CN110793756A - An optical correction device for monitoring the optical axis of a reflecting telescope based on polarization beam splitting - Google Patents
An optical correction device for monitoring the optical axis of a reflecting telescope based on polarization beam splitting Download PDFInfo
- Publication number
- CN110793756A CN110793756A CN201911093500.3A CN201911093500A CN110793756A CN 110793756 A CN110793756 A CN 110793756A CN 201911093500 A CN201911093500 A CN 201911093500A CN 110793756 A CN110793756 A CN 110793756A
- Authority
- CN
- China
- Prior art keywords
- light
- optical axis
- optical
- prism
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 85
- 238000012937 correction Methods 0.000 title claims abstract description 24
- 230000010287 polarization Effects 0.000 title claims abstract description 20
- 238000012544 monitoring process Methods 0.000 title claims abstract description 14
- 238000012360 testing method Methods 0.000 claims abstract description 38
- 239000013307 optical fiber Substances 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 5
- 239000010453 quartz Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000002310 reflectometry Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 12
- 238000010586 diagram Methods 0.000 description 7
- 238000005070 sampling Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0221—Testing optical properties by determining the optical axis or position of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/30—Collimators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于光学测试与光学装调领域,涉及一种基于偏振分光的反射望远镜光轴监测的光校装置,特别适用于反射式望远镜系统光校过程中,反射式望远镜系统光轴与标准大口径平面镜法线的配准与实时监测。还适用于大口径非球面反射镜加工,激光发射与接收配准等领域。The invention belongs to the field of optical testing and optical adjustment, and relates to an optical calibration device for monitoring the optical axis of a reflective telescope based on polarization splitting, which is particularly suitable for the optical calibration process of a reflective telescope system. Registration and real-time monitoring of plane mirror normals. It is also suitable for the processing of large-diameter aspherical mirrors, and the registration of laser emission and reception.
背景技术Background technique
激光雷达,激光测高仪等反射式空间光学相机载荷,对于光学载荷中的反射式望远镜系统的光轴指向要求越来越高,这必然要求反射式望远镜系统在光校过程中,对于光轴指向的测试,配准精度要求越来越高。在光学装配过程中,最为重要的是将被光校空间反射式望远镜系统的光轴与辅助大口径标准平面镜法线进行共线配准。传统方案主要有两种:第一种,在望远镜主镜加工过程中,控制较严的主镜光轴与主镜背面的垂直度,在光校反射式望远镜系统时,将主镜背面法线与辅助大口径平面镜法线调共线,作为光轴配准,此种方法依赖与加工,精度较低,很难给出准确光轴指向。第二种,利用经纬仪对准望远镜系统的光轴,然后旋转经纬仪180°,调节辅助大口径标准平面镜,使之法线与经纬仪光轴重合,这样建立基准将会引入多种误差,经纬仪的固定误差,调节经纬仪水平的零位误差,旋转经纬仪引入的旋转误差等,其过程繁琐,重复精度不高,难以实现光校过程光轴的实时监测。The reflective space optical camera loads such as lidar and laser altimeter have higher and higher requirements for the optical axis pointing of the reflective telescope system in the optical load. For the pointing test, the registration accuracy requirements are getting higher and higher. In the optical assembly process, the most important thing is to collinearly register the optical axis of the optically calibrated space reflection telescope system with the normal line of the auxiliary large-aperture standard plane mirror. There are two main traditional solutions: the first one is to control the perpendicularity between the optical axis of the main mirror and the back of the main mirror, which is strictly controlled during the processing of the main mirror of the telescope. It is collinear with the normal line of the auxiliary large-aperture plane mirror and used as optical axis registration. This method depends on processing and has low precision, so it is difficult to give accurate optical axis pointing. The second is to use the theodolite to align the optical axis of the telescope system, then rotate the theodolite 180°, and adjust the auxiliary large-caliber standard plane mirror so that its normal line coincides with the optical axis of the theodolite. This will introduce a variety of errors when establishing a benchmark. The error, the zero position error of adjusting the theodolite level, the rotation error introduced by rotating the theodolite, etc., the process is cumbersome, the repeatability is not high, and it is difficult to realize the real-time monitoring of the optical axis in the optical calibration process.
因此,在反射式望远镜系统光校过程中,如何提高被光校反射式望远镜系统光轴与辅助大口径平面镜法线共线光轴配准的精度,排除测试人为误差和环境误差,实现高的重复测试精度,并在光校过程中实现实时监测,是光学测试、光校领域需要解决的问题。Therefore, in the process of optical calibration of the reflecting telescope system, how to improve the registration accuracy of the optical axis of the reflecting telescope system being optically calibrated and the normal collinear optical axis of the auxiliary large-aperture plane mirror, eliminate the human error and environmental error of the test, and achieve high Repeated test accuracy and real-time monitoring in the process of optical calibration are problems that need to be solved in the field of optical testing and optical calibration.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种基于偏振分光的反射望远镜光轴监测的光校装置,本装置如附图1所示,在光校大口径反射式望远镜系统过程中的测试光路图,如附图2所示,其测试方法的具体步骤如下:The purpose of the present invention is to provide a kind of optical correction device based on polarization beam splitting monitoring of the optical axis of a reflecting telescope. This device is shown in accompanying
步骤一:本装置测试前自检。打开光纤光源1,位于准直透镜2焦面的光纤出射光,经过准直透镜2发出平行光,经过分光棱镜3到达偏振分光棱镜4,被分为线偏振P光和S光两束。参考光束一经过偏振分光棱镜4透射,经过四分之一波片6,变为圆偏振光,再经过角锥棱镜7后原路返回,第二次经过四分之一波片6,变为线偏振S光,到达偏振分光棱镜4中45°的分光面,线偏振S光呈与原光轴90°夹角方向出射,到达二号平行平板8表面,反射部分光束经过偏振分光棱镜4反射,第三次经过四分之一波片6,变为圆偏振光,再经过角锥棱镜7后原路返回,第四次经过四分之一波片6,变为线偏振P光,透射经过偏振分光棱镜4,经过分光棱镜3反射到达汇聚透镜9,成像到探测器10上。参考光束二经过偏振分光棱镜4中45°的分光面,线偏振S光呈与原光轴90°夹角方向出射,到达一号平行平板5表面,反射部分光束经过偏振分光棱镜4反射,经过分光棱镜3反射到达汇聚透镜9,成像到探测器10上。比对两路参考光束在探测器10上光斑的质心位置,当二者质心位置综合误差小于被光校反射式望远镜系统光轴指向精度要求即可,则本装置自检完成。此光斑为基准光斑,基准光斑质心为(x0,y0)。Step 1: The device self-checks before testing. The optical
步骤二:测试光束一与参考光束一是共光路的。位于准直透镜2焦面的光纤出射光,经过准直透镜2准直后为平行光,经过分光棱镜3到达偏振分光棱镜4,被分为线偏振P光和S光两束。测试光束一是直接透过偏振分光棱镜4的线偏振P光,经过四分之一波片6,变为圆偏振光,再经过角锥棱镜7后原路返回,第二次经过四分之一波片6,变为线偏振S光,到达偏振分光棱镜4中45°的分光面,线偏振S光呈与原光轴90°夹角方向出射,透射经过二号平行平板8,到达被光校反射式望远镜系统的光轴基准棱镜11上,整体调节本光校装置,使得光束的方向与被光校望远镜系统的光轴基准棱镜法线基本共线,返回,经过偏振分光棱镜4反射,第三次经过四分之一波片6,变为圆偏振光,再经过角锥棱镜7后原路返回,第四次经过四分之一波片6,变为线偏振P光,透射经过偏振分光棱镜4,经过分光棱镜3反射到达汇聚透镜9,成像到探测器10上,再次调节本装置,使得返回光斑质心与基准光斑质心一致,测试光束一的光斑质心(x1,y1)。Step 2:
步骤三:测试光束二与参考光束二是共光路的。位于准直透镜2焦面的光纤出射光,经过准直透镜2发出平行光,经过分光棱镜3到达偏振分光棱镜4,被分为线偏振P光和S光两束。经过偏振分光棱镜4中45°的分光面反射,线偏振S光呈与原光轴90°夹角方向出射,透射经过一号平行平板5,到达辅助光校的大口径标准平面镜上,调节辅助光校的大口径标准平面镜,使之法线与光束方向共线,原路返回,经过偏振分光棱镜4反射,经过分光棱镜3反射到达汇聚透镜9,成像到探测器10上,再次调节本装置,使得返回光斑质心与基准光斑质心一致,测试光束二的光斑质心(x2,y2)。Step 3:
步骤四:经过步骤一到步骤三,就完成了被光校反射式望远镜系统光轴与辅助大口径平面镜法线的光轴配准。此时调节本装置方位,此时测试光束一和测试光束二在探测器10上的光斑位置同时移动,基准光斑位置不变,使得三个光斑不重合。此时通过计算机实时计算三个光斑质心之间的关系,即可得到被校反射式望远镜系统光轴与辅助大口径平面镜12法线的漂移,计算公式如下:Step 4: After
当被光校望远镜的光轴与辅助的大口径标准平面镜的法线共线时,θx=0,θy=0。When the optical axis of the optically calibrated telescope is collinear with the normal line of the auxiliary large-aperture standard plane mirror, θ x =0, θ y =0.
本发明的特点及有益效果主要体现在以下几个方面:(1)本装置的测试光束与参考光束共光路,不受测试环境的影响,测试重复精度高;(2)本装置是测试光束与参考光束之间的相对测量,并且利用探测器获取光斑质心,在计算光斑质心之间的差异,排除了人为读数误差,实现高精度实现光轴配准;(3)本装置可以在整个反射式望远镜系统光校过程中实时监测,除了监测相对位置变化,亦可监测是被校反射式望远镜系统光轴发生了变化还是辅助大口径平面镜发生了变化。(4)采用本发明所述的光校装置,不仅仅适用于反射式望远镜系统光校领域,还适用于大口径非球面反射镜加工,激光发射与接收配准等领域。The characteristics and beneficial effects of the present invention are mainly reflected in the following aspects: (1) the test beam and the reference beam of the device share the same optical path, which is not affected by the test environment, and the test repeatability is high; (2) the device is the test beam and the reference beam. The relative measurement between the reference beams, and the use of the detector to obtain the centroid of the light spot, the difference between the centroids of the light spot is calculated, the artificial reading error is eliminated, and the optical axis registration is realized with high precision; (3) The device can be used in the entire reflection type. In real-time monitoring during the optical calibration of the telescope system, in addition to monitoring the relative position changes, it can also monitor whether the optical axis of the calibrated reflecting telescope system has changed or the auxiliary large-aperture plane mirror has changed. (4) The optical correction device of the present invention is not only suitable for the field of optical correction of reflective telescope systems, but also for the processing of large-diameter aspherical mirrors, and the registration of laser emission and reception.
附图说明Description of drawings
图1为本发明装置用于光校的示意图;Fig. 1 is the schematic diagram that the device of the present invention is used for optical calibration;
图2为本发明装置自身光校步骤的示意图:其中图(1)是装置自身光校步骤一的示意图,图(2)是装置自身光校步骤二的示意图,图(3)是装置自身光校步骤三的示意图,图(4)是装置自身光校步骤四的示意图,图(5)是装置自身光校步骤五的示意图。Fig. 2 is the schematic diagram of the optical correction step of the device of the present invention: wherein Figure (1) is a schematic diagram of the
具体实施方式Detailed ways
以下结合附图对本专利方法的实施实例进行详细的描述。Embodiments of the patented method will be described in detail below with reference to the accompanying drawings.
本发明中所使用的主要元器件进行说明:The main components used in the present invention are described:
光纤光源1:将波长633nm激光耦合到芯径10um的单模光纤输出。Fiber light source 1: couple the 633nm wavelength laser to the output of a single-mode fiber with a core diameter of 10um.
准直透镜2:采样Edmund公司型号为#36-165模压非球面透镜,口径12.5mm,焦距10mm。Collimating lens 2: Sampling Edmund company model #36-165 molded aspherical lens, diameter 12.5mm, focal length 10mm.
分光棱镜3:采样Thorlab公司型号为BS016,口径20mm的分束立方体,材料石英,透射波前四分之一个波长@633nm,分束比50:50。Beamsplitter 3: Sampling Thorlab's model BS016, a beam-splitting cube with a diameter of 20mm, material quartz, a quarter wavelength of the transmitted wavefront @633nm, and a beam splitting ratio of 50:50.
偏振分光棱镜4:采样Thorlab公司型号为PBS202,口径20mm的偏振分束立方体,材料SF1,透射波前四分之一个波长@633nm,偏振分束比1000:1。Polarizing beam splitter prism 4: Sampling Thorlab's model is PBS202, a polarizing beam splitter cube with an aperture of 20mm, material SF1, a quarter wavelength of the transmitted wavefront @633nm, and a polarization beam splitting ratio of 1000:1.
一号平行平板5,二号平行平板8:元件定制,口径30mm,材料石英,前后两面的平行度优于3秒,透射波前RMS值优于1/15个波长@633nm,靠近偏振分光棱镜4一侧,镀膜,其反射率30%@633nm,另外一面镀增透膜,98%@633nm。No. 1
四分之一波片6:采样Thorlab公式型号为WPMQ05M-633,口径二分之一英寸的四分之一波片,透射波前十分之一个波长@633nm。Quarter-wave plate 6: The sampling Thorlab formula model is WPMQ05M-633, a quarter-wave plate with an aperture of one-half inch, and one-tenth of the wavelength of the transmitted wavefront @633nm.
角锥棱镜7:采样Thorlab公司型号为PS975-A,口径25.4mm,增透磨350-700nm,面形精度优于十分之一波长@633nm,材料石英,入射与出射光线角度偏差优于3秒。Corner prism 7: Sampling Thorlab company model PS975-A, diameter 25.4mm, anti-reflection grinding 350-700nm, surface shape accuracy better than one-tenth wavelength@633nm, material quartz, angle deviation between incident and outgoing rays is better than 3 second.
汇聚透镜9:采样Edmund公司型号为39-560,口径为25.4mm,焦距50.8mm的激光级非球面透镜。Convergence lens 9: a laser-grade aspherical lens with a model number of 39-560 from Edmund, a diameter of 25.4 mm, and a focal length of 50.8 mm.
探测器10:采样Thorlab公司像元尺寸3.45um×3.45um,像元2448×2048的500万像素的小型科研COMS传感器。Detector 10: Sampling a small scientific research COMS sensor with a pixel size of 3.45um×3.45um and a pixel size of 2448×2048 from Thorlab.
本发明装置自身的装校的具体步骤如下,如附图2:The specific steps of the installation and calibration of the device of the present invention are as follows, such as accompanying drawing 2:
1)利用光电自准直仪16,对准一号平行平板5,调节光电自准直仪16,使得一号平行平板5返回的十字线在光电自准直仪中心,偏振分光棱镜4,使得其靠近二号平行平板8一侧表面返回的十字线与一号平行平板返回的重合,再安装二号平行平板8,使得其返回的十字线与前面两个十字线重合即可,如附图2(1)所示;1) Using the
2)移动光电自准直仪16,与原来大致90度方向,调焦光电自准直仪16,使得其对准偏振分光棱镜4,返回的十字线在光电自准直仪16中心,并且微调光电自准直仪16和偏振分光棱镜4,使得参考光束一和参考光束二返回的十字线重合,再安装四分之一波片6和角锥棱镜7,如附图2(2)所示;2) Move the
3)安装分光棱镜3,使得其返回的自准直仪十字线与2)的重合,如附图2(3)所示;3) Install the
4)安装汇聚棱镜9和探测器10,使得3)中的十字线经过分光棱镜3反射进入到探测器的中心,如附图2(4)所示;4) Install the converging
5)安装光纤光源1和准直透镜2,使得到达探测器10上参考光束一和参考光束二光斑在探测器的中心,即完成了本装置的自身光校,如附图2(5)所示。5) Install the optical
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911093500.3A CN110793756B (en) | 2019-11-11 | 2019-11-11 | Optical correction device for optical axis monitoring of reflecting telescope based on polarization beam splitting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911093500.3A CN110793756B (en) | 2019-11-11 | 2019-11-11 | Optical correction device for optical axis monitoring of reflecting telescope based on polarization beam splitting |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110793756A true CN110793756A (en) | 2020-02-14 |
CN110793756B CN110793756B (en) | 2024-09-24 |
Family
ID=69443830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911093500.3A Active CN110793756B (en) | 2019-11-11 | 2019-11-11 | Optical correction device for optical axis monitoring of reflecting telescope based on polarization beam splitting |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110793756B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112083578A (en) * | 2020-08-26 | 2020-12-15 | 中国科学院西安光学精密机械研究所 | Target simulator for image surface docking of photoelectric equipment, debugging system and method |
CN113092075A (en) * | 2021-04-09 | 2021-07-09 | 中国科学院光电技术研究所 | Variable-angle high-precision calibration light source system |
CN113340424A (en) * | 2021-06-18 | 2021-09-03 | 上海国科航星量子科技有限公司 | Device and method for detecting performance of polarized light |
CN116047785A (en) * | 2023-02-17 | 2023-05-02 | 西安应用光学研究所 | Precise calibration device and calibration method for optical axis of parabolic reflector |
CN116753839A (en) * | 2023-08-17 | 2023-09-15 | 苏州大学 | Device and method for measuring submicron laser spot size by utilizing beam polarization |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012097730A1 (en) * | 2011-01-19 | 2012-07-26 | Harbin Institute Of Technology | Photoelectric autocollimation method and apparatus based on beam drift compensation |
CN109029925A (en) * | 2018-06-12 | 2018-12-18 | 中国科学院上海技术物理研究所 | It is a kind of for aim at monitoring telescope optic axis block prism light calibration device |
CN109150302A (en) * | 2018-08-20 | 2019-01-04 | 中国科学院上海技术物理研究所 | A kind of the optical axis self-calibrating device and method of optical communication system |
CN211668748U (en) * | 2019-11-11 | 2020-10-13 | 中国科学院上海技术物理研究所 | Optical correction device for monitoring optical axis of reflecting telescope based on polarization beam splitting |
-
2019
- 2019-11-11 CN CN201911093500.3A patent/CN110793756B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012097730A1 (en) * | 2011-01-19 | 2012-07-26 | Harbin Institute Of Technology | Photoelectric autocollimation method and apparatus based on beam drift compensation |
CN109029925A (en) * | 2018-06-12 | 2018-12-18 | 中国科学院上海技术物理研究所 | It is a kind of for aim at monitoring telescope optic axis block prism light calibration device |
CN109150302A (en) * | 2018-08-20 | 2019-01-04 | 中国科学院上海技术物理研究所 | A kind of the optical axis self-calibrating device and method of optical communication system |
CN211668748U (en) * | 2019-11-11 | 2020-10-13 | 中国科学院上海技术物理研究所 | Optical correction device for monitoring optical axis of reflecting telescope based on polarization beam splitting |
Non-Patent Citations (1)
Title |
---|
叶海水;秦震宇;高志山;王帅;叶井飞;杜洋;: "多棱镜分光系统的多光束光轴平行度校准", 应用光学, no. 06, 15 November 2012 (2012-11-15) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112083578A (en) * | 2020-08-26 | 2020-12-15 | 中国科学院西安光学精密机械研究所 | Target simulator for image surface docking of photoelectric equipment, debugging system and method |
CN112083578B (en) * | 2020-08-26 | 2021-06-22 | 中国科学院西安光学精密机械研究所 | Target simulator, debugging system and method for image-to-surface interface of optoelectronic equipment |
CN113092075A (en) * | 2021-04-09 | 2021-07-09 | 中国科学院光电技术研究所 | Variable-angle high-precision calibration light source system |
CN113092075B (en) * | 2021-04-09 | 2022-08-23 | 中国科学院光电技术研究所 | Variable-angle high-precision calibration light source system |
CN113340424A (en) * | 2021-06-18 | 2021-09-03 | 上海国科航星量子科技有限公司 | Device and method for detecting performance of polarized light |
CN116047785A (en) * | 2023-02-17 | 2023-05-02 | 西安应用光学研究所 | Precise calibration device and calibration method for optical axis of parabolic reflector |
CN116753839A (en) * | 2023-08-17 | 2023-09-15 | 苏州大学 | Device and method for measuring submicron laser spot size by utilizing beam polarization |
CN116753839B (en) * | 2023-08-17 | 2023-11-07 | 苏州大学 | Device and method for measuring submicron laser spot size by utilizing beam polarization |
Also Published As
Publication number | Publication date |
---|---|
CN110793756B (en) | 2024-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110793756A (en) | An optical correction device for monitoring the optical axis of a reflecting telescope based on polarization beam splitting | |
CN211668748U (en) | Optical correction device for monitoring optical axis of reflecting telescope based on polarization beam splitting | |
CN110207588B (en) | A method for assembling and adjusting the optical vertex aiming device of a corner cube prism | |
CN101858735B (en) | Large-caliber off-axis aspheric surface measuring and calibrating system | |
CN101609250B (en) | Swing mirror angle scanning characteristic test device for camera | |
US9587977B2 (en) | Boresight error monitor for laser radar integrated optical assembly | |
CN109029925B (en) | Cubic prism optical correction device for sighting and monitoring telescope optical axis | |
CN102385170B (en) | Optical system for measuring and regulating center deviation of optics lens at high precision | |
CN109631827B (en) | Double-light-source high-precision anti-interference large-working-distance auto-collimation device and method based on absolute angle measurement | |
CN110793755A (en) | Knife-edge device and measuring method for measuring focal length in the setting and adjustment of reflecting telephoto telescope | |
CN107643055B (en) | Self-referenced collimation optical path system based on polarized beam and method for calculating measured angle | |
CN107727368B (en) | Device and method for calibrating focal plane position of collimator | |
CN104101487B (en) | Wave aberration measuring device and measuring method of optical system | |
CN109579779B (en) | High-precision high-frequency-response anti-interference large-working-distance auto-collimation device and method | |
CN112596259B (en) | A high-precision off-axis aspheric mirror optical axis extraction method and system | |
CN110082071B (en) | Device and method for measuring optical parallel difference of right-angle prism | |
CN106405860A (en) | Method for installing and adjusting refraction and reflection type infrared imaging optical system | |
CN101614523B (en) | A Multi-beam Long Track Interferometer for Detecting Glancing Cylindrical Off-Axis Aspheric Mirrors | |
CN106094234A (en) | Self-aligning optical path system with polarization beam splitting element | |
CN105973170A (en) | Polarization beam combination auto-collimation optical path system based on birefringent element | |
CN205942120U (en) | Self-aligning optical path system with polarization beam splitting element | |
CN113687521A (en) | Low-aberration high-precision two-dimensional photoelectric auto-collimation method and device based on wavefront correction | |
CN115166932B (en) | An optical axis adjustment method for a large-aperture long-focus distance axis optical system | |
CN113376857B (en) | High-precision optical path debugging device and method | |
CN117054053B (en) | Device and method for calibrating focal plane of reflecting telescope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |