[go: up one dir, main page]

CN110791712A - 一种核电站安全壳用SA738GrB钢板及制造方法 - Google Patents

一种核电站安全壳用SA738GrB钢板及制造方法 Download PDF

Info

Publication number
CN110791712A
CN110791712A CN201911119756.7A CN201911119756A CN110791712A CN 110791712 A CN110791712 A CN 110791712A CN 201911119756 A CN201911119756 A CN 201911119756A CN 110791712 A CN110791712 A CN 110791712A
Authority
CN
China
Prior art keywords
steel plate
nuclear power
sa738grb
temperature
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911119756.7A
Other languages
English (en)
Inventor
姜在伟
李艳梅
方磊
杨梦奇
于生
张舒展
叶其斌
奚艳红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Iron and Steel Co Ltd
Northeastern University China
Original Assignee
Nanjing Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Iron and Steel Co Ltd filed Critical Nanjing Iron and Steel Co Ltd
Priority to CN201911119756.7A priority Critical patent/CN110791712A/zh
Publication of CN110791712A publication Critical patent/CN110791712A/zh
Priority to PCT/CN2020/090750 priority patent/WO2021093293A1/zh
Priority to GB2208201.0A priority patent/GB2608271A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/08Vessels characterised by the material; Selection of materials for pressure vessels
    • G21C13/087Metallic vessels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种核电站安全壳用SA738GrB钢板,涉及钢铁冶炼技术领域,厚度规格为101mm,宽度规格为4650mm,其化学成分及质量百分比如下:C≤0.2%,Si:0.13%~0.6%,Mn:0.9%~1.6%,Ni≤0.6%,Cr≤0.3%,Nb≤0.05%,Mo≤0.35%,V≤0.08%,Ti≤0.03%,余量为Fe和不可避免的杂质。成品厚度在101mm,同时宽度达到4650mm,具有良好的强韧性、可焊接性等优点,满足核电站安全壳的使用要求。

Description

一种核电站安全壳用SA738GrB钢板及制造方法
技术领域
本发明涉及钢铁冶炼技术领域,特别是涉及一种核电站安全壳用SA738GrB钢板及制造方法。
背景技术
目前,核能被公认为是一种清洁、高效和安全的能源。据国际权威机构预测,到2038年,全球将兴建90座至300座1600兆瓦的反应堆,核电发展进入快速上升期。我国核电建设起步于上世纪八十年代中期,发展迅猛,截止到2017年,大陆地区在运核电机组共37台,在建核电机组共19台,在建核电机组数量居世界第一。到2020年,我国核电运行和在建装机将达到8800万千瓦,核电装机容量占国内电力总装机容量5%以上。
安全壳作为核岛设备的保护装置,是压水堆核电站的重要组成部分,也是防止放射性物质泄漏的最后一道安全屏障。目前,我国的主要核电堆型是西屋公司设计的AP1000核电堆型,其钢质安全壳主要用料是SA738 Gr.B钢板,钢种厚度规格较高,并且技术指标要求苛刻,性能控制较为困难。随着国际上对于核电站安全性要求的提高,对于其钢制安全壳钢板的性能要求也越来越高,从核安全壳安全性的角度考虑,应尽量减少组件的焊缝长度,因此,核反应堆安全壳的发展方向之一就是一体化和整体化,在保证性能的基础上,同时提高厚度和宽度,具有很大的难度。
超宽超厚钢板由于同时兼具大厚度和大宽度,在制作核电站安全壳时比其他尺寸的钢板利用率更高,不仅能节省焊接工作量,而且能提高安全壳的安全性。目前,关于该钢种的发明专利中,均未能同时达到101mm厚,4650mm宽,如:
CN201811165254.3公开一种特宽特厚核电常规岛设备用钢及其制造方法,钢中含有C:0.10%~0.18%,Si:0.15%~0.40%,Mn:0.90%~1.50%,P≤0.02%,S≤0.005%,Ni:0.10%~0.30%,Cr:0.15%~0.30%,V:0.01%~0.05%,Nb:0.01%~0.05%,Als:0.015%~0.04%,余量为铁和不可避免的杂质。连铸坯加热温度1200~1250℃,在炉时间4~6h;第Ⅰ阶段开轧温度≥1100℃,总压下率≥60%;第Ⅱ阶段开轧温度900~950℃,终轧温度800~850℃;正火温度880~920℃,保温时间1~3min/mm,出炉后自然冷却。成品钢板厚60~100mm,宽4000~5100mm,满足核电站常规岛设备用钢的使用条件。该发明专利在宽度方面达到了目前行业的最高值,但其100mm厚的钢板宽度最大只能做到4200mm,且正火后强度较低。
CN201510302071.1公开了一种大厚度SA738GrA钢板及其生产方法,其由以下重量百分比的成分组成:C:0.14%~0.16%,Si:0.25%~0.45%,Mn:1.35%~1.45%,P≤0.020%,S≤0.010%,Cr:0.15%~0.20%,Mo≤0.06%,Ti≤0.02%,Ni:0.20%~0.30%,Cu≤0.05%,Al:0.020%~0.050%,V≤0.07%,Nb≤0.04%,Nb+V≤0.07%,余量为Fe和不可避免的杂质。该钢板优化了钢板中各元素组分及配比,使得SA738GrA钢板的厚度达到112mm,所得钢板满足ASME SA578/SA578M探伤标准中B级的要求,但是该发明钢板宽度未知,屈服强度仅在310MPa左右,且低温韧性较差,-46℃冲击功约27焦耳左右。
CN201610058164.9公开了一种核岛设备用大厚度SA738GrB钢板及生产方法,钢板成分的重量百分含量为:C:0.05%~0.20%,Si:0.15%~0.55%,Mn:0.90%%~1.60%,P≤0.009%,S≤0.006%,Cr≤0.30%,Mo≤0.30%,Cu≤0.35%,Ni≤0.60%,V≤0.07%,Nb≤0.04%,Ti≤0.03%,余量为Fe和不可避免的杂质。改钢板采用调质热处理工艺,通过微合金元素形成复合强化,获得了良好的强韧性匹配。该钢板厚度最厚可达130mm,但同样对于宽度无数据。
发明内容
为了解决以上技术问题,本发明提供一种核电站安全壳用SA738GrB钢板,厚度规格为101mm,宽度规格为4650mm,其化学成分及质量百分比如下:C≤0.2%,Si:0.13%~0.6%,Mn:0.9%~1.6%,Ni≤0.6%,Cr≤0.3%,Nb≤0.05%,Mo≤0.35%,V≤0.08%,Ti≤0.03%,余量为Fe和不可避免的杂质。
技术效果:本发明设计的钢板成品厚度在101mm,同时宽度达到4650mm,具有良好的强韧性、可焊接性等优点,满足核电站安全壳的使用要求。
本发明进一步限定的技术方案是:
前所述的一种核电站安全壳用SA738GrB钢板,其化学成分及质量百分比如下:C:0.15%,Mn:1.53%,P:0.009%,S:0.001%,Si:0.25%,Ni:0.54%,Cr:0.022%,Nb:0.03%,Mo:0.17%,V:0.044%,Ti:0.016%,Alt:0.04%,余量为Fe和不可避免的杂质。
前所述的一种核电站安全壳用SA738GrB钢板,其化学成分及质量百分比如下:C:0.14%,Mn:1.55%,P:0.008%,S:0.001%,Si:0.25%,Ni:0.55%,Cr:0.25%,Nb:0.03%,Mo:0.28%,V:0.044%,Ti:0.017%,Alt:0.02%,余量为Fe和不可避免的杂质。
前所述的一种核电站安全壳用SA738GrB钢板,其化学成分及质量百分比如下:C:0.13%,Mn:1.55%,P:0.009%,S:0.001%,Si:0.25%,Ni:0.56%,Cr:0.23%,Nb:0.03%,Mo:0.27%,V:0.045%,Ti:0.016%,Alt:0.05%,余量为Fe和不可避免的杂质。
本发明的另一目的在于提供一种核电站安全壳用SA738GrB钢板的制造方法,包括以下工序:钢水预处理-转炉冶炼-精炼-连铸-加热-轧制-热处理,其特征在于:
铁水脱硫预处理:开始温度1330~1370℃,结束温度1320~1350℃,喷入镁粉0.3~1.0kg/吨、石灰粉2.5~4.0kg/吨,结束S≤0.005%;
钢水经过冶炼和精炼后进行连铸,钢水过热度5~25℃,拉坯速度0.55~0.75m/min,连铸二冷电磁搅拌:电流200~450A、频率5~7Hz,轻压下:压下区间50~95%、压下量4~8mm,连铸坯厚度为320mm;
连铸坯加热温度1180~1250℃,在炉时间4.8~7.0h,钢坯出炉除鳞后,先横轧至成品宽度再进行纵轧,分两阶段轧制:第一阶段轧制温度为1000~1150℃,累计压下量50~70%;第二阶段开轧厚度184mm,累计压下量40~60%,轧后钢板在空气中冷却;
淬火:钢板在淬火炉进行加热,加热的保温温度为890~930℃,总保温时间为2.1min/mm;钢板在保温后在辊式淬火机进行层流冷却,层流冷却过程包括高压段和低压段,高压段层流压力为0.8MPa,上下水比为0.85,低压段层流压力为0.5MPa,上下水比为0.88,淬火机轧辊辊缝设定为101mm;在高压段冷却后,钢板在低压段进行摇摆时间18min以上,保证钢板冷却后的整体温度在100℃以下;
回火:钢板进回火炉进行加热,加热至回火温度660~680℃进行保温,总保温时间2.5min/mm以上,保温后出炉空冷。
本发明的有益效果是:
(1)本发明的钢板在厚度规格达到101mm的同时,宽度规格达到4650mm,从核安全壳安全性的角度考虑,可有效减少组件的焊缝长度,进一步实现安全壳的一体化和整体化,钢板利用率高,安全性较好;
(2)本发明通过采用高洁净冶炼与低偏析连铸、两阶段控制轧制及离线辊式高强度高均匀性淬火和回火热处理,解决了核电钢超宽特厚板的低温冲击韧性较低的问题,钢板具有良好的强韧性匹配,经检测本发明方法所得钢板交货状态厚向1/4处的力学性能:RP0.2≥635MPa,Rm≥710MPa,A5d≥20%,-25℃Kv8(平均值)≥84J,-35℃Kv8(平均值)≥52J;模拟焊后热处理的性能:Rp0.2≥615MPa,Rm≥710MPa,A5d≥21%,-35℃横向KV8冲击功平均值≥75J;
(3)本发明与普通控轧及热处理钢板相比,同等化学成分设计提高了钢板的综合性能,所得钢板强韧性良好,尤其是低温冲击韧性大幅提升,降低了钢板生产资源消耗。
附图说明
图1为本发明中实施例1所得钢板的SEM图像。
具体实施方式
一种核电站安全壳用SA738GrB钢板,厚度规格为101mm,宽度规格为4650mm,其化学成分及质量百分比如下:C≤0.2%,Si:0.13%~0.6%,Mn:0.9%~1.6%,Ni≤0.6%,Cr≤0.3%,Nb≤0.05%,Mo≤0.35%,V≤0.08%,Ti≤0.03%,余量为Fe和不可避免的杂质。
上述钢板的制造方法,包括以下工序:钢水预处理-转炉冶炼-精炼-连铸-加热-轧制-热处理,
铁水脱硫预处理:开始温度1330~1370℃,结束温度1320~1350℃,喷入镁粉0.3~1.0kg/吨、石灰粉2.5~4.0kg/吨,结束S≤0.005%;
钢水经过冶炼和精炼后进行连铸,钢水过热度5~25℃,拉坯速度0.55~0.75m/min,连铸二冷电磁搅拌:电流200~450A、频率5~7Hz,轻压下:压下区间50~95%、压下量4~8mm,连铸坯厚度为320mm;
连铸坯加热温度1180~1250℃,在炉时间4.8~7.0h,钢坯出炉除鳞后,先横轧至成品宽度再进行纵轧,分两阶段轧制:第一阶段轧制温度为1000~1150℃,累计压下量50~70%;第二阶段开轧厚度184mm,累计压下量40~60%,轧后钢板在空气中冷却;
淬火:钢板在淬火炉进行加热,加热的保温温度为890~930℃,总保温时间为2.1min/mm;钢板在保温后在辊式淬火机进行层流冷却,层流冷却过程包括高压段和低压段,高压段层流压力为0.8MPa,上下水比为0.85,低压段层流压力为0.5MPa,上下水比为0.88,淬火机轧辊辊缝设定为101mm;在高压段冷却后,钢板在低压段进行摇摆时间18min以上,保证钢板冷却后的整体温度在100℃以下;
回火:钢板进回火炉进行加热,加热至回火温度660~680℃进行保温,总保温时间2.5min/mm以上,保温后出炉空冷。
下面结合实施例1-实施例3对本发明的技术方案作进一步说明。
表1各实施例钢冶炼化学成分(wt,%)
Figure BDA0002275126580000041
加热轧制工序:连铸坯加热温度1180~1250℃,在炉时间4.8~7.0h,钢坯出炉除鳞后,先横轧至成品宽度再进行纵轧。分两阶段轧制:第一阶段开轧温度为1050℃,累计压下量55%;第二阶段开轧厚度184mm,累计压下量45%。轧后钢板在空气中冷却。
表2各实施例钢的热处理工艺
Figure BDA0002275126580000042
表3各实施例钢的回火态力学性能
从实施例钢板取样,进行模拟焊后热处理实验,工艺为:保温温度620±10℃,保温时间10h,装出炉温度≤425℃,425℃以上升降温速率56℃/h。
表4各实施例钢模拟焊后热处理的力学性能
Figure BDA0002275126580000053
如图1,钢板厚向1/4处获得均匀的回火贝氏体组织。本发明设计的钢板在厚度规格达到101mm的同时,宽度规格达到4650mm,从核安全壳安全性的角度考虑,可有效减少组件的焊缝长度,进一步实现安全壳的一体化和整体化,钢板利用率高,安全性较好。与普通控轧及热处理钢板相比,同等化学成分设计提高了钢板的综合性能,所得钢板强韧性良好,尤其是低温冲击韧性大幅提升,降低了钢板生产资源消耗。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (5)

1.一种核电站安全壳用SA738GrB钢板,其特征在于:厚度规格为101mm,宽度规格为4650mm,其化学成分及质量百分比如下:C≤0.2%,Si:0.13%~0.6%,Mn:0.9%~1.6%,Ni≤0.6%,Cr≤0.3%,Nb≤0.05%,Mo≤0.35%,V≤0.08%,Ti≤0.03%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种核电站安全壳用SA738GrB钢板,其特征在于,其化学成分及质量百分比如下:C:0.15%,Mn:1.53%,P:0.009%,S:0.001%,Si:0.25%,Ni:0.54%,Cr:0.022%,Nb:0.03%,Mo:0.17%,V:0.044%,Ti:0.016%,Alt:0.04%,余量为Fe和不可避免的杂质。
3.根据权利要求1所述的一种核电站安全壳用SA738GrB钢板,其特征在于,其化学成分及质量百分比如下:C:0.14%,Mn:1.55%,P:0.008%,S:0.001%,Si:0.25%,Ni:0.55%,Cr:0.25%,Nb:0.03%,Mo:0.28%,V:0.044%,Ti:0.017%,Alt:0.02%,余量为Fe和不可避免的杂质。
4.根据权利要求1所述的一种核电站安全壳用SA738GrB钢板,其特征在于,其化学成分及质量百分比如下:C:0.13%,Mn:1.55%,P:0.009%,S:0.001%,Si:0.25%,Ni:0.56%,Cr:0.23%,Nb:0.03%,Mo:0.27%,V:0.045%,Ti:0.016%,Alt:0.05%,余量为Fe和不可避免的杂质。
5.应用于权利要求1所述的一种核电站安全壳用SA738GrB钢板的制造方法,包括以下工序:钢水预处理-转炉冶炼-精炼-连铸-加热-轧制-热处理,其特征在于:
铁水脱硫预处理:开始温度1330~1370℃,结束温度1320~1350℃,喷入镁粉0.3~1.0kg/吨、石灰粉2.5~4.0kg/吨,结束S≤0.005%;
钢水经过冶炼和精炼后进行连铸,钢水过热度5~25℃,拉坯速度0.55~0.75m/min,连铸二冷电磁搅拌:电流200~450A、频率5~7Hz,轻压下:压下区间50~95%、压下量4~8mm,连铸坯厚度为320mm;
连铸坯加热温度1180~1250 ℃,在炉时间 4.8~7.0h,钢坯出炉除鳞后,先横轧至成品宽度再进行纵轧,分两阶段轧制:第一阶段轧制温度为 1000~1150℃,累计压下量 50~70% ;第二阶段开轧厚度184mm,累计压下量40~60%,轧后钢板在空气中冷却;
淬火:钢板在淬火炉进行加热,加热的保温温度为890~930℃,总保温时间为2.1min/mm;钢板在保温后在辊式淬火机进行层流冷却,层流冷却过程包括高压段和低压段,高压段层流压力为0.8MPa,上下水比为0.85,低压段层流压力为0.5MPa,上下水比为0.88,淬火机轧辊辊缝设定为101mm;在高压段冷却后,钢板在低压段进行摇摆时间18min以上,保证钢板冷却后的整体温度在100℃以下;
回火:钢板进回火炉进行加热,加热至回火温度660~680℃进行保温,总保温时间2.5min/mm以上,保温后出炉空冷。
CN201911119756.7A 2019-11-15 2019-11-15 一种核电站安全壳用SA738GrB钢板及制造方法 Pending CN110791712A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911119756.7A CN110791712A (zh) 2019-11-15 2019-11-15 一种核电站安全壳用SA738GrB钢板及制造方法
PCT/CN2020/090750 WO2021093293A1 (zh) 2019-11-15 2020-05-18 一种核电站安全壳用SA738GrB钢板及制造方法
GB2208201.0A GB2608271A (en) 2019-11-15 2020-05-18 SA738GRB steel plate for nuclear power plant containment and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911119756.7A CN110791712A (zh) 2019-11-15 2019-11-15 一种核电站安全壳用SA738GrB钢板及制造方法

Publications (1)

Publication Number Publication Date
CN110791712A true CN110791712A (zh) 2020-02-14

Family

ID=69445075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911119756.7A Pending CN110791712A (zh) 2019-11-15 2019-11-15 一种核电站安全壳用SA738GrB钢板及制造方法

Country Status (3)

Country Link
CN (1) CN110791712A (zh)
GB (1) GB2608271A (zh)
WO (1) WO2021093293A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270153A (zh) * 2020-03-30 2020-06-12 南京钢铁股份有限公司 一种6mm厚核电安全壳用钢及其制造方法
CN112143976A (zh) * 2020-08-24 2020-12-29 江阴兴澄特种钢铁有限公司 一种核电用p265gh钢板及其制造方法
WO2021093293A1 (zh) * 2019-11-15 2021-05-20 南京钢铁股份有限公司 一种核电站安全壳用SA738GrB钢板及制造方法
CN115029628A (zh) * 2022-05-20 2022-09-09 首钢京唐钢铁联合有限责任公司 一种高品质特厚钢板及其生产方法
CN116875904A (zh) * 2023-07-24 2023-10-13 鞍钢股份有限公司 一种750MPa级石油储罐用钢板及其生产方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116287921A (zh) * 2021-12-07 2023-06-23 江苏新华合金有限公司 一种核电站反应堆冷却剂泵推力轴承瓦块材料及其制造工艺
CN114473285A (zh) * 2021-12-29 2022-05-13 中国电建集团上海能源装备有限公司 一种用于核电安全壳钢焊接的埋弧焊丝及其制备方法
CN116219131B (zh) * 2022-11-22 2025-02-28 江阴兴澄特种钢铁有限公司 一种SA387Gr22CL2承压设备用钢板的生产方法
CN116219279B (zh) * 2022-12-23 2024-04-16 鞍钢股份有限公司 一种高强度高韧性核反应堆安全壳用钢及其制造方法
CN116987968B (zh) * 2023-07-26 2024-12-17 鞍钢股份有限公司 高温气冷堆压板构件用极限宽规格核电钢板及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160237536A1 (en) * 2011-12-20 2016-08-18 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
CN107974615A (zh) * 2017-11-28 2018-05-01 天津中德应用技术大学 厚度小于12mm的Q460E高强钢板及其生产方法
CN108396115A (zh) * 2018-02-23 2018-08-14 舞阳钢铁有限责任公司 调制型超宽SA738MGr-B钢板的热处理方法
CN110423942A (zh) * 2019-08-07 2019-11-08 南京钢铁股份有限公司 一种宽、厚规格核电用钢板及制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261664B1 (ko) * 1997-10-21 2000-07-15 이종훈 2상영역 열처리를 이용한 고인성 sa508gr.3강의 제조방법
CN102776441A (zh) * 2012-08-10 2012-11-14 济钢集团有限公司 一种第三代核电站反应堆安全壳用钢板及其制造方法
CN105506493B (zh) * 2014-09-25 2017-09-29 鞍钢股份有限公司 一种超薄SA738Gr B钢板的生产方法
CN104962828A (zh) * 2015-06-05 2015-10-07 舞阳钢铁有限责任公司 大厚度SA738GrA钢板及其生产方法
CN105624550B (zh) * 2016-01-28 2018-01-30 舞阳钢铁有限责任公司 核岛设备用大厚度SA738GrB钢板及生产方法
CN109234624A (zh) * 2018-10-08 2019-01-18 鞍钢股份有限公司 一种特宽特厚核电常规岛设备用钢及其制造方法
CN110791712A (zh) * 2019-11-15 2020-02-14 南京钢铁股份有限公司 一种核电站安全壳用SA738GrB钢板及制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160237536A1 (en) * 2011-12-20 2016-08-18 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
CN107974615A (zh) * 2017-11-28 2018-05-01 天津中德应用技术大学 厚度小于12mm的Q460E高强钢板及其生产方法
CN108396115A (zh) * 2018-02-23 2018-08-14 舞阳钢铁有限责任公司 调制型超宽SA738MGr-B钢板的热处理方法
CN110423942A (zh) * 2019-08-07 2019-11-08 南京钢铁股份有限公司 一种宽、厚规格核电用钢板及制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021093293A1 (zh) * 2019-11-15 2021-05-20 南京钢铁股份有限公司 一种核电站安全壳用SA738GrB钢板及制造方法
GB2608271A (en) * 2019-11-15 2022-12-28 Nanjing Iron & Steel Co Ltd SA738GRB steel plate for nuclear power plant containment and manufacturing method
CN111270153A (zh) * 2020-03-30 2020-06-12 南京钢铁股份有限公司 一种6mm厚核电安全壳用钢及其制造方法
CN111270153B (zh) * 2020-03-30 2022-03-22 南京钢铁股份有限公司 一种6mm厚核电安全壳用钢及其制造方法
CN112143976A (zh) * 2020-08-24 2020-12-29 江阴兴澄特种钢铁有限公司 一种核电用p265gh钢板及其制造方法
CN115029628A (zh) * 2022-05-20 2022-09-09 首钢京唐钢铁联合有限责任公司 一种高品质特厚钢板及其生产方法
CN115029628B (zh) * 2022-05-20 2023-10-24 首钢京唐钢铁联合有限责任公司 一种高品质特厚钢板及其生产方法
CN116875904A (zh) * 2023-07-24 2023-10-13 鞍钢股份有限公司 一种750MPa级石油储罐用钢板及其生产方法

Also Published As

Publication number Publication date
GB202208201D0 (en) 2022-07-20
WO2021093293A1 (zh) 2021-05-20
GB2608271A (en) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2021093293A1 (zh) 一种核电站安全壳用SA738GrB钢板及制造方法
CN110438414B (zh) 一种消除超宽幅铁素体不锈钢中厚板表面裂纹的方法
CN108531816B (zh) 一种500MPa级工程机械用钢及其制造方法
CN105583235B (zh) 热轧钢筋的分段阶梯型冷却控制氧化铁皮结构的方法
CN109266815B (zh) 在线淬火高强钢板的板形控制方法
CN108531806B (zh) 一种高强韧性热轧无缝钢管及其制备方法
CN102230057B (zh) 采用直接淬火工艺生产石油储罐钢板的方法
CN102586675B (zh) 抗拉强度≥1250MPa的超高强包装捆带及制造方法
CN103882344A (zh) 加钒铬钼钢板及其生产方法
WO2020098288A1 (zh) 一种超快冷工艺生产q690d厚板及制造方法
WO2022067962A1 (zh) 低成本高性能Q370qE-HPS桥梁钢及生产方法
CN109234624A (zh) 一种特宽特厚核电常规岛设备用钢及其制造方法
CN101698900A (zh) 一种低合金超高硬度耐磨钢板生产工艺方法
CN104674130A (zh) 大厚度抗层状撕裂调质高强钢板的生产方法
CN108385034B (zh) 一种不大于100mm厚1000MPa级水电用钢板的LGB-Q&T方法
CN109355572B (zh) 高铬铁素体耐热钢及其制备方法
CN115558851A (zh) 一种370MPa级别工程结构用热轧钢板及其制造方法
CN102080189A (zh) 一种大热输入焊接用结构钢及其制造方法
CN103834873A (zh) 一种大厚度锅炉锅筒用低合金高强钢板及其制造方法
CN114293110B (zh) 一种厚规格800MPa级水电钢及其高效低成本生产方法
CN108441779A (zh) 一种高强度高屈强比核电站机械模块用钢及其制造方法
CN108034897B (zh) 一种低压缩比条件生产的特厚板及其生产方法
CN102851473B (zh) 一种电站锅炉汽包用大厚度sa299钢板的生产方法
CN117210770A (zh) 高强度均质化铁素体特厚风电结构用钢板及其制造方法
CN103725973A (zh) 低成分低Pcm值800MPa级高强钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210917

Address after: Liuhe District of Nanjing City, Jiangsu province 210035 xiejiadian

Applicant after: NANJING IRON & STEEL Co.,Ltd.

Applicant after: Northeastern University

Address before: Liuhe District of Nanjing City, Jiangsu province 210035 xiejiadian

Applicant before: NANJING IRON & STEEL Co.,Ltd.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20200214

RJ01 Rejection of invention patent application after publication