CN110763569A - Geogrid creep test device and method considering soil mass constraint conditions - Google Patents
Geogrid creep test device and method considering soil mass constraint conditions Download PDFInfo
- Publication number
- CN110763569A CN110763569A CN201911194985.5A CN201911194985A CN110763569A CN 110763569 A CN110763569 A CN 110763569A CN 201911194985 A CN201911194985 A CN 201911194985A CN 110763569 A CN110763569 A CN 110763569A
- Authority
- CN
- China
- Prior art keywords
- geogrid
- test
- creep
- load
- test box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 166
- 239000002689 soil Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims description 12
- 230000007246 mechanism Effects 0.000 claims abstract description 54
- 238000001514 detection method Methods 0.000 claims abstract description 43
- 238000010998 test method Methods 0.000 claims abstract description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 42
- 239000010959 steel Substances 0.000 claims description 42
- 239000000945 filler Substances 0.000 claims description 19
- 238000005259 measurement Methods 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 3
- 230000007774 longterm Effects 0.000 abstract description 6
- 230000008859 change Effects 0.000 abstract description 3
- 238000012856 packing Methods 0.000 abstract 2
- 238000013461 design Methods 0.000 description 11
- 230000006872 improvement Effects 0.000 description 8
- 230000002787 reinforcement Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000004746 geotextile Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000003190 viscoelastic substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/04—Chucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0017—Tensile
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0071—Creep
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/025—Geometry of the test
- G01N2203/0258—Non axial, i.e. the forces not being applied along an axis of symmetry of the specimen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/04—Chucks, fixtures, jaws, holders or anvils
- G01N2203/0452—Cushioning layer between test piece and grip
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0682—Spatial dimension, e.g. length, area, angle
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明公开了一种考虑土体约束条件的土工格栅蠕变试验装置及试验方法,包括土工格栅、试验架、试验箱、蠕变检测机构以及载荷加载组。试验箱相对两侧的侧壁上各设置有穿孔,土工格栅穿设在两个穿孔内且两端伸出试验箱外分别与固定端及活动端夹具连接;将土工格栅埋设于试验箱内,并分层压实填料,蠕变检测机构的检测端与土工格栅上相应的预设检测点连接;载荷加载组能够同时或依次输出竖向载荷和水平载荷,其中在试验箱内填料顶部施加竖向载荷,对土工格栅任一侧施加水平载荷;土工格栅与载荷加载组相对的另一侧与试验架或试验箱连接。本试验装置及试验方法结构简单实用,适合模拟受土体约束的土工格栅在不同长期载荷下蠕变性质和强度变化特性。
The invention discloses a geogrid creep test device and a test method considering soil constraints, including a geogrid, a test frame, a test box, a creep detection mechanism and a load loading group. There are perforations on the side walls of the opposite sides of the test box, and the geogrid is penetrated in the two perforations, and the two ends extend out of the test box to connect with the fixed end and the movable end fixture respectively; the geogrid is buried in the test box. Inside, the packing is layered and compacted, and the detection end of the creep detection mechanism is connected to the corresponding preset detection point on the geogrid; the load loading group can output the vertical load and the horizontal load simultaneously or sequentially, among which the packing in the test chamber A vertical load is applied to the top, and a horizontal load is applied to either side of the geogrid; the other side of the geogrid opposite to the load-loading group is connected to the test frame or test box. The test device and the test method have a simple and practical structure, and are suitable for simulating the creep properties and strength change characteristics of a geogrid constrained by soil under different long-term loads.
Description
技术领域technical field
本发明涉及土工合成材料加筋土挡墙技术领域,尤其涉及一种考虑土体约束条件的土工格栅蠕变试验装置及试验方法。The invention relates to the technical field of geosynthetic material reinforced soil retaining walls, in particular to a geogrid creep test device and a test method considering soil constraints.
背景技术Background technique
近年来,国内外关于土工合成材料蠕变特性的研究日益增多,但基本上都是针对土工织物或者土工膜而开展的;并且目前国内外针对筋材短期或长期抗拉强度的大多数相关试验标准,均规定筋材在无约束条件且保持一定温湿度进行拉伸,以此试验条件得到的强度指标作为材料特征参数,而在无约束情况的蠕变试验获知的蠕变特性,强于有约束条件下筋材的蠕变特性,从而使工程设计时筋材的蠕变折减系数取值过大,从而影响了筋材在加筋土结构中的应用。此外,土工格栅作为一种热粘弹性材料,在一定温度和长期载荷作用下必将表现出其特有的蠕变特性。为了解土工格栅在温度作用下蠕变过程中的荷载-变形行为,已有学者对土工格栅无约束条件下进行了大量的温度加速蠕变试验。因此,研发土工格栅蠕变试验装置并通过土工格栅蠕变试验考虑有约束条件对蠕变的影响,探讨土工格栅在不同长期载荷下蠕变性质和强度变化特性是十分必要的。In recent years, the research on the creep characteristics of geosynthetics at home and abroad has been increasing, but they are basically carried out for geotextiles or geomembranes; and most of the relevant tests on the short-term or long-term tensile strength of steel bars at home and abroad have been carried out. The standard stipulates that the reinforcement is stretched under unconstrained conditions and at a certain temperature and humidity, and the strength index obtained from this test condition is used as the material characteristic parameter. The creep characteristics of the reinforcement under the constraint conditions make the creep reduction coefficient of the reinforcement too large in engineering design, thus affecting the application of the reinforcement in the reinforced soil structure. In addition, as a thermo-viscoelastic material, geogrid will show its unique creep characteristics under certain temperature and long-term load. In order to understand the load-deformation behavior of the geogrid in the creep process under the action of temperature, some scholars have conducted a large number of temperature-accelerated creep tests on the geogrid under unconstrained conditions. Therefore, it is necessary to develop a geogrid creep test device and consider the influence of restrained conditions on creep through the geogrid creep test, and to explore the creep properties and strength variation characteristics of geogrids under different long-term loads.
发明内容SUMMARY OF THE INVENTION
本发明旨在至少解决上述所提及的技术问题之一,提供一种考虑土体约束条件的土工格栅蠕变试验装置及试验方法,本试验装置结构简单,且容易搭建,适合在室内模拟受土体约束的土工格栅在不同长期载荷下蠕变性质和强度变化特性;本试验方法操作方便,测量准确性高。The present invention aims to solve at least one of the technical problems mentioned above, and provides a geogrid creep test device and a test method considering soil constraints. The test device has a simple structure, is easy to build, and is suitable for indoor simulation. The creep properties and strength change characteristics of geogrids constrained by soil under different long-term loads; this test method is easy to operate and has high measurement accuracy.
为了实现上述目的,本发明采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种考虑土体约束条件的土工格栅蠕变试验装置,包括土工格栅、试验架、设置在试验架上的试验箱、蠕变检测机构以及载荷加载组,所述试验箱相对两侧的侧壁上各设置有穿孔,土工格栅两端均可过穿孔并伸出试验箱外;所述试验箱位于土工格栅的上下两侧均填充有填料,蠕变检测机构的检测端设置有至少两个,且分别与土工格栅上相应的预设检测点连接;载荷加载组能够同时或依次输出竖向载荷和水平载荷;载荷加载组能够在试验箱内的填料顶部施加竖向载荷,并能够对土工格栅任一侧施加水平载荷;土工格栅与载荷加载组相对的另一侧与试验架或试验箱连接。A geogrid creep test device considering soil constraints, including a geogrid, a test frame, a test box set on the test frame, a creep detection mechanism and a load loading group, the test box on opposite sides is Each side wall is provided with perforations, and both ends of the geogrid can be perforated and extended out of the test box; the test box is filled with fillers on the upper and lower sides of the geogrid, and the detection end of the creep detection mechanism is provided with At least two, and they are respectively connected to the corresponding preset detection points on the geogrid; the load loading group can output vertical load and horizontal load simultaneously or sequentially; the load loading group can apply vertical load on the top of the filler in the test box, And can apply horizontal load to either side of the geogrid; the other side of the geogrid opposite the load loading group is connected to the test frame or the test box.
作为上述技术方案的改进,所述载荷加载组包括能够施加竖向应力载荷的应力机构以及能够施加水平载荷的施力机构;所述应力机构能够对试验箱内填料的顶部施加竖向应力,所述施力机构的输出端与土工格栅连接,对土工格栅施加水平方向的拉力。As an improvement of the above technical solution, the load loading group includes a stress mechanism capable of applying a vertical stress load and a force applying mechanism capable of applying a horizontal load; the stress mechanism can apply vertical stress to the top of the filler in the test chamber, so The output end of the force applying mechanism is connected with the geogrid, and exerts a horizontal pulling force on the geogrid.
作为上述技术方案的改进,还包括夹持结构,所述夹持结构包括固定夹具和活动夹具,所述固定夹具和活动夹具分别夹设在土工格栅水平受力的两端上;所述固定夹具与试验架或试验箱连接,所述活动夹具与载荷加载组施加水平载荷的输出端连接。As an improvement of the above technical solution, it also includes a clamping structure, the clamping structure includes a fixed clamp and a movable clamp, and the fixed clamp and the movable clamp are respectively clamped on both ends of the geogrid under horizontal force; The fixture is connected with the test frame or the test box, and the movable fixture is connected with the output end of the load loading group for applying the horizontal load.
作为上述技术方案的改进,所述固定夹具和活动夹具均由三块上、中、下层钢板依次叠放构成,上层钢板通过多枚螺栓穿过中层钢板与下层钢板连接,中层及下层钢板向配合的夹持面上均有齿形咬合槽,齿形咬合槽上设置有橡胶垫片以夹持土工格栅。As an improvement of the above technical solution, the fixed fixture and the movable fixture are composed of three upper, middle and lower steel plates stacked in sequence. The upper steel plate is connected to the lower steel plate through a plurality of bolts through the middle steel plate. There are tooth-shaped occlusal grooves on the clamping surface of the tooth-shaped occlusion groove, and rubber gaskets are arranged on the tooth-shaped occlusion grooves to clamp the geogrid.
作为上述技术方案的改进,所述施力机构包括杠杆、调节构件、设置在杠杆一端上的配重以及一端连接在杠杆另一端上的牵引拉绳,所述杠杆和调节构件均安装在试验架上,所述牵引拉绳另一端绕过调节构件与土工格栅上的活动夹具连接;所述调节构件能够调整牵引拉绳与土工格栅连接端的水平度。As an improvement of the above technical solution, the force applying mechanism includes a lever, an adjustment member, a counterweight arranged on one end of the lever, and a traction rope with one end connected to the other end of the lever. Both the lever and the adjustment member are installed on the test frame The other end of the pulling rope bypasses the adjusting member and is connected to the movable clamp on the geogrid; the adjusting member can adjust the levelness of the connecting end of the pulling rope and the geogrid.
作为上述技术方案的改进,所述蠕变检测机构包括百分表以及一端连接在百分表测量端上的钢丝,所述百分表设置有至少两个,所述钢丝另一端固定在土工格栅的预设测量点上;所述百分表安装在试验架或试验箱上。As an improvement of the above technical solution, the creep detection mechanism includes a dial indicator and a steel wire with one end connected to the measuring end of the dial indicator, the dial indicator is provided with at least two, and the other end of the steel wire is fixed on the geogrid On the preset measuring point of the grid; the dial indicator is installed on the test stand or test box.
作为上述技术方案的改进,所述应力机构为砝码或输出端向下设置的液压机构。As an improvement of the above technical solution, the stress mechanism is a weight or a hydraulic mechanism with the output end set downward.
本发明还提供了一种考虑土体约束条件的土工格栅蠕变试验方法,包括以下步骤:The invention also provides a geogrid creep test method considering soil constraints, comprising the following steps:
步骤1、试验准备,准备试验的试验架、试验箱、蠕变检测机构以及载荷加载组,并调试器材直至符合试验要求,测定所选土工格栅的极限抗拉强度UTS;Step 1. Test preparation, prepare the test frame, test box, creep detection mechanism and load loading group for the test, and debug the equipment until it meets the test requirements, and measure the ultimate tensile strength UTS of the selected geogrid;
步骤2、安装土工格栅,在试验箱内填充填料,按照预设的压力进行分层填实,填至与两侧穿孔所在平面高度齐平;然后在两侧穿孔内穿装预设规格的土工格栅,并在土工格栅预设测量点位位置固定钢丝一端,钢丝另一端从一侧穿孔穿出;对试验箱内土工格栅的上侧进行填充填料,按照预设的压力进行分层填实;
步骤3、安装测试设备,在土工格栅穿出穿孔的两侧分别夹装固定夹具和活动夹具,活动夹具与施力机构连接;并且固定夹具固定安装在试验箱或试验架上,并且固定夹具夹持钢丝穿出一侧的土工格栅;钢丝穿出穿孔的一端与安装在试验架或试验箱上的百分表测量端连接;
步骤4、试验加载,将上述安装好的测试设备置于温度为18~22℃,湿度为40~60%的条件下静置0.5~1天;应力机构对试验箱内的填料施加垂直于土工格栅的竖向载荷,竖向载荷大小为10~18kPa;施力机构对活动夹具施加的水平拉力为土工格栅极限抗拉强度UTS的M%,加载时长为时间间隔1min、2min、6min、10min、15min、30min、60min、2h、4h、8h、10h、24h、50h、72h、100h、200h、300h、400h、500h、600h、700h、800h、900h、1000h和1008h,当蠕变加载时长超过100h后,数据采集时间间隔为100h,蠕变试验总时间为42天,并记录不同预设检测点对应的百分表在相应加载时长内的数值;
步骤5、至少重复两次步骤2至步骤4,每次测试中施力机构对活动夹具施加的水平拉力在上一次土工格栅极限抗拉强度UTS水平拉力值的基础上增加Δn%,Δn为6~10,并记录不同预设检测点相应的百分表在相应加载时长内的数值;
步骤6、计算,将步骤4和步骤5记录所得不同预设检测点上的数值通过应变公式计算出对应预设检测点上土工格栅的应变值:
ε=ΔL/L×100%ε=ΔL/L×100%
式中:ε为筋材应变量;ΔL为筋材蠕变变形量,其单位为mm;L为筋材有效长度,即夹具间的净距离,其单位为mm。In the formula: ε is the strain of the bar; ΔL is the creep deformation of the bar, and its unit is mm; L is the effective length of the bar, that is, the net distance between the fixtures, and its unit is mm.
作为上述技术方案的改进,所述钢丝与施力机构对土工格栅的施力方向平行。As an improvement to the above technical solution, the steel wire is parallel to the direction in which the force applying mechanism applies force to the geogrid.
作为上述技术方案的改进,步骤3中百分表的测量端水平设置,且与钢丝处于同一水平面。As an improvement to the above technical solution, the measuring end of the dial indicator in
与现有技术相比本申请的有益效果是:Compared with the prior art, the beneficial effects of the present application are:
一种考虑土体约束条件的土工格栅蠕变试验装置采用载荷加载组分别对埋设于试验箱内的土工格栅施加水平和竖向应力,可以有效模拟实际工程中加筋土挡墙服役过程所受到的载荷情况;而试验箱上相对两侧穿孔的设计,可以避免载荷加载组在水平拉动土工格栅时试验箱对土工格栅的影响;利用蠕变检测机构可以测定土工格栅在试验加载过程中不同预设检测点的受力情况,便于试验人员更为直观地观测到试验箱内不同测量点的受力情况,提高了模拟试验的准确性。本土工格栅蠕变试验装置能够通过简单的模型设计有效模拟出实际道路中加筋土挡墙在受到载荷后土工格栅的蠕变情况,便于试验人员更好地设计加筋土挡墙,提高工程结构的安全性。本发明还提供了一种考虑土体约束条件的土工格栅蠕变试验方法,本方法操作简单,便于实现,能够有效地模拟出现实工程结构中土工格栅所受到蠕变的情况,测量方便可靠。A geogrid creep test device considering soil constraints uses load loading groups to apply horizontal and vertical stress to the geogrid buried in the test box, which can effectively simulate the service process of reinforced soil retaining walls in actual engineering. The design of the perforations on the opposite sides of the test box can avoid the influence of the test box on the geogrid when the load loading group pulls the geogrid horizontally; the creep detection mechanism can be used to measure the geogrid during the test. The force situation of different preset detection points during the loading process is convenient for the test personnel to observe the force situation of different measurement points in the test box more intuitively, and the accuracy of the simulation test is improved. The local geogrid creep test device can effectively simulate the creep of the reinforced earth retaining wall in the actual road after being loaded through a simple model design, which is convenient for the testers to better design the reinforced earth retaining wall. Improve the safety of engineering structures. The invention also provides a geogrid creep test method considering soil constraints. The method is simple to operate, easy to implement, can effectively simulate the creep of the geogrid in the actual engineering structure, and is convenient to measure. reliable.
附图说明Description of drawings
以下结合附图对本发明的具体实施方式作进一步的详细说明,其中:The specific embodiments of the present invention will be described in further detail below in conjunction with the accompanying drawings, wherein:
图1为本发明实施例的结构示意图一;1 is a schematic structural diagram 1 of an embodiment of the present invention;
图2为本发明实施例的结构示意图二;2 is a second structural schematic diagram of an embodiment of the present invention;
图3为本发明实施例的蠕变加载受力示意图;3 is a schematic diagram of creep loading force according to an embodiment of the present invention;
图4为本发明实施例中土工格栅的装配示意图;Fig. 4 is the assembly schematic diagram of the geogrid in the embodiment of the present invention;
图5为本发明实施例中试验土工格栅试样的拉伸性能曲线图;Fig. 5 is the tensile property curve diagram of the test geogrid sample in the embodiment of the present invention;
图6为本发明实施例中填料的粒径累计曲线图;Fig. 6 is the cumulative curve diagram of particle size of filler in the embodiment of the present invention;
图7为本发明实施例中土工格栅极限抗拉强度UTS等于62%时的曲线图;Fig. 7 is the graph when the ultimate tensile strength UTS of the geogrid is equal to 62% in the embodiment of the present invention;
图8为本发明实施例中土工格栅极限抗拉强度UTS等于72%时的曲线图;FIG. 8 is a graph when the ultimate tensile strength UTS of the geogrid is equal to 72% in the embodiment of the present invention;
图9为本发明实施例中土工格栅极限抗拉强度UTS等于82%时的曲线图。FIG. 9 is a graph when the ultimate tensile strength UTS of the geogrid is equal to 82% in the embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件,当部件被称为“设置在中部”,不仅仅是设置在正中间位置,只要不是设置在两端部都属于中部所限定的范围内。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。It should be noted that when a component is referred to as being "fixed to" another component, it can be directly on the other component or there may also be a centered component. When a component is considered to be "connected" to another component, it may be directly connected to the other component or there may be a co-existence of an intervening component. When a component is said to be "set on" another component, it can be set directly on the other component or there may be a centered component at the same time, when a component is said to be "set in the middle", not just in the middle , as long as it is not set in the range limited by the middle part at both ends. The terms "vertical," "horizontal," "left," "right," and similar expressions are used herein for illustrative purposes only.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
如图1至图9所示,本发明提供了一种考虑土体约束条件的土工格栅蠕变试验装置,包括试验架1、设置在试验架1上的试验箱2、蠕变检测机构3以及载荷加载组4,所述试验箱2相对两侧的侧壁上设置有穿孔21,两个穿孔21内均穿设有土工格栅5,所述土工格栅5的两端活动伸出试验箱2外;所述试验箱2位于土工格栅5的上下两侧均填充有填料6,蠕变检测机构3的检测端设置有至少两个,且分别与土工格栅5上相应的预设检测点连接;载荷加载组4能够同时或依次输出竖向载荷和水平载荷;载荷加载组4能够对试验箱2内填料6的顶部施加竖向载荷;载荷加载组4能够对土工格栅5任一侧施加水平载荷;土工格栅5与载荷加载组4相对的另一侧与试验架1或试验箱2连接。在实际的试验中,载荷加载组4可以采用两个,而这时载荷加载组4只需输出竖向载荷或水平载荷,减少了整个载荷加载组4的复杂性。在本申请中,竖向载荷主要是模拟加筋土挡墙在服役状态下承受上部结构自重以及结合路面上的交通荷载,因此可以采用定向持续输出的应力即可。而水平载荷主要是承受加筋土挡墙在受力不均或者长期处于破坏状态下边缘部分对内部的拉扯力,而在实际情况中,破坏状态下拉扯力相对出现的概率较小,同时破坏的加筋土挡墙已经没有必要进行试验了,为了简便设计本申请可以默认水平载荷主要是加筋土挡墙在受力不均时不同区域所承受的拉扯力。试验箱2采用四侧均为封闭的结构设计主要是实现整个加筋土挡墙单元的结构,而穿孔21主要是减少在试验过程中试验箱2侧壁对土工格栅5的影响。填料6在实际情况下基本都是土体或碎石结构,本申请为了实现简便性和便于数据的测量,填料6采用中等规格的河砂。As shown in FIGS. 1 to 9 , the present invention provides a geogrid creep test device considering soil constraints, including a test frame 1 , a
为了更好地进行施加载荷,本申请的另一实施例中所述载荷加载组4包括能够施加竖向应力载荷的应力机构41以及能够施加水平载荷的施力机构42;所述应力机构41能够对试验箱2内填料6的顶部施加竖向应力,所述施力机构42的输出端与土工格栅5连接。采用分体施力的方式,可以有效地设计整个试验装置,同时便于控制不同方向上的载荷施加情况。为了更好地夹持土工格栅5,本申请的试验装置还包括夹持结构7,所述夹持结构7包括固定夹具71和活动夹具72,所述固定夹具71和活动夹具72并分别夹设在土工格栅5水平受力的两端上;所述固定夹具71与试验架1或试验箱2连接,所述活动夹具72与载荷加载组4施加水平载荷的输出端连接。在实际中,活动夹具72与施力机构42输出端进行连接,活动夹具72能够实现大面积夹持,避免了施力机构42输出端直接连接土工格栅5时应力集中的情况出现。为了更好地夹持并不破坏土工格栅5的结构,所述固定夹具71和活动夹具72的夹持作用面上均设置有橡胶垫片73。在本申请的另一个实施例中,所述固定夹具71和活动夹具72均由三块上、中、下层钢板依次叠放构成,上层钢板通过多枚螺栓穿过中层钢板与下层钢板连接,中层及下层钢板向配合的夹持面上均有齿形咬合槽,齿形咬合槽上设置有橡胶垫片73以夹持土工格栅5。In order to better apply loads, in another embodiment of the present application, the
参见图1至图4,为了更好地进行增减水平载荷的大小,所述施力机构42包括杠杆421、调节构件422、设置在杠杆421一端上的配重423以及一端连接在杠杆421另一端上的牵引拉绳424。所述杠杆421和调节构件422均安装在试验架1上,所述牵引拉绳424另一端绕过调节构件422与土工格栅5上的活动夹具72连接;所述调节构件422能够调整牵引拉绳424与土工格栅5连接一端的水平度。利用杠杆421可以有效减少整体配重423的需求量,在试验中杠杆421两端的力矩比例为1:6,即杠杆421位于配重423一端的力矩是杠杆421另一端力矩的6倍。此外,这样的设计可以有效减少常规设备难以坚持长时间进行施加载荷的情况。在本申请的另一个实施例中,在实际使用中杠杆421的中部通过一个转动套安装在试验架1上,而且杠杆421本身可以在转动套内进行滑动,进而可以调节两端力矩的比例。调节构件422主要目的是调节整牵引拉绳424与土工格栅5连接一端的水平度,使土工格栅5受到水平方向的拉力便于后期计算,同时减少了土工格栅5在受力过程中与试验箱2的接触的影响。而由于试验加载时间长,本申请中所述应力机构41为砝码或输出端向下设置的液压机构,利用砝码则更为简便,能够长时间保持恒定载荷,而选择液压机构则便于后期加载。1 to 4 , in order to better increase or decrease the magnitude of the horizontal load, the
参见图4,为了更好地测量土工格栅5的形变量,所述蠕变检测机构3包括百分表31以及一端连接在百分表31测量端上的钢丝32。所述百分表31设置有至少两个,所述钢丝32另一端固定在土工格栅5上预设的测量点上,所述百分表31安装在试验架1或试验箱2上。百分表31常用于形状和位置误差以及小位移的长度测量,由于其内部设置大量的刻度,类似千分尺的设计可以有效保证测量的准确性。利用钢丝32进行传导土工格栅5的各个测量段形变,整体思路新奇,形变传导准确,钢丝32细小且刚度大可以有效避免在传导过程中自身形变对百分表31测量所造成的影响。在实际的测量中,土工格栅5受到竖向载荷和水平载荷的综合作用后,必然会产生向水平载荷输出端一侧的形变,而百分表31处于水平载荷的反方向,土工格栅5的形变量通过钢丝32直接传导至百分表31内,百分表31显示土工格栅5上该预设检测点的形变值,通过形变计算公式即可得到应变值,进而确定蠕变折减系数。Referring to FIG. 4 , in order to better measure the deformation of the
本土工格栅蠕变试验装置采用载荷加载组4分别对埋设于试验箱2内的土工格栅5施加水平和竖向的应力,可以有效模拟在实际的加筋土挡墙结构中所受载荷情况;而试验箱2上相对侧壁穿孔21的设计,可以避免载荷加载组4在水平拉动土工格栅5时试验箱2对土工格栅5的影响;利用蠕变检测机构3可以测定土工格栅5在试验加载过程中不同预设检测点的受力情况,便于试验人员更为直观地观测到试验箱2内不同测量点的变形量,提高了试验模拟的准确性。本土工格栅蠕变试验装置能够通过简单的模型设计有效模拟出实际道路中加筋土挡墙在受到载荷后土工格栅的蠕变情况,便于试验人员更好地设计加筋土挡墙,提高工程结构的安全性。The local geogrid creep test device uses the
此外,本发明还提供了一种考虑土体约束条件的土工格栅蠕变试验方法,包括以下步骤:In addition, the present invention also provides a geogrid creep test method considering soil constraints, comprising the following steps:
步骤1、试验准备,准备试验的试验架1、试验箱2、蠕变检测机构3以及载荷加载组4,并调试器材直至符合试验要求,测定所选土工格栅5的极限抗拉强度UTS;Step 1. Test preparation, prepare the test frame 1,
步骤2、安装土工格栅5,在两侧穿孔21所在平面下方的试验箱2内填充填料6,按照预设的压力进行分层填实;在两侧穿孔21内穿装预设规格的土工格栅5,并在土工格栅5预设测量点位位置固定钢丝32一端,钢丝32另一端从一侧穿孔21穿出;对试验箱2位于土工格栅5上侧进行填充填料6,按照预设的压力进行分层填实;
步骤3、安装测试设备,在土工格栅5穿出穿孔21的两侧壁分别夹装固定夹具71和活动夹具72,活动夹具72与施力机构42连接;固定夹具71固定安装在试验箱2或试验架1上,并且固定夹具71夹持钢丝32穿出一侧的土工格栅5端部;钢丝32穿出穿孔21的一端与安装在试验架1或试验箱2上的百分表31测量端连接;
步骤4、试验加载,将上述安装好的测试设备置于温度为18~22℃,湿度为40~60%的条件下静置0.5~1天;应力机构41对试验箱2顶部的填料6施加垂直于土工格栅5的竖向载荷,竖向载荷大小为10~18kPa;施力机构42对活动夹具72施加的水平拉力为土工格栅5极限抗拉强度UTS的M%,加载时长为时间间隔1min、2min、6min、10min、15min、30min、60min、2h、4h、8h、10h、24h、50h、72h、……、1000h、1008h,当蠕变加载时长超过100h后,数据采集时间间隔为100h,测量格栅试样长度的变化,蠕变试验总时间为1008h,并记录不同预设检测点对应的百分表31在相应加载时长内的数值;
步骤5、至少重复两次步骤2至步骤4,每次测试中施力机构42对活动夹具72施加的水平拉力在上一次土工格栅5极限抗拉强度UTS水平拉力值的基础上增加Δn%,Δn为6~10,并记录不同预设检测点对应的百分表31在相应加载时长内的数值;
步骤6、计算,将步骤4和步骤5所记录不同预设检测点上的记录值通过应变公式计算得到对应预设检测点上土工格栅5的应变值:
ε=ΔL/L×100%ε=ΔL/L×100%
式中:ε为筋材应变量%;ΔL为筋材蠕变变形量mm;L为筋材有效长度,即夹具间的净距离,其单位为mm。In the formula: ε is the strain amount of the reinforcement in %; ΔL is the creep deformation of the reinforcement in mm; L is the effective length of the reinforcement, that is, the net distance between the fixtures, and its unit is mm.
在本申请方法中举出了三组具体的试验,设定的环境条件为室内温度20℃,湿度50%条件下进行,该试验的土工格栅5采用双向土工格栅,其型号可以选择为TGSG-3030,并根据规范《土工合成材料测试规程》SL235-2012相应标准,开展了无约束条件下的常规拉伸试验,其极限拉伸强度约为29.5kN/m,峰值破坏应变约为10.3%。该试验土工格栅的拉伸性能如图5所示。填料6采用颗粒级配良好的中砂,其均匀系数Cu=8.44,曲率系数Cc=1.15,土粒相对密度为2.65,最大干密度为1.69g/cm3,内摩擦角为39°,颗粒级配曲线详见图6。此外,试验加载前,静置的时间最好为1天,此时应力机构41不对试验箱2内填料6顶部的施加应力,其目的主要是保持土工格栅5与填料6所处环境与显示一致,提高后期的测量准确性。In the method of this application, three groups of specific tests are listed. The set environmental conditions are carried out under the conditions of indoor temperature of 20°C and humidity of 50%. The
另外,上述步骤4中极限抗拉强度UTS的M为62,即第一次试验水平拉力为极限抗拉强度UTS的62%,Δn在本实施例中选取10,即每次试验在上一次试验的基础上增加10%的拉力载荷,在室温20℃、湿度为50%的环境下进行试验。本次试验为三组,即每组试验的极限抗拉强度UTS分别为62%,72%,82%。在剪取土工格栅5试样时,为了能够更好地被活动夹具72和固定夹具71所夹持两端,剪取的土工格栅5试样长度相比整个试验箱2的长度要长,这样便于土工格栅5两侧从试验箱2的两侧穿孔21穿出,操作工人通过活动夹具72和固定夹具71分别夹持土工格栅5对应的一端,然后将固定夹具71进行固定,活动夹具72连接在牵引拉绳424的输入端上,最后即在规定时间内迅速增加杠杆421一端上的配重423,配重423通过杠杆的力矩系数将自重转化为对活动夹具72以及土工格栅5的拉力,这样即可实现蠕变试验。每组试验的极限抗拉强度UTS不同预设检测点位的极限抗拉强度不同,可以参见图7、图8和图9;其中图7为极限抗拉强度UTS等于62%时不同测量点位的蠕变曲线图,图8为极限抗拉强度UTS等于72%时不同测量点位的蠕变曲线图,图9为极限抗拉强度UTS等于82%时不同测量点位的蠕变曲线图。此外,土工格栅5试样设置有5个预设检测点,分别是A、B、C、D、E五个预设检测点位,通过相邻两两预设检测点位之间的形变量可以看出,不同荷载水平下,土工格栅不同测段的蠕变变形随时间变化的发展态势基本相似。从土工格栅试样不同测段角度分析,土工格栅5AB段即靠近活动端夹具位置,各曲线随时间增长近乎呈线性增加,土工格栅5的拉伸模量逐渐降低,曲线发展态势渐趋平缓,表明土工格栅5具有显著的粘弹性变形特征。而土工格栅BC段、CD段随格栅持荷时间不断增长,其蠕变变形依次减小,其峰值依次约为AB段变形峰值的64%、21%。产生上述现象,主要是由于对加筋土挡墙复合体作用上覆荷载时,加筋土挡墙内置筋材与填料界面间的摩擦力以及嵌固咬合作用,同时由于土工格栅5自身的材料属性为高聚物,使其在填料6即砂土约束下所受水平方向的拉力呈现不均匀分布,从而表现为格栅蠕变变形主要发生在拉伸端附近,即AB段。结论:有砂土约束下随蠕变荷载水平的增大,土工格栅5蠕变现象越明显,其蠕变应变及蠕变速率越大。土工格栅5在较低应力时,蠕变速率先增后减,很快趋于稳定;在较高应力时,蠕变速度较快,且需经过很长一段时间后才能基本趋于稳定。In addition, in the
为了进一步提高整个试验数据的精确,所述钢丝32与施力机构42对土工格栅5的施力方向平行,从而减少钢丝32在测量时受到试验箱2的影响。此外,步骤3中百分表31的测量端水平设置,且与钢丝32处于同一水平面,避免百分表31的测量端受力时产生一个其他方向上的分力,提高了测量的精度。In order to further improve the accuracy of the entire test data, the
本发明提供的一种考虑土体约束条件的土工格栅蠕变试验方法,本方法操作简单,便于实现,能够有效地模拟出现实工程结构中土工格栅5所受到蠕变的情况,测量方便可靠。The invention provides a geogrid creep test method considering soil constraints. The method is simple to operate, easy to implement, can effectively simulate the creep condition of the
以上实施例仅用以说明本发明的技术方案而并非对其进行限制,凡未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明技术方案的范围内。The above embodiments are only used to illustrate the technical solutions of the present invention and are not intended to limit them. Any modifications or equivalent replacements that do not depart from the spirit and scope of the present invention should be included within the scope of the technical solutions of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911194985.5A CN110763569A (en) | 2019-11-28 | 2019-11-28 | Geogrid creep test device and method considering soil mass constraint conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911194985.5A CN110763569A (en) | 2019-11-28 | 2019-11-28 | Geogrid creep test device and method considering soil mass constraint conditions |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110763569A true CN110763569A (en) | 2020-02-07 |
Family
ID=69340221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911194985.5A Pending CN110763569A (en) | 2019-11-28 | 2019-11-28 | Geogrid creep test device and method considering soil mass constraint conditions |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110763569A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111366457A (en) * | 2020-02-23 | 2020-07-03 | 浙江大学 | A device and method for measuring long-term creep of steel cables |
CN111398052A (en) * | 2020-03-27 | 2020-07-10 | 河海大学 | Large-scale drawing test device of geosynthetic material of intelligence accuse temperature |
CN111537362A (en) * | 2020-05-18 | 2020-08-14 | 湖北工业大学 | Geogrid temperature-controlled bidirectional loading creep device and test method |
CN112414861A (en) * | 2020-12-16 | 2021-02-26 | 桂林电子科技大学 | Geosynthetic material dual-state multifunctional in-soil creep test device |
CN112412394A (en) * | 2020-11-11 | 2021-02-26 | 安徽理工大学 | Drilling layered filling method |
CN112432863A (en) * | 2020-11-19 | 2021-03-02 | 石家庄铁道大学 | Device and method for testing vertical bending resistance of geocell sheet |
CN112649304A (en) * | 2020-12-21 | 2021-04-13 | 广西科技大学 | System and method for testing load performance of assembled reinforced retaining wall |
CN113484149A (en) * | 2021-07-02 | 2021-10-08 | 浙江爱丽智能检测技术集团有限公司 | Geogrid tensile clamp and tensile test method thereof |
CN113552000A (en) * | 2021-07-27 | 2021-10-26 | 河北工业大学 | Geosynthetics test device and method based on temperature-load coupling |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2672642Y (en) * | 2004-01-05 | 2005-01-19 | 陕西华斯特仪器有限责任公司 | Detector for earth work synthetic material friction property |
CN103759957A (en) * | 2013-12-25 | 2014-04-30 | 广西科技大学 | Geogrid pull-out test device |
CN104198276A (en) * | 2014-08-25 | 2014-12-10 | 广西科技大学 | Large visual drawing test device for geosynthetics |
CN107356482A (en) * | 2017-07-31 | 2017-11-17 | 石家庄铁道大学 | Test the test platform of Creep of Geosynthetics performance |
CN108918289A (en) * | 2018-07-24 | 2018-11-30 | 河海大学 | It is a kind of can temperature control water environment in geomembrane device for testing creep resistance and method |
CN211122314U (en) * | 2019-11-28 | 2020-07-28 | 广西科技大学 | Geogrid creep test device considering soil mass constraint conditions |
-
2019
- 2019-11-28 CN CN201911194985.5A patent/CN110763569A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2672642Y (en) * | 2004-01-05 | 2005-01-19 | 陕西华斯特仪器有限责任公司 | Detector for earth work synthetic material friction property |
CN103759957A (en) * | 2013-12-25 | 2014-04-30 | 广西科技大学 | Geogrid pull-out test device |
CN104198276A (en) * | 2014-08-25 | 2014-12-10 | 广西科技大学 | Large visual drawing test device for geosynthetics |
CN107356482A (en) * | 2017-07-31 | 2017-11-17 | 石家庄铁道大学 | Test the test platform of Creep of Geosynthetics performance |
CN108918289A (en) * | 2018-07-24 | 2018-11-30 | 河海大学 | It is a kind of can temperature control water environment in geomembrane device for testing creep resistance and method |
CN211122314U (en) * | 2019-11-28 | 2020-07-28 | 广西科技大学 | Geogrid creep test device considering soil mass constraint conditions |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111366457A (en) * | 2020-02-23 | 2020-07-03 | 浙江大学 | A device and method for measuring long-term creep of steel cables |
CN111366457B (en) * | 2020-02-23 | 2021-08-06 | 浙江大学 | A device and method for measuring long-term creep of steel cables |
CN111398052B (en) * | 2020-03-27 | 2021-10-15 | 河海大学 | A large-scale pull-out test device for geosynthetics with intelligent temperature control |
CN111398052A (en) * | 2020-03-27 | 2020-07-10 | 河海大学 | Large-scale drawing test device of geosynthetic material of intelligence accuse temperature |
CN111537362A (en) * | 2020-05-18 | 2020-08-14 | 湖北工业大学 | Geogrid temperature-controlled bidirectional loading creep device and test method |
CN111537362B (en) * | 2020-05-18 | 2022-11-22 | 湖北工业大学 | Geogrid temperature-controlled two-way loading creep device and test method |
CN112412394A (en) * | 2020-11-11 | 2021-02-26 | 安徽理工大学 | Drilling layered filling method |
CN112432863A (en) * | 2020-11-19 | 2021-03-02 | 石家庄铁道大学 | Device and method for testing vertical bending resistance of geocell sheet |
CN112414861A (en) * | 2020-12-16 | 2021-02-26 | 桂林电子科技大学 | Geosynthetic material dual-state multifunctional in-soil creep test device |
CN112649304A (en) * | 2020-12-21 | 2021-04-13 | 广西科技大学 | System and method for testing load performance of assembled reinforced retaining wall |
CN113484149A (en) * | 2021-07-02 | 2021-10-08 | 浙江爱丽智能检测技术集团有限公司 | Geogrid tensile clamp and tensile test method thereof |
CN113484149B (en) * | 2021-07-02 | 2024-07-23 | 浙江爱丽智能检测技术集团有限公司 | Geogrid stretching clamp and stretching test method thereof |
CN113552000A (en) * | 2021-07-27 | 2021-10-26 | 河北工业大学 | Geosynthetics test device and method based on temperature-load coupling |
CN113552000B (en) * | 2021-07-27 | 2022-12-02 | 河北工业大学 | Geosynthetic material test device and method based on temperature-load coupling effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110763569A (en) | Geogrid creep test device and method considering soil mass constraint conditions | |
CN104007025A (en) | Multifunctional tilt table device used for testing interfacial shear strength characteristics of geotechnical synthetic material | |
Xie et al. | Experimental study on failure modes and retrofitting method of latticed transmission tower | |
CN101105432A (en) | Shear creep tester | |
CN104975621B (en) | An indoor model test device and test method for a multi-anchor end retaining wall | |
CN103645061B (en) | A kind of Framed Anchor Technique large-scale physical model test method | |
CN211122314U (en) | Geogrid creep test device considering soil mass constraint conditions | |
CN206974826U (en) | Test the experimental rig of Creep of Geosynthetics performance | |
CN106680085B (en) | Testing system and testing method based on aging characteristics of anchor system of creep testing machine | |
CN204590104U (en) | A kind of bath scaled model experimental device of simulating self-balance testing pile method | |
CN115452572B (en) | A test device and method for testing the neutral axis position and longitudinal equivalent bending stiffness of a shield tunnel | |
CN113075051B (en) | Simulation test device and test method for soft rock compressive creep similar environment | |
CN110243681A (en) | A kind of Coarse Aggregate original position load test determines the method and application of Particle Breakage rate | |
Xiao-ling et al. | Model test study on horizontal bearing behavior of pile under existing vertical load | |
CN107014670A (en) | The test device of the multidirectional horizontal bearing capacity of single pile under compound load action | |
CN106351267A (en) | Pile foundation bearing characteristic model testing device under down-pressing static load effect | |
CN111997108A (en) | Method for comprehensively verifying stress capacity of steel sheet pile | |
CN201051061Y (en) | Cutting creep test instrument | |
CN204575459U (en) | A kind of flexural member Mechanics Performance Testing device | |
CN202471566U (en) | Concatenated experimental device for in-situ clustered root drawing experiment in root system of tree | |
Bechtum | Automation and further development of the borehole shear test | |
CN212294771U (en) | An indoor test device for pile foundation uplift resistance | |
CN211849649U (en) | Centrifugal model test device for determining the vertical and horizontal ultimate bearing capacity of pile foundations | |
CN206521775U (en) | A kind of pile foundation bearer properties model test apparatus pushed under action of static load | |
CN105862944A (en) | Full-scale testing apparatus for spread foundations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |