CN110791712A - 一种核电站安全壳用SA738GrB钢板及制造方法 - Google Patents
一种核电站安全壳用SA738GrB钢板及制造方法 Download PDFInfo
- Publication number
- CN110791712A CN110791712A CN201911119756.7A CN201911119756A CN110791712A CN 110791712 A CN110791712 A CN 110791712A CN 201911119756 A CN201911119756 A CN 201911119756A CN 110791712 A CN110791712 A CN 110791712A
- Authority
- CN
- China
- Prior art keywords
- steel plate
- nuclear power
- sa738grb
- temperature
- percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
- G21C13/08—Vessels characterised by the material; Selection of materials for pressure vessels
- G21C13/087—Metallic vessels
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本发明公开了一种核电站安全壳用SA738GrB钢板,涉及钢铁冶炼技术领域,厚度规格为101mm,宽度规格为4650mm,其化学成分及质量百分比如下:C≤0.2%,Si:0.13%~0.6%,Mn:0.9%~1.6%,Ni≤0.6%,Cr≤0.3%,Nb≤0.05%,Mo≤0.35%,V≤0.08%,Ti≤0.03%,余量为Fe和不可避免的杂质。成品厚度在101mm,同时宽度达到4650mm,具有良好的强韧性、可焊接性等优点,满足核电站安全壳的使用要求。
Description
技术领域
本发明涉及钢铁冶炼技术领域,特别是涉及一种核电站安全壳用SA738GrB钢板及制造方法。
背景技术
目前,核能被公认为是一种清洁、高效和安全的能源。据国际权威机构预测,到2038年,全球将兴建90座至300座1600兆瓦的反应堆,核电发展进入快速上升期。我国核电建设起步于上世纪八十年代中期,发展迅猛,截止到2017年,大陆地区在运核电机组共37台,在建核电机组共19台,在建核电机组数量居世界第一。到2020年,我国核电运行和在建装机将达到8800万千瓦,核电装机容量占国内电力总装机容量5%以上。
安全壳作为核岛设备的保护装置,是压水堆核电站的重要组成部分,也是防止放射性物质泄漏的最后一道安全屏障。目前,我国的主要核电堆型是西屋公司设计的AP1000核电堆型,其钢质安全壳主要用料是SA738 Gr.B钢板,钢种厚度规格较高,并且技术指标要求苛刻,性能控制较为困难。随着国际上对于核电站安全性要求的提高,对于其钢制安全壳钢板的性能要求也越来越高,从核安全壳安全性的角度考虑,应尽量减少组件的焊缝长度,因此,核反应堆安全壳的发展方向之一就是一体化和整体化,在保证性能的基础上,同时提高厚度和宽度,具有很大的难度。
超宽超厚钢板由于同时兼具大厚度和大宽度,在制作核电站安全壳时比其他尺寸的钢板利用率更高,不仅能节省焊接工作量,而且能提高安全壳的安全性。目前,关于该钢种的发明专利中,均未能同时达到101mm厚,4650mm宽,如:
CN201811165254.3公开一种特宽特厚核电常规岛设备用钢及其制造方法,钢中含有C:0.10%~0.18%,Si:0.15%~0.40%,Mn:0.90%~1.50%,P≤0.02%,S≤0.005%,Ni:0.10%~0.30%,Cr:0.15%~0.30%,V:0.01%~0.05%,Nb:0.01%~0.05%,Als:0.015%~0.04%,余量为铁和不可避免的杂质。连铸坯加热温度1200~1250℃,在炉时间4~6h;第Ⅰ阶段开轧温度≥1100℃,总压下率≥60%;第Ⅱ阶段开轧温度900~950℃,终轧温度800~850℃;正火温度880~920℃,保温时间1~3min/mm,出炉后自然冷却。成品钢板厚60~100mm,宽4000~5100mm,满足核电站常规岛设备用钢的使用条件。该发明专利在宽度方面达到了目前行业的最高值,但其100mm厚的钢板宽度最大只能做到4200mm,且正火后强度较低。
CN201510302071.1公开了一种大厚度SA738GrA钢板及其生产方法,其由以下重量百分比的成分组成:C:0.14%~0.16%,Si:0.25%~0.45%,Mn:1.35%~1.45%,P≤0.020%,S≤0.010%,Cr:0.15%~0.20%,Mo≤0.06%,Ti≤0.02%,Ni:0.20%~0.30%,Cu≤0.05%,Al:0.020%~0.050%,V≤0.07%,Nb≤0.04%,Nb+V≤0.07%,余量为Fe和不可避免的杂质。该钢板优化了钢板中各元素组分及配比,使得SA738GrA钢板的厚度达到112mm,所得钢板满足ASME SA578/SA578M探伤标准中B级的要求,但是该发明钢板宽度未知,屈服强度仅在310MPa左右,且低温韧性较差,-46℃冲击功约27焦耳左右。
CN201610058164.9公开了一种核岛设备用大厚度SA738GrB钢板及生产方法,钢板成分的重量百分含量为:C:0.05%~0.20%,Si:0.15%~0.55%,Mn:0.90%%~1.60%,P≤0.009%,S≤0.006%,Cr≤0.30%,Mo≤0.30%,Cu≤0.35%,Ni≤0.60%,V≤0.07%,Nb≤0.04%,Ti≤0.03%,余量为Fe和不可避免的杂质。改钢板采用调质热处理工艺,通过微合金元素形成复合强化,获得了良好的强韧性匹配。该钢板厚度最厚可达130mm,但同样对于宽度无数据。
发明内容
为了解决以上技术问题,本发明提供一种核电站安全壳用SA738GrB钢板,厚度规格为101mm,宽度规格为4650mm,其化学成分及质量百分比如下:C≤0.2%,Si:0.13%~0.6%,Mn:0.9%~1.6%,Ni≤0.6%,Cr≤0.3%,Nb≤0.05%,Mo≤0.35%,V≤0.08%,Ti≤0.03%,余量为Fe和不可避免的杂质。
技术效果:本发明设计的钢板成品厚度在101mm,同时宽度达到4650mm,具有良好的强韧性、可焊接性等优点,满足核电站安全壳的使用要求。
本发明进一步限定的技术方案是:
前所述的一种核电站安全壳用SA738GrB钢板,其化学成分及质量百分比如下:C:0.15%,Mn:1.53%,P:0.009%,S:0.001%,Si:0.25%,Ni:0.54%,Cr:0.022%,Nb:0.03%,Mo:0.17%,V:0.044%,Ti:0.016%,Alt:0.04%,余量为Fe和不可避免的杂质。
前所述的一种核电站安全壳用SA738GrB钢板,其化学成分及质量百分比如下:C:0.14%,Mn:1.55%,P:0.008%,S:0.001%,Si:0.25%,Ni:0.55%,Cr:0.25%,Nb:0.03%,Mo:0.28%,V:0.044%,Ti:0.017%,Alt:0.02%,余量为Fe和不可避免的杂质。
前所述的一种核电站安全壳用SA738GrB钢板,其化学成分及质量百分比如下:C:0.13%,Mn:1.55%,P:0.009%,S:0.001%,Si:0.25%,Ni:0.56%,Cr:0.23%,Nb:0.03%,Mo:0.27%,V:0.045%,Ti:0.016%,Alt:0.05%,余量为Fe和不可避免的杂质。
本发明的另一目的在于提供一种核电站安全壳用SA738GrB钢板的制造方法,包括以下工序:钢水预处理-转炉冶炼-精炼-连铸-加热-轧制-热处理,其特征在于:
铁水脱硫预处理:开始温度1330~1370℃,结束温度1320~1350℃,喷入镁粉0.3~1.0kg/吨、石灰粉2.5~4.0kg/吨,结束S≤0.005%;
钢水经过冶炼和精炼后进行连铸,钢水过热度5~25℃,拉坯速度0.55~0.75m/min,连铸二冷电磁搅拌:电流200~450A、频率5~7Hz,轻压下:压下区间50~95%、压下量4~8mm,连铸坯厚度为320mm;
连铸坯加热温度1180~1250℃,在炉时间4.8~7.0h,钢坯出炉除鳞后,先横轧至成品宽度再进行纵轧,分两阶段轧制:第一阶段轧制温度为1000~1150℃,累计压下量50~70%;第二阶段开轧厚度184mm,累计压下量40~60%,轧后钢板在空气中冷却;
淬火:钢板在淬火炉进行加热,加热的保温温度为890~930℃,总保温时间为2.1min/mm;钢板在保温后在辊式淬火机进行层流冷却,层流冷却过程包括高压段和低压段,高压段层流压力为0.8MPa,上下水比为0.85,低压段层流压力为0.5MPa,上下水比为0.88,淬火机轧辊辊缝设定为101mm;在高压段冷却后,钢板在低压段进行摇摆时间18min以上,保证钢板冷却后的整体温度在100℃以下;
回火:钢板进回火炉进行加热,加热至回火温度660~680℃进行保温,总保温时间2.5min/mm以上,保温后出炉空冷。
本发明的有益效果是:
(1)本发明的钢板在厚度规格达到101mm的同时,宽度规格达到4650mm,从核安全壳安全性的角度考虑,可有效减少组件的焊缝长度,进一步实现安全壳的一体化和整体化,钢板利用率高,安全性较好;
(2)本发明通过采用高洁净冶炼与低偏析连铸、两阶段控制轧制及离线辊式高强度高均匀性淬火和回火热处理,解决了核电钢超宽特厚板的低温冲击韧性较低的问题,钢板具有良好的强韧性匹配,经检测本发明方法所得钢板交货状态厚向1/4处的力学性能:RP0.2≥635MPa,Rm≥710MPa,A5d≥20%,-25℃Kv8(平均值)≥84J,-35℃Kv8(平均值)≥52J;模拟焊后热处理的性能:Rp0.2≥615MPa,Rm≥710MPa,A5d≥21%,-35℃横向KV8冲击功平均值≥75J;
(3)本发明与普通控轧及热处理钢板相比,同等化学成分设计提高了钢板的综合性能,所得钢板强韧性良好,尤其是低温冲击韧性大幅提升,降低了钢板生产资源消耗。
附图说明
图1为本发明中实施例1所得钢板的SEM图像。
具体实施方式
一种核电站安全壳用SA738GrB钢板,厚度规格为101mm,宽度规格为4650mm,其化学成分及质量百分比如下:C≤0.2%,Si:0.13%~0.6%,Mn:0.9%~1.6%,Ni≤0.6%,Cr≤0.3%,Nb≤0.05%,Mo≤0.35%,V≤0.08%,Ti≤0.03%,余量为Fe和不可避免的杂质。
上述钢板的制造方法,包括以下工序:钢水预处理-转炉冶炼-精炼-连铸-加热-轧制-热处理,
铁水脱硫预处理:开始温度1330~1370℃,结束温度1320~1350℃,喷入镁粉0.3~1.0kg/吨、石灰粉2.5~4.0kg/吨,结束S≤0.005%;
钢水经过冶炼和精炼后进行连铸,钢水过热度5~25℃,拉坯速度0.55~0.75m/min,连铸二冷电磁搅拌:电流200~450A、频率5~7Hz,轻压下:压下区间50~95%、压下量4~8mm,连铸坯厚度为320mm;
连铸坯加热温度1180~1250℃,在炉时间4.8~7.0h,钢坯出炉除鳞后,先横轧至成品宽度再进行纵轧,分两阶段轧制:第一阶段轧制温度为1000~1150℃,累计压下量50~70%;第二阶段开轧厚度184mm,累计压下量40~60%,轧后钢板在空气中冷却;
淬火:钢板在淬火炉进行加热,加热的保温温度为890~930℃,总保温时间为2.1min/mm;钢板在保温后在辊式淬火机进行层流冷却,层流冷却过程包括高压段和低压段,高压段层流压力为0.8MPa,上下水比为0.85,低压段层流压力为0.5MPa,上下水比为0.88,淬火机轧辊辊缝设定为101mm;在高压段冷却后,钢板在低压段进行摇摆时间18min以上,保证钢板冷却后的整体温度在100℃以下;
回火:钢板进回火炉进行加热,加热至回火温度660~680℃进行保温,总保温时间2.5min/mm以上,保温后出炉空冷。
下面结合实施例1-实施例3对本发明的技术方案作进一步说明。
表1各实施例钢冶炼化学成分(wt,%)
加热轧制工序:连铸坯加热温度1180~1250℃,在炉时间4.8~7.0h,钢坯出炉除鳞后,先横轧至成品宽度再进行纵轧。分两阶段轧制:第一阶段开轧温度为1050℃,累计压下量55%;第二阶段开轧厚度184mm,累计压下量45%。轧后钢板在空气中冷却。
表2各实施例钢的热处理工艺
表3各实施例钢的回火态力学性能
从实施例钢板取样,进行模拟焊后热处理实验,工艺为:保温温度620±10℃,保温时间10h,装出炉温度≤425℃,425℃以上升降温速率56℃/h。
表4各实施例钢模拟焊后热处理的力学性能
如图1,钢板厚向1/4处获得均匀的回火贝氏体组织。本发明设计的钢板在厚度规格达到101mm的同时,宽度规格达到4650mm,从核安全壳安全性的角度考虑,可有效减少组件的焊缝长度,进一步实现安全壳的一体化和整体化,钢板利用率高,安全性较好。与普通控轧及热处理钢板相比,同等化学成分设计提高了钢板的综合性能,所得钢板强韧性良好,尤其是低温冲击韧性大幅提升,降低了钢板生产资源消耗。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
Claims (5)
1.一种核电站安全壳用SA738GrB钢板,其特征在于:厚度规格为101mm,宽度规格为4650mm,其化学成分及质量百分比如下:C≤0.2%,Si:0.13%~0.6%,Mn:0.9%~1.6%,Ni≤0.6%,Cr≤0.3%,Nb≤0.05%,Mo≤0.35%,V≤0.08%,Ti≤0.03%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种核电站安全壳用SA738GrB钢板,其特征在于,其化学成分及质量百分比如下:C:0.15%,Mn:1.53%,P:0.009%,S:0.001%,Si:0.25%,Ni:0.54%,Cr:0.022%,Nb:0.03%,Mo:0.17%,V:0.044%,Ti:0.016%,Alt:0.04%,余量为Fe和不可避免的杂质。
3.根据权利要求1所述的一种核电站安全壳用SA738GrB钢板,其特征在于,其化学成分及质量百分比如下:C:0.14%,Mn:1.55%,P:0.008%,S:0.001%,Si:0.25%,Ni:0.55%,Cr:0.25%,Nb:0.03%,Mo:0.28%,V:0.044%,Ti:0.017%,Alt:0.02%,余量为Fe和不可避免的杂质。
4.根据权利要求1所述的一种核电站安全壳用SA738GrB钢板,其特征在于,其化学成分及质量百分比如下:C:0.13%,Mn:1.55%,P:0.009%,S:0.001%,Si:0.25%,Ni:0.56%,Cr:0.23%,Nb:0.03%,Mo:0.27%,V:0.045%,Ti:0.016%,Alt:0.05%,余量为Fe和不可避免的杂质。
5.应用于权利要求1所述的一种核电站安全壳用SA738GrB钢板的制造方法,包括以下工序:钢水预处理-转炉冶炼-精炼-连铸-加热-轧制-热处理,其特征在于:
铁水脱硫预处理:开始温度1330~1370℃,结束温度1320~1350℃,喷入镁粉0.3~1.0kg/吨、石灰粉2.5~4.0kg/吨,结束S≤0.005%;
钢水经过冶炼和精炼后进行连铸,钢水过热度5~25℃,拉坯速度0.55~0.75m/min,连铸二冷电磁搅拌:电流200~450A、频率5~7Hz,轻压下:压下区间50~95%、压下量4~8mm,连铸坯厚度为320mm;
连铸坯加热温度1180~1250 ℃,在炉时间 4.8~7.0h,钢坯出炉除鳞后,先横轧至成品宽度再进行纵轧,分两阶段轧制:第一阶段轧制温度为 1000~1150℃,累计压下量 50~70% ;第二阶段开轧厚度184mm,累计压下量40~60%,轧后钢板在空气中冷却;
淬火:钢板在淬火炉进行加热,加热的保温温度为890~930℃,总保温时间为2.1min/mm;钢板在保温后在辊式淬火机进行层流冷却,层流冷却过程包括高压段和低压段,高压段层流压力为0.8MPa,上下水比为0.85,低压段层流压力为0.5MPa,上下水比为0.88,淬火机轧辊辊缝设定为101mm;在高压段冷却后,钢板在低压段进行摇摆时间18min以上,保证钢板冷却后的整体温度在100℃以下;
回火:钢板进回火炉进行加热,加热至回火温度660~680℃进行保温,总保温时间2.5min/mm以上,保温后出炉空冷。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911119756.7A CN110791712A (zh) | 2019-11-15 | 2019-11-15 | 一种核电站安全壳用SA738GrB钢板及制造方法 |
PCT/CN2020/090750 WO2021093293A1 (zh) | 2019-11-15 | 2020-05-18 | 一种核电站安全壳用SA738GrB钢板及制造方法 |
GB2208201.0A GB2608271A (en) | 2019-11-15 | 2020-05-18 | SA738GRB steel plate for nuclear power plant containment and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911119756.7A CN110791712A (zh) | 2019-11-15 | 2019-11-15 | 一种核电站安全壳用SA738GrB钢板及制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110791712A true CN110791712A (zh) | 2020-02-14 |
Family
ID=69445075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911119756.7A Pending CN110791712A (zh) | 2019-11-15 | 2019-11-15 | 一种核电站安全壳用SA738GrB钢板及制造方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110791712A (zh) |
GB (1) | GB2608271A (zh) |
WO (1) | WO2021093293A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111270153A (zh) * | 2020-03-30 | 2020-06-12 | 南京钢铁股份有限公司 | 一种6mm厚核电安全壳用钢及其制造方法 |
CN112143976A (zh) * | 2020-08-24 | 2020-12-29 | 江阴兴澄特种钢铁有限公司 | 一种核电用p265gh钢板及其制造方法 |
WO2021093293A1 (zh) * | 2019-11-15 | 2021-05-20 | 南京钢铁股份有限公司 | 一种核电站安全壳用SA738GrB钢板及制造方法 |
CN115029628A (zh) * | 2022-05-20 | 2022-09-09 | 首钢京唐钢铁联合有限责任公司 | 一种高品质特厚钢板及其生产方法 |
CN116875904A (zh) * | 2023-07-24 | 2023-10-13 | 鞍钢股份有限公司 | 一种750MPa级石油储罐用钢板及其生产方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116287921A (zh) * | 2021-12-07 | 2023-06-23 | 江苏新华合金有限公司 | 一种核电站反应堆冷却剂泵推力轴承瓦块材料及其制造工艺 |
CN114473285A (zh) * | 2021-12-29 | 2022-05-13 | 中国电建集团上海能源装备有限公司 | 一种用于核电安全壳钢焊接的埋弧焊丝及其制备方法 |
CN116219131B (zh) * | 2022-11-22 | 2025-02-28 | 江阴兴澄特种钢铁有限公司 | 一种SA387Gr22CL2承压设备用钢板的生产方法 |
CN116219279B (zh) * | 2022-12-23 | 2024-04-16 | 鞍钢股份有限公司 | 一种高强度高韧性核反应堆安全壳用钢及其制造方法 |
CN116987968B (zh) * | 2023-07-26 | 2024-12-17 | 鞍钢股份有限公司 | 高温气冷堆压板构件用极限宽规格核电钢板及制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160237536A1 (en) * | 2011-12-20 | 2016-08-18 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
CN107974615A (zh) * | 2017-11-28 | 2018-05-01 | 天津中德应用技术大学 | 厚度小于12mm的Q460E高强钢板及其生产方法 |
CN108396115A (zh) * | 2018-02-23 | 2018-08-14 | 舞阳钢铁有限责任公司 | 调制型超宽SA738MGr-B钢板的热处理方法 |
CN110423942A (zh) * | 2019-08-07 | 2019-11-08 | 南京钢铁股份有限公司 | 一种宽、厚规格核电用钢板及制造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100261664B1 (ko) * | 1997-10-21 | 2000-07-15 | 이종훈 | 2상영역 열처리를 이용한 고인성 sa508gr.3강의 제조방법 |
CN102776441A (zh) * | 2012-08-10 | 2012-11-14 | 济钢集团有限公司 | 一种第三代核电站反应堆安全壳用钢板及其制造方法 |
CN105506493B (zh) * | 2014-09-25 | 2017-09-29 | 鞍钢股份有限公司 | 一种超薄SA738Gr B钢板的生产方法 |
CN104962828A (zh) * | 2015-06-05 | 2015-10-07 | 舞阳钢铁有限责任公司 | 大厚度SA738GrA钢板及其生产方法 |
CN105624550B (zh) * | 2016-01-28 | 2018-01-30 | 舞阳钢铁有限责任公司 | 核岛设备用大厚度SA738GrB钢板及生产方法 |
CN109234624A (zh) * | 2018-10-08 | 2019-01-18 | 鞍钢股份有限公司 | 一种特宽特厚核电常规岛设备用钢及其制造方法 |
CN110791712A (zh) * | 2019-11-15 | 2020-02-14 | 南京钢铁股份有限公司 | 一种核电站安全壳用SA738GrB钢板及制造方法 |
-
2019
- 2019-11-15 CN CN201911119756.7A patent/CN110791712A/zh active Pending
-
2020
- 2020-05-18 WO PCT/CN2020/090750 patent/WO2021093293A1/zh active Application Filing
- 2020-05-18 GB GB2208201.0A patent/GB2608271A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160237536A1 (en) * | 2011-12-20 | 2016-08-18 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
CN107974615A (zh) * | 2017-11-28 | 2018-05-01 | 天津中德应用技术大学 | 厚度小于12mm的Q460E高强钢板及其生产方法 |
CN108396115A (zh) * | 2018-02-23 | 2018-08-14 | 舞阳钢铁有限责任公司 | 调制型超宽SA738MGr-B钢板的热处理方法 |
CN110423942A (zh) * | 2019-08-07 | 2019-11-08 | 南京钢铁股份有限公司 | 一种宽、厚规格核电用钢板及制造方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021093293A1 (zh) * | 2019-11-15 | 2021-05-20 | 南京钢铁股份有限公司 | 一种核电站安全壳用SA738GrB钢板及制造方法 |
GB2608271A (en) * | 2019-11-15 | 2022-12-28 | Nanjing Iron & Steel Co Ltd | SA738GRB steel plate for nuclear power plant containment and manufacturing method |
CN111270153A (zh) * | 2020-03-30 | 2020-06-12 | 南京钢铁股份有限公司 | 一种6mm厚核电安全壳用钢及其制造方法 |
CN111270153B (zh) * | 2020-03-30 | 2022-03-22 | 南京钢铁股份有限公司 | 一种6mm厚核电安全壳用钢及其制造方法 |
CN112143976A (zh) * | 2020-08-24 | 2020-12-29 | 江阴兴澄特种钢铁有限公司 | 一种核电用p265gh钢板及其制造方法 |
CN115029628A (zh) * | 2022-05-20 | 2022-09-09 | 首钢京唐钢铁联合有限责任公司 | 一种高品质特厚钢板及其生产方法 |
CN115029628B (zh) * | 2022-05-20 | 2023-10-24 | 首钢京唐钢铁联合有限责任公司 | 一种高品质特厚钢板及其生产方法 |
CN116875904A (zh) * | 2023-07-24 | 2023-10-13 | 鞍钢股份有限公司 | 一种750MPa级石油储罐用钢板及其生产方法 |
Also Published As
Publication number | Publication date |
---|---|
GB202208201D0 (en) | 2022-07-20 |
WO2021093293A1 (zh) | 2021-05-20 |
GB2608271A (en) | 2022-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021093293A1 (zh) | 一种核电站安全壳用SA738GrB钢板及制造方法 | |
CN110438414B (zh) | 一种消除超宽幅铁素体不锈钢中厚板表面裂纹的方法 | |
CN108531816B (zh) | 一种500MPa级工程机械用钢及其制造方法 | |
CN105583235B (zh) | 热轧钢筋的分段阶梯型冷却控制氧化铁皮结构的方法 | |
CN109266815B (zh) | 在线淬火高强钢板的板形控制方法 | |
CN108531806B (zh) | 一种高强韧性热轧无缝钢管及其制备方法 | |
CN102230057B (zh) | 采用直接淬火工艺生产石油储罐钢板的方法 | |
CN102586675B (zh) | 抗拉强度≥1250MPa的超高强包装捆带及制造方法 | |
CN103882344A (zh) | 加钒铬钼钢板及其生产方法 | |
WO2020098288A1 (zh) | 一种超快冷工艺生产q690d厚板及制造方法 | |
WO2022067962A1 (zh) | 低成本高性能Q370qE-HPS桥梁钢及生产方法 | |
CN109234624A (zh) | 一种特宽特厚核电常规岛设备用钢及其制造方法 | |
CN101698900A (zh) | 一种低合金超高硬度耐磨钢板生产工艺方法 | |
CN104674130A (zh) | 大厚度抗层状撕裂调质高强钢板的生产方法 | |
CN108385034B (zh) | 一种不大于100mm厚1000MPa级水电用钢板的LGB-Q&T方法 | |
CN109355572B (zh) | 高铬铁素体耐热钢及其制备方法 | |
CN115558851A (zh) | 一种370MPa级别工程结构用热轧钢板及其制造方法 | |
CN102080189A (zh) | 一种大热输入焊接用结构钢及其制造方法 | |
CN103834873A (zh) | 一种大厚度锅炉锅筒用低合金高强钢板及其制造方法 | |
CN114293110B (zh) | 一种厚规格800MPa级水电钢及其高效低成本生产方法 | |
CN108441779A (zh) | 一种高强度高屈强比核电站机械模块用钢及其制造方法 | |
CN108034897B (zh) | 一种低压缩比条件生产的特厚板及其生产方法 | |
CN102851473B (zh) | 一种电站锅炉汽包用大厚度sa299钢板的生产方法 | |
CN117210770A (zh) | 高强度均质化铁素体特厚风电结构用钢板及其制造方法 | |
CN103725973A (zh) | 低成分低Pcm值800MPa级高强钢及其生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210917 Address after: Liuhe District of Nanjing City, Jiangsu province 210035 xiejiadian Applicant after: NANJING IRON & STEEL Co.,Ltd. Applicant after: Northeastern University Address before: Liuhe District of Nanjing City, Jiangsu province 210035 xiejiadian Applicant before: NANJING IRON & STEEL Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200214 |
|
RJ01 | Rejection of invention patent application after publication |