CN110756062B - 一种超亲水水下超疏油分离膜及其制备方法 - Google Patents
一种超亲水水下超疏油分离膜及其制备方法 Download PDFInfo
- Publication number
- CN110756062B CN110756062B CN201910971082.7A CN201910971082A CN110756062B CN 110756062 B CN110756062 B CN 110756062B CN 201910971082 A CN201910971082 A CN 201910971082A CN 110756062 B CN110756062 B CN 110756062B
- Authority
- CN
- China
- Prior art keywords
- oil
- membrane
- super
- separation
- attapulgite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/027—Silicium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
- B01D71/82—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0004—Organic membrane manufacture by agglomeration of particles
- B01D67/00041—Organic membrane manufacture by agglomeration of particles by sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0011—Casting solutions therefor
- B01D67/00111—Polymer pretreatment in the casting solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
- B01D67/00793—Dispersing a component, e.g. as particles or powder, in another component
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0083—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0095—Drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/1411—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
- B01D69/14111—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/142—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/148—Organic/inorganic mixed matrix membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/10—Cellulose; Modified cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/40—Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/02—Hydrophilization
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/219—Specific solvent system
- B01D2323/22—Specific non-solvents or non-solvent system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/35—Use of magnetic or electrical fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/36—Introduction of specific chemical groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/36—Hydrophilic membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/38—Hydrophobic membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/147—Microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
- C02F2101/322—Volatile compounds, e.g. benzene
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
- C02F2101/325—Emulsions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/08—Nanoparticles or nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种超亲水/水下超疏油凹凸棒石分离膜及其制备方法与应用,将纳米颗粒的表面负载单分散的亲水性纳米粒子以获得超亲水、微纳结构的纳米复合材料。将纳米复合材料分散在聚丙烯酰胺和甲基纤维素混合水溶液中,强烈搅拌后得到制膜液。将圆片状多孔支撑体经水浸润后置于水平表面,再将一定体积的制膜液缓慢、均匀的滴涂在支撑体表面,经干燥和烧结后获得具有超亲水/水下超疏油的微滤膜层。
Description
技术领域
本发明采用在纳米颗粒的表面固载单分散的四氧化三铁(Fe3O4)纳米粒子,构建具有超亲水/水下超疏油特性的复合膜材料;同时通过湿法成膜在片状多孔氧化铝支撑体表面构筑具有超亲水/水下超疏油的膜层,具体涉及超亲水/水下超疏油分离膜的制备方法。
背景技术
工业生产以及日常生活中都会产生大量含油废水,随着含油废水的大量排放及海上石油泄漏事故的频繁发生,水中油污染已成为危害生态环境及人类健康的重大问题。含油废水的处理,尤其是复杂环境下乳化含油废水的处理一直是一个世界性难题。利用膜分离技术来实现油水分离被认为是最有效的分离手段之一,特别是针对乳化油水体系。然而,传统的聚合物分离膜性能易受到吸水溶胀影响而降低;利用纳米管、纳米线和纳米片等制备得到的超亲水/水下超疏油网膜具有更优异的性能,但由于其制备工艺的限制,导致纳米纤维材料及纤维膜层制备成本较高,分离的选择性和渗透性此长彼消,难以同步提高(Trade-off效应),在油水分离过程中易遭受严重的污染,导致渗透通量以及油水分离效率的急剧下降,严重阻碍膜分离技术在油水分离领域中的发展和应用。因此,开发多功能与高性能的分离膜,克服膜选择性与渗透性的“Trade-off”效应,解决膜污染问题,是实现油水高效、快速以及稳定分离的关键。
发明内容
本发明的目的在于:提供一种具有超亲水/水下超疏油特性的纳米复合材料为超亲水膜材料构筑具有高通量、高选择性的超亲水/水下超疏油膜层。
一种超亲水水下超疏油分离膜,包括支撑层,在支撑层的表面负载有纳米颗粒,所述的纳米颗粒是在纳米材料载体上负载有磁性四氧化三铁颗粒。
在一个实施方式中,所述的纳米材料载体选自凹凸棒石、氧化锌、氧化铁、氧化钛、氧化硅或者氧化锆等。
超亲水水下超疏油分离膜的制备方法,包括如下步骤:
第1步,四氧化三铁复合纳米颗粒的制备:按重量份计,取纳米材料载体0.2-0.8份、乙酰丙酮铁0.5-2份,加入三乙二醇100-200份,超声分散;升温反应后,冷却至室温,离心分离并洗涤,冻干后得到四氧化三铁复合纳米颗粒;
第2步,制膜液的配制:按重量份计,取20-40份水、1-5份聚丙烯酰胺溶液,调节pH至10-11后,加入0.2-0.8份的四氧化三铁复合纳米颗粒,再加入5-12份增稠剂、消泡剂,搅拌均匀后,得到制膜液;
第3步,涂膜:在支撑体的表面涂覆制膜液;
第4步,微滤膜的制备:将涂覆制膜液后的支撑体进行干燥、烧结,得到超亲水水下超疏油分离膜。
在一个实施方式中,第1步中,反应过程是在200-300℃下反应2-10h。
在一个实施方式中,第2步中,聚丙烯酰胺溶液的浓度是5-15g/L,增稠剂是甲基纤维素溶液,所述的甲基纤维素溶液的浓度是3-8wt%。
在一个实施方式中,第3步中,涂覆制膜液的过程中在支撑体的一侧施加磁场。
在一个实施方式中,第4步中,干燥过程的参数是:60-75℃保温 5-20h 后温度升至100-120℃保温5-20h。
在一个实施方式中,第4步中,烧结过程的参数是:室温下 20-40min升温至140-160℃,保温 25-35min,65-85min升温至 280-320℃,保温 25-35min,300-400min升温至600-680℃保持 150-200min后自然降温。
上述的超亲水水下超疏油分离膜在用于油水分离中的应用。
在一个实施方式中,所述的应用中,油水分离是指含油0.5-5wt%的水相。
在一个实施方式中,所述的应用中,分离压力0.05-0.5MPa。
在一个实施方式中,所述的应用中,所述的油可以选自二甲基硅油、正己烷、甲苯、机油、二氯甲烷或者大豆油等。
在一个实施方式中,所述的应用中,超亲水水下超疏油分离膜用于提高油截留率或者分离膜的抗不可逆污染性能。
磁场在用于提高超亲水水下超疏油分离膜的亲水性、水下油滴接触角、油截留率或者分离膜的抗不可逆污染性能中的应用。
有益效果
本发明具有以下优点:1、与聚合物相比,纳米粒子负载的磁性四氧化三铁纳米复合材料除具有优异的亲水性外,其刚性粗糙结构有利于提高其表面疏油性,而且具有更优异的抗溶剂、耐酸碱及耐热稳定性,更适合用来构建油水分离膜材料;2、与纳米管、纳米线和纳米片等纳米材料相比,制备成本较低,分离性和选择性较高。3、该方法为解决油水分离膜制备问题提供了一条新途径。
附图说明
图1是在磁场作用下的凹凸棒石复合材料的排布过程示意图;
图2是实施例1制备得到的微滤膜的表面SEM照片;
图3是实施例2制备得到的微滤膜的表面SEM照片;
图4是实施例2制备得到的微滤膜的表面SEM照片;
图5是实施例1制备得到的微滤膜的水滴接触角测试过程;
图6是实施例2制备得到的微滤膜的水滴接触角测试过程;
图7是微滤膜的水下油滴接触角;
图8是油滴粘附性实验;
图9是制备得到的负载了磁性四氧化三铁的凹凸棒石的TEM照片。
图10是负载了磁性四氧化三铁的凹凸棒石的红外图谱。
图11是负载了磁性四氧化三铁的凹凸棒石的XRD图谱。
图12是磁性Fe3O4纳米粒子和磁性凹凸棒石的磁滞回线图。
图13是进行油水分离实验中采用S-MATP-M膜的过滤前后的料液照片。
图14是油水过滤前后的膜通量变化。
具体实施方式
本发明提供的超亲水水下超疏油分离膜,包括支撑层,在支撑层的表面负载有纳米颗粒,所述的纳米颗粒是以纳米粒子为载体、并且负载有磁性四氧化三铁颗粒。
在上述的材料中,支撑层表面的纳米颗粒起到了关键性的超亲水/水下超疏油的作用,可以在以水相为主体的物料体系中,起到了对油的分离作用,实现了含油废水中油的分离效果。
以上的材料中,纳米粒子载体,可以选自凹凸棒石、氧化锌、氧化铁、氧化钛、氧化硅或者氧化锆等。
下面以凹凸棒石为例说明上述的材料的制备方法:
( a ) 凹凸棒石表面改性及微纳结构调控
称取一定比例的凹凸棒石和乙酰丙酮铁于三口烧瓶中,再加入一定比例的三乙二醇,超声分散均匀后转移至金属浴,通过改变凹凸棒石-乙酰丙酮铁的质量比、反应温度、搅拌速度、反应时间等因素调控Fe3O4的固载量及其粒径大小和形貌,制备微纳结构和性能可调的超亲水/水下超疏油磁性凹凸棒石。磁性凹凸棒石的制备机理是乙酰丙酮铁和凹凸棒石混合后在加热条件下分解生成Fe2O3,然后在凹凸棒石表面被多元醇还原生成Fe3O4。图10为磁性凹凸棒石结构红外图谱。由图可知,在3500 cm-1处的吸收峰可归结为O-H基团的伸缩振动,1654 cm-1的吸收峰可归结为O-H基团的变型振动。对于凹凸棒石和磁性凹凸棒石,在1027 cm-1处附近的吸收峰可归因于Si-O基团的作用,而对于Fe3O4,在1027 cm-1处附近的吸收峰是由于C-O基团的振动引起的,因为在制备Fe3O4粒子的过程中多元醇有残留。对于磁性凹凸棒石和Fe3O4纳米粒子,在577 cm-1处的吸收峰时因为Fe-O基团的振动引起的。对比凹凸棒石和磁性凹凸棒石可以发现,在577 cm-1处附近,磁性凹凸棒石明显存在吸收峰,这说明Fe3O4纳米粒子被成功的负载到凹凸棒石表面。图11是磁性凹凸棒石的XRD图谱,由图11可知,对于磁性凹凸棒石,XRD图谱中不仅存在凹凸棒石特征峰,还存在 Fe3O4的特征峰,这也进一步证实Fe3O4纳米粒子被成功的负载到凹凸棒石表面。
图12是磁性Fe3O4纳米粒子和磁性凹凸棒石的磁滞回线图。由图可以看出,Fe3O4纳米粒子和磁性凹凸棒石的磁滞回线均穿过原点,即当磁场强度为0时,磁化强度 ( Ms ) 也为0,这说明无论是Fe3O4纳米粒子还是磁性凹凸棒石均具有超顺磁性。另外,Fe3O4纳米粒子得最大磁化强度为29.02 emu/g,磁性凹凸棒石的最大磁化强度为8.34 emu/g。这是因为磁性凹凸棒石中磁性Fe3O4纳米粒子含量较少,但是同样具有Fe3O4纳米粒子的超顺磁性。
( b 1) 基于浸浆法的超亲水/水下超疏油膜层的制备。
将磁性凹凸棒石分散在聚丙烯酰胺和甲基纤维素混合水溶液中,强烈搅拌后得到制膜液。平板状多孔支撑体经水浸润后置于水平表面上,再将一定体积的制膜液缓慢、均匀的滴涂在支撑体表面,静置,经干燥和烧结后获得凹凸棒石微滤膜(MATP)。
( b2)基于磁场诱导制膜液的具有狭缝孔道的超亲水/水下超疏油膜层的制备。
将磁性凹凸棒石分散在聚丙烯酰胺和甲基纤维素混合水溶液中,强烈搅拌后得到制膜液。平板状多孔支撑体经水浸润后置于平行磁场中,再将一定体积的制膜液缓慢、均匀的滴涂在支撑体表面,在磁场诱导下实现磁性凹凸棒石纳米棒晶在支撑体表面上平行排布,经干燥和烧结后获得凹凸棒石超滤膜。
( c ) 膜层的干燥与烧结
对膜层进行预处理:自然晾干12h,放入烘箱70℃保温 12h 后温度升至110℃保温12h。预处理后的支撑体在空气气氛下高温炉中程序升温,升温的程序为:室温下 30min升温至150℃,保温 30min,75min升温至 300℃,保温 30min,350min升温至 650℃保持180min后自然降温。
实施例1 浸浆法制备分离膜
依以下步骤制备具有超亲水/水下超疏油分离膜层:
( a ) 准确称取0.5g凹凸棒石粉体和1g乙酰丙酮铁于250ml的三颈烧瓶中,加入150 ml三乙二醇,超声分散1h,保证凹凸棒石和乙酰丙酮铁分散均匀。然后转移至250℃下的金属浴中,冷凝回流,转速350 转/分钟,反应时间5h。待反应结束后冷却至室温,离心分离,获得的沉淀用水和乙醇各洗三遍后转移至冷冻干燥箱,冷冻干燥12 h后获得凹凸棒石纳米复合材料 ( MATP )。由图9可知在凹凸棒石表面上Fe3O4颗粒分布均匀,无脱落现象,其平均粒径在~0.01 μm。
( b ) 在150 ml的锥形瓶中加入37.5 g纯水和2 g聚丙烯酰胺溶液 ( 10 g/L ),强烈搅拌0.5 h,调节溶液的pH为10.5,继续搅拌0.5 h,加入0.5 g MATP,强烈搅拌3 h后加入10 g甲基纤维素溶液 ( 6 wt.% ),搅拌0.5 h,立即加入1-2滴消泡剂,继续搅拌0.5 h,结束后静置消泡,得制膜液,测定其粘度。
( c ) 以圆片状多孔氧化铝为支撑体,采用湿法成膜,在圆片状支撑体表面上滴涂铸膜液,保证其MATP纤维均匀分布,经干燥和烧结后获得凹凸棒石分离膜。具体实验步骤如下:
首先将平板状支撑体置于去离子水中煮沸20 min,以去除表面杂质,然后快速取出支撑体并置于水平表面,将0.5 ml的制膜液缓慢、均匀的滴涂在支撑体表面 ( 操作迅速,确保支撑体表面水分蒸发,支撑体内部依旧保持水分,否则由于毛细管力的作用导致膜层不均匀 ),静置干燥、烧结,获得成品。
干燥、烧结过程的程序是:对膜层进行预处理:自然晾干12h,放入烘箱70℃保温12h 后温度升至110℃保温 12h。预处理后的支撑体在空气气氛下高温炉中程序升温,升温的程序为:室温下 30min升温至150℃,保温 30min,75min升温至 300℃,保温 30min,350min升温至 650℃保持 180min后自然降温,制备得到磁性凹凸棒石微滤膜(S-MATP)。
实施例2 基于磁场诱导制膜液的分离的制备
与实施例1的区别,在于本实施例中在涂膜过程中外加了磁场辅助。
依以下步骤制备具有狭缝孔道的超亲水/水下超疏油分离膜层:
( a ) 准确称取0.5g凹凸棒石粉体和1g乙酰丙酮铁于250ml的三颈烧瓶中,加入150 ml三乙二醇,超声分散1h,保证凹凸棒石和乙酰丙酮铁分散均匀。然后转移至250℃下的金属浴中,冷凝回流,转速350 转/分钟,反应时间5h。待反应结束后冷却至室温,离心分离,获得的沉淀用水和乙醇各洗三遍后转移至冷冻干燥箱,冷冻干燥12 h后获得磁性凹凸棒石 ( MATP )。
( b ) 在150 ml的锥形瓶中加入37.5 g纯水和2 g聚丙烯酰胺溶液 ( 10 g/L ),强烈搅拌20 min,加入氨水调节溶液的pH为10.5,继续搅拌10 min,加入0.5 g MATP,强烈搅拌3 h后加入10 g甲基纤维素溶液 ( 6 wt.% ),继续搅拌0.5 h,立即加入1-2滴消泡剂,继续搅拌0.5 h,结束后静置消泡,得制膜液,测定其粘度。
( c ) 以圆片状多孔氧化铝为支撑体,采用湿法成膜,通过磁场诱导实现MATP纳米棒晶在支撑体表面上平行排布,经干燥和烧结后获得凹凸棒石均孔膜。具体实验步骤如下:
首先将平板状支撑体置于去离子水中煮沸20 min,以去除表面杂质,然后快速取出支撑体并置于平行磁场中 ( 确保支撑体表面水平 ),将不同体积的制膜液缓慢、均匀的滴涂在支撑体表面 ( 操作迅速,确保支撑体表面水分蒸发,支撑体内部依旧保持水分,否则由于毛细管力的作用导致膜层不均匀 ),10 min后去掉平行磁场,静置干燥、烧结,获得成品。
干燥、烧结过程的程序是:对膜层进行预处理:自然晾干12h,放入烘箱70℃保温12h 后温度升至110℃保温 12h。预处理后的支撑体在空气气氛下高温炉中程序升温,升温的程序为:室温下 30min升温至150℃,保温 30min,75min升温至 300℃,保温 30min,350min升温至 650℃保持 180min后自然降温,制备得到磁场导向的磁性凹凸棒石微滤膜(S-MATP-M)。
对照例1
与实施例1和2的区别是:直接采用凹凸棒石作为制膜液的主要原料,涂覆于平板状支撑体的表面,经过干燥、烧结步骤之后,制备得到膜层为凹凸棒石的微滤膜(S-ATP)。
对上述制备的膜层进行性能测试与表征
1.采用扫描电子显微镜(SEM)观察膜层的微观形貌;
实施例1中制备得到的微滤膜的表面结构如图2所示,实施例2中制备得到的微滤膜的表面结构如图3和图4所示;从图中可以看到,实施例2在辅助了磁场条件下制备得到的微滤膜的表面上凹凸棒石呈现出有序排列,而在图1中是随机异向排列,正是有序的排列可以有效提高微滤膜对油水分离过程中去油滴的排斥力、减少油的吸附。
2.采用光学接触角/表界面张力测量仪表征膜层的水接触角和水下油接触角,同时测试其水下油粘附力;
实施例1和实施例2中制备得到的微滤膜的水滴接触角的动态变化过程分别如图5和图6所示,从图中可以看出,由于经过磁场导向制备得到的膜层表面的排序更均一,可以使水滴更快速地在膜表面铺展,在0.08s时即可达到完全铺展,而在图5中第0.08s时仍然有一定量的水滴聚集。
水下油接触角的对比,如图7所示,直接负载凹凸棒石的分离膜(S-ATP),实施例1制备得到的微滤膜(S-MATP)以及实施例2中经过磁场导向后得到的微滤膜(S-MATP-M)的各类油的接触角依次提高,包括二甲基硅油、正己烷、甲苯、机油、二氯甲烷、大豆油。在不同膜的表面的水下油接触角如下所示:
可以看到,采用磁场导向制备得到磁性油水分离膜具有较高的水下油接触角。
水下油粘附力实验结果如图8所示,从图中可以看出,实施例2中制备得到的磁性四氧化三铁微滤膜在水下油滴的附着实验中对油滴的粘附性小,当把微滤膜抬起一定角度后,油滴即向下滚动,说明磁场导向下制备得到的膜表面对油滴的附着效果较低;而实施例1中的微滤膜的表现出一定的附着性,说明磁性四氧化三铁-凹凸棒石材料如果随机分布排列时,对油滴具有一定的附着性。
3.采用煤油和水以及亲油型表面活性剂,进行乳化后,配制成含有1wt%的油水乳化液,在0.10MPa的条件下,采用制备得到的分离膜进行油水分离实验,通过原料和渗透液的COD计算油的截留率;过滤实验15min后,采用去离子水冲洗膜表面,重新检测通量,计算水通量恢复率,得到膜在油水分离过程后的不可逆污染比例。采用S-MATP-M膜的过滤前后的料液照片如图13所示。
油水分离实验的截留率如下表所示:
从表中可以看出,本发明制备得到的微滤膜具有较好的油水分离性能,并且经过了磁场导向后的微滤膜由于凹凸棒石在磁场的作用下,具有力矩的作用,调节了棒状的凹凸棒石的分布方向,使得膜的表面的孔道分布更为均一,提高了其截留效果。
在进行油水过滤实验之后,采用去离子水对膜的表面冲洗5min,重复测试其纯水通量,计算与新膜相比的通量保持率,评价微滤膜对于油水分离过程的抗不可逆污染性能。过滤前后的通量变化如图14所示。
从表中可以看出,本发明的微滤膜在对油水分离过程中,由于其超亲水和水下超疏油的特性,可以有效地避免膜的污染,经过了磁场导向后的磁性微滤膜,由于其表面对油滴的附着力低,可以保持较好的抗不可逆污染性能,具有较高的通量恢复率。MATP-M膜的通量恢复最好 ( 999.95 L/(m2·h) ),MATP膜次之 ( 837.5 L/(m2·h) ),支撑体通量恢复最差 ( 374 L/(m2·h) ),其通量恢复率分别为91.32 %、75.25 %、27.32 %。这是因为膜层具有超亲水/水下超疏油性能,油滴被截留在膜层表面时,油滴与膜层的粘附力基本为0,所以在热水条件下冲洗即可带走膜层表面的油相,所以其通量恢复大,抗油污染性能好。
Claims (3)
1.超亲水水下超疏油分离膜在用于油水分离中的应用,其特征在于,超亲水水下超疏油分离膜用于提高油截留率;
所述的超亲水水下超疏油分离膜的制备方法包括如下步骤:
第1步,四氧化三铁复合纳米颗粒的制备:按重量份计,取纳米材料载体0.2-0.8份、乙酰丙酮铁0.5-2份,加入三乙二醇100-200份,超声分散;升温反应后,冷却至室温,离心分离并洗涤,冻干后得到四氧化三铁复合纳米颗粒;
第2步,制膜液的配制:按重量份计,取20-40份水、1-5份聚丙烯酰胺溶液,调节pH至10-11后,加入0.2-0.8份的四氧化三铁复合纳米颗粒,再加入5-12份增稠剂、消泡剂,搅拌均匀后,得到制膜液;
第3步,涂膜:在支撑体的表面涂覆制膜液;
第4步,微滤膜的制备:将涂覆制膜液后的支撑体进行干燥、烧结,得到超亲水水下超疏油分离膜;
第1步中,反应过程是在200-300℃下反应2-10h;
第2步中,聚丙烯酰胺溶液的浓度是5-15g/L,增稠剂是甲基纤维素溶液,所述的甲基纤维素溶液的浓度是3-8wt%;
第3步中,涂覆制膜液的过程中在支撑体的一侧施加磁场;
第4步中,干燥过程的参数是:60-75℃保温 5-20h 后温度升至100-120℃保温 5-20h;
第4步中,烧结过程的程序是:室温下 20-40min升温至140-160℃,保温 25-35min;再65-85min升温至 280-320℃,保温 25-35min;再300-400min升温至600-680℃保持 150-200min后自然降温;
所述的纳米材料载体选自凹凸棒石;
所述的油选自二甲基硅油、正己烷、甲苯、机油、二氯甲烷或者大豆油。
2.根据权利要求1所述的应用,其特征在于,油水分离是指含油0.5-5wt%的水相的分离。
3.根据权利要求1所述的应用,其特征在于;油水分离的分离压力0.05-0.5MPa。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910971082.7A CN110756062B (zh) | 2019-10-14 | 2019-10-14 | 一种超亲水水下超疏油分离膜及其制备方法 |
CN202010448954.4A CN111905575B (zh) | 2019-10-14 | 2019-10-14 | 一种油水分离膜的制备方法 |
US17/068,835 US11040313B2 (en) | 2019-10-14 | 2020-10-13 | Super-hydrophilic/underwater super-oleophobic separation membrane and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910971082.7A CN110756062B (zh) | 2019-10-14 | 2019-10-14 | 一种超亲水水下超疏油分离膜及其制备方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010448954.4A Division CN111905575B (zh) | 2019-10-14 | 2019-10-14 | 一种油水分离膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110756062A CN110756062A (zh) | 2020-02-07 |
CN110756062B true CN110756062B (zh) | 2020-06-23 |
Family
ID=69331825
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910971082.7A Active CN110756062B (zh) | 2019-10-14 | 2019-10-14 | 一种超亲水水下超疏油分离膜及其制备方法 |
CN202010448954.4A Active CN111905575B (zh) | 2019-10-14 | 2019-10-14 | 一种油水分离膜的制备方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010448954.4A Active CN111905575B (zh) | 2019-10-14 | 2019-10-14 | 一种油水分离膜的制备方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11040313B2 (zh) |
CN (2) | CN110756062B (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111467963B (zh) * | 2020-03-16 | 2022-02-25 | 淮阴师范学院 | 一种聚偏氟乙烯 /Fe3O4–凹凸棒石复合超滤膜及其制备方法 |
CN113289506B (zh) * | 2021-06-15 | 2023-02-28 | 江南大学 | 一种不对称磁性氧氮分离膜及其制备方法 |
CN115212608B (zh) * | 2021-06-29 | 2024-08-13 | 江苏中洲检测技术有限公司 | 一种油水分离方法 |
CN114505061B (zh) * | 2022-01-24 | 2023-01-06 | 华南理工大学 | 一种超亲水/水下超疏油铜网及其制备方法与应用 |
CN114570216B (zh) * | 2022-01-26 | 2023-01-06 | 同济大学 | 一种纳米环状结构高通量纳滤膜及其制备方法 |
CN114618325A (zh) * | 2022-03-14 | 2022-06-14 | 德蓝水技术股份有限公司 | 一种复合纳滤膜及其制备方法 |
CN114681953B (zh) * | 2022-03-21 | 2024-08-27 | 浙江农林大学 | 一种可转换分离油水乳液的非对称润湿性木材膜制备方法 |
CN114733367B (zh) * | 2022-04-27 | 2023-09-26 | 兰州大学 | 一种凹凸棒土基复合纳滤膜的制备方法 |
CN114749039B (zh) * | 2022-05-31 | 2022-12-27 | 南通大学 | 一种超亲水且水下超疏油的碳纳米纤维膜及其制备方法 |
CN115364694B (zh) * | 2022-09-14 | 2024-07-16 | 常州大学 | 一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用 |
CN115845441B (zh) * | 2022-11-22 | 2024-06-14 | 福州大学 | 一种耐磨超亲水/水下超疏油皮胶原纤维膜、制备和用途 |
CN115920676B (zh) * | 2022-12-07 | 2023-06-20 | 中复新水源科技有限公司 | 一种聚酰亚胺复合纳滤膜的制备方法 |
CN116440722B (zh) * | 2023-06-02 | 2023-11-21 | 青岛科技大学 | 一种水下超疏油型芳纶纳米纤维多功能水处理膜及其制备方法和应用 |
CN116850802B (zh) * | 2023-07-17 | 2024-01-30 | 青岛科技大学 | 一种超亲水多功能聚醚砜膜及其制备方法和应用 |
CN118929851B (zh) * | 2024-08-20 | 2025-02-11 | 中国电建集团北京勘测设计研究院有限公司 | 一种高效电催化处理含油废水的PTFE-TiSO-Ti三元亲水/疏油穿透式膜电极及制备方法 |
CN119263587A (zh) * | 2024-10-16 | 2025-01-07 | 盘锦鹏冠技术服务有限公司 | 一种三泥处理剂及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102258978A (zh) * | 2011-06-24 | 2011-11-30 | 淮阴师范学院 | 纳米Fe3O4包覆凹凸棒土磁性复合吸附剂的制备方法 |
CN102614782A (zh) * | 2012-04-12 | 2012-08-01 | 上海海事大学 | 稀土改性凹凸棒土纳米涂层陶瓷滤膜及其制备方法 |
CN103977600A (zh) * | 2014-05-08 | 2014-08-13 | 苏州二元世纪纳米技术有限公司 | 化学稳定的低油粘附性油水分离膜、其制备方法及用途 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7578939B2 (en) * | 2004-12-09 | 2009-08-25 | Board Of Trustees Of Michigan State University | Ceramic membrane water filtration |
CN107243260B (zh) * | 2017-06-16 | 2020-11-24 | 天津工业大学 | 一种新型超疏水聚偏氟乙烯油水分离膜及其制备方法 |
-
2019
- 2019-10-14 CN CN201910971082.7A patent/CN110756062B/zh active Active
- 2019-10-14 CN CN202010448954.4A patent/CN111905575B/zh active Active
-
2020
- 2020-10-13 US US17/068,835 patent/US11040313B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102258978A (zh) * | 2011-06-24 | 2011-11-30 | 淮阴师范学院 | 纳米Fe3O4包覆凹凸棒土磁性复合吸附剂的制备方法 |
CN102614782A (zh) * | 2012-04-12 | 2012-08-01 | 上海海事大学 | 稀土改性凹凸棒土纳米涂层陶瓷滤膜及其制备方法 |
CN103977600A (zh) * | 2014-05-08 | 2014-08-13 | 苏州二元世纪纳米技术有限公司 | 化学稳定的低油粘附性油水分离膜、其制备方法及用途 |
Non-Patent Citations (2)
Title |
---|
Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane;YanHuang等;《Journal of Membrane Science》;20180215;第548卷;184-193页 * |
YanHuang等.Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane.《Journal of Membrane Science》.2018,第548卷第184-193页. * |
Also Published As
Publication number | Publication date |
---|---|
US11040313B2 (en) | 2021-06-22 |
CN111905575B (zh) | 2022-02-11 |
CN111905575A (zh) | 2020-11-10 |
CN110756062A (zh) | 2020-02-07 |
US20210106954A1 (en) | 2021-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110756062B (zh) | 一种超亲水水下超疏油分离膜及其制备方法 | |
Zhu et al. | Perfluorinated superhydrophobic and oleophobic SiO2@ PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification | |
CN107353723B (zh) | 一种超浸润聚合物网膜及其制造方法 | |
Chen et al. | Fabrication of novel superhydrophilic and underwater superoleophobic hierarchically structured ceramic membrane and its separation performance of oily wastewater | |
CN109650935B (zh) | 一种孔形可调的氧化铝多孔陶瓷膜的制备方法 | |
CN106582314B (zh) | 一种用于膜蒸馏的小孔径疏水复合膜制备方法 | |
CN102828392B (zh) | 亲水抗菌性复合纳米纤维膜及其制备方法 | |
CN106422423A (zh) | 一种超疏水金属丝网及其制备方法 | |
Bao et al. | Fabrication of hollow silica spheres and their application in polyacrylate film forming agent | |
CN107973592B (zh) | 一种孔径分布均匀的γ-Al2O3陶瓷微滤膜及其制备方法 | |
Zhu et al. | Fast capture of methyl-dyes over hierarchical amino-Co 0.3 Ni 0.7 Fe 2 O 4@ SiO 2 nanofibrous membranes | |
Li et al. | Electrospun fibrous PTFE supported ZnO for oil–water separation | |
CN114749039B (zh) | 一种超亲水且水下超疏油的碳纳米纤维膜及其制备方法 | |
Ying et al. | Sol–Gel SiO 2 on electrospun polyacrylonitrile nanofiber for efficient oil-in-water emulsion separation | |
CN106975369A (zh) | 一种用于油水分离的三氧化二铝陶瓷复合膜及其制备方法 | |
CN111644079B (zh) | 一种高表面粗糙度的纳滤膜材料及其制备方法 | |
Ju et al. | Preparation of size-controllable monodispersed carbon@ silica core-shell microspheres and hollow silica microspheres | |
Shayesteh et al. | Synthesis of titania–γ-alumina multilayer nanomembranes on performance-improved alumina supports for wastewater treatment | |
Cheng et al. | A novel preparation of anti-layered poly (vinylalcohol)–polyacrylonitrile (PVA/PAN) membrane for air filtration by electrospinning | |
Wang et al. | Electrospinning to fabricate composite membranes with improved superhydrophobic properties for efficient oil-water separation | |
CN118949712A (zh) | Zn和Co双金属有机骨架掺杂的有机硅复合膜和其制备方法以及应用 | |
CN111467963B (zh) | 一种聚偏氟乙烯 /Fe3O4–凹凸棒石复合超滤膜及其制备方法 | |
CN114225709A (zh) | 固定原位生长银纳米粒子的超双亲油水分离膜的制备方法 | |
CN107973615A (zh) | 一种介孔γ-Al2O3陶瓷膜及其制备方法 | |
Zhai et al. | Multifunctional membranes with super-wetting interface and in-situ Fenton-like sites for efficient oil-in-water emulsion separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |