ml of chloroform, 2ml of esterification solution (containing 3% (v/v) concentrated sulfuric acid and 2g/L benzoic acid in pure methanol as internal standard) was placed in an esterification tube, sealed with a cap, and heated at 100° C. for 4 hours. After cooling, 1 ml of distilled water was added, fully shaken and left to stand. After the chloroform phase and the aqueous phase were completely separated, 1 μl of the lower chloroform phase was taken and injected into a gas chromatograph (Hewlett Packard 6890 from HP) for chromatographic analysis. The gas chromatograph was operated according to the instructions of the Hewlett Packard 6890 gas chromatograph from Hewlett-Packard Company.

标准样品准备:取10-20mg的标准样品于酯化管中,加2ml氯仿,2ml酯化液,加盖密封后在100℃进行酯化。Standard sample preparation: Take 10-20 mg of standard sample into an esterification tube, add 2 ml of chloroform and 2 ml of esterification solution, cover and seal, and then carry out esterification at 100 °C.

结果分析:以标准样品为对照,如果待测细胞的酯化样品(待测样品)在标样处有明显的出峰,则可以根据峰面积计算各单体的质量,然后根据各个单体的质量分数计算出摩尔比例;根据加入的样品量可以计算出细胞干重中含有聚合物的比重(wt%)。Analysis of the results: Taking the standard sample as a control, if the esterification sample (sample to be tested) of the cells to be tested has obvious peaks at the standard sample, the mass of each monomer can be calculated according to the peak area, and then the mass of each monomer can be calculated according to the peak area. The molar ratio is calculated from the mass fraction; the specific gravity (wt%) of the polymer contained in the dry weight of the cells can be calculated according to the amount of the added sample.

实施例1、通过在基础培养基中添加乙酸提高微生物发酵合成P3HB的产量Embodiment 1, by adding acetic acid in basal medium, improve the output of microbial fermentation to synthesize P3HB

一、培养基和培养条件的优化1. Optimization of culture medium and culture conditions

(1)葡萄糖浓度的优化(1) Optimization of glucose concentration

以盐单胞菌Halomonas bluephagenesis TD01作为P3HB生产菌株进行实验,确定生产P3HB的最适葡萄糖浓度。首先挑取单菌落到20mL的LB60(含有60g/L NaCl的LB)培养基中在37℃,200rpm过夜培养;然后按5%接种量(v/v),分别接种至50mL的含系列不同浓度葡萄糖(见表1)的MM60培养基(pH 8.5-9.0,NaCl浓度60g/L)中,于37℃、200rpm下摇瓶培养48小时,得到菌液,经离心、水洗、冰干后测定样品的细胞干重(CDW;单位g/L),然后通过气相色谱检测出细胞干重中P3HB的含量百分比(%)。每个条件设置三组平行。细胞干重和P3HB含量见表1。Using Halomonas bluephagenesis TD01 as the P3HB producing strain, the experiment was carried out to determine the optimum glucose concentration for producing P3HB. First pick a single colony into 20 mL of LB60 (LB containing 60 g/L NaCl) medium at 37°C, 200 rpm overnight culture; then according to 5% inoculum (v/v), inoculate to 50 mL of 50 mL containing a series of different concentrations In the MM60 medium (pH 8.5-9.0, NaCl concentration 60g/L) of glucose (see Table 1), shake the flask at 37°C and 200rpm for 48 hours to obtain bacterial liquid, and measure the sample after centrifugation, water washing and ice drying dry cell weight (CDW; unit g/L), and then the content percentage (%) of P3HB in dry cell weight was detected by gas chromatography. Three sets of parallels were set for each condition. Cell dry weight and P3HB content are shown in Table 1.

表1.盐单胞菌TD01利用不同葡萄糖浓度生产P3HB的摇瓶实验结果Table 1. Results of shake flask experiments for the production of P3HB by Halomonas TD01 with different glucose concentrations

Figure BDA0001776421570000141
Figure BDA0001776421570000141

从表1的结果可以看出,30g/L的葡萄糖是TD01积累P3HB的最佳浓度,因此,选择该浓度用于后续实验。From the results in Table 1, it can be seen that 30 g/L of glucose is the optimal concentration for TD01 to accumulate P3HB, therefore, this concentration was selected for subsequent experiments.

(2)摇瓶培养转速的优化(2) Optimization of the rotation speed of shake flask culture

摇瓶的培养转速对微生物生长的氧环境有直接影响,而外部氧环境又直接影响了微生物内部的环境,因此我们通过控制摇瓶转速,寻找微生物积累P3HB的最佳环境。以盐单胞菌Halomonas bluephagenesis TD01为P3HB生产菌,首先挑取单菌落在20mL的LB60(含有60g/L NaCl的LB)培养基,在37℃,200rpm过夜培养;然后按5%接种量(v/v),分别接种至50mL的含30g/L葡萄糖的MM60培养基(pH 8.5-9.0,NaCl浓度60g/L)中,分别设置转速为100rpm、200rpm和300rpm三个转速梯度,在37℃下摇瓶培养48小时,得到菌液,经离心、水洗、冰干后得到样品的细胞干重,然后通过气相色谱检测细胞干重中P3HB的含量百分比(%)。每个条件设置三组平行。细胞干重和P3HB含量见表2。The culture speed of the shake flask has a direct impact on the oxygen environment for the growth of microorganisms, and the external oxygen environment directly affects the internal environment of the microorganism. Therefore, we control the speed of the shake flask to find the best environment for microorganisms to accumulate P3HB. Taking Halomonas bluephagenesis TD01 as the P3HB producing bacteria, first pick a single colony in 20 mL of LB60 (LB containing 60 g/L NaCl) medium, and cultivate at 37° C. at 200 rpm overnight; then press 5% of the inoculum (v /v), inoculated into 50mL of MM60 medium containing 30g/L glucose (pH 8.5-9.0, NaCl concentration 60g/L), respectively, set the rotational speed to three rotational speed gradients of 100rpm, 200rpm and 300rpm, at 37°C Shake flasks were cultured for 48 hours to obtain bacterial liquid. After centrifugation, water washing and ice drying, the dry cell weight of the sample was obtained, and then the content percentage (%) of P3HB in the dry cell weight was detected by gas chromatography. Three sets of parallels were set for each condition. Cell dry weight and P3HB content are shown in Table 2.

表2.盐单胞菌TD01在不同转速条件下生产P3HB的摇瓶实验结果Table 2. Shake flask experiment results of P3HB production by Halomonas TD01 under different rotational speed conditions

从表2中我们可以看到,盐单胞菌TD01生产P3HB的最佳转速为200rpm,因此选择200rpm的转速用于后续实验。From Table 2, we can see that the optimal rotation speed of Halomonas TD01 to produce P3HB is 200 rpm, so the rotation speed of 200 rpm was selected for subsequent experiments.

二、在补充了碳源的培养基中添加乙酸以测试其对Halomonas bluephagenesisTD01和P3HB合成的影响2. Adding acetic acid to the medium supplemented with carbon source to test its effect on the synthesis of Halomonas bluephagenesisTD01 and P3HB

已知乙酸是一种比葡萄糖还原性低的碳源,且已有多篇文献都报道乙酸对微生物的生长有抑制作用。而在本申请中,发明人发现通过添加乙酸并控制适当的添加量,不仅没有观察到乙酸对细胞生长和积累P3HB的抑制作用,并且还发现其可以增加P3HB的积累量,这可能是通过调节微生物内部的微环境、消除丙酮酸的代谢抑制、节省碳源而实现的。It is known that acetic acid is a carbon source with lower reducibility than glucose, and many literatures have reported that acetic acid has an inhibitory effect on the growth of microorganisms. In this application, the inventors found that by adding acetic acid and controlling the appropriate amount of addition, not only did not observe the inhibitory effect of acetic acid on cell growth and accumulation of P3HB, but also found that it can increase the accumulation of P3HB, which may be by regulating It is realized by the microenvironment inside the microorganism, eliminating the metabolic inhibition of pyruvic acid, and saving carbon sources.

以盐单胞菌Halomonas bluephagenesis TD01生产P3HB为例进行实验,首先挑取单菌落在20mL的LB60(含有60g/L NaCl的LB)培养基,在37℃下以200rpm的转速过夜培养;然后按5%接种量(v/v)接种至添加葡萄糖和乙酸的50mL MM60培养基(pH 8.5-9.0,NaCl浓度60g/L)中,其中葡萄糖浓度为30g/L,乙酸设置在0-12g/L之间,进行浓度梯度实验(见表3)。培养温度设为37℃,设置转速设为200rpm,摇瓶培养48小时,得到菌液,经离心、水洗、冰干后得到样品的细胞干重,然后通过气相色谱检测细胞干重中P3HB的含量百分比(%)。每个条件设置三组平行。细胞干重和P3HB含量见表3。Taking the production of P3HB by Halomonas bluephagenesis TD01 as an example, the experiment was carried out. First, pick a single colony in 20 mL of LB60 (LB containing 60 g/L NaCl) medium and cultivate at 37 °C overnight at a speed of 200 rpm; then press 5 The % inoculum volume (v/v) was inoculated into 50 mL of MM60 medium (pH 8.5-9.0, NaCl concentration 60 g/L) supplemented with glucose and acetic acid, wherein the glucose concentration was 30 g/L, and the acetic acid was set between 0-12 g/L. During this time, a concentration gradient experiment was performed (see Table 3). The culture temperature was set to 37°C, the rotational speed was set to 200 rpm, and the flask was cultured for 48 hours to obtain bacterial liquid. After centrifugation, washing, and ice drying, the dry cell weight of the sample was obtained, and then the content of P3HB in the dry cell weight was detected by gas chromatography. percentage(%). Three sets of parallels were set for each condition. Cell dry weight and P3HB content are shown in Table 3.

表3.添加不同浓度的乙酸对盐单胞菌TD01生产P3HB的影响Table 3. Effects of adding different concentrations of acetic acid on the production of P3HB by Halomonas TD01

Figure BDA0001776421570000151
Figure BDA0001776421570000151

Figure BDA0001776421570000161
Figure BDA0001776421570000161

从表3的数据中可以看到,补充乙酸能够增加单位重量的微生物细胞积累P3HB的能力,在一定范围内还能提高微生物的细胞干重。经计算,补充1-8g/L乙酸、特别是2-8g/L乙酸能够提高P3HB产物的总产量(g/L),在添加2-8g/L乙酸的范围内得到的产量与不添加乙酸的对照组相比提高至少约12%。其中,在低于6g/L的乙酸添加条件下,随着乙酸浓度上升,对细胞的生长和P3HB的积累促进越大,但是当乙酸浓度上升到6g/L以上时,随着乙酸浓度上升,细胞干重和P3HB百分比含量不再进一步提高,甚至开始下降。It can be seen from the data in Table 3 that acetic acid supplementation can increase the ability of microbial cells to accumulate P3HB per unit weight, and can also increase the dry cell weight of microorganisms within a certain range. After calculation, supplementing 1-8g/L acetic acid, especially 2-8g/L acetic acid can improve the total output (g/L) of P3HB product, and the output obtained in the range of adding 2-8g/L acetic acid is different from that without adding acetic acid. increased by at least about 12% compared to the control group. Among them, under the condition of acetic acid addition below 6g/L, as the acetic acid concentration increases, the growth of cells and the accumulation of P3HB are promoted more greatly, but when the acetic acid concentration rises above 6g/L, as the acetic acid concentration increases, The dry cell weight and the percentage of P3HB did not increase further and even started to decrease.

我们还检测了发酵结束后发酵液中各种物质的含量,包括葡萄糖、乙酸和丙酮酸(表4)。We also detected the contents of various substances in the fermentation broth after fermentation, including glucose, acetate and pyruvate (Table 4).

表4.发酵结束后发酵液中的物质分析检测Table 4. Substance analysis and detection in fermentation broth after fermentation

Figure BDA0001776421570000162
Figure BDA0001776421570000162

根据本实施例的结果,与不添加乙酸的情况相比,添加乙酸确实能减轻发酵体系中NADH对丙酮酸代谢的抑制,减少丙酮酸残余,由此,葡萄糖的利用率得到提高。According to the results of this example, compared with the case of not adding acetic acid, adding acetic acid can indeed alleviate the inhibition of pyruvate metabolism by NADH in the fermentation system, and reduce the residual pyruvate, thereby improving the utilization rate of glucose.

结合表3中的P3HB积累和细胞干重数据,我们可以发现添加1-8g/L乙酸、特别是2-8g/L的乙酸能够显著提高细胞干重和碳源利用率,有效地提高P3HB合成量;同时减少葡萄糖和丙酮酸剩余,由此缓解葡萄糖和丙酮酸的代谢抑制;并且乙酸剩余比例较低,使得整个发酵体系得到优化。Combined with the P3HB accumulation and cell dry weight data in Table 3, we can find that adding 1-8 g/L acetic acid, especially 2-8 g/L acetic acid can significantly improve cell dry weight and carbon source utilization, and effectively improve P3HB synthesis At the same time, the residual glucose and pyruvate are reduced, thereby alleviating the metabolic inhibition of glucose and pyruvate; and the residual proportion of acetic acid is low, so that the entire fermentation system is optimized.

三、添加乙酸和其他碳源进行对比3. Comparison of adding acetic acid and other carbon sources

为了验证添加乙酸对丙酮酸和葡萄糖的代谢抑制有缓解作用而不是额外添加碳源起到的效果,我们设置了额外添加丙酮酸和葡萄糖的对照实验。在本实验中,采用的菌株、培养基和培养条件与实施例1第二部分的条件相同,区别在于向基础培养基中分别额外添加乙酸、丙酮酸或葡萄糖,添加量如表5所示,它们的添加量在理论上将转化成相同量的乙酰辅酶A(表5)。In order to verify that the addition of acetic acid has a relieving effect on the metabolic inhibition of pyruvate and glucose rather than the effect of additional carbon sources, we set up a control experiment with additional addition of pyruvate and glucose. In this experiment, the strains, culture medium and culture conditions used are the same as those in the second part of Example 1, the difference is that acetic acid, pyruvate or glucose are additionally added to the basal medium, and the amount of addition is shown in Table 5. Their additions would theoretically translate into the same amount of acetyl-CoA (Table 5).

表5.添加乙酸、丙酮酸和葡萄糖对P3HB合成的影响Table 5. Effects of addition of acetic acid, pyruvate and glucose on P3HB synthesis

Figure BDA0001776421570000171
Figure BDA0001776421570000171

从表5中我们可以得出结论:额外添加碳源比如葡萄糖或丙酮酸,都不能提高细胞干重或P3HB积累,甚至添加丙酮酸会降低细胞干重和P3HB含量,这证实了丙酮酸积累确实会对P3HB合成有一定抑制作用;本实验进一步证明了添加乙酸减少丙酮酸残余,进而会对微生物细胞生长和合成P3HB有促进作用。From Table 5 we can conclude that the addition of additional carbon sources such as glucose or pyruvate did not increase dry cell weight or P3HB accumulation, and even addition of pyruvate decreased dry cell weight and P3HB content, confirming that pyruvate accumulation does indeed It will have a certain inhibitory effect on the synthesis of P3HB; this experiment further proves that adding acetic acid reduces the residual pyruvate, which in turn can promote the growth of microbial cells and the synthesis of P3HB.

四、添加乙酸盐对P3HB合成的影响4. The effect of adding acetate on the synthesis of P3HB

鉴于乙酸在培养基溶液中以离子形式存在,发明人预期添加乙酸盐将获得与添加乙酸基本相同的效果,并按实施例1第二部分进行相同的实验,区别在于将乙酸替换成乙酸盐(乙酸钠、乙酸钾、乙酸钙等)。Given that acetic acid exists in ionic form in the medium solution, the inventors expected that the addition of acetate would achieve substantially the same effect as the addition of acetic acid, and performed the same experiments as in the second part of Example 1, except that the acetic acid was replaced by acetic acid Salts (sodium acetate, potassium acetate, calcium acetate, etc.).

结果显示,添加乙酸和乙酸钠盐对细胞干重和P3HB合成百分比的作用确实基本相同。The results showed that the addition of acetic acid and sodium acetate had essentially the same effect on dry cell weight and percentage of P3HB synthesis.

实施例2、在补充了碳源的培养基中添加乙酸以测试其对Halomonasbluephagenesis TDΔβ和P3HB合成的影响。Example 2. Acetic acid was added to medium supplemented with carbon source to test its effect on Halomonas bluephagenesis TDΔβ and P3HB synthesis.

一、工程菌TDΔβ的构建:1. Construction of engineering bacteria TDΔβ:

1)、敲除质粒pKObet23同源臂的构建1), the construction of knockout plasmid pKObet23 homology arm

提取Halomonas bluephagenesis盐单胞菌TD01的基因组,并以其为模板用pfu酶(NEB,USA)进行PCR扩增,分别以beta-H1-F和beta-H1-R,beta-H2-F和beta-H2-R为引物来扩增etf-β(核苷酸序列示于SEQ ID NO:1;氨基酸序列示于SEQ ID NO:2)的左侧同源臂H1和右侧同源臂H2;以质粒pSEVA241为模板(该质粒在记录在文献:Silva-Rocha,Rafael,etal."The Standard European Vector Architecture(SEVA):a coherent platform forthe analysis and deployment of complex prokaryotic phenotypes."Nucleic AcidsResearch 41.D1(2012):D666-D675.中),用引物donor-H-F和donor-H-R为引物进行扩增得到质粒模板Donor-1。The genome of Halomonas bluephagenesis TD01 was extracted and used as a template for PCR amplification with pfu enzyme (NEB, USA), with beta-H1-F and beta-H1-R, beta-H2-F and beta, respectively -H2-R is a primer to amplify the left homology arm H1 and the right homology arm H2 of etf-β (nucleotide sequence is shown in SEQ ID NO: 1; amino acid sequence is shown in SEQ ID NO: 2); Using plasmid pSEVA241 as a template (this plasmid is recorded in the literature: Silva-Rocha, Rafael, et al. "The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes." Nucleic Acids Research 41.D1 ( 2012): D666-D675.), using primers donor-H-F and donor-H-R as primers for amplification to obtain the plasmid template Donor-1.

etf-β的核苷酸序列(SEQ ID NO:1):Nucleotide sequence of etf-beta (SEQ ID NO: 1):

ATGCGGCCTGAACAACAGCAAAAACAACAAAAGCCGGGTATCGACGTGGCGGTGCTGGTCTCCATAGGCCGTCACCCCACAACCGGTCGTGCGAGGCGCGCCGAGCAGGATGCACGGGGTCTGGAACTTGCTCTAGCCATGGAAGCAGAACTGCCGGGTAGCCGGATTGACGTACTGCACGCTGGTTCTCAGGATGTCGACAGCGAGGCAGCTCTGCGCAGTTACTTGGGTATGGCCACAGGCGTTGGTATGGGGCTTGAGTCTATGACCTTGCTGGAGCAGCCCGATGGCAGCGATGCCATTCTACCGCTGGTGGAACATTTAGCCGCTACCTCGCCCCAACTAGTGATCACCGGTGCCCGGGCCGAGCGCGGAGAAGGTTCTGGGCTTTTGCCCTATGCGTTGGCTGAGCATCTCGGTTGGCCGTTAGTGAATAGCTTGGCGTCGATAGAGACAGTGGAGAATGGTGTGATAACGCTGCTTCAAGCGTTGCCACGGGGCCAGCGTCGCCGTCTCAAGGTGCGCTTGCCCGCCATCATCAGCGTGGATGAAGCAGCGCCGGCGGCGCGTCAGAGCGCCTTCGGCCCGGCTCGCCGAGCCAGCTTCTCGGTGGCGCCCACTACCTCTGAAGCCGACAGTGAGTTGGCCCAGTGGCACTTGAGCCCCGCACGTAAACGGCCTAAGCGTCTGAAAATCATTAAAGCCGCCTCAGCCAGAGATCGTTTCAAAGCGGCGGCTTCCAAAGCCGAGGGCAAGGGCGGGCAAGTGCTCACCGACGTCACCCCCGAAGAGGGCGCCGAGGCGATCTACAAGCTACTCAAGGAAGAGGACGTGCTGCGCTGAATGCGGCCTGAACAACAGCAAAAACAACAAAAGCCGGGTATCGACGTGGCGGTGCTGGTCTCCATAGGCCGTCACCCCACAACCGGTCGTGCGAGGCGCGCCGAGCAGGATGCACGGGGTCTGGAACTTGCTCTAGCCATGGAAGCAGAACTGCCGGGTAGCCGGATTGACGTACTGCACGCTGGTTCTCAGGATGTCGACAGCGAGGCAGCTCTGCGCAGTTACTTGGGTATGGCCACAGGCGTTGGTATGGGGCTTGAGTCTATGACCTTGCTGGAGCAGCCCGATGGCAGCGATGCCATTCTACCGCTGGTGGAACATTTAGCCGCTACCTCGCCCCAACTAGTGATCACCGGTGCCCGGGCCGAGCGCGGAGAAGGTTCTGGGCTTTTGCCCTATGCGTTGGCTGAGCATCTCGGTTGGCCGTTAGTGAATAGCTTGGCGTCGATAGAGACAGTGGAGAATGGTGTGATAACGCTGCTTCAAGCGTTGCCACGGGGCCAGCGTCGCCGTCTCAAGGTGCGCTTGCCCGCCATCATCAGCGTGGATGAAGCAGCGCCGGCGGCGCGTCAGAGCGCCTTCGGCCCGGCTCGCCGAGCCAGCTTCTCGGTGGCGCCCACTACCTCTGAAGCCGACAGTGAGTTGGCCCAGTGGCACTTGAGCCCCGCACGTAAACGGCCTAAGCGTCTGAAAATCATTAAAGCCGCCTCAGCCAGAGATCGTTTCAAAGCGGCGGCTTCCAAAGCCGAGGGCAAGGGCGGGCAAGTGCTCACCGACGTCACCCCCGAAGAGGGCGCCGAGGCGATCTACAAGCTACTCAAGGAAGAGGACGTGCTGCGCTGA

etf-β的氨基酸序列(SEQ ID NO:2):Amino acid sequence of etf-beta (SEQ ID NO: 2):

MRPEQQQKQQKPGIDVAVLVSIGRHPTTGRARRAEQDARGLELALAMEAELPGSRIDVLHAGSQDVDSEAALRSYLGMATGVGMGLESMTLLEQPDGSDAILPLVEHLAATSPQLVITGARAERGEGSGLLPYALAEHLGWPLVNSLASIETVENGVITLLQALPRGQRRRLKVRLPAIISVDEAAPAARQSAFGPARRASFSVAPTTSEADSELAQWHLSPARKRPKRLKIIKAASARDRFKAAASKAEGKGGQVLTDVTPEEGAEAIYKLLKEEDVLR*MRPEQQQKQQKPGIDVAVLVSIGRHPTTGRARRAEQDARGLELALAMEAELPGSRIDVLHAGSQDVDSEAALRSYLGMATGVGMGLESMTLLEQPDGSDAILPLVEHLAATSPQLVITGARAERGEGSGLLPYALAEHLGWPLVNSLASIETVENGVITLLQALPRGQRRRLKVRLPAIISVDEAAPAARQSAFGPARRASFSVAPTTSEADSELAQWHLSPARKRPKRLKIIKAASARDRFKAAASKAEGKGGQVLTDVTPEEGAEAIYKLLKEEDVLR*

H1的引物为:The primers for H1 are:

beta-H1-F:5’CGAGGCGATCTACAAGCTACT 3’(SEQ ID NO:3)beta-H1-F: 5' CGAGGCGATCTACAAGCTACT 3' (SEQ ID NO: 3)

beta-H1-R:5’beta-H1-R: 5'

AGGGTTTTCCCAGTCACGACGCCGCTATCCAGCCATTGAC 3’(SEQ ID NO:4)AGGGTTTTCCCAGTCACGACGCCGCTATCCAGCCATTGAC 3' (SEQ ID NO: 4)

H2的引物为:The primers for H2 are:

beta-H2-F:5’beta-H2-F: 5'

AGTCGGTGCTTTTTTTGAACCCTGACCTTGGCAGCGTCCATT 3’(SEQ ID NO:5)AGTCGGTGCTTTTTTTGAACCCTGACCTTGGCAGCGTCCATT 3' (SEQ ID NO: 5)

beta-H2-R:5’beta-H2-R: 5'

AGTAGCTTGTAGATCGCCTCGTATGGAGACCAGCACCGCC 3’(SEQ ID NO:6)AGTAGCTTGTAGATCGCCTCGTATGGAGACCAGCACCGCC 3' (SEQ ID NO:6)

Donor-1的引物为:The primers for Donor-1 are:

donor-H-F:5’GTCGTGACTGGGAAAACCCT 3’(SEQ ID NO:7)Donor-H-F: 5' GTCGTGACTGGGAAAACCCT 3' (SEQ ID NO: 7)

donor-H-R:5’GGGTTCAAAAAAAGCACCGACT 3’(SEQ ID NO:8)Donor-H-R: 5'GGGTTCAAAAAAAGCACCGACT 3' (SEQ ID NO:8)

PCR反应条件:PCR reaction conditions:

先95℃预变性5分钟;再95℃变性30秒,58℃退火30秒,72℃延伸30秒,30次循环;然后72℃后延伸10分钟。First, pre-denaturation at 95°C for 5 minutes; then denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, extension at 72°C for 30 seconds, 30 cycles; and post-extension at 72°C for 10 minutes.

PCR反应体系(50μL体系):PCR reaction system (50 μL system):

Figure BDA0001776421570000191
Figure BDA0001776421570000191

PCR扩增体系配制时,DNA聚合酶最后加入。When the PCR amplification system is prepared, the DNA polymerase is added last.

得到504bp的PCR产物为目的基因etf-β的同源臂H1;565bp的产物为目的基因etf-β的同源臂H2;5291bp的产物为源自pSEVA241的质粒骨架Donor-1。然后用Gibson试剂盒(由美国NEB公司购得,目录号为E2611L)将扩增出来的三个产物进行连接。The 504bp PCR product obtained is the homology arm H1 of the target gene etf-β; the 565bp product is the homology arm H2 of the target gene etf-β; the 5291bp product is the plasmid backbone Donor-1 derived from pSEVA241. Then, the three amplified products were ligated with Gibson kit (purchased from NEB Company, USA, catalog number E2611L).

Gibson连接反应条件:Gibson ligation reaction conditions:

先将目标片段混合,用水补齐至10微升,然后按照Gibson试剂盒的说明书在50℃处理1小时。Gibson连接体系(10μL体系)如下所示:The target fragments were first mixed, filled up to 10 μl with water, and then treated at 50° C. for 1 hour according to the instructions of the Gibson kit. The Gibson ligation system (10 μL system) is as follows:

Figure BDA0001776421570000192
Figure BDA0001776421570000192

得到连接产物,转化到大肠杆菌JM109中,得到转化子,并进行测序,挑选测序正确的保存并用LB培养基过夜培养后提质粒,该质粒命名为pSEVA241-HR。The ligation product was obtained, transformed into Escherichia coli JM109, and the transformant was obtained and sequenced. The correct sequence was selected and stored, and the plasmid was extracted after overnight culture in LB medium. The plasmid was named pSEVA241-HR.

2)、敲除pKObet23质粒中sgRNA的插入2), knock out the insertion of sgRNA in pKObet23 plasmid

以上一步中插入同源臂H1和H2后的pSEVA241-HR质粒为模板,以donor-G-F和donor-G-R为引物,用pfu酶进行PCR扩增,得到源自pSEVA241-HR的质粒骨架;然后将引物sgRNA-F和sgRNA-R进行退火连接,得到带有粘性末端的DNA双链;将以上的质粒骨架和带有粘性末端的DNA双链用BsaI进行酶切和连接,得到用于目的基因etf-β的敲除质粒pKObet23。The pSEVA241-HR plasmid inserted into the homology arms H1 and H2 in the above step was used as a template, and donor-G-F and donor-G-R were used as primers, and pfu enzyme was used for PCR amplification to obtain the plasmid backbone derived from pSEVA241-HR; The primers sgRNA-F and sgRNA-R are annealed and connected to obtain a DNA double-strand with sticky ends; the above plasmid backbone and the DNA double-strand with sticky ends are digested and connected with BsaI to obtain the target gene etf - β-knockout plasmid pKObet23.

以带有同源臂H1和H2的pSEVA241-HR为模板进行扩增:Amplify using pSEVA241-HR with homology arms H1 and H2 as template:

donor-G-F:5’donor-G-F: 5'

CTAGGGTCTCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGT 3’(SEQ ID NO:9)CTAGGGTCTCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGT 3' (SEQ ID NO: 9)

donor-G-R:5’donor-G-R: 5'

CTAGGGTCTCAACTAGTATTATACCTAGGACTGAGCTAGCTGT 3’CTAGGGTCTCAACTAGTATTATACCTAGGACTGAGCTAGCTGT 3’

(SEQ ID NO:10)(SEQ ID NO: 10)

得到6300bp的PCR产物,将得到的质粒骨架用限制性内切酶BsaI酶切,并将酶切后的片段进行回收。A PCR product of 6300 bp was obtained, the obtained plasmid backbone was digested with the restriction enzyme BsaI, and the digested fragment was recovered.

sgRNA-F和sgRNA-R引物的退火条件:Annealing conditions for sgRNA-F and sgRNA-R primers:

先95℃预变性5分钟;每3分钟降10℃,最后15℃保持5分钟。First, pre-denature at 95°C for 5 minutes; decrease by 10°C every 3 minutes, and hold at 15°C for 5 minutes at the end.

引物序列为:The primer sequences are:

sgRNA-F:5’TAGTTGGGCTTTTGCCCTATGCGT 3’(SEQ ID NO:11)sgRNA-F: 5' TAGTTGGGCTTTTGCCCTATGCGT 3' (SEQ ID NO: 11)

sgRNA-R:5’AAACACGCATAGGGCAAAAGCCCA 3’(SEQ ID NO:12)sgRNA-R: 5'AAACACGCATAGGGCAAAAGCCCA 3' (SEQ ID NO: 12)

退火体系(10μL):Annealing system (10 μL):

sgRNA-F 5μLsgRNA-F 5μL

sgRNA-R 5μLsgRNA-R 5μL

引物终浓度为10pM。The final primer concentration was 10 pM.

得到的酶切后质粒骨架和退火后的DNA双链用T4DNA连接酶进行连接,转化进入大肠杆菌JM109,对长出的重组菌落进行测序,测序正确的进行保藏,并提取出质粒,该质粒就是用于敲除目标基因etf-β的敲除质粒pKObet23。The obtained plasmid backbone after digestion and the annealed DNA double-strand were connected with T4 DNA ligase, transformed into Escherichia coli JM109, the grown recombinant colony was sequenced, the sequenced correct was stored, and the plasmid was extracted, which is The knockout plasmid pKObet23 was used to knock out the target gene etf-β.

3)、盐单胞菌TD01中etf-β基因的敲除3) Knockout of etf-β gene in Halomonas TD01

首先在盐单胞菌TD01中转入表达Cas9蛋白的质粒pQ08(转入过程参见:Qin,Qin,et al."CRISPR/Cas9editing genome of extremophile Halomonas spp."MetabolicEngineering(2018):219-229.),该质粒中含有来源于化脓链球菌Streptococcuspyogenes的Cas9蛋白,该菌株保存于清华大学。First, the plasmid pQ08 expressing Cas9 protein was transferred into Halomonas TD01 (for the transfer process, see: Qin, Qin, et al. "CRISPR/Cas9 editing genome of extremophile Halomonas spp." Metabolic Engineering (2018): 219-229.) , the plasmid contains the Cas9 protein derived from Streptococcus pyogenes, which is preserved in Tsinghua University.

以上述含有Cas9蛋白的盐单胞菌TD01作为受体菌,以转入携带质粒pKObet23的E.coli S17-1作为供体菌进行接合转化,在含有壮观霉素抗性(100mg/ml)的LB60固体培养基的平板(在LB60液体培养基的配方中额外加入15g/L的琼脂粉,121℃高压灭菌20min,待冷却后倒平板)上筛选单克隆。以单克隆的基因组为模板,以Test-beta-F和Test-beta-R为引物,用tag酶进行菌落PCR扩增。The above-mentioned Halomonas TD01 containing the Cas9 protein was used as the recipient bacteria, and E.coli S17-1 carrying the plasmid pKObet23 was used as the donor bacteria for conjugation transformation. Single clones were screened on a plate of LB60 solid medium (add 15 g/L agar powder to the formula of LB60 liquid medium, autoclave at 121°C for 20 min, and pour it onto the plate after cooling). Using the monoclonal genome as a template and Test-beta-F and Test-beta-R as primers, colony PCR amplification was performed with tagase.

引物为:The primers are:

Test-beta-F:5’GGGTGTGGCAGATTGAAGCT 3’(SEQ ID NO:13)Test-beta-F: 5' GGGTGTGGCAGATTGAAGCT 3' (SEQ ID NO: 13)

Test-beta-R:5’GTGCCGCTAAGAACGTTGTT 3’(SEQ ID NO:14)Test-beta-R: 5' GTGCCGCTAAGAACGTTGTT 3' (SEQ ID NO: 14)

菌落PCR反应条件:Colony PCR reaction conditions:

先95℃预变性5分钟;再95℃变性30秒,58℃退火30秒,72℃延伸30秒,30次循环;然后72℃后延伸10分钟。First, pre-denaturation at 95°C for 5 minutes; then denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, extension at 72°C for 30 seconds, 30 cycles; and post-extension at 72°C for 10 minutes.

PCR反应体系(50μL体系):PCR reaction system (50 μL system):

Figure BDA0001776421570000211
Figure BDA0001776421570000211

PCR扩增体系配制完成分装后,单菌落用牙签挑入。扩增条带大小为1338bp的菌落为敲除型,扩增条带大小为2069bp的菌落为野生型(参见图1),最终得到TD01的etf-β基因敲除型,命名为Halomonas bluephagenesis TDΔβ。After the PCR amplification system was prepared and packaged, single colonies were picked with a toothpick. The colony with the amplified band size of 1338 bp was the knockout type, and the colony with the amplified band size of 2069 bp was the wild type (see Figure 1), and finally the etf-β gene knockout type of TD01 was obtained, which was named Halomonas bluephagenesis TDΔβ.

二、添加乙酸对重组菌TDΔβ合成P3HB的影响2. The effect of adding acetic acid on the synthesis of P3HB by recombinant bacteria TDΔβ

为了检验TDΔβ合成P3HB的能力,我们用TD01和TDΔβ进行了摇瓶实验;首先分别挑取单菌落到20mL的LB60培养基中,在37℃,200rpm过夜培养;然后按5%接种量(v/v),分别接种至50mL MM60培养基(pH8.5-9.0,NaCl浓度60g/L),葡萄糖浓度设为30g/L,乙酸设置浓度梯度:0g/L,1g/L,2g/L,3g/L,4g/L,5g/L,6g/L,7g/L,8g/L,9g/L,12g/L。培养温度为37℃,设置转速为200rpm,摇瓶培养48小时,得到菌液,经离心、水洗、冰干后得到样品的细胞干重,然后通过气相色谱检测出细胞干重中P3HB的含量百分比(%)。每个条件设置三组平行。细胞干重和P3HB含量见表6。In order to test the ability of TDΔβ to synthesize P3HB, we performed shake flask experiments with TD01 and TDΔβ; first, single colonies were picked into 20 mL of LB60 medium, and cultured overnight at 37°C and 200 rpm; v), were inoculated into 50mL MM60 medium (pH8.5-9.0, NaCl concentration 60g/L), glucose concentration was set to 30g/L, and acetic acid concentration gradient was set: 0g/L, 1g/L, 2g/L, 3g /L, 4g/L, 5g/L, 6g/L, 7g/L, 8g/L, 9g/L, 12g/L. The culture temperature is 37°C, the rotation speed is set to 200rpm, and the shake flask is cultured for 48 hours to obtain bacterial liquid. After centrifugation, water washing, and ice drying, the dry cell weight of the sample is obtained, and then the content percentage of P3HB in the dry cell weight is detected by gas chromatography. (%). Three sets of parallels were set for each condition. Cell dry weight and P3HB content are shown in Table 6.

表6.添加乙酸对盐单胞菌TD01和TDΔβ的影响Table 6. Effects of acetic acid addition on Halomonas TD01 and TDΔβ

Figure BDA0001776421570000221
Figure BDA0001776421570000221

从表6的数据我们可以得出以下结论:从盐单胞菌TD01敲除etf-β后得到TDΔβ,在同等条件下盐单胞菌TDΔβ可以合成比TD01显著更高含量的P3HB。并且,与在TD01培养中添加乙酸得到的结果相似,在盐单胞菌TDΔβ的培养基中添加一定浓度范围内的乙酸同样可以增加微生物的细胞干重以及细胞中积累的P3HB含量,其中,在添加3g/L乙酸后,TDΔβ的P3HB含量占细胞干重的94%,是目前为止世界上所有报道的最高含量。From the data in Table 6, we can draw the following conclusions: TDΔβ is obtained after knocking out etf-β from Halomonas TD01. Under the same conditions, Halomonas TDΔβ can synthesize significantly higher content of P3HB than TD01. Moreover, similar to the results obtained by adding acetic acid to the TD01 culture, adding acetic acid within a certain concentration range to the medium of Halomonas TDΔβ can also increase the dry cell weight of the microorganism and the content of P3HB accumulated in the cells. After adding 3 g/L acetic acid, the P3HB content of TDΔβ accounted for 94% of the dry cell weight, which was the highest content reported in the world so far.

本实验的结果显示,通过删除微生物etf-β,结合添加乙酸,能够使得P3HB占细胞中的比重提高到高达94%,并且细胞体积也增大(参见图2)。The results of this experiment show that by deleting microbial etf-β, combined with adding acetic acid, the proportion of P3HB in cells can be increased to as high as 94%, and the cell volume is also increased (see Figure 2).

三、构建工程菌TDΔα并测试乙酸对该重组菌合成P3HB的影响3. Construct the engineered strain TDΔα and test the effect of acetic acid on the synthesis of P3HB by the recombinant strain

参照实施例2第一部分那样进行操作,敲除Halomonas bluephagenesis TD01中etf基因的etf-α亚基,构建得到工程菌Halomonas bluephagenesis TDΔα,并按实施例2第二部分那样进行实验和分析,以测定乙酸添加对P3HB合成的影响。Referring to the first part of Example 2, the etf-α subunit of the etf gene in Halomonas bluephagenesis TD01 was knocked out, and the engineering bacteria Halomonas bluephagenesis TDΔα was constructed, and the experiment and analysis were carried out as the second part of Example 2 to determine the acetate. Effects of additions on P3HB synthesis.

etf-α亚基的核苷酸序列为(SEQ ID NO:15):The nucleotide sequence of the etf-alpha subunit is (SEQ ID NO: 15):

ATGAGTGAAATTATTCGCCGCGACCCACGTCGTGAGTGGATCGCCCGAAACCGTCTGCACCCCGACAACGCCGCGGTGCTGGCCGCTCTTGGTGTAAACAGGGGCGGCGGAGCGGTCAGCGAATGGGTGGGGCCCAACGGCGTGGTGCGTAAGAATCCTCGCGCTATTGGCTTTATCGGCCCCAATGGCGTTAAACGAATTGATCGTAGCGGCCTCCAGCAAGGAGGGCATTCCAGCGCGGCAACCGCCGTGGCTAGCGATAGCCGCCGTACAGTGACTATTGATCAGCCCGCTTTTCTAGTGGCCGGGGTACCTGACCTGATCGGTGGACGCCTTTCTAGCCATGATAAGGATCTGCTGGGACTAGCCAGACGCGTGGCGGATGCCGACGCCGAACAGCCAGGCGCCGTGGTGGCGATCCTGTTTGGTGAGCATAAAGGCGAGTGGGGCGGCGAGCTTAAGAAGCAAGCGCTGGGCGAAGCTGGGATTGATCGCGTCGTACATCTTGATGATGAGCTTTACGCTGGGTTTGCTCCCGAGGCACGGTTAGCGGTGTTAAGTGCCGTCGAACGGGAGATGACGCCGCGTTTCTGGCTGTTGCCGGATTCACCCCTAGGCGGAGCTGATCTGGGGCGGCGGCTTGCCTTACGCCTGGGTGAACGCGCTGCTACAGGGGTGTGGCAGATTGAAGCTGACGATGAGGCACCTCTGGGCTGGCAGTGCACTGCCCGTGGCGCCGCTGGAAGTTTGGATATCCAGCGCCCTCTGCCACGGGTTGCCCTGGCGTTGGCCGAGTGCGCCGAACCGGTGGACGAGACCCGACATGCGGCCGAACACCTGACCTTGGCAGCGTCCATTCCCACCACTCTATCGCGCATTGAAGATCTGGGTCAGGTGGCGGTGGATCCCGCTGGCGTGGCGTTGGCCGAGGCTGAGTTCATCCTCTCTGGTGGCAATGGTGTTAAACAGTGGGACGCCTTCCATCATGCCGCGAAAGTACTGGGCGCTACCGAAGGGGCCTCGCGTGTTGCGGTAGACGACGGCTTTATGGCCCGCGACCGGCAGGTAGGCGCGACCGGTACCTGGGTAACCGCCCGAGTCTATATGGCGGTGGGGATTTCAGGCGCTATCCAGCACCTGCAGGGCATTCAGCGCTGCGACAAGGTGGTGGCCATCAATCTCGATCCGGGGTGCGACATGATCgAACGCGCAGACCTGGCGGTGATAGGCGACAGCACGCAAATTCTTGCTGCGTTAGTGGCGATGGTGGAACAGCAGCGAGGAGGGCAGCGCGATGCGGCCTGAATGAGTGAAATTATTCGCCGCGACCCACGTCGTGAGTGGATCGCCCGAAACCGTCTGCACCCCGACAACGCCGCGGTGCTGGCCGCTCTTGGTGTAAACAGGGGCGGCGGAGCGGTCAGCGAATGGGTGGGGCCCAACGGCGTGGTGCGTAAGAATCCTCGCGCTATTGGCTTTATCGGCCCCAATGGCGTTAAACGAATTGATCGTAGCGGCCTCCAGCAAGGAGGGCATTCCAGCGCGGCAACCGCCGTGGCTAGCGATAGCCGCCGTACAGTGACTATTGATCAGCCCGCTTTTCTAGTGGCCGGGGTACCTGACCTGATCGGTGGACGCCTTTCTAGCCATGATAAGGATCTGCTGGGACTAGCCAGACGCGTGGCGGATGCCGACGCCGAACAGCCAGGCGCCGTGGTGGCGATCCTGTTTGGTGAGCATAAAGGCGAGTGGGGCGGCGAGCTTAAGAAGCAAGCGCTGGGCGAAGCTGGGATTGATCGCGTCGTACATCTTGATGATGAGCTTTACGCTGGGTTTGCTCCCGAGGCACGGTTAGCGGTGTTAAGTGCCGTCGAACGGGAGATGACGCCGCGTTTCTGGCTGTTGCCGGATTCACCCCTAGGCGGAGCTGATCTGGGGCGGCGGCTTGCCTTACGCCTGGGTGAACGCGCTGCTACAGGGGTGTGGCAGATTGAAGCTGACGATGAGGCACCTCTGGGCTGGCAGTGCACTGCCCGTGGCGCCGCTGGAAGTTTGGATATCCAGCGCCCTCTGCCACGGGTTGCCCTGGCGTTGGCCGAGTGCGCCGAACCGGTGGACGAGACCCGACATGCGGCCGAACACCTGACCTTGGCAGCGTCCATTCCCACCACTCTATCGCGCATTGAAGATCTGGGTCAGGTGGCGGTGGATCCCGCTGGCGTGGCGTTGGCCGAGGCTGAGTTCATCCTCTCTGGTGGCAATGGTGTTAAACAGTGGGACGCCTTCCATCATGCCGCGAAAGTAC TGGGCGCTACCGAAGGGGCCTCGCGTGTTGCGGTAGACGACGGCTTTATGGCCCGCGACCGGCAGGTAGGCGCGACCGGTACCTGGGTAACCGCCCGAGTCTATATGGCGGTGGGGATTTCAGGCGCTATCCAGCACCTGCAGGGCATTCAGCGCTGCGACAAGGTGGTGGCCATCAATCTCGATCCGGGGTGCGACATGATCgAACGCGCAGACCTGGCGGTGATAGGCGACAGCACGCAAATTCTTGCTGCGTTAGTGGCGATGGTGGAACAGCAGCGAGGAGGGCAGCGCGATGCGGCCTGA

etf-α亚基的氨基酸序列为(SEQ ID NO:16):The amino acid sequence of the etf-alpha subunit is (SEQ ID NO: 16):

MSEIIRRDPRREWIARNRLHPDNAAVLAALGVNRGGGAVSEWVGPNGVVRKNPRAIGFIGPNGVKRIDRSGLQQGGHSSAATAVASDSRRTVTIDQPAFLVAGVPDLIGGRLSSHDKDLLGLARRVADADAEQPGAVVAILFGEHKGEWGGELKKQALGEAGIDRVVHLDDELYAGFAPEARLAVLSAVEREMTPRFWLLPDSPLGGADLGRRLALRLGERAATGVWQIEADDEAPLGWQCTARGAAGSLDIQRPLPRVALALAECAEPVDETRHAAEHLTLAASIPTTLSRIEDLGQVAVDPAGVALAEAEFILSGGNGVKQWDAFHHAAKVLGATEGASRVAVDDGFMARDRQVGATGTWVTARVYMAVGISGAIQHLQGIQRCDKVVAINLDPGCDMIERADLAVIGDSTQILAALVAMVEQQRGGQRDAA*MSEIIRRDPRREWIARNRLHPDNAAVLAALGVNRGGGAVSEWVGPNGVVRKNPRAIGFIGPNGVKRIDRSGLQQGGHSSAATAVASDSRRTVTIDQPAFLVAGVPDLIGGRLSSHDKDLLGLARRVADADAEQPGAVVAILFGEHKGEWGGELKKQALGEAGIDRVVHLDDELYAGFAPEARLAVLSAVEREMTPRFWLLPDSPLGGADLGRRLALRLGERAATGVWQIEADDEAPLGWQCTARGAAGSLDIQRPLPRVALALAECAEPVDETRHAAEHLTLAASIPTTLSRIEDLGQVAVDPAGVALAEAEFILSGGNGVKQWDAFHHAAKVLGATEGASRVAVDDGFMARDRQVGATGTWVTARVYMAVGISGAIQHLQGIQRCDKVVAINLDPGCDMIERADLAVIGDSTQILAALVAMVEQQRGGQRDAA*

结果发现,与原始菌株Halomonas bluephagenesis TD01相比,在相同的培养条件下,Halomonas bluephagenesis TDΔα同样显示出显著提高的P3HB含量,推测这是因为敲除etf-α亚基或者敲除etf-β亚基均导致etf基因的失活,因此对P3HB合成通路的影响基本相同。The results showed that compared with the original strain Halomonas bluephagenesis TD01, under the same culture conditions, Halomonas bluephagenesis TDΔα also showed significantly increased P3HB content, presumably because of the knockout of etf-α subunit or the knockout of etf-β subunit. Both lead to the inactivation of etf gene, so the effects on the P3HB synthesis pathway are basically the same.

此外,添加一定浓度范围内的乙酸也同样能够提高该敲除菌株的细胞干重和P3HB含量,实验结果和趋势与Halomonas bluephagenesis TDΔβ基本一致。In addition, adding acetic acid within a certain concentration range can also increase the cell dry weight and P3HB content of the knockout strain, and the experimental results and trends are basically consistent with Halomonas bluephagenesis TDΔβ.

实施例3、通过在基础培养基中添加乙酸控制共聚物中单体的比例Example 3. Controlling the ratio of monomers in the copolymer by adding acetic acid to the basal medium

共聚物P3HB3HV和P3HB4HB的材料性能很大程度上取决于其中的单体比例,特别是对P3HB3HV而言。目前盐单胞菌Halomonas bluephagenesis TD生产共聚物最大的问题就是3HB单体比例高,而3HV和4HB的比例低。乙酸作为一种比葡萄糖还原性低的碳源,发明人考虑将乙酸和葡萄糖一起用来调节微生物的内部氧化还原环境,从而控制乙酰辅酶A的代谢流路径。具体来说,共聚物P3HB3HV和P3HB4HB都是二聚物,前者由3-羟基丁酸(3HB)和3-羟基戊酸(3HV)共聚而成,后者由3-羟基丁酸(3HB)和4-羟基丁酸(4HB)共聚而成。3HB是从乙酰辅酶A直接通过无氧发酵合成,而3HV和4HB都是通过是从乙酰辅酶A进入TCA循环产生的前体而来,因此,改变P3HB3HV和P3HB4HB中单体比例的关键就在于控制乙酰辅酶A的代谢路径。本实验证明通过在适当范围内改变乙酸的添加量,还能够调节共聚物P3HB3HV和P3HB4HB中单体的比例。The material properties of copolymers P3HB3HV and P3HB4HB depend to a large extent on the monomer ratios, especially for P3HB3HV. At present, the biggest problem in the production of copolymers by Halomonas bluephagenesis TD is that the proportion of 3HB monomer is high, while the proportion of 3HV and 4HB is low. Acetic acid is a carbon source with lower reducibility than glucose, and the inventors considered using acetate and glucose together to regulate the internal redox environment of microorganisms, thereby controlling the metabolic flow path of acetyl-CoA. Specifically, the copolymers P3HB3HV and P3HB4HB are both dimers, the former is composed of 3-hydroxybutyric acid (3HB) and 3-hydroxyvaleric acid (3HV), and the latter is composed of 3-hydroxybutyric acid (3HB) and 4-Hydroxybutyric acid (4HB) copolymerization. 3HB is directly synthesized from acetyl-CoA by anaerobic fermentation, while 3HV and 4HB are both derived from precursors that enter the TCA cycle from acetyl-CoA. Therefore, the key to changing the monomer ratio in P3HB3HV and P3HB4HB is to control The metabolic pathway of acetyl-CoA. This experiment proves that the ratio of monomers in the copolymers P3HB3HV and P3HB4HB can also be adjusted by changing the amount of acetic acid added in an appropriate range.

一、通过改变添加乙酸浓度调节P3HB3HV中3HV的含量1. Adjust the content of 3HV in P3HB3HV by changing the concentration of added acetic acid

以盐单胞菌Halomonas bluephagenesis TD08AB作为P3HB3HV合成菌株,该菌株记载在如下文献中:Yin J,Wang H,Fu X Z,et al.Effects of chromosomal gene copynumber and locations on polyhydroxyalkanoate synthesis by Escherichia coliand Halomonas sp[J].Applied microbiology and biotechnology,2015,99(13):5523-5534.中,该菌能够利用葡萄糖作为单一碳源生产P3HB3HV。Halomonas bluephagenesis TD08AB was used as the synthetic strain of P3HB3HV, which was recorded in the following documents: Yin J, Wang H, Fu X Z, et al. Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coliand Halomonas sp[J ]. Applied microbiology and biotechnology, 2015, 99(13): 5523-5534., the bacteria can use glucose as a single carbon source to produce P3HB3HV.

首先挑取单菌落在20mL的LB60(含有60g/L NaCl的LB)培养基,在37℃,200rpm过夜培养;然后按5%接种量(v/v),分别接种至50mL MM60培养基(pH 8.5-9.0,NaCl浓度60g/L),葡萄糖浓度设为30g/L,乙酸设置8个浓度梯度:0g/L,1g/L,2g/L,3g/L,4g/L,5g/L,6g/L,7g/L,8g/L。培养温度为37℃,设置转速为200rpm,摇瓶培养48小时,得到菌液,经离心、水洗、冰干后得到样品的细胞干重,然后通过气相色谱检测出细胞干重中聚合物的含量百分比(%)。每个条件设置三组平行。细胞干重、P3HB3HV含量以及3HV比例见表7。First, pick a single colony in 20 mL of LB60 (LB containing 60 g/L NaCl) medium, and cultivate it overnight at 37°C and 200 rpm; 8.5-9.0, NaCl concentration 60g/L), glucose concentration is set to 30g/L, acetic acid is set to 8 concentration gradients: 0g/L, 1g/L, 2g/L, 3g/L, 4g/L, 5g/L, 6g/L, 7g/L, 8g/L. The culture temperature is 37°C, the rotation speed is set to 200rpm, and the shake flask is cultured for 48 hours to obtain bacterial liquid. After centrifugation, washing, and ice drying, the dry cell weight of the sample is obtained, and then the polymer content in the dry cell weight is detected by gas chromatography. percentage(%). Three sets of parallels were set for each condition. Cell dry weight, P3HB3HV content and 3HV ratio are shown in Table 7.

表7.Halomonas bluephagenesis TD08AB在不同乙酸浓度下合成P3HB3HVTable 7. Halomonas bluephagenesis TD08AB synthesis of P3HB3HV at different acetic acid concentrations

Figure BDA0001776421570000241
Figure BDA0001776421570000241

Figure BDA0001776421570000251
Figure BDA0001776421570000251

从表7的数据我们可以得出如下结论:通过添加1g/L,2g/L,3g/L,4g/L,5g/L,6g/L,7g/L,8g/L乙酸能够改变共聚物P3HB3HV的单体比例,特别是在添加1g/L和2g/L乙酸后,3HV单体比例与不添加乙酸时的结果相比提高了近一倍,这对材料性能的提升有非常显著的促进作用。此外,结果还显示,添加1-8g/L的乙酸能使细胞干重增加,使得最终获得的P3HB3HV产量相比无添加时也有显著提高(数据未示出)。From the data in Table 7, we can draw the following conclusions: The copolymer can be changed by adding 1g/L, 2g/L, 3g/L, 4g/L, 5g/L, 6g/L, 7g/L, 8g/L acetic acid The monomer ratio of P3HB3HV, especially after adding 1g/L and 2g/L acetic acid, the monomer ratio of 3HV was nearly doubled compared with the result without adding acetic acid, which greatly promoted the improvement of material properties. effect. In addition, the results also showed that the addition of 1-8 g/L of acetic acid increased the dry cell weight, resulting in a significant increase in the final P3HB3HV production compared to no addition (data not shown).

二、通过改变添加乙酸浓度控制P3HB4HB中4HB的含量2. Control the content of 4HB in P3HB4HB by changing the concentration of added acetic acid

以盐单胞菌Halomonas bluephagenesis TD△gabD2-D2作为P3HB4HB合成菌,该菌株记载在如下文献中:Ye J,Hu D,Che X,et al.Engineering of Halomonasbluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)from glucose[J].Metabolic engineering,2018,47:143-152.中,该菌能够利用葡萄糖作为单一碳源生产P3HB4HB,该菌株保存在清华大学,公众可由清华大学获得。Halomonas bluephagenesis TD△gabD2-D2 was used as P3HB4HB synthetic bacteria, and the strain was recorded in the following literature: Ye J, Hu D, Che X, et al. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate -co-4-hydroxybutyrate) from glucose [J]. Metabolic engineering, 2018, 47: 143-152., the strain can use glucose as a single carbon source to produce P3HB4HB, the strain is preserved in Tsinghua University, and the public can obtain from Tsinghua University .

首先挑取单菌落在20mL的LB60(含有60g/L NaCl的LB)培养基,在37℃,200rpm过夜培养;然后按5%接种量(v/v),分别接种至50mL MM60培养基(pH 8.5-9.0,NaCl浓度60g/L),葡萄糖浓度固定为30g/L,乙酸设置9个浓度梯度:0g/L,1g/L,2g/L,3g/L,4g/L,5g/L,6g/L,7g/L,8g/L。培养温度为37℃,设置转速为200rpm,摇瓶培养48小时,得到菌液,经离心、水洗、冰干后得到样品的细胞干重,然后通过气相色谱检测出细胞干重中聚合物的含量百分比(%)。每个条件设置三组平行。细胞干重、P3HB4HB含量以及4HB比例见表8。First, pick a single colony in 20 mL of LB60 (LB containing 60 g/L NaCl) medium, and cultivate it overnight at 37°C and 200 rpm; 8.5-9.0, NaCl concentration 60g/L), glucose concentration fixed at 30g/L, 9 concentration gradients for acetic acid: 0g/L, 1g/L, 2g/L, 3g/L, 4g/L, 5g/L, 6g/L, 7g/L, 8g/L. The culture temperature is 37°C, the rotation speed is set to 200rpm, and the shake flask is cultured for 48 hours to obtain bacterial liquid. After centrifugation, washing, and ice drying, the dry cell weight of the sample is obtained, and then the polymer content in the dry cell weight is detected by gas chromatography. percentage(%). Three sets of parallels were set for each condition. Cell dry weight, P3HB4HB content and 4HB ratio are shown in Table 8.

表8.Halomonas bluephagenesis TD△gabD2-D2在不同乙酸浓度下合成P3HB4HBTable 8. Halomonas bluephagenesis TDΔgabD2-D2 synthesis of P3HB4HB at different acetic acid concentrations

Figure BDA0001776421570000252
Figure BDA0001776421570000252

Figure BDA0001776421570000261
Figure BDA0001776421570000261

实验结果显示,添加乙酸同样可以提高共聚物P3HB4HB的细胞含量和产量,相比不添加乙酸的对照组(细胞干重:8.79±0.07g/L;P3HB4HB含量:66.89±0.37%),在添加1g/L-8g/L乙酸的范围内,细胞干重和P3HB4HB含量均有提高,其中以添加6g/L乙酸时条件下的产量提高效果最为显著,其细胞干重测得为9.11±0.28g/L,P3HB4HB含量测得为69.91±1.93%。此外,从表8的数据我们还可以得出如下结论:通过添加乙酸能够改变共聚物P3HB4HB的单体比例,特别是在添加4g/L乙酸后,3HV单体比例提高了超过50%,这对材料性能的提升将有非常显著的促进作用。The experimental results show that adding acetic acid can also increase the cell content and yield of the copolymer P3HB4HB, compared with the control group without adding acetic acid (cell dry weight: 8.79±0.07g/L; P3HB4HB content: 66.89±0.37%), adding 1g In the range of /L-8g/L acetic acid, the dry cell weight and the content of P3HB4HB were increased, and the yield improvement effect was the most significant under the condition of adding 6g/L acetic acid, and the dry cell weight was measured to be 9.11±0.28g/L. L, P3HB4HB content was measured to be 69.91±1.93%. In addition, from the data in Table 8, we can also draw the following conclusions: the monomer ratio of the copolymer P3HB4HB can be changed by adding acetic acid, especially after adding 4g/L acetic acid, the 3HV monomer ratio is increased by more than 50%, which is a The improvement of material properties will have a very significant promotion effect.

以上两组实验证明,本发明通过在基础培养基中添加适量乙酸,确实能够调节微生物细胞的内部环境,控制乙酰辅酶A进入3HV和4HB的代谢流,从而改变微生物合成的聚合物中各个单体的比例。在具体的实施方式中,本发明通过调节添加乙酸的浓度,可以显著提高3HV单体在P3HB3HV聚合物中的比例(从4%提高到8%);还可以显著提高4HB单体在P3HB4HB聚合物中的比例(从7.8%提高到12%)。The above two sets of experiments prove that the present invention can indeed adjust the internal environment of microbial cells by adding an appropriate amount of acetic acid to the basal medium, and control the metabolic flow of acetyl-CoA into 3HV and 4HB, thereby changing each monomer in the polymer synthesized by the microorganism proportion. In a specific embodiment, the present invention can significantly increase the proportion of 3HV monomer in P3HB3HV polymer (from 4% to 8%) by adjusting the concentration of added acetic acid; and can also significantly increase the proportion of 4HB monomer in P3HB4HB polymer (from 7.8% to 12%).

序列表sequence listing

<110> 清华大学<110> Tsinghua University

<120> 一种改进的生产聚羟基脂肪酸酯的方法<120> An improved method for producing polyhydroxyalkanoate

<130> CGCNL181110W<130> CGCNL181110W

<160> 16<160> 16

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 843<211> 843

<212> DNA<212> DNA

<213> Halomonas bluephagenesis TD01<213> Halomonas bluephagenesis TD01

<400> 1<400> 1

atgcggcctg aacaacagca aaaacaacaa aagccgggta tcgacgtggc ggtgctggtc 60atgcggcctg aacaacagca aaaacaacaa aagccgggta tcgacgtggc ggtgctggtc 60

tccataggcc gtcaccccac aaccggtcgt gcgaggcgcg ccgagcagga tgcacggggt 120tccataggcc gtcaccccac aaccggtcgt gcgaggcgcg ccgagcagga tgcacggggt 120

ctggaacttg ctctagccat ggaagcagaa ctgccgggta gccggattga cgtactgcac 180ctggaacttg ctctagccat ggaagcagaa ctgccgggta gccggattga cgtactgcac 180

gctggttctc aggatgtcga cagcgaggca gctctgcgca gttacttggg tatggccaca 240gctggttctc aggatgtcga cagcgaggca gctctgcgca gttacttggg tatggccaca 240

ggcgttggta tggggcttga gtctatgacc ttgctggagc agcccgatgg cagcgatgcc 300ggcgttggta tggggcttga gtctatgacc ttgctggagc agcccgatgg cagcgatgcc 300

attctaccgc tggtggaaca tttagccgct acctcgcccc aactagtgat caccggtgcc 360attctaccgc tggtggaaca tttagccgct acctcgcccc aactagtgat caccggtgcc 360

cgggccgagc gcggagaagg ttctgggctt ttgccctatg cgttggctga gcatctcggt 420cgggccgagc gcggagaagg ttctgggctt ttgccctatg cgttggctga gcatctcggt 420

tggccgttag tgaatagctt ggcgtcgata gagacagtgg agaatggtgt gataacgctg 480tggccgttag tgaatagctt ggcgtcgata gagacagtgg agaatggtgt gataacgctg 480

cttcaagcgt tgccacgggg ccagcgtcgc cgtctcaagg tgcgcttgcc cgccatcatc 540cttcaagcgt tgccacgggg ccagcgtcgc cgtctcaagg tgcgcttgcc cgccatcatc 540

agcgtggatg aagcagcgcc ggcggcgcgt cagagcgcct tcggcccggc tcgccgagcc 600agcgtggatg aagcagcgcc ggcggcgcgt cagagcgcct tcggcccggc tcgccgagcc 600

agcttctcgg tggcgcccac tacctctgaa gccgacagtg agttggccca gtggcacttg 660agcttctcgg tggcgcccac tacctctgaa gccgacagtg agttggccca gtggcacttg 660

agccccgcac gtaaacggcc taagcgtctg aaaatcatta aagccgcctc agccagagat 720agccccgcac gtaaacggcc taagcgtctg aaaatcatta aagccgcctc agccagagat 720

cgtttcaaag cggcggcttc caaagccgag ggcaagggcg ggcaagtgct caccgacgtc 780cgtttcaaag cggcggcttc caaagccgag ggcaagggcg ggcaagtgct caccgacgtc 780

acccccgaag agggcgccga ggcgatctac aagctactca aggaagagga cgtgctgcgc 840acccccgaag agggcgccga ggcgatctac aagctactca aggaagagga cgtgctgcgc 840

tga 871tga 871

<210> 2<210> 2

<211> 280<211> 280

<212> PRT<212> PRT

<213> Halomonas bluephagenesis TD01<213> Halomonas bluephagenesis TD01

<400> 2<400> 2

Met Arg Pro Glu Gln Gln Gln Lys Gln Gln Lys Pro Gly Ile Asp ValMet Arg Pro Glu Gln Gln Gln Lys Gln Gln Lys Pro Gly Ile Asp Val

1 5 10 151 5 10 15

Ala Val Leu Val Ser Ile Gly Arg His Pro Thr Thr Gly Arg Ala ArgAla Val Leu Val Ser Ile Gly Arg His Pro Thr Thr Gly Arg Ala Arg

20 25 30 20 25 30

Arg Ala Glu Gln Asp Ala Arg Gly Leu Glu Leu Ala Leu Ala Met GluArg Ala Glu Gln Asp Ala Arg Gly Leu Glu Leu Ala Leu Ala Met Glu

35 40 45 35 40 45

Ala Glu Leu Pro Gly Ser Arg Ile Asp Val Leu His Ala Gly Ser GlnAla Glu Leu Pro Gly Ser Arg Ile Asp Val Leu His Ala Gly Ser Gln

50 55 60 50 55 60

Asp Val Asp Ser Glu Ala Ala Leu Arg Ser Tyr Leu Gly Met Ala ThrAsp Val Asp Ser Glu Ala Ala Leu Arg Ser Tyr Leu Gly Met Ala Thr

65 70 75 8065 70 75 80

Gly Val Gly Met Gly Leu Glu Ser Met Thr Leu Leu Glu Gln Pro AspGly Val Gly Met Gly Leu Glu Ser Met Thr Leu Leu Glu Gln Pro Asp

85 90 95 85 90 95

Gly Ser Asp Ala Ile Leu Pro Leu Val Glu His Leu Ala Ala Thr SerGly Ser Asp Ala Ile Leu Pro Leu Val Glu His Leu Ala Ala Thr Ser

100 105 110 100 105 110

Pro Gln Leu Val Ile Thr Gly Ala Arg Ala Glu Arg Gly Glu Gly SerPro Gln Leu Val Ile Thr Gly Ala Arg Ala Glu Arg Gly Glu Gly Ser

115 120 125 115 120 125

Gly Leu Leu Pro Tyr Ala Leu Ala Glu His Leu Gly Trp Pro Leu ValGly Leu Leu Pro Tyr Ala Leu Ala Glu His Leu Gly Trp Pro Leu Val

130 135 140 130 135 140

Asn Ser Leu Ala Ser Ile Glu Thr Val Glu Asn Gly Val Ile Thr LeuAsn Ser Leu Ala Ser Ile Glu Thr Val Glu Asn Gly Val Ile Thr Leu

145 150 155 160145 150 155 160

Leu Gln Ala Leu Pro Arg Gly Gln Arg Arg Arg Leu Lys Val Arg LeuLeu Gln Ala Leu Pro Arg Gly Gln Arg Arg Arg Leu Lys Val Arg Leu

165 170 175 165 170 175

Pro Ala Ile Ile Ser Val Asp Glu Ala Ala Pro Ala Ala Arg Gln SerPro Ala Ile Ile Ser Val Asp Glu Ala Ala Pro Ala Ala Arg Gln Ser

180 185 190 180 185 190

Ala Phe Gly Pro Ala Arg Arg Ala Ser Phe Ser Val Ala Pro Thr ThrAla Phe Gly Pro Ala Arg Arg Ala Ser Phe Ser Val Ala Pro Thr Thr

195 200 205 195 200 205

Ser Glu Ala Asp Ser Glu Leu Ala Gln Trp His Leu Ser Pro Ala ArgSer Glu Ala Asp Ser Glu Leu Ala Gln Trp His Leu Ser Pro Ala Arg

210 215 220 210 215 220

Lys Arg Pro Lys Arg Leu Lys Ile Ile Lys Ala Ala Ser Ala Arg AspLys Arg Pro Lys Arg Leu Lys Ile Ile Lys Ala Ala Ser Ala Arg Asp

225 230 235 240225 230 235 240

Arg Phe Lys Ala Ala Ala Ser Lys Ala Glu Gly Lys Gly Gly Gln ValArg Phe Lys Ala Ala Ala Ser Lys Ala Glu Gly Lys Gly Gly Gln Val

245 250 255 245 250 255

Leu Thr Asp Val Thr Pro Glu Glu Gly Ala Glu Ala Ile Tyr Lys LeuLeu Thr Asp Val Thr Pro Glu Glu Gly Ala Glu Ala Ile Tyr Lys Leu

260 265 270 260 265 270

Leu Lys Glu Glu Asp Val Leu ArgLeu Lys Glu Glu Asp Val Leu Arg

275 280 275 280

<210> 3<210> 3

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

cgaggcgatc tacaagctac t 21cgaggcgatc tacaagctac t 21

<210> 4<210> 4

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

agggttttcc cagtcacgac gccgctatcc agccattgac 40agggttttcc cagtcacgac gccgctatcc agccattgac 40

<210> 5<210> 5

<211> 42<211> 42

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

agtcggtgct ttttttgaac cctgaccttg gcagcgtcca tt 42agtcggtgct ttttttgaac cctgaccttg gcagcgtcca tt 42

<210> 6<210> 6

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

agtagcttgt agatcgcctc gtatggagac cagcaccgcc 40agtagcttgt agatcgcctc gtatggagac cagcaccgcc 40

<210> 7<210> 7

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

gtcgtgactg ggaaaaccct 20gtcgtgactg ggaaaaccct 20

<210> 8<210> 8

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

gggttcaaaa aaagcaccga ct 22gggttcaaaa aaagcaccga ct 22

<210> 9<210> 9

<211> 50<211> 50

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

ctagggtctc agttttagag ctagaaatag caagttaaaa taaggctagt 50ctagggtctc agttttagag ctagaaatag caagttaaaa taaggctagt 50

<210> 10<210> 10

<211> 43<211> 43

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

ctagggtctc aactagtatt atacctagga ctgagctagc tgt 43ctagggtctc aactagtatt atacctagga ctgagctagc tgt 43

<210> 11<210> 11

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

tagttgggct tttgccctat gcgt 24tagttgggct tttgccctat gcgt 24

<210> 12<210> 12

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

aaacacgcat agggcaaaag ccca 24aaacacgcat agggcaaaag ccca 24

<210> 13<210> 13

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 13<400> 13

gggtgtggca gattgaagct 20gggtgtggca gattgaagct 20

<210> 14<210> 14

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 14<400> 14

gtgccgctaa gaacgttgtt 20gtgccgctaa gaacgttgtt 20

<210> 15<210> 15

<211> 1305<211> 1305

<212> DNA<212> DNA

<213> Halomonas bluephagenesis TD01<213> Halomonas bluephagenesis TD01

<400> 15<400> 15

atgagtgaaa ttattcgccg cgacccacgt cgtgagtgga tcgcccgaaa ccgtctgcac 60atgagtgaaa ttattcgccg cgacccacgt cgtgagtgga tcgcccgaaa ccgtctgcac 60

cccgacaacg ccgcggtgct ggccgctctt ggtgtaaaca ggggcggcgg agcggtcagc 120cccgacaacg ccgcggtgct ggccgctctt ggtgtaaaca ggggcggcgg agcggtcagc 120

gaatgggtgg ggcccaacgg cgtggtgcgt aagaatcctc gcgctattgg ctttatcggc 180gaatgggtgg ggcccaacgg cgtggtgcgt aagaatcctc gcgctattgg ctttatcggc 180

cccaatggcg ttaaacgaat tgatcgtagc ggcctccagc aaggagggca ttccagcgcg 240cccaatggcg ttaaacgaat tgatcgtagc ggcctccagc aaggagggca ttccagcgcg 240

gcaaccgccg tggctagcga tagccgccgt acagtgacta ttgatcagcc cgcttttcta 300gcaaccgccg tggctagcga tagccgccgt acagtgacta ttgatcagcc cgcttttcta 300

gtggccgggg tacctgacct gatcggtgga cgcctttcta gccatgataa ggatctgctg 360gtggccgggg tacctgacct gatcggtgga cgcctttcta gccatgataa ggatctgctg 360

ggactagcca gacgcgtggc ggatgccgac gccgaacagc caggcgccgt ggtggcgatc 420ggactagcca gacgcgtggc ggatgccgac gccgaacagc caggcgccgt ggtggcgatc 420

ctgtttggtg agcataaagg cgagtggggc ggcgagctta agaagcaagc gctgggcgaa 480ctgtttggtg agcataaagg cgagtggggc ggcgagctta agaagcaagc gctgggcgaa 480

gctgggattg atcgcgtcgt acatcttgat gatgagcttt acgctgggtt tgctcccgag 540gctgggattg atcgcgtcgt acatcttgat gatgagcttt acgctgggtt tgctcccgag 540

gcacggttag cggtgttaag tgccgtcgaa cgggagatga cgccgcgttt ctggctgttg 600gcacggttag cggtgttaag tgccgtcgaa cgggagatga cgccgcgttt ctggctgttg 600

ccggattcac ccctaggcgg agctgatctg gggcggcggc ttgccttacg cctgggtgaa 660ccggattcac ccctaggcgg agctgatctg gggcggcggc ttgccttacg cctgggtgaa 660

cgcgctgcta caggggtgtg gcagattgaa gctgacgatg aggcacctct gggctggcag 720cgcgctgcta caggggtgtg gcagattgaa gctgacgatg aggcacctct gggctggcag 720

tgcactgccc gtggcgccgc tggaagtttg gatatccagc gccctctgcc acgggttgcc 780tgcactgccc gtggcgccgc tggaagtttg gatatccagc gccctctgcc acgggttgcc 780

ctggcgttgg ccgagtgcgc cgaaccggtg gacgagaccc gacatgcggc cgaacacctg 840ctggcgttgg ccgagtgcgc cgaaccggtg gacgagaccc gacatgcggc cgaacacctg 840

accttggcag cgtccattcc caccactcta tcgcgcattg aagatctggg tcaggtggcg 900accttggcag cgtccattcc caccactcta tcgcgcattg aagatctggg tcaggtggcg 900

gtggatcccg ctggcgtggc gttggccgag gctgagttca tcctctctgg tggcaatggt 960gtggatcccg ctggcgtggc gttggccgag gctgagttca tcctctctgg tggcaatggt 960

gttaaacagt gggacgcctt ccatcatgcc gcgaaagtac tgggcgctac cgaaggggcc 1020gttaaacagt gggacgcctt ccatcatgcc gcgaaagtac tgggcgctac cgaaggggcc 1020

tcgcgtgttg cggtagacga cggctttatg gcccgcgacc ggcaggtagg cgcgaccggt 1080tcgcgtgttg cggtagacga cggctttatg gcccgcgacc ggcaggtagg cgcgaccggt 1080

acctgggtaa ccgcccgagt ctatatggcg gtggggattt caggcgctat ccagcacctg 1140acctgggtaa ccgcccgagt ctatatggcg gtggggattt caggcgctat ccagcacctg 1140

cagggcattc agcgctgcga caaggtggtg gccatcaatc tcgatccggg gtgcgacatg 1200cagggcattc agcgctgcga caaggtggtg gccatcaatc tcgatccggg gtgcgacatg 1200

atcgaacgcg cagacctggc ggtgataggc gacagcacgc aaattcttgc tgcgttagtg 1260atcgaacgcg cagacctggc ggtgataggc gacagcacgc aaattcttgc tgcgttagtg 1260

gcgatggtgg aacagcagcg aggagggcag cgcgatgcgg cctga 1305gcgatggtgg aacagcagcg aggagggcag cgcgatgcgg cctga 1305

<210> 16<210> 16

<211> 434<211> 434

<212> PRT<212> PRT

<213> Halomonas bluephagenesis TD01<213> Halomonas bluephagenesis TD01

<400> 16<400> 16

Met Ser Glu Ile Ile Arg Arg Asp Pro Arg Arg Glu Trp Ile Ala ArgMet Ser Glu Ile Ile Arg Arg Asp Pro Arg Arg Glu Trp Ile Ala Arg

1 5 10 151 5 10 15

Asn Arg Leu His Pro Asp Asn Ala Ala Val Leu Ala Ala Leu Gly ValAsn Arg Leu His Pro Asp Asn Ala Ala Val Leu Ala Ala Leu Gly Val

20 25 30 20 25 30

Asn Arg Gly Gly Gly Ala Val Ser Glu Trp Val Gly Pro Asn Gly ValAsn Arg Gly Gly Gly Ala Val Ser Glu Trp Val Gly Pro Asn Gly Val

35 40 45 35 40 45

Val Arg Lys Asn Pro Arg Ala Ile Gly Phe Ile Gly Pro Asn Gly ValVal Arg Lys Asn Pro Arg Ala Ile Gly Phe Ile Gly Pro Asn Gly Val

50 55 60 50 55 60

Lys Arg Ile Asp Arg Ser Gly Leu Gln Gln Gly Gly His Ser Ser AlaLys Arg Ile Asp Arg Ser Gly Leu Gln Gln Gly Gly His Ser Ser Ala

65 70 75 8065 70 75 80

Ala Thr Ala Val Ala Ser Asp Ser Arg Arg Thr Val Thr Ile Asp GlnAla Thr Ala Val Ala Ser Asp Ser Arg Arg Thr Val Thr Ile Asp Gln

85 90 95 85 90 95

Pro Ala Phe Leu Val Ala Gly Val Pro Asp Leu Ile Gly Gly Arg LeuPro Ala Phe Leu Val Ala Gly Val Pro Asp Leu Ile Gly Gly Arg Leu

100 105 110 100 105 110

Ser Ser His Asp Lys Asp Leu Leu Gly Leu Ala Arg Arg Val Ala AspSer Ser His Asp Lys Asp Leu Leu Gly Leu Ala Arg Arg Val Ala Asp

115 120 125 115 120 125

Ala Asp Ala Glu Gln Pro Gly Ala Val Val Ala Ile Leu Phe Gly GluAla Asp Ala Glu Gln Pro Gly Ala Val Val Ala Ile Leu Phe Gly Glu

130 135 140 130 135 140

His Lys Gly Glu Trp Gly Gly Glu Leu Lys Lys Gln Ala Leu Gly GluHis Lys Gly Glu Trp Gly Gly Glu Leu Lys Lys Gln Ala Leu Gly Glu

145 150 155 160145 150 155 160

Ala Gly Ile Asp Arg Val Val His Leu Asp Asp Glu Leu Tyr Ala GlyAla Gly Ile Asp Arg Val Val His Leu Asp Asp Glu Leu Tyr Ala Gly

165 170 175 165 170 175

Phe Ala Pro Glu Ala Arg Leu Ala Val Leu Ser Ala Val Glu Arg GluPhe Ala Pro Glu Ala Arg Leu Ala Val Leu Ser Ala Val Glu Arg Glu

180 185 190 180 185 190

Met Thr Pro Arg Phe Trp Leu Leu Pro Asp Ser Pro Leu Gly Gly AlaMet Thr Pro Arg Phe Trp Leu Leu Pro Asp Ser Pro Leu Gly Gly Ala

195 200 205 195 200 205

Asp Leu Gly Arg Arg Leu Ala Leu Arg Leu Gly Glu Arg Ala Ala ThrAsp Leu Gly Arg Arg Leu Ala Leu Arg Leu Gly Glu Arg Ala Ala Thr

210 215 220 210 215 220

Gly Val Trp Gln Ile Glu Ala Asp Asp Glu Ala Pro Leu Gly Trp GlnGly Val Trp Gln Ile Glu Ala Asp Asp Glu Ala Pro Leu Gly Trp Gln

225 230 235 240225 230 235 240

Cys Thr Ala Arg Gly Ala Ala Gly Ser Leu Asp Ile Gln Arg Pro LeuCys Thr Ala Arg Gly Ala Ala Gly Ser Leu Asp Ile Gln Arg Pro Leu

245 250 255 245 250 255

Pro Arg Val Ala Leu Ala Leu Ala Glu Cys Ala Glu Pro Val Asp GluPro Arg Val Ala Leu Ala Leu Ala Glu Cys Ala Glu Pro Val Asp Glu

260 265 270 260 265 270

Thr Arg His Ala Ala Glu His Leu Thr Leu Ala Ala Ser Ile Pro ThrThr Arg His Ala Ala Glu His Leu Thr Leu Ala Ala Ser Ile Pro Thr

275 280 285 275 280 285

Thr Leu Ser Arg Ile Glu Asp Leu Gly Gln Val Ala Val Asp Pro AlaThr Leu Ser Arg Ile Glu Asp Leu Gly Gln Val Ala Val Asp Pro Ala

290 295 300 290 295 300

Gly Val Ala Leu Ala Glu Ala Glu Phe Ile Leu Ser Gly Gly Asn GlyGly Val Ala Leu Ala Glu Ala Glu Phe Ile Leu Ser Gly Gly Asn Gly

305 310 315 320305 310 315 320

Val Lys Gln Trp Asp Ala Phe His His Ala Ala Lys Val Leu Gly AlaVal Lys Gln Trp Asp Ala Phe His His Ala Ala Lys Val Leu Gly Ala

325 330 335 325 330 335

Thr Glu Gly Ala Ser Arg Val Ala Val Asp Asp Gly Phe Met Ala ArgThr Glu Gly Ala Ser Arg Val Ala Val Asp Asp Gly Phe Met Ala Arg

340 345 350 340 345 350

Asp Arg Gln Val Gly Ala Thr Gly Thr Trp Val Thr Ala Arg Val TyrAsp Arg Gln Val Gly Ala Thr Gly Thr Trp Val Thr Ala Arg Val Tyr

355 360 365 355 360 365

Met Ala Val Gly Ile Ser Gly Ala Ile Gln His Leu Gln Gly Ile GlnMet Ala Val Gly Ile Ser Gly Ala Ile Gln His Leu Gln Gly Ile Gln

370 375 380 370 375 380

Arg Cys Asp Lys Val Val Ala Ile Asn Leu Asp Pro Gly Cys Asp MetArg Cys Asp Lys Val Val Ala Ile Asn Leu Asp Pro Gly Cys Asp Met

385 390 395 400385 390 395 400

Ile Glu Arg Ala Asp Leu Ala Val Ile Gly Asp Ser Thr Gln Ile LeuIle Glu Arg Ala Asp Leu Ala Val Ile Gly Asp Ser Thr Gln Ile Leu

405 410 415 405 410 415

Ala Ala Leu Val Ala Met Val Glu Gln Gln Arg Gly Gly Gln Arg AspAla Ala Leu Val Ala Met Val Glu Gln Gln Arg Gly Gly Gln Arg Asp

420 425 430 420 425 430

Ala AlaAla Ala

Claims (11)

1. An improved microbial method of producing Polyhydroxyalkanoates (PHAs), the method comprising adding acetic acid, acetate salt, acetate ester or other acetic acid derivative to a basal medium comprising a source of carbon for microbial synthesis of PHAs.
2. The method of claim 1, wherein the microorganism is a bacterium of the genus Escherichia (Escherichia), halophilic (Halophile), Halomonas (Halomonas), Pseudomonas (Pseudomonas), or Bacillus (Bacillus), or a combination thereof; for example, the microorganism is Escherichia coli (Escherichia coli), Pseudomonas putida (Pseudomonas putida), Halomonas campestris or Halomonas bluephasegenes or a combination thereof, preferably Halomonas campestris or Halomonas bluephasegenes; in particular, the microorganism is selected from one or more of the following:
Escherichia coli JM109-pBHR68;
Escherichia coli JM109SG-p68orfZ+pMCSH5;
Halomonas bluephagenesis TD01;
Halomonas bluephagenesis TD08AB;
Halomonas bluephagenesis TD△gabD2-D2;
halomonas bluephagene TD delta β, and
Halomonas bluephagenesis TDΔα。
3. the method of claim 1, wherein the microorganism is a recombinant bacterium obtained after knocking out or inactivating the etf gene in halomonas, preferably, by knocking out either or both of etf- α subunit and etf- β subunit of etf gene.
4. The method of claim 1, wherein the carbon source is glucose, gluconic acid, gluconate ester or a combination thereof, the carbon source being added at a concentration of 1-100 g/L.
5. The method of claim 1, wherein the PHA is a homopolymeric PHA or a copolymeric PHA.
6. The process according to any of the preceding claims, wherein the concentration of acetic acid, acetate salt, acetate ester or other acetic acid derivative added is 1-12 g/L.
7. The process according to claim 5, wherein the concentration of acetic acid, acetate or other acetic acid derivative added is 1-12g/L, the microorganism is Halomonas bluePhagenesis TD01, Halomonas bluephagenesis TD Δ α or Halomonas bluephagenesis TD Δ β, and the PHA is poly-3-hydroxybutyrate (P3 HB).
8. The method of claim 5, wherein the concentration of acetic acid, acetate or other acetic acid derivative added is 1-8g/L, wherein the microorganism is Halomonas bluephagene TD08AB and the PHA is poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB3HV), or the microorganism is Halomonas bluephagene TD △ gabD2-D2 and the PHA is poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4 HB).
9. A method of reducing pyruvate accumulated during microbial production of Polyhydroxyalkanoate (PHA), the method comprising adding acetic acid, acetate salt, acetate ester or other acetic acid derivative to a basal medium comprising a source of carbon for microbial synthesis of PHA.
10. A recombinant bacterium obtained by knocking out/inactivating etf gene on the basis of a bacterium of the genus Halomonas, preferably Halomonas bluephagesis, more preferably Halomonas bluephagesis TD01 with the accession number cgmccno. 4353.
11. A method of producing poly 3-hydroxybutyrate, comprising fermenting using the recombinant bacterium of claim 10 in a basal medium comprising a carbon source under conditions suitable for culturing the recombinant bacterium to produce poly 3-hydroxybutyrate.
CN201810971946.0A 2018-08-24 2018-08-24 An improved method for producing polyhydroxyalkanoates Active CN110857449B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810971946.0A CN110857449B (en) 2018-08-24 2018-08-24 An improved method for producing polyhydroxyalkanoates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810971946.0A CN110857449B (en) 2018-08-24 2018-08-24 An improved method for producing polyhydroxyalkanoates

Publications (2)

Publication Number Publication Date
CN110857449A true CN110857449A (en) 2020-03-03
CN110857449B CN110857449B (en) 2021-12-14

Family

ID=69636162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810971946.0A Active CN110857449B (en) 2018-08-24 2018-08-24 An improved method for producing polyhydroxyalkanoates

Country Status (1)

Country Link
CN (1) CN110857449B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111593006A (en) * 2020-06-03 2020-08-28 清华大学 A self-flocculating halophilic bacteria and its application
CN113088475A (en) * 2021-05-25 2021-07-09 北京化工大学 Vibrio salina and application thereof
CN113564193A (en) * 2021-09-27 2021-10-29 清华大学 Microorganism gene expression fate community and construction method and application thereof
CN117143899A (en) * 2023-10-24 2023-12-01 珠海麦得发生物科技股份有限公司 Bacterial strain for synthesizing P34HB3HP, construction method and application thereof
CN117363554A (en) * 2023-12-08 2024-01-09 清华大学 Engineered halophilic microorganism and construction method and application thereof
TWI856592B (en) * 2023-03-30 2024-09-21 國家原子能科技研究院 Bacillus and method for producing polyhydroxyalkanoates using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323864A (en) * 2007-06-12 2008-12-17 同济大学 A method for synthesizing polyhydroxyalkanoic acid
WO2011069244A1 (en) * 2009-12-07 2011-06-16 Queen's University At Kingston Medium chain length polyhydroxyalkanoate polymer and method of making same
CN105821084A (en) * 2015-01-28 2016-08-03 赢创德固赛有限公司 Aerobic method of producing alcohols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323864A (en) * 2007-06-12 2008-12-17 同济大学 A method for synthesizing polyhydroxyalkanoic acid
WO2011069244A1 (en) * 2009-12-07 2011-06-16 Queen's University At Kingston Medium chain length polyhydroxyalkanoate polymer and method of making same
CN105821084A (en) * 2015-01-28 2016-08-03 赢创德固赛有限公司 Aerobic method of producing alcohols

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GENBANK: "electron transfer flavoprotein subunit beta [Halomonas sp. TD01]", 《NCBI》 *
JIE GAO等: "Fed-batch production of poly-3-hydroxydecanoate from decanoic acid", 《JOURNAL OF BIOTECHNOLOGY》 *
JIN YIN等: "Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp.", 《APPL MICROBIOL BIOTECHNOL》 *
SUNG-EUN LEE等: "Diverse protein regulations on PHA formation in Ralstonia eutropha on short chain organic acids", 《INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111593006A (en) * 2020-06-03 2020-08-28 清华大学 A self-flocculating halophilic bacteria and its application
CN111593006B (en) * 2020-06-03 2021-10-26 北京微构工场生物技术有限公司 Self-flocculating halophilic bacteria and application thereof
CN113088475A (en) * 2021-05-25 2021-07-09 北京化工大学 Vibrio salina and application thereof
CN113088475B (en) * 2021-05-25 2022-05-17 北京化工大学 A kind of salt vibrio and its application
CN113564193A (en) * 2021-09-27 2021-10-29 清华大学 Microorganism gene expression fate community and construction method and application thereof
TWI856592B (en) * 2023-03-30 2024-09-21 國家原子能科技研究院 Bacillus and method for producing polyhydroxyalkanoates using same
CN117143899A (en) * 2023-10-24 2023-12-01 珠海麦得发生物科技股份有限公司 Bacterial strain for synthesizing P34HB3HP, construction method and application thereof
CN117143899B (en) * 2023-10-24 2024-01-30 珠海麦得发生物科技股份有限公司 Bacterial strain for synthesizing P34HB3HP, construction method and application thereof
CN117363554A (en) * 2023-12-08 2024-01-09 清华大学 Engineered halophilic microorganism and construction method and application thereof
CN117363554B (en) * 2023-12-08 2024-04-09 清华大学 Engineered halophilic microorganism and construction method and application thereof

Also Published As

Publication number Publication date
CN110857449B (en) 2021-12-14

Similar Documents

Publication Publication Date Title
CN110857449A (en) Improved method for producing polyhydroxyalkanoate
JP3062459B2 (en) Polyester synthase gene and method for producing polyester
Fu et al. Development of Halomonas TD01 as a host for open production of chemicals
JP7579396B2 (en) Mutant polyhydroxyalkanoic acid synthase, gene thereof, transformant, and method for producing polyhydroxyalkanoic acid
JP6085023B2 (en) Novel D-lactic acid producing strain and use thereof
CN110079489B (en) Recombinant halomonas and method for producing P (3HB-co-4HB) by using same
CN101845414B (en) Method for preparing hydroxyalkanoate homopolymer and special bacteria thereof
Zhang et al. Engineering of Ralstonia eutropha for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose
CN113583922A (en) Method for producing PHA (polyhydroxyalkanoate) by culturing halophilic bacteria in low-salt culture medium
CN116970659B (en) Method for producing polyhydroxyalkanoate
CN109295085A (en) A kind of genetic engineering bacteria for producing lactic acid and 3-hydroxybutyric acid copolyester and its construction method and application
CN102066560A (en) Method for production of polyester copolymer using genetically modified microorganism
CN102174542B (en) Recombinant strain for producing 3-hydracrylic acid homopolymer and/or 3-hydracrylic acid copolymer and application thereof
EP2910641B1 (en) High molecular weight pha-producing microbe and method of producing high molecular weight pha using same
CN105039376B (en) The recombinant bacterium and construction method of production 3- hydracrylic acids homopolymer/copolymer and application
KR102311152B1 (en) Production of poly(3HB-co-3HP) from methane by metabolic engineered methanotrophs
CN100593571C (en) A method of improving microbial stress resistance
Liu et al. Improved poly (3-hydroxybutyrate) production in Escherichia coli by inactivation of cytochrome bd-II oxidase or/and NDH-II dehydrogenase in low efficient respiratory chains
CN111363713A (en) Construction method and application of genetic engineering escherichia coli for improving content of lactic acid component in polyhydroxybutyrate lactate
JP5786155B2 (en) Recombinant microorganism and method for producing aliphatic polyester using the same
CN116004487A (en) Genetically engineered bacterium and method for producing poly 3-hydroxybutyrate by using genetically engineered bacterium
CN101665801B (en) Method for enhancing reverse resistance of microorganisms
CN102482651A (en) Recombinant microorganisms and methods of using them for the production of aliphatic polyesters
CN117701488B (en) Recombinant bacterium for producing PHA and method for improving PHA yield
CN118048246B (en) Recombinant eutrophic bacteria for producing PHA (polyhydroxyalkanoate), and construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200303

Assignee: Beijing micro structure factory Biotechnology Co.,Ltd.

Assignor: TSINGHUA University

Contract record no.: X2025980009607

Denomination of invention: An improved method for producing polyhydroxyalkanoates

Granted publication date: 20211214

License type: Exclusive License

Record date: 20250529

EE01 Entry into force of recordation of patent licensing contract