[go: up one dir, main page]

CN110854249A - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
CN110854249A
CN110854249A CN201911163403.7A CN201911163403A CN110854249A CN 110854249 A CN110854249 A CN 110854249A CN 201911163403 A CN201911163403 A CN 201911163403A CN 110854249 A CN110854249 A CN 110854249A
Authority
CN
China
Prior art keywords
light
layer
emitting
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911163403.7A
Other languages
Chinese (zh)
Inventor
林义杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CN201911163403.7A priority Critical patent/CN110854249A/en
Publication of CN110854249A publication Critical patent/CN110854249A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/814Bodies having reflecting means, e.g. semiconductor Bragg reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates
    • H10H20/821Bodies characterised by their shape, e.g. curved or truncated substrates of the light-emitting regions, e.g. non-planar junctions

Landscapes

  • Led Devices (AREA)

Abstract

The invention discloses a light-emitting element, comprising: a substrate; a light-emitting laminate disposed above the substrate and capable of emitting light of Infrared (IR) wavelength; and a semiconductor window layer composed of AlGaInP series material and located between the substrate and the light emitting laminated layer.

Description

发光元件light-emitting element

本申请是中国发明专利申请(申请号:201410094885.6,申请日:2014年03月14日,发明名称:发光元件)的分案申请。This application is a divisional application of a Chinese invention patent application (application number: 201410094885.6, application date: March 14, 2014, invention name: light-emitting element).

技术领域technical field

本发明涉及一种发光元件,尤其是涉及一种红外线发光元件。The present invention relates to a light-emitting element, in particular to an infrared light-emitting element.

背景技术Background technique

发光二极管(Light-Emitting Diode;LED)具有低耗能、低发热、操作寿命长、防震、体积小、反应速度快以及输出的光波长稳定等良好光电特性,因此适用于各种用途。Light-Emitting Diode (LED) has good optoelectronic properties such as low energy consumption, low heat generation, long operating life, shock resistance, small size, fast response speed and stable output light wavelength, so it is suitable for various purposes.

其中红外线发光二极管(Infrared LED;IR LED)的应用越来越广,从传统应用于遥控器和监视器,最近更发展到应用于智能型手机以及触控面板。其中因为每一个触控面板相对使用较大量的红外线发光二极管,所以相对于其他应用在价格上也要求更低,降低红外线发光二极管的成本因此有其必要性。Among them, infrared light-emitting diodes (Infrared LEDs; IR LEDs) are widely used, from traditional remote controls and monitors, to smart phones and touch panels recently. Because each touch panel uses a relatively large amount of infrared light emitting diodes, the price is lower than other applications, so it is necessary to reduce the cost of infrared light emitting diodes.

图1是一现有的红外线发光元件的剖面图,如图1所示,此发光元件包含一永久基板101,在其上方由上往下依序有一发光叠层102,一金属反射层103,一阻障层104,及一接合(bonding)结构105。此外,一第一电极106E1及其延伸电极106E1’设置于发光叠层102上,及一第二电极106E2设置于永久基板101上。第一电极106E1及其延伸电极106E1’以及第二电极106E2用以传递电流。发光叠层102可发出一红外线波段的光线。在制作工艺上,此种现有的红外线发光元件其发光叠层102原本成长于成长基板上(图未示),再利用接合结构105接合原本分离的发光叠层102与永久基板101,故可于两者接合前先形成金属反射层103于发光叠层102后再接合。但如上述,在特定应用,例如触控面板的应用要求低成本时,上述接合制作工艺及金属反射层103等,都是造成高成本的主因。另外,在触控面板应用上,也要求较佳的侧面出光以达到较大的出光角度,在实际应用上已发现上述现有的红外线发光元件难以符合此方面的要求。FIG. 1 is a cross-sectional view of a conventional infrared light-emitting device. As shown in FIG. 1, the light-emitting device includes a permanent substrate 101 with a light-emitting stack 102, a metal reflective layer 103, A barrier layer 104 , and a bonding structure 105 . In addition, a first electrode 106E1 and its extension electrode 106E1' are disposed on the light emitting stack 102, and a second electrode 106E2 is disposed on the permanent substrate 101. The first electrode 106E1 and its extension electrode 106E1' and the second electrode 106E2 are used to transmit current. The light emitting stack 102 can emit light in an infrared wavelength band. In the manufacturing process, the light-emitting stack 102 of the conventional infrared light-emitting device is originally grown on a growth substrate (not shown), and the bonding structure 105 is used to bond the light-emitting stack 102 and the permanent substrate 101 that were originally separated. Before joining the two, the metal reflective layer 103 is formed on the light emitting stack 102 before joining. However, as mentioned above, when a specific application, such as the application of a touch panel, requires low cost, the above-mentioned bonding fabrication process and the metal reflective layer 103 are the main reasons for the high cost. In addition, in the application of the touch panel, better side emitting light is also required to achieve a larger light emitting angle. In practical applications, it has been found that the above-mentioned existing infrared light emitting elements are difficult to meet this requirement.

发明内容SUMMARY OF THE INVENTION

为解决上述问题,本发明公开一种发光元件。本发明所公开的发光元件包含:一基板;一发光叠层位于基板的上方,可发出一红外线(IR)波长的光;以及一半导体窗户层,由AlGaInP系列的材料组成,位于基板与发光叠层之间。In order to solve the above problems, the present invention discloses a light-emitting element. The light-emitting element disclosed in the present invention comprises: a substrate; a light-emitting stack is located above the substrate and can emit light of an infrared (IR) wavelength; and a semiconductor window layer, which is composed of AlGaInP series materials, is located on the substrate and the light-emitting stack between layers.

附图说明Description of drawings

图1所示为一现有的发光元件。FIG. 1 shows a conventional light-emitting element.

图2所示为本发明第一实施例的发光元件。FIG. 2 shows a light-emitting element according to a first embodiment of the present invention.

图3所示为本发明第一实施例的发光元件中的第二电极图案。FIG. 3 shows a second electrode pattern in the light-emitting element according to the first embodiment of the present invention.

图4所示为本发明第一实施例的发光元件中的第二电极另一图案。FIG. 4 shows another pattern of the second electrode in the light-emitting element according to the first embodiment of the present invention.

符号说明Symbol Description

101 永久基板101 Permanent substrate

102 发光叠层102 Light Emitting Stack

103 金属反射层103 Metal reflective layer

104 阻障层104 Barrier layer

105 接合结构105 Joint structure

106E1 第一电极106E1 first electrode

106E1’ (第一电极的)延伸电极106E1’ (first electrode) extension electrode

106E2 第二电极106E2 second electrode

20 基板20 substrate

21 缓冲层21 buffer layer

22 半导体窗户层22 Semiconductor window layer

23 发光叠层23 Light Emitting Stacks

231 第一电性半导体层231 first electrical type semiconductor layer

232 发光层232 light-emitting layer

232b1,232b2,…232bn 阻障层232b 1 , 232b 2 ,…232 bn barrier layer

232w1,232w2,…232wn-1 阱层232w 1 , 232w 2 ,…232w n-1 well layer

233 第二电性半导体层233 second electrical type semiconductor layer

24 侧向光取出层24 Lateral light extraction layer

25 接触层25 Contact layer

26 第一电极26 First electrode

26a (第一电极的)延伸电极26a (of the first electrode) extension electrode

27 第二电极27 Second electrode

S1 基板下表面S1 substrate lower surface

S2 基板侧面S2 substrate side

S3 发光元件上表面S3 light-emitting element upper surface

具体实施方式Detailed ways

图2为本发明第一实施例的发光元件。如图2所示,此发光元件包含:一基板20;一发光叠层23位于基板20的上方,可发出一红外线(IR)波长的光;以及一半导体窗户层22,由AlGaInP系列的材料组成,位于基板20与发光叠层23之间。其中,基板20例如包含砷化镓(GaAs)基板。上述红外线(IR)波长介于约750nm至1100nm之间,在一实施例中,红外线(IR)波长大于900nm,例如是940nm。半导体窗户层22为一单一层结构并与发光叠层23直接接触。在制作工艺上可于形成半导体窗户层22后,即于相同机台上调整通入的气体种类或比例,以接着形成发光叠层23。在一实施例中,半导体窗户层22包含(AlxGa1-x)0.5In0.5P,其中x为0.1~1。值得注意的是,发光叠层23具有一第一折射率n1,半导体窗户层22具有一第二折射率n2,第一折射率n1大于第二折射率n2至少0.2以上。因此,对于上述发光叠层23所发出的红外线波长的光,在发光叠层23与半导体窗户层22间由高折射率向低折射率行进,加上发光叠层23的第一折射率n1与半导体窗户层22的第二折射率n2间的差异,使发光叠层23所发出的红外线波长的光在半导体窗户层22容易发生全反射,即半导体窗户层22提供一单一层结构的反射镜功能,且相对于一般分散式布拉格反射结构(DBR),其提供较佳的侧向的反射功能。一般分散式布拉格反射结构(DBR)需要数十层才能达到一定程度的反射率,且其反射功能仅限于正向一定范围的角度,一般是与反射结构的法线夹0度~17度的光;而本实施例仅通过单一层结构的半导体窗户层22即可反射与半导体窗户层22的法线夹50度~90度的光,提供较佳的侧面出光以形成较大的出光角度,并且因为光取出改善,整体发光功率因而提升。在实际的测试上,分别测试发出850nm及940nm的发光元件,本发明实施例的发光叠层23在第一电性半导体层231采用砷化铝镓(AlGaAs),具有第一折射率n1约3.4,半导体窗户层22采用(Al0.6Ga0.4)0.5In0.5P,具有第二折射率n2约2.98,两折射率值差约0.42,其与其他条件相同但仅半导体窗户层22改用砷化铝镓(AlGaAs)(折射率约3.4)的发光元件相较,本发明实施例850nm发光元件的发光功率相较由4.21mW因而提升至4.91mW,增加约17%;本发明实施例940nm发光元件的发光功率相较由5.06mW因而提升至5.27mW,增加约4%。另外,在制作工艺上或成本上,半导体窗户层22与发光叠层23直接接触,且为一单一层结构,故相对于一般分散式布拉格反射结构,制作工艺更为简化且成本更低。在厚度上,在一实施例中,半导体窗户层22的厚度小于1μm即可有良好的反射效果。FIG. 2 is a light-emitting element according to the first embodiment of the present invention. As shown in FIG. 2, the light-emitting element includes: a substrate 20; a light-emitting stack 23 located above the substrate 20, which can emit light of an infrared (IR) wavelength; and a semiconductor window layer 22, which is composed of AlGaInP series materials , located between the substrate 20 and the light emitting stack 23 . The substrate 20 includes, for example, a gallium arsenide (GaAs) substrate. The wavelength of the infrared (IR) is between about 750 nm and 1100 nm. In one embodiment, the wavelength of the infrared (IR) is greater than 900 nm, such as 940 nm. The semiconductor window layer 22 is a single layer structure and is in direct contact with the light emitting stack 23 . In the manufacturing process, after the semiconductor window layer 22 is formed, the type or proportion of the gas introduced can be adjusted on the same machine, so as to form the light emitting stack 23 . In one embodiment, the semiconductor window layer 22 includes (Al x Ga 1-x ) 0.5 In 0.5 P, where x is 0.1˜1. It should be noted that the light emitting stack 23 has a first refractive index n 1 , the semiconductor window layer 22 has a second refractive index n 2 , and the first refractive index n 1 is greater than the second refractive index n 2 by at least 0.2 or more. Therefore, for the light of the infrared wavelengths emitted by the light-emitting stack 23, the light-emitting stack 23 and the semiconductor window layer 22 progress from a high refractive index to a low refractive index, and the first refractive index n 1 of the light-emitting stack 23 is added. The difference between the second refractive index n 2 of the semiconductor window layer 22 and the second refractive index n 2 of the semiconductor window layer 22 makes the light of the infrared wavelength emitted by the light emitting stack 23 prone to total reflection in the semiconductor window layer 22 , that is, the semiconductor window layer 22 provides a single-layer structure of reflection Mirror function, and compared to the general distributed Bragg reflector (DBR), it provides better lateral reflection function. Generally, the distributed Bragg reflection structure (DBR) needs dozens of layers to achieve a certain degree of reflectivity, and its reflection function is limited to a certain range of angles in the forward direction, generally between 0 degrees and 17 degrees with the normal of the reflection structure. In this embodiment, only the semiconductor window layer 22 with a single-layer structure can reflect the light of 50 degrees to 90 degrees with the normal line of the semiconductor window layer 22, so as to provide better side light out to form a larger light out angle, and Because of the improved light extraction, the overall luminous power increases accordingly. In the actual test, the light-emitting elements of 850 nm and 940 nm are tested respectively. The light-emitting stack 23 of the embodiment of the present invention uses aluminum gallium arsenide (AlGaAs) in the first electrical type semiconductor layer 231, and has a first refractive index n 1 about 3.4, the semiconductor window layer 22 adopts (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P, has a second refractive index n 2 of about 2.98, and the difference between the two refractive index values is about 0.42, which is the same as other conditions, but only the semiconductor window layer 22 uses arsenic instead Compared with the light-emitting element of aluminum gallium (AlGaAs) (refractive index of about 3.4), the light-emitting power of the 850nm light-emitting element of the embodiment of the present invention is increased from 4.21mW to 4.91mW, an increase of about 17%; the light-emitting power of the embodiment of the present invention is 940nm. The luminous power of the device is thus increased from 5.06mW to 5.27mW, an increase of about 4%. In addition, in terms of manufacturing process or cost, the semiconductor window layer 22 is in direct contact with the light emitting stack 23 and is a single-layer structure, so the manufacturing process is simpler and the cost is lower compared to the general distributed Bragg reflector structure. In terms of thickness, in one embodiment, the thickness of the semiconductor window layer 22 is less than 1 μm to have a good reflection effect.

发光叠层23包含一第一电性半导体层231位于半导体窗户层22之上;一活性层232位于第一电性半导体层231之上;以及一第二电性半导体层233位于活性层232之上,其中第一电性半导体层231与半导体窗户层22直接接触。第一电性半导体层231、活性层232、及第二电性半导体层233为III-V族材料所形成。第一电性半导体层231和第二电性半导体层233电性相异,例如第一电性半导体层231是n型半导体层,而第二电性半导体层233是p型半导体层,在施加外部电源时,第一电性半导体层231及第二电性半导体层233分别产生载流子(电子/空穴)并于活性层232复合而产生光。在一实施例中,第一电性半导体层231掺杂碲(Te)或硒(Se)。在一实施例中,活性层232包含一多重量子阱结构(MQW),此多重量子阱结构包含多个阻障层,例如阻障层232b1,232b2,…232bn,及一个或多个阱层,例如阱层232w1,232w2,…232wn-1,两相邻的阻障层间有一个阱层,例如两相邻的阻障层232b1及232b2间有一个阱层232w1。其中多个阻障层232b1,232b2,…232bn中最临近第一电性半导体层231的阻障层(即阻障层232b1)及最临近第二电性半导体层233的阻障层(即阻障层232bn)不含磷(P),其余的阻障层(阻障层232b2,…232bn-1)则含磷(P)。在一实施例中,阱层232w1,232w2,…232wn-1包括砷化铟镓(InGaAs),其中铟含量约2%~30%并随发光叠层23所欲发出的光波长而调整,以达前述红外线的波段范围。而由于阱层232w1,232w2,…232wn-1包含铟(In)会使晶格常数变大,上述的阻障层(阻障层232b2,…232bn-1)中含磷(P)可使晶格常数变小而将整体晶格常数调整回适当范围。在一实施例中,阻障层232b2,…232bn-1例如包括磷化铝镓砷(AlGaAsP)。而如上述,最临近第一电性半导体层231的阻障层(阻障层232b1)及最临近第二电性半导体层233的阻障层(阻障层232bn)不含磷(P),可使其厚度较厚时晶格常数不至于过小;而较厚的阻障层232b1及阻障层232bn可对临近的第一电性半导体层231及第二电性半导体层233中的掺杂物有较佳的扩散阻隔效果。在一实施例中,阻障层232b1及阻障层232bn例如包括砷化铝镓(AlGaAs)。The light emitting stack 23 includes a first electrical type semiconductor layer 231 on the semiconductor window layer 22 ; an active layer 232 on the first electrical type semiconductor layer 231 ; and a second electrical type semiconductor layer 233 on the active layer 232 above, wherein the first electrical type semiconductor layer 231 is in direct contact with the semiconductor window layer 22 . The first electrical type semiconductor layer 231 , the active layer 232 , and the second electrical type semiconductor layer 233 are formed of III-V group materials. The first electrical type semiconductor layer 231 and the second electrical type semiconductor layer 233 are electrically different, for example, the first electrical type semiconductor layer 231 is an n-type semiconductor layer, and the second electrical type semiconductor layer 233 is a p-type semiconductor layer. When an external power supply is used, the first electrical type semiconductor layer 231 and the second electrical type semiconductor layer 233 respectively generate carriers (electrons/holes) and recombine in the active layer 232 to generate light. In one embodiment, the first electrical type semiconductor layer 231 is doped with tellurium (Te) or selenium (Se). In one embodiment, the active layer 232 includes a multiple quantum well structure (MQW) including a plurality of barrier layers, such as barrier layers 232b 1 , 232b 2 , . . . 232bn , and one or more Well layers, such as well layers 232w 1 , 232w 2 , . . . 232w n-1 , there is a well layer between two adjacent barrier layers, for example, there is a well layer between two adjacent barrier layers 232b 1 and 232b 2 232w 1 . Among the plurality of barrier layers 232b 1 , 232b 2 , . . . 232bn , the barrier layer closest to the first electrical type semiconductor layer 231 (ie, the barrier layer 232b 1 ) and the barrier layer closest to the second electrical type semiconductor layer 233 One layer (ie, barrier layer 232b n ) does not contain phosphorus (P), and the remaining barrier layers (barrier layers 232b 2 , . . . 232b n-1 ) contain phosphorus (P). In one embodiment, the well layers 232w 1 , 232w 2 , . . . 232w n-1 include indium gallium arsenide (InGaAs), wherein the content of indium is about 2%˜30% and depends on the wavelength of light emitted by the light emitting stack 23 . Adjust to reach the wavelength range of the aforementioned infrared. Since the well layers 232w 1 , 232w 2 , . . . 232w n-1 contain indium (In), the lattice constant will increase, and the above-mentioned barrier layers (the barrier layers 232b 2 , . . . 232b n-1 ) contain phosphorus ( P) can make the lattice constant smaller and adjust the overall lattice constant back to an appropriate range. In one embodiment, the barrier layers 232b 2 , . . . 232b n-1 include, for example, aluminum gallium arsenide phosphide (AlGaAsP). As mentioned above, the barrier layer (barrier layer 232b 1 ) closest to the first electrical type semiconductor layer 231 and the barrier layer (barrier layer 232b n ) closest to the second electrical type semiconductor layer 233 do not contain phosphorus (P ), the lattice constant will not be too small when the thickness is thicker; and the thicker barrier layer 232b 1 and the barrier layer 232bn can prevent the adjacent first electrical type semiconductor layer 231 and the second electrical type semiconductor layer The dopant in 233 has better diffusion barrier effect. In one embodiment, the barrier layer 232b 1 and the barrier layer 232bn include, for example, aluminum gallium arsenide (AlGaAs).

本发明第一实施例的发光元件还包含一缓冲层21位于基板20与半导体窗户层22之间,缓冲层21掺杂硅(Si),例如掺杂硅(Si)的砷化镓(GaAs)。如前所述,第一电性半导体层231掺杂碲(Te)或硒(Se),而缓冲层21掺杂硅(Si),如此的配置使得发光元件在制作工艺上有更多的调整弹性,例如是晶格常数的调整。另外,本发明第一实施例的发光元件还包含一侧向光取出层24位于发光叠层23之上,一接触层25位于侧向光取出层24之上,及一第一电极26设置于接触层25上,而一第二电极27设置于基板20上。侧向光取出层24有助于光取出,特别是因为厚度增加而使侧面出光增加,故其厚度可以相对地较厚,例如约5μm至30μm,在一实施例中,侧向光取出层24包含掺杂锌(Zn)的砷化镓(GaAs),厚度约10μm。接触层25用以与其上的第一电极26形成欧姆接触,以降低电阻值,在一实施例中,接触层25包含掺杂锌(Zn)的砷化镓(GaAs)。侧向光取出层24与接触层25同样为包含掺杂锌(Zn)的砷化镓(GaAs)可简化制作工艺上机台的配置,但需注意的是,侧向光取出层24与接触层25的功能不同,为形成欧姆接触,接触层25中的锌(Zn)含量比侧向光取出层24的锌(Zn)含量多很多,才能形成欧姆接触。第一电极26可设置有延伸电极26a,以助于电流扩散。值得注意的是,发光叠层23所发出的红外线波长的光向基板20行进时,可能仍有部分在半导体窗户层22未发生全反射。如前所述,配合在特定应用时,可能要求较大的出光角度,故如图所示,在本实施例中,第二电极27是一图案化的电极,较详细的说明请参图3及图4,由上视观看(top view)时,第二电极27的图案可以例如是如图3的网格状(mesh),图3显示一砷化镓(GaAs)的基板20上形成有网格状的锗金(GeAu)第二电极27;或如图4所示,第二电极27的图案可以是多个圆形,图4显示一砷化镓(GaAs)的基板20上形成有多个圆形状的锗金(GeAu)第二电极27;如此图案化的第二电极27对于在半导体窗户层22未发生全反射的光而言,形成散射中心,可增加散射而使出光角度较大。此外,也可选择性地在基板20的下表面S1未设置第二电极27处形成粗化(图未绘示),同样可增加光的散射,使光容易从基板20的侧面出光,甚至基板20的侧面S2及发光元件上表面S3未设置第一电极26处也可予以粗化(图未绘示)。The light-emitting element according to the first embodiment of the present invention further includes a buffer layer 21 located between the substrate 20 and the semiconductor window layer 22 . The buffer layer 21 is doped with silicon (Si), such as gallium arsenide (GaAs) doped with silicon (Si). . As mentioned above, the first electrical type semiconductor layer 231 is doped with tellurium (Te) or selenium (Se), and the buffer layer 21 is doped with silicon (Si). Such a configuration enables more adjustments in the fabrication process of the light-emitting element. Elasticity, for example, is the adjustment of lattice constants. In addition, the light-emitting element of the first embodiment of the present invention further includes a lateral light extraction layer 24 located on the light-emitting stack 23, a contact layer 25 located on the lateral light extraction layer 24, and a first electrode 26 disposed on On the contact layer 25 , a second electrode 27 is disposed on the substrate 20 . The lateral light extraction layer 24 is helpful for light extraction, especially because the thickness of the lateral light extraction increases, so its thickness can be relatively thick, for example, about 5 μm to 30 μm. In one embodiment, the lateral light extraction layer 24 Contains gallium arsenide (GaAs) doped with zinc (Zn), about 10 μm thick. The contact layer 25 is used to form an ohmic contact with the first electrode 26 thereon to reduce the resistance value. In one embodiment, the contact layer 25 includes gallium arsenide (GaAs) doped with zinc (Zn). The lateral light extraction layer 24 and the contact layer 25 are also made of gallium arsenide (GaAs) doped with zinc (Zn), which can simplify the configuration of the machine in the manufacturing process, but it should be noted that the lateral light extraction layer 24 and the contact The functions of the layers 25 are different. In order to form an ohmic contact, the zinc (Zn) content in the contact layer 25 is much higher than that in the lateral light extraction layer 24 to form an ohmic contact. The first electrode 26 may be provided with an extension electrode 26a to facilitate current spreading. It is worth noting that when the light of the infrared wavelength emitted by the light emitting stack 23 travels toward the substrate 20 , there may still be a part of the light that is not totally reflected by the semiconductor window layer 22 . As mentioned above, a larger light-emitting angle may be required in certain applications. Therefore, as shown in the figure, in this embodiment, the second electrode 27 is a patterned electrode. Please refer to FIG. 3 for a detailed description. 4 , when viewed from the top view, the pattern of the second electrode 27 may be, for example, a mesh as shown in FIG. 3 . FIG. 3 shows that a gallium arsenide (GaAs) substrate 20 is formed with A grid-shaped second electrode 27 of germanium gold (GeAu); or as shown in FIG. 4 , the pattern of the second electrode 27 may be a plurality of circles. FIG. 4 shows a gallium arsenide (GaAs) substrate 20 formed with A plurality of circular-shaped second electrodes 27 of germanium gold (GeAu); the second electrodes 27 patterned in this way form scattering centers for the light that is not totally reflected in the semiconductor window layer 22, which can increase the scattering and make the light exit angle relatively high. big. In addition, roughening can also be selectively formed on the lower surface S1 of the substrate 20 where the second electrode 27 is not provided (not shown in the figure), which can also increase the scattering of light, so that light can be easily emitted from the side of the substrate 20, even the substrate The side surface S2 of the 20 and the upper surface S3 of the light-emitting element where the first electrode 26 is not disposed can also be roughened (not shown).

上述实施例仅为例示性说明本发明的原理及其功效,而非用于限制本发明。任何本发明所属技术领域中具有通常知识者均可在不违背本发明的技术原理及精神的情况下,对上述实施例进行修改及变化。因此本发明的权利保护范围如附上的权利要求所列。The above-mentioned embodiments are only illustrative of the principles and effects of the present invention, and are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field to which the present invention pertains can make modifications and changes to the above embodiments without departing from the technical principles and spirit of the present invention. Therefore, the scope of protection of the present invention is as set out in the appended claims.

Claims (2)

1. A light-emitting element, comprising:
a substrate comprising a first surface and a second surface;
the light-emitting laminated layer is positioned on the first surface and can emit light with an infrared wavelength;
a first electrode on the light emitting stack and having an extended electrode; and
and the second electrode is positioned on the second surface and has a grid-shaped or a plurality of circular patterns.
2. A light-emitting element, comprising:
a substrate comprising a first surface and a second surface;
the light-emitting laminated layer is positioned on the first surface and can emit light with an infrared wavelength;
a semiconductor window layer located between the substrate and the light emitting stack;
a first electrode on the light emitting stack and having an extended electrode; and
and the second electrode is positioned on the second surface and has a grid-shaped or a plurality of circular patterns.
CN201911163403.7A 2014-03-14 2014-03-14 Light emitting element Pending CN110854249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911163403.7A CN110854249A (en) 2014-03-14 2014-03-14 Light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410094885.6A CN104916747B (en) 2014-03-14 2014-03-14 Light emitting element
CN201911163403.7A CN110854249A (en) 2014-03-14 2014-03-14 Light emitting element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410094885.6A Division CN104916747B (en) 2014-03-14 2014-03-14 Light emitting element

Publications (1)

Publication Number Publication Date
CN110854249A true CN110854249A (en) 2020-02-28

Family

ID=54085629

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201911163403.7A Pending CN110854249A (en) 2014-03-14 2014-03-14 Light emitting element
CN201410094885.6A Active CN104916747B (en) 2014-03-14 2014-03-14 Light emitting element

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410094885.6A Active CN104916747B (en) 2014-03-14 2014-03-14 Light emitting element

Country Status (1)

Country Link
CN (2) CN110854249A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537433A (en) * 1993-07-22 1996-07-16 Sharp Kabushiki Kaisha Semiconductor light emitter
US5614734A (en) * 1995-03-15 1997-03-25 Yale University High efficency LED structure
CN1193211A (en) * 1997-03-11 1998-09-16 夏普株式会社 Method for manufacturing semiconductor device
US20050087753A1 (en) * 2003-10-24 2005-04-28 D'evelyn Mark P. Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
JP2006093358A (en) * 2004-09-22 2006-04-06 Mitsubishi Cable Ind Ltd Light emitting diode using nitride semiconductor
CN1825642A (en) * 2005-02-25 2006-08-30 日立电线株式会社 Light-emitting diode and its manufacturing method
TW200701523A (en) * 2005-06-24 2007-01-01 Toshiba Kk Semiconductor light emitting device
CN101165931A (en) * 2006-10-20 2008-04-23 日立电线株式会社 Semiconductor light emitting device
CN101859854A (en) * 2009-04-07 2010-10-13 日立电线株式会社 Light emitting element
CN102197596A (en) * 2008-09-08 2011-09-21 3M创新有限公司 Electrically pixelated luminescent device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269759A (en) * 2005-03-24 2006-10-05 Sharp Corp Window structure semiconductor laser device and its manufacturing method
JP2009010304A (en) * 2007-06-29 2009-01-15 Dowa Electronics Materials Co Ltd Light-emitting element with current confinement structure and method of manufacturing the same
KR101054983B1 (en) * 2010-03-29 2011-08-05 엘지이노텍 주식회사 Light emitting device, manufacturing method, light emitting device package
CN103500784B (en) * 2013-09-26 2016-07-27 厦门乾照光电股份有限公司 The epitaxial structure of a kind of near-infrared luminous diode, growth technique and chip technology

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537433A (en) * 1993-07-22 1996-07-16 Sharp Kabushiki Kaisha Semiconductor light emitter
US5614734A (en) * 1995-03-15 1997-03-25 Yale University High efficency LED structure
CN1193211A (en) * 1997-03-11 1998-09-16 夏普株式会社 Method for manufacturing semiconductor device
US20050087753A1 (en) * 2003-10-24 2005-04-28 D'evelyn Mark P. Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
JP2006093358A (en) * 2004-09-22 2006-04-06 Mitsubishi Cable Ind Ltd Light emitting diode using nitride semiconductor
CN1825642A (en) * 2005-02-25 2006-08-30 日立电线株式会社 Light-emitting diode and its manufacturing method
TW200701523A (en) * 2005-06-24 2007-01-01 Toshiba Kk Semiconductor light emitting device
TWI307177B (en) * 2005-06-24 2009-03-01 Toshiba Kk Semiconductor light emitting device
CN101165931A (en) * 2006-10-20 2008-04-23 日立电线株式会社 Semiconductor light emitting device
CN102197596A (en) * 2008-09-08 2011-09-21 3M创新有限公司 Electrically pixelated luminescent device
CN101859854A (en) * 2009-04-07 2010-10-13 日立电线株式会社 Light emitting element

Also Published As

Publication number Publication date
CN104916747A (en) 2015-09-16
CN104916747B (en) 2019-12-20

Similar Documents

Publication Publication Date Title
KR101290629B1 (en) Optoelectronic device and the manufacturing method thereof
US6903376B2 (en) Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
CN101026213B (en) Light emitting device and method of manufacturing the same
KR100843426B1 (en) Semiconductor light emitting device
CN105308763B (en) Light-emitting diode component
US20110297914A1 (en) Gallium nitride-based flip-chip light-emitting diode with double reflective layers on its side and fabrication method thereof
US10566498B2 (en) Semiconductor light-emitting device
US11005007B2 (en) Light-emitting device and manufacturing method thereof
JP2005268601A (en) Compound semiconductor light emitting device
JP2022153366A (en) Semiconductor element and semiconductor element package including the same
TWI795364B (en) Light emitting device and method of forming the same
KR20120002130A (en) Flip chip type light emitting device and manufacturing method thereof
TW201603315A (en) Light-emitting element
JP5746302B2 (en) Semiconductor light emitting device
CN106169528B (en) A kind of light emitting diode construction and preparation method thereof
KR20140036717A (en) Light emitting device
TWI613838B (en) Light-emitting element
CN104916747B (en) Light emitting element
TWI639249B (en) Light-emitting device
TWI785930B (en) Optoelectronic semiconductor device
JP2011124275A (en) Light-emitting device
TWI752295B (en) Optoelectronic semiconductor device
US20240186468A1 (en) Light emitting diode package
CN204257687U (en) A kind of light emitting diode construction
TW202213817A (en) Semiconductor light-emitting device having distributed bragg reflector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200228