CN110711553B - Hydrotalcite-pseudo-boehmite composite film and preparation method and application thereof - Google Patents
Hydrotalcite-pseudo-boehmite composite film and preparation method and application thereof Download PDFInfo
- Publication number
- CN110711553B CN110711553B CN201911140925.5A CN201911140925A CN110711553B CN 110711553 B CN110711553 B CN 110711553B CN 201911140925 A CN201911140925 A CN 201911140925A CN 110711553 B CN110711553 B CN 110711553B
- Authority
- CN
- China
- Prior art keywords
- pseudo
- boehmite
- film
- hydrotalcite
- alooh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 49
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims abstract description 58
- 229910001701 hydrotalcite Inorganic materials 0.000 claims abstract description 58
- 229960001545 hydrotalcite Drugs 0.000 claims abstract description 58
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims abstract description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000002243 precursor Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000004202 carbamide Substances 0.000 claims abstract description 12
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 12
- 150000003839 salts Chemical class 0.000 claims abstract description 11
- 229910001648 diaspore Inorganic materials 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 82
- 229910001385 heavy metal Inorganic materials 0.000 claims description 21
- 150000002500 ions Chemical class 0.000 claims description 21
- 239000010409 thin film Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 239000007864 aqueous solution Substances 0.000 claims description 15
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 8
- 230000032683 aging Effects 0.000 claims description 6
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 4
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 2
- 159000000013 aluminium salts Chemical class 0.000 claims 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 claims 1
- 238000005266 casting Methods 0.000 claims 1
- 239000003292 glue Substances 0.000 claims 1
- 239000002904 solvent Substances 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 23
- 238000011065 in-situ storage Methods 0.000 abstract description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 8
- 229910021645 metal ion Inorganic materials 0.000 abstract description 7
- -1 aluminum ions Chemical class 0.000 abstract description 5
- 238000005903 acid hydrolysis reaction Methods 0.000 abstract description 3
- 230000007062 hydrolysis Effects 0.000 abstract description 3
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 239000000454 talc Substances 0.000 abstract 2
- 229910052623 talc Inorganic materials 0.000 abstract 2
- 229910006636 γ-AlOOH Inorganic materials 0.000 description 63
- 239000002244 precipitate Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 239000008279 sol Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000010668 complexation reaction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000010345 tape casting Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 1
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- 229910002706 AlOOH Inorganic materials 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 208000017701 Endocrine disease Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- BLJNPOIVYYWHMA-UHFFFAOYSA-N alumane;cobalt Chemical compound [AlH3].[Co] BLJNPOIVYYWHMA-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/12—Naturally occurring clays or bleaching earth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28033—Membrane, sheet, cloth, pad, lamellar or mat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Dispersion Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明提供一种水滑石拟薄水铝石复合薄膜及其制备方法和应用,该水滑石拟薄水铝石复合薄膜由拟薄水铝石薄膜以及负载在拟薄水铝石薄膜表面的水滑石组成,其制备方法为,将二价金属盐和尿素溶于水中,得到水滑石前驱体;再加入拟薄水铝石薄膜,采用水热法在拟薄水铝石薄膜上原位生长水滑石即得。本发明通过在水热条件下,利用尿素水解使水滑石前驱体呈碱性,含有丰富的OH‑。二价金属离子和水铝石薄膜游离出的铝离子通过OH‑原位结合,形成表面富含羟基的复合薄膜。大量羟基的存在,可抑制拟薄水铝石的酸解,并使得水滑石牢牢结合到拟薄水铝石表面从而避免散开或破碎,而且还能够提高对金属离子的吸附作用。
The invention provides a hydrotalcite pseudo-boehmite composite film, a preparation method and application thereof. The hydrotalcite pseudo-boehmite composite film is composed of a pseudo-boehmite film and water loaded on the surface of the pseudo-boehmite film. The composition of talc is prepared by dissolving a divalent metal salt and urea in water to obtain a hydrotalcite precursor; then adding a pseudo-boehmite film, and using a hydrothermal method to grow water on the pseudo-boehmite film in situ Talc is available. In the present invention, the hydrotalcite precursor is made alkaline by utilizing urea hydrolysis under hydrothermal conditions, and is rich in OH- . The divalent metal ions and the aluminum ions released from the diaspore film combine in situ through OH - to form a composite film with rich surface hydroxyl groups. The presence of a large number of hydroxyl groups can inhibit the acid hydrolysis of the pseudo-boehmite, and make the hydrotalcite firmly bond to the surface of the pseudo-boehmite to avoid scattering or breaking, and can also improve the adsorption of metal ions.
Description
技术领域technical field
本发明属于复合材料合成技术领域,尤其涉及一种水滑石拟薄水铝石复合薄膜及其制备 方法和应用。The invention belongs to the technical field of composite material synthesis, and in particular relates to a hydrotalcite pseudo-boehmite composite film and a preparation method and application thereof.
背景技术Background technique
近年来,随着工业生产的迅速发展,由采矿、冶金工业、化肥和机械制造等领域产生的 重金属离子污染物(如Pb(Ⅱ)、Cd(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)、Hg(Ⅰ)等)被大量排放到水体中, 给农业、工业以及生活供应的水质带来了严重的威胁。重金属离子因为其不能被生物降解又 具有高毒性,会通过食物链的传递和富集对人体造成严重的危害。其中Pb(Ⅱ)会影响人的智 力和骨骼的发育,同时造成消化不良和内分泌失调,导致贫血、高血压,也破坏了肾功能和 免疫功能。目前用于处理重金属离子污染物的技术有吸附法、沉淀法、膜分离法、电渗析法、 离子交换法、反渗透法和生物法等。相比其他方法,吸附法以其制备方法简单、操作简单和 经济可行等优点,被认为是最合适的技术之一。In recent years, with the rapid development of industrial production, heavy metal ion pollutants (such as Pb(II), Cd(II), Cu(II), Zn(II), etc.) , Hg(I), etc.) are discharged into water bodies in large quantities, posing a serious threat to the water quality of agriculture, industry and domestic supply. Because heavy metal ions cannot be biodegraded and are highly toxic, they will cause serious harm to the human body through the transmission and accumulation of food chains. Among them, Pb(II) will affect the development of human intelligence and bone, and at the same time cause indigestion and endocrine disorders, lead to anemia, high blood pressure, and also damage renal function and immune function. At present, the technologies used to treat heavy metal ion pollutants include adsorption method, precipitation method, membrane separation method, electrodialysis method, ion exchange method, reverse osmosis method and biological method. Compared with other methods, adsorption method is considered as one of the most suitable technologies due to its advantages of simple preparation method, simple operation and economic feasibility.
拟薄水铝石(γ-AlOOH),也称为类勃姆石,是一类组成不稳定、结晶不完整的薄皱折片 层,具有比表面积高、孔隙率大、界面吉布斯自由能高、分散性和胶溶性好等特性,常被应 用于废水处理领域。例如CN105107486A在碱性条件下沉淀无机铝盐溶液,对沉淀进行离心 水洗分离,然后添加浓盐酸、冰醋酸或硝酸使沉淀胶溶的同时添加成膜助剂聚乙烯醇和结构 调节剂P123或F127,经流延成型和干燥后制得γ-AlOOH薄膜吸附剂,其对浓度为20mg/L 的Cr(Ⅵ)的吸附去除率可高达99.4%。Wang等人(Wang Y Q,Wang G Z,Wang H Q,Cai W P, Liang C H,Zhang L.Template-induced synthesis of hierarchical SiO2@γ-AlOOH spheres and their application in Cr(VI)removal[J].Nanotechnology,2009,20(15):155604.)利用碱性条件破坏SiO2胶体球的硅-氧键,并诱导偏铝酸根离子在其表面进行水解,生成的不稳定Al(OH)3胶体在160℃ 水热条件下逐渐转化为γ-AlOOH,合成SiO2@γ-AlOOH球。该利用无机材料改性后的 SiO2@γ-AlOOH球对Cr(VI)的最大吸附量为4.5mg/g,高于γ-AlOOH(约2mg/g)。但是,无 论是单纯的γ-AlOOH薄膜还是与SiO2胶体球复合的γ-AlOOH薄膜都存在耐酸性差的缺陷, 在pH=1~5会发生部分水解,容易对水体造成二次污染。Pseudoboehmite (γ-AlOOH), also known as boehmite-like, is a class of thin wrinkled sheets with unstable composition and incomplete crystallization, with high specific surface area, large porosity, and interfacial Gibbs freedom. It has the characteristics of high energy, good dispersibility and peptization, and is often used in the field of wastewater treatment. For example, CN105107486A precipitates inorganic aluminum salt solution under alkaline conditions, separates the precipitate by centrifugal washing, and then adds concentrated hydrochloric acid, glacial acetic acid or nitric acid to make the precipitate peptized while adding film-forming aid polyvinyl alcohol and structural regulator P123 or F127, The γ-AlOOH thin film adsorbent was obtained after tape casting and drying, and its adsorption and removal rate for Cr(VI) with a concentration of 20 mg/L could reach as high as 99.4%. Wang et al. (Wang YQ, Wang GZ, Wang HQ, Cai WP, Liang CH, Zhang L. Template-induced synthesis of hierarchical SiO 2 @γ-AlOOH spheres and their application in Cr(VI)removal[J]. Nanotechnology, 2009, 20(15): 155604.) Using alkaline conditions to break the silicon-oxygen bond of SiO 2 colloidal spheres, and induce metaaluminate ions to hydrolyze on its surface, the resulting unstable Al(OH) 3 colloids were heated at 160 °C It was gradually converted into γ-AlOOH under hydrothermal conditions, and SiO2 @γ-AlOOH spheres were synthesized. The maximum adsorption capacity of Cr(VI) by the SiO 2 @γ-AlOOH spheres modified with inorganic materials is 4.5 mg/g, which is higher than that of γ-AlOOH (about 2 mg/g). However, both the pure γ-AlOOH film and the γ-AlOOH film compounded with SiO 2 colloidal spheres have the defect of poor acid resistance, partial hydrolysis occurs at pH=1-5, and it is easy to cause secondary pollution to the water body.
水滑石,又被称为层状双金属复合氢氧化物(Layered Double Hydroxide,LDH),是一类 具有层状结构的新型无机功能材料,其层间有可交换的阴离子,层板表面富含大量的羟基基 团。水滑石的化学通式为其中M2+为Mg2+,Ni2 +,Co2+, Zn2+,Cu2+等二价金属阳离子,为Al3+,Cr3+,Fe3+等三价金属阳离子,An-为阴离子,如CO3 2-, NO3 -,Cl-,OH-,SO4 2-,PO4 3-等无机和有机离子以及络合离子。其中MgAl-LDH是具有潜力 的吸附材料,层间的羟基基团可以与水中的阴离子进行交换,也可以与阳离子发生络合反应 或静电吸引。CN109012573A在室温条件下利用氨水滴加到硝酸铝和硝酸镁的混合溶液中得 到MgAl-LDH沉淀物,对沉淀进行离心水洗分离,然后添加柠檬酸使沉淀胶溶的同时添加成 膜助剂聚乙烯醇,经流延成型和干燥后,经马弗炉焙烧4h后制得所述吸附剂,其对浓度为 20mg/L的Cr(Ⅵ)的吸附去除率可高达100%。但是CN109012573A制备的MgAl-LDH薄膜易 碎,不利于吸附操作。Lyu等人(Lyu F Y,Yu H Q,Hou T L,Yan L G,Zhang X H,DuB.Efficient and fast removal of Pb2+and Cd2+from an aqueous solution using achitosan/Mg-Al-layered double hydroxide nanocomposite[J].Journal of Colloidand Interface Science,2019,539:184-193.)报 道了一种壳聚糖/MgAl-LDH复合颗粒的制备方法,吸附材料对Pb(II)的最大吸附量为333.3 mg/g,去除率为99.59%。但是Lyu制备的吸附剂为粉体,在吸附污染物后存在分离困难且容 易在水体中残留造成二次污染的问题。Hydrotalcite, also known as Layered Double Hydroxide (LDH), is a new type of inorganic functional material with a layered structure. Lots of hydroxyl groups. The chemical formula of hydrotalcite is M 2+ is Mg 2+ , Ni 2+ , Co 2+ , Zn 2+ , Cu 2+ and other divalent metal cations, Al 3+ , Cr 3+ , Fe 3+ and other trivalent metal cations, An - is an anion, such as CO 3 2- , NO 3 - , Cl - , OH - , SO 4 2- , PO 4 3- and other inorganic and organic ions and complex ions. Among them, MgAl-LDH is a potential adsorption material. The hydroxyl groups in the interlayer can be exchanged with anions in water, and can also undergo complex reaction or electrostatic attraction with cations. CN109012573A At room temperature, ammonia water is added dropwise to the mixed solution of aluminum nitrate and magnesium nitrate to obtain MgAl-LDH precipitate, the precipitate is subjected to centrifugal washing and separation, and then citric acid is added to make the precipitate peptized while adding film-forming aid polyethylene Alcohol, after tape casting and drying, and roasting in a muffle furnace for 4 hours to obtain the adsorbent, the adsorption and removal rate of Cr(VI) with a concentration of 20 mg/L can be as high as 100%. However, the MgAl-LDH film prepared by CN109012573A is fragile, which is not conducive to the adsorption operation. Lyu et al. (Lyu FY, Yu HQ, Hou TL, Yan LG, Zhang XH, DuB. Efficient and fast removal of Pb 2+ and Cd 2+ from an aqueous solution using achitosan/Mg-Al-layered double hydroxide nanocomposite[J ]. Journal of Colloid and Interface Science, 2019, 539: 184-193.) reported a preparation method of chitosan/MgAl-LDH composite particles, the maximum adsorption amount of Pb(II) by the adsorption material was 333.3 mg/g , the removal rate is 99.59%. However, the adsorbent prepared by Lyu is a powder, which is difficult to separate after adsorbing pollutants and easy to remain in the water body to cause secondary pollution.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种水滑石拟薄水铝石复合薄膜及其制备方法和应用,克服现有 拟薄水铝石薄膜易酸解的缺陷,同时解决现有水滑石材料不易成膜或成膜后容易破碎的问题。The object of the present invention is to provide a kind of hydrotalcite pseudo-boehmite composite film and its preparation method and application, overcome the defect that the existing pseudo-boehmite film is easy to be acidly hydrolyzed, and simultaneously solve the problem that the existing hydrotalcite material is not easy to form a film or The problem of easy breakage after film formation.
本发明提供的水滑石拟薄水铝石复合薄膜由拟薄水铝石薄膜以及负载在拟薄水铝石薄膜 表面的水滑石组成。The hydrotalcite pseudo-boehmite composite film provided by the present invention is composed of a pseudo-boehmite film and a hydrotalcite supported on the surface of the pseudo-boehmite film.
进一步,所述水滑石选自镁铝水滑石、镍铝水滑石、钴铝水滑石中的任意一种。Further, the hydrotalcite is selected from any one of magnesium-aluminum hydrotalcite, nickel-aluminum hydrotalcite, and cobalt-aluminum hydrotalcite.
本发明的水滑石拟薄水铝石复合薄膜的制备方法为,将二价金属盐和尿素溶于水中,得 到水滑石前驱体;再加入拟薄水铝石薄膜,进行水热反应得到水滑石拟薄水铝石复合薄膜。The preparation method of the hydrotalcite pseudo-boehmite composite film of the present invention is as follows: dissolving a divalent metal salt and urea in water to obtain a hydrotalcite precursor; then adding a pseudo-boehmite film and performing a hydrothermal reaction to obtain the hydrotalcite Pseudo-boehmite composite film.
进一步,所述水热反应温度为90~150℃,反应时间为10~12h。优选地,所述水热反 应温度选用90~110℃,反应时间选用12h,在该条件下水滑石在拟薄水铝石上具有较好的 形貌,整个复合薄膜具有很好的吸附性能。Further, the hydrothermal reaction temperature is 90-150° C., and the reaction time is 10-12 h. Preferably, the hydrothermal reaction temperature is 90-110°C, and the reaction time is 12 h. Under these conditions, the hydrotalcite has a good morphology on the pseudo-boehmite, and the whole composite film has a good adsorption performance.
进一步,所述二价金属盐选自硫酸镁、硝酸镁、氯化镁、硫酸镍、硫酸钴中的任意一种。Further, the divalent metal salt is selected from any one of magnesium sulfate, magnesium nitrate, magnesium chloride, nickel sulfate, and cobalt sulfate.
进一步,所述前驱体中二价金属盐的浓度为0.002~0.06mol/L,所述尿素的浓度为0.01~ 0.2mol/L。Further, the concentration of the divalent metal salt in the precursor is 0.002-0.06 mol/L, and the concentration of the urea is 0.01-0.2 mol/L.
进一步,所述二价金属盐与拟薄水铝石的比例为(0.0001~0.3)mol:0.12g。Further, the ratio of the divalent metal salt to the pseudo-boehmite is (0.0001-0.3) mol: 0.12 g.
进一步,所述拟薄水铝石薄膜的制备方法为,在铝盐水溶液中加入氨水,得到沉淀;在 沉淀中加入胶溶剂和成膜助剂,老化后得到拟薄水铝石溶胶;将拟薄水铝石溶胶流延成型后 得到拟薄水铝石薄膜。Further, the preparation method of the pseudo-boehmite film is as follows: adding ammonia water to the aluminum salt aqueous solution to obtain a precipitate; adding a peptizer and a film-forming aid to the precipitation, and obtaining a pseudo-boehmite sol after aging; A pseudo-boehmite film is obtained after the boehmite sol is cast and formed.
进一步,所述老化温度为90~100℃,老化时间为20~24h。Further, the aging temperature is 90-100° C., and the aging time is 20-24 h.
进一步,所述胶溶剂选自乙酸,所述成膜助剂选自聚乙烯醇。Further, the peptizer is selected from acetic acid, and the film-forming aid is selected from polyvinyl alcohol.
本发明还提供一种去除水溶液中重金属离子的方法,将含有重金属的水溶液pH调节为 5~6,加入水滑石拟薄水铝石复合薄膜对重金属离子进行吸附,即可将重金属离子去除。The invention also provides a method for removing heavy metal ions in an aqueous solution. The pH of the aqueous solution containing heavy metals is adjusted to 5-6, and the heavy metal ions can be removed by adding a hydrotalcite pseudo-boehmite composite film to adsorb the heavy metal ions.
优选地,所述重金属离子为Pb(Ⅱ)。Preferably, the heavy metal ion is Pb(II).
与现有技术相比,本发明通过在水热条件下,利用尿素水解使水滑石前驱体呈碱性,含 有丰富的OH-。二价金属离子和水铝石薄膜游离出的铝离子通过OH-原位结合,形成表面富 含羟基的复合薄膜。大量羟基的存在,一方面抑制了拟薄水铝石的酸解,另一方面也使得水 滑石牢牢结合到拟薄水铝石表面从而避免散开或破碎,而且还能够通过增强对金属离子的络 合反应或静电吸引作用而提高对金属离子的吸附作用。Compared with the prior art, the present invention makes the hydrotalcite precursor alkaline and rich in OH − by utilizing urea hydrolysis under hydrothermal conditions. The divalent metal ions and the aluminum ions released from the diaspore film combine in situ through OH- to form a composite film with rich hydroxyl groups on the surface. The presence of a large number of hydroxyl groups, on the one hand, inhibits the acid hydrolysis of pseudo-boehmite, and on the other hand, makes the hydrotalcite firmly bound to the surface of pseudo-boehmite to avoid scattering or breaking, and can also enhance the resistance to metal ions. The complexation reaction or electrostatic attraction improves the adsorption of metal ions.
附图说明Description of drawings
图1为γ-AlOOH薄膜和MgAl-LDH/γ-AlOOH复合薄膜的XRD图谱;Figure 1 shows the XRD patterns of γ-AlOOH thin films and MgAl-LDH/γ-AlOOH composite thin films;
图2为γ-AlOOH薄膜和实施例1~6的MgAl-LDH/γ-AlOOH复合薄膜的SEM图,其中图2a表示对比例的γ-AlOOH薄膜,图2b表示实施例1,图2c表示实施例2,实施例2d表 示实施例3,图2e表示实施例4,图2f和图2g表示实施例5,图2h表示实施例6;Figure 2 is the SEM images of the γ-AlOOH thin film and the MgAl-LDH/γ-AlOOH composite thin films of Examples 1 to 6, wherein Figure 2a shows the γ-AlOOH thin film of the comparative example, Figure 2b shows Example 1, and Figure 2c shows the implementation Example 2, Example 2d represents Example 3, Figure 2e represents Example 4, Figure 2f and Figure 2g represent Example 5, and Figure 2h represents Example 6;
图3为γ-AlOOH薄膜(图3a)和实施例4的MgAl-LDH/γ-AlOOH复合薄膜(图3b)的宏观照片;Fig. 3 is a macro photo of the γ-AlOOH thin film (Fig. 3a) and the MgAl-LDH/γ-AlOOH composite thin film (Fig. 3b) of Example 4;
图4为MgAl-LDH/γ-AlOOH复合薄膜对Pb(Ⅱ)的吸附动力学曲线。Figure 4 shows the adsorption kinetics curve of Pb(II) by MgAl-LDH/γ-AlOOH composite film.
具体实施方式Detailed ways
以下结合具体实施例来详细说明本发明的技术方案。The technical solutions of the present invention will be described in detail below with reference to specific embodiments.
实施例1~12Examples 1 to 12
本发明的水滑石拟薄水铝石复合薄膜的制备方法包括以下步骤:The preparation method of the hydrotalcite pseudo-boehmite composite film of the present invention comprises the following steps:
(1)制备拟薄水铝石薄膜(即γ-AlOOH薄膜):在铝盐水溶液中加入氨水,得到沉淀; 在沉淀中加入胶溶剂和成膜助剂,得到拟薄水铝石溶胶;将拟薄水铝石溶胶流延成型后即得 γ-AlOOH薄膜。(1) Preparation of pseudo-boehmite thin film (ie γ-AlOOH thin film): adding ammonia water to the aluminum salt aqueous solution to obtain a precipitate; adding a peptizer and a film-forming aid to the precipitate to obtain a pseudo-boehmite sol; The γ-AlOOH film is obtained after the pseudo-boehmite sol is cast and formed.
具体地,室温下将9g九水合硝酸铝溶于25mL的去离子水中,在500r/min的速率磁力 搅拌条件下滴加35mL 5wt%的氨水,得到沉淀。将得到的沉淀用去离子水离心洗涤至滤液 pH≈7为止。然后将沉淀分散在65mL去离子水中形成悬浮液,加入0.440mL胶溶剂乙酸并升温至90℃。接着加入1.24g成膜助剂聚乙烯醇,搅拌2h后在90℃下老化24h,得到 γ-AlOOH溶胶。最后将γ-AlOOH溶胶涂抹在2cm×4cm聚四氟乙烯板上,使其流延成型,并 在室温下干燥48h后揭下薄膜即得所述γ-AlOOH薄膜。Specifically, 9 g of aluminum nitrate nonahydrate was dissolved in 25 mL of deionized water at room temperature, and 35 mL of 5wt% ammonia water was added dropwise under the condition of magnetic stirring at a rate of 500 r/min to obtain a precipitate. The obtained precipitate was centrifuged and washed with deionized water until the pH of the filtrate was ≈7. The precipitate was then dispersed in 65 mL of deionized water to form a suspension, 0.440 mL of peptizing agent acetic acid was added and the temperature was raised to 90°C. Then, 1.24 g of polyvinyl alcohol, a film-forming aid, was added, stirred for 2 h, and then aged at 90 °C for 24 h to obtain a γ-AlOOH sol. Finally, the γ-AlOOH sol was spread on a 2cm×4cm polytetrafluoroethylene plate to make it tape-cast, and dried at room temperature for 48 hours, and then the film was peeled off to obtain the γ-AlOOH film.
(2)制备水滑石拟薄水铝石复合薄膜:将二价金属盐和尿素溶于水中,得到水滑石前驱 体;再加入拟薄水铝石薄膜,采用水热法在拟薄水铝石薄膜上原位生长水滑石,得到水滑石 拟薄水铝石复合薄膜。(2) Preparation of hydrotalcite pseudo-boehmite composite film: dissolving divalent metal salt and urea in water to obtain a hydrotalcite precursor; then adding pseudo-boehmite film, and using a hydrothermal method to prepare pseudo-boehmite In situ hydrotalcite is grown on the film to obtain a hydrotalcite pseudo-boehmite composite film.
具体地,在室温下将二价金属盐和尿素完全溶解在50mL的去离子水中配成浓度如表1 所示的水滑石前驱体,并与2cm×4cm的γ-AlOOH薄膜一起转移至100mL内衬有聚四氟乙 烯内胆的水热反应釜中。将水热反应釜密闭之后在一定的温度下进行水热反应,在γ-AlOOH 薄膜上原位生长水滑石。反应结束后冷却至室温,用去离子水洗涤数次后在室温下干燥24h 后得到薄膜状的水滑石拟薄水铝石复合薄膜,标记为MAl-LDH/γ-AlOOH复合薄膜,其中M 表示Mg、Ni或Co。Specifically, divalent metal salts and urea were completely dissolved in 50 mL of deionized water at room temperature to prepare a hydrotalcite precursor with the concentration shown in Table 1, and transferred to 100 mL together with a 2 cm × 4 cm γ-AlOOH film. In a hydrothermal reactor lined with a Teflon liner. After the hydrothermal reactor was sealed, the hydrothermal reaction was carried out at a certain temperature, and the hydrotalcite was grown in situ on the γ-AlOOH film. After the reaction, it was cooled to room temperature, washed with deionized water for several times, and dried at room temperature for 24 h to obtain a film-like hydrotalcite pseudo-boehmite composite film, which was marked as MAl-LDH/γ-AlOOH composite film, where M represents Mg, Ni or Co.
作为对比,在没有水滑石前驱体条件下将γ-AlOOH薄膜单独进行水热处理(对比例)。 即,将2cm×4cm的γ-AlOOH薄膜和50mL去离子水转移至100mL内衬有聚四氟乙烯内胆的水热反应釜中,将水热反应釜密闭之后在110℃的烘箱中加热12h。最后冷却至室温后,用去离子水洗涤数次后在室温下干燥24h后。As a comparison, the γ-AlOOH films were hydrothermally treated alone without the hydrotalcite precursor (Comparative Example). That is, a 2cm×4cm γ-AlOOH film and 50mL of deionized water were transferred to a 100mL hydrothermal reactor lined with a PTFE liner, and the hydrothermal reactor was sealed and heated in an oven at 110°C for 12h . After finally cooling to room temperature, washed several times with deionized water and dried at room temperature for 24 h.
表1.水滑石拟薄水铝石复合薄膜的原料用量及反应条件Table 1. Raw material dosage and reaction conditions of hydrotalcite pseudo-boehmite composite film
对上述各实施例所得MAl-LDH/γ-AlOOH复合薄膜以及对比例的γ-AlOOH薄膜进行表征, 结果如下:The MAl-LDH/γ-AlOOH composite films obtained in the above examples and the γ-AlOOH films of the comparative examples were characterized, and the results were as follows:
对比例的γ-AlOOH薄膜以及实施例1~4的MgAl-LDH/γ-AlOOH复合薄膜以及实施例11 的NiAl-LDH/γ-AlOOH复合薄膜、实施例12的CoAl-LDH/γ-AlOOH复合薄膜的XRD图如图 1所示。图1显示,与对比例的γ-AlOOH薄膜相比,其他实施例制备样品的XRD图中新增的2θ值:11°、23°、48°是水滑石的特征峰,这表明通过水热法在γ-AlOOH薄膜上原位生长水滑石的方法是可行的。The γ-AlOOH film of the comparative example, the MgAl-LDH/γ-AlOOH composite film of Examples 1 to 4, the NiAl-LDH/γ-AlOOH composite film of Example 11, and the CoAl-LDH/γ-AlOOH composite film of Example 12 The XRD pattern of the film is shown in Figure 1. Figure 1 shows that, compared with the γ-AlOOH thin films of the comparative example, the newly added 2θ values in the XRD patterns of the samples prepared in other examples: 11°, 23°, and 48° are the characteristic peaks of hydrotalcite, which indicate that by hydrothermal The method of in situ growth of hydrotalcite on γ-AlOOH thin films is feasible.
图2为对比例的γ-AlOOH薄膜以及实施例1~6所制得的MgAl-LDH/γ-AlOOH复合薄膜 的SEM图。从图2a可以看出,γ-AlOOH薄膜表面平整,较为光滑。实施例1将γ-AlOOH薄膜与低浓度的水滑石前驱体进行水热反应后,在γ-AlOOH薄膜表面出现少量片状水滑石,表 面开始变得粗糙,如图2b所示。在实施例2~4中硫酸镁浓度为0.006~0.02mol/L,尿素浓 度为0.03~0.1mol/L之间,随着水滑石前驱体浓度的增大,γ-AlOOH薄膜表面的水滑石片数 增加,逐渐变密,表面形成交错的网状以及丰富的空隙,水滑石拟薄水铝石复合薄膜的比表 面积明显增大,如图2c~图2e所示。但是当硫酸镁浓度增加到0.04mol/L以上,尿素浓度增 加到0.2mol/L之后,图2f、2g实施例5和图2h实施例6的水滑石拟薄水铝石复合薄膜表面 的空隙逐渐被新沉积生长的水滑石填满。Fig. 2 is the SEM image of the γ-AlOOH thin film of the comparative example and the MgAl-LDH/γ-AlOOH composite thin film prepared in Examples 1-6. It can be seen from Figure 2a that the surface of the γ-AlOOH film is flat and relatively smooth. Example 1 After the hydrothermal reaction of the γ-AlOOH film with a low concentration of hydrotalcite precursor, a small amount of flaky hydrotalcite appeared on the surface of the γ-AlOOH film, and the surface began to become rough, as shown in Figure 2b. In Examples 2-4, the magnesium sulfate concentration is 0.006-0.02 mol/L, and the urea concentration is 0.03-0.1 mol/L. With the increase of the concentration of the hydrotalcite precursor, the hydrotalcite flakes on the surface of the γ-AlOOH film As the number increases, it gradually becomes denser, and a staggered network and abundant voids are formed on the surface. However, when the concentration of magnesium sulfate increased to more than 0.04mol/L and the concentration of urea increased to 0.2mol/L, the voids on the surface of the hydrotalcite pseudo-boehmite composite films of Figure 2f, Figure 2g Example 5 and Figure 2h Example 6 gradually increased. Filled with newly deposited hydrotalcite.
同时,在宏观上,对比例的γ-AlOOH薄膜呈半透明状,如图3a的宏观照片所示。而生 长水滑石后薄膜变成白色非透明,如图3b实施例4的MgAl-LDH/γ-AlOOH复合薄膜宏观照 片所示。Meanwhile, macroscopically, the γ-AlOOH film of the comparative example is translucent, as shown in the macrophotograph of Fig. 3a. However, after the hydrotalcite is grown, the film becomes white and non-transparent, as shown in the macrophotograph of the MgAl-LDH/γ-AlOOH composite film of Example 4 in Figure 3b.
可见,通过水热法可成功在γ-AlOOH薄膜表面原位生长水滑石,同时通过合适选择前驱 体浓度和水热反应温度和时间,可有效控制水滑石在γ-AlOOH薄膜表面的生长形貌。该过程 反应机理主要是:在水热条件下,尿素缓慢水解释放出NH3,然后发生反应: NH3+H2O→NH4 ++OH-,OH-的累积使前驱体呈碱性,此时γ-AlOOH薄膜表面释放的Al原子 与溶液中的Mg原子在碱性条件下原位合成MgAl-LDH从而获得MgAl-LDH/γ-AlOOH复合 薄膜。在前驱体浓度较低时,溶液中能与γ-AlOOH薄膜上Al原子反应的Mg2+较少,只有少 部分的水滑石量生长沉积在薄膜表面。当前驱体浓度过高时,沉积形成水滑石的量增加,会 把逐渐的把水滑石之间的空隙填满。It can be seen that hydrotalcite can be successfully grown in situ on the surface of γ-AlOOH thin film by the hydrothermal method, and the growth morphology of hydrotalcite on the surface of γ-AlOOH thin film can be effectively controlled by appropriate selection of precursor concentration and hydrothermal reaction temperature and time. . The main reaction mechanism of this process is: under hydrothermal conditions, urea is slowly hydrolyzed to release NH 3 , and then the reaction occurs: NH 3 +H 2 O→NH 4 + +OH - , the accumulation of OH - makes the precursor alkaline, At this time, the Al atoms released from the surface of the γ-AlOOH film and the Mg atoms in the solution synthesized MgAl-LDH in situ under alkaline conditions to obtain the MgAl-LDH/γ-AlOOH composite film. When the precursor concentration is low, the amount of Mg 2+ that can react with Al atoms on the γ-AlOOH thin film is less in solution, and only a small amount of hydrotalcite is grown and deposited on the surface of the thin film. When the precursor concentration is too high, the amount of hydrotalcite formed by deposition increases, which will gradually fill the gaps between the hydrotalcites.
实施例13Example 13
本实施例提供一种去除水溶液中重金属离子的方法,尤其是去除Pb(Ⅱ)的方法,将含有 重金属的水溶液pH调节为5~6,加入实施例1~12所述MAl-LDH/γ-AlOOH复合薄膜对重 金属离子进行吸附,即可将重金属离子去除。This embodiment provides a method for removing heavy metal ions in an aqueous solution, especially a method for removing Pb(II), by adjusting the pH of the aqueous solution containing heavy metals to 5-6, adding the MAl-LDH/γ- The AlOOH composite film can remove heavy metal ions by adsorbing heavy metal ions.
例如,在50mL的50mg/L(或100mg/L、500mg/L)的Pb(Ⅱ)溶液加入0.1mol/L的 NaOH溶液,调节pH至5,加入0.05g实施例1~12所述MAl-LDH/γ-AlOOH复合薄膜,在 25℃以及150r/min的振荡条件下使MAl-LDH/γ-AlOOH复合薄膜吸附Pb(Ⅱ)。For example, add 0.1 mol/L NaOH solution to 50 mL of 50 mg/L (or 100 mg/L, 500 mg/L) Pb(II) solution, adjust the pH to 5, and add 0.05 g of MAl- LDH/γ-AlOOH composite film, the MAl-LDH/γ-AlOOH composite film was made to adsorb Pb(Ⅱ) at 25℃ and 150r/min shaking condition.
作为对比,另外将相同质量的对比例的γ-AlOOH薄膜加入Pb(Ⅱ)溶液中,在相同条件下 对Pb(Ⅱ)进行吸附。As a comparison, the same mass of the γ-AlOOH film of the comparative example was added to the Pb(II) solution, and Pb(II) was adsorbed under the same conditions.
吸附完成后,可以观察到MAl-LDH/γ-AlOOH复合薄膜几乎没有发生酸解或脱落,各材 料对Pb(Ⅱ)的吸附结果如表2所示,实施例1~6的MgAl-LDH/γ-AlOOH复合薄膜在50mg/L 的Pb(II)溶液中对Pb(Ⅱ)的吸附动力学曲线如图4所示。After the adsorption is completed, it can be observed that the MAl-LDH/γ-AlOOH composite film hardly undergoes acidolysis or shedding. The adsorption results of Pb(II) by each material are shown in Table 2. The adsorption kinetics curve of γ-AlOOH composite film on Pb(II) in 50 mg/L Pb(II) solution is shown in Figure 4.
表2.水滑石拟薄水铝石复合薄膜对Pb(Ⅱ)的吸附结果Table 2. Adsorption results of Pb(Ⅱ) by hydrotalcite pseudo-boehmite composite films
从表2可知,本发明的MgAl-LDH/γ-AlOOH复合薄膜在50mg/L的Pb(II)溶液中对Pb(Ⅱ) 的去除率最高可达99.99%(实施例7),即使在实施例1使用极低浓度的水滑石前驱体情况下, 所得MgAl-LDH/γ-AlOOH复合薄膜对Pb(Ⅱ)的去除率依然可达到86.34%,相较对比例单纯 的γ-AlOOH薄膜的去除率提高了59.04%;或者在实施例8使用过高水热反应温度情况下 MgAl-LDH/γ-AlOOH复合薄膜对Pb(Ⅱ)的去除率依然可达到83.72%,相较γ-AlOOH薄膜的 去除率提高了56.42%。而且对50mg/L和100mg/L的Pb(Ⅱ)的残余浓度分别降至0.16mg/L 和0.17mg/L,达到国家规定工业废水中Pb(Ⅱ)含量的排放标准。另外,NiAl-LDH/γ-AlOOH 复合薄膜和CoAl-LDH/γ-AlOOH复合薄膜对Pb(Ⅱ)也具有一定的吸附作用。显然,通过在 γ-AlOOH薄膜上原位生长水滑石,可显著提高薄膜对Pb(Ⅱ)的吸附去除能力。It can be seen from Table 2 that the removal rate of Pb(II) by the MgAl-LDH/γ-AlOOH composite film of the present invention in a 50 mg/L Pb(II) solution can reach up to 99.99% (Example 7). Example 1 In the case of using a very low concentration of hydrotalcite precursor, the obtained MgAl-LDH/γ-AlOOH composite film can still achieve a removal rate of 86.34% for Pb(II), compared with the removal rate of the simple γ-AlOOH film in the comparative example. The removal rate of Pb(II) by the MgAl-LDH/γ-AlOOH composite film can still reach 83.72% when the hydrothermal reaction temperature is too high in Example 8, which is higher than that of the γ-AlOOH film. The removal rate increased by 56.42%. And the residual concentration of Pb(II) of 50mg/L and 100mg/L was reduced to 0.16mg/L and 0.17mg/L respectively, which reached the discharge standard of Pb(II) content in industrial wastewater stipulated by the state. In addition, NiAl-LDH/γ-AlOOH composite films and CoAl-LDH/γ-AlOOH composite films also have a certain adsorption effect on Pb(Ⅱ). Apparently, by in-situ growth of hydrotalcite on γ-AlOOH films, the adsorption and removal ability of the films to Pb(II) can be significantly improved.
结合图4可知,MgAl-LDH/γ-AlOOH复合薄膜对Pb(II)的吸附速率较快,在200min内 对Pb(II)的吸附量几乎呈线性增长,且在550min左右即可吸附完成。Combining with Figure 4, it can be seen that the adsorption rate of Pb(II) by the MgAl-LDH/γ-AlOOH composite film is relatively fast, and the adsorption amount of Pb(II) increases almost linearly within 200 min, and the adsorption can be completed in about 550 min.
经上述结果和分析得知,本发明通过在拟薄水铝石薄膜上原位生长水滑石,形成表面富 含羟基的复合薄膜,由于大量羟基的存在一方面抑制了拟薄水铝石的酸解,使得水滑石拟薄 水铝石薄膜能够在pH为5左右的强酸性条件下对Pb(II)进行有效吸附而不发生酸解;另一方 面也能够通过增强对金属离子的络合反应或静电吸引作用而提高对金属离子的吸附作用,使 得水滑石拟薄水铝石薄膜对Pb(II)的去除率提高至接近100%,相较单纯的水铝石薄膜的去除 率提高至少56.42%。此外,还能使水滑石牢牢结合到拟薄水铝石表面,在经过多次使用后 MAl-LDH/γ-AlOOH复合薄膜依然保持薄膜状态,不发生水滑石脱落现象。From the above results and analysis, it is known that the present invention forms a composite film with a surface rich in hydroxyl groups by in-situ growth of hydrotalcite on the pseudo-boehmite film. On the one hand, the presence of a large number of hydroxyl groups inhibits the acidity of pseudo-boehmite. Therefore, the hydrotalcite pseudo-boehmite film can effectively adsorb Pb(II) without acid hydrolysis under the strong acid condition of pH 5; on the other hand, it can also enhance the complexation reaction of metal ions by or electrostatic attraction to improve the adsorption of metal ions, so that the removal rate of Pb(II) by the hydrotalcite pseudo-boehmite film is increased to nearly 100%, which is at least 56.42% higher than that of the pure diaspore film. %. In addition, the hydrotalcite can be firmly bonded to the surface of the pseudo-boehmite, and the MAl-LDH/γ-AlOOH composite film remains in a thin film state after multiple uses, and the hydrotalcite does not fall off.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应 为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911140925.5A CN110711553B (en) | 2019-11-20 | 2019-11-20 | Hydrotalcite-pseudo-boehmite composite film and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911140925.5A CN110711553B (en) | 2019-11-20 | 2019-11-20 | Hydrotalcite-pseudo-boehmite composite film and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110711553A CN110711553A (en) | 2020-01-21 |
CN110711553B true CN110711553B (en) | 2022-05-17 |
Family
ID=69216238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911140925.5A Active CN110711553B (en) | 2019-11-20 | 2019-11-20 | Hydrotalcite-pseudo-boehmite composite film and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110711553B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113484379B (en) * | 2021-07-19 | 2024-01-26 | 青岛科技大学 | Ultrathin porous hydrotalcite-like nano-sheet membrane modified electrode and detection application thereof |
CN116371352B (en) * | 2023-03-31 | 2024-07-12 | 北京化工大学 | Calcium-containing hydrotalcite-vermiculite composite material and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102343283A (en) * | 2011-07-21 | 2012-02-08 | 北京化工大学 | Vertically aligned layered double hydroxides (LDHs) film and application thereof in structured catalysis |
CN107740086A (en) * | 2017-09-27 | 2018-02-27 | 中国海洋大学 | One-step hydrothermal preparation method of magnesium-aluminum hydrotalcite film on magnesium alloy surface |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424993B2 (en) * | 1972-03-02 | 1979-08-24 | ||
US6541409B1 (en) * | 1999-01-29 | 2003-04-01 | Akzo Nobel N.V. | Process for producing anionic clay using non-peptized boemite and compositions produced therefrom |
CN101285185A (en) * | 2008-03-21 | 2008-10-15 | 北京化工大学 | Preparation method of corrosion-resistant hydrotalcite-like film on the surface of aluminum and its alloy parts |
CN101766992B (en) * | 2010-01-22 | 2012-01-25 | 北京化工大学 | Hydrotalcite-like compound/eggshell membrane composite film and preparation method thereof |
CN106458633B (en) * | 2014-06-18 | 2018-08-03 | 荷兰联合利华有限公司 | Layered double-hydroxide for purified water |
CN105107486A (en) * | 2015-10-09 | 2015-12-02 | 武汉理工大学 | Preparation method of pseudo-boehmite composite film for adsorbing toxic Cr (VI) |
CN105344335B (en) * | 2015-11-25 | 2018-11-02 | 福建师范大学 | It a kind of compound membrane preparation method of LDHs/PVA and its is applied in heavy metal wastewater thereby |
-
2019
- 2019-11-20 CN CN201911140925.5A patent/CN110711553B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102343283A (en) * | 2011-07-21 | 2012-02-08 | 北京化工大学 | Vertically aligned layered double hydroxides (LDHs) film and application thereof in structured catalysis |
CN107740086A (en) * | 2017-09-27 | 2018-02-27 | 中国海洋大学 | One-step hydrothermal preparation method of magnesium-aluminum hydrotalcite film on magnesium alloy surface |
Non-Patent Citations (1)
Title |
---|
过渡金属氧化物作超级电容器电极材料性能研究;徐光伟;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20190115(第1期);C042-1217 * |
Also Published As
Publication number | Publication date |
---|---|
CN110711553A (en) | 2020-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114425340B (en) | Preparation of a biochar-modified cobalt-iron bimetallic composite catalyst and its application in catalytic degradation of tetracycline | |
CN108704610B (en) | Magnetic carbon modified magnesium iron hydrotalcite composite material and its preparation method and application | |
CN103551104B (en) | Preparation method of grading magnesium and aluminum hydrotalcite capable of adsorbing Cr(VI) | |
CN104944452A (en) | High surface area layered double hydroxides and preparation method thereof | |
CN110665483B (en) | A kind of carbon fiber hydrotalcite composite material and its preparation method and application | |
CN107486141B (en) | A kind of preparation method of magnesium oxide chemically modified diatomite with high adsorption capacity | |
CN106378105A (en) | Preparation method of magnetic chitosan compound adsorbent | |
CN110711553B (en) | Hydrotalcite-pseudo-boehmite composite film and preparation method and application thereof | |
CN101274847A (en) | A kind of spinel ferrite magnetic hollow microsphere and preparation method thereof | |
CN104549127A (en) | Magnetic composite hydroxyapatite nanoparticles as well as preparation method and application thereof | |
CN114887582B (en) | A method for recovering phosphite ions in waste water | |
CN114873623B (en) | Recoverable hydrotalcite with reducibility and adsorbability and preparation method and application thereof | |
CN105032342A (en) | Preparation method of stratiform bimetallic oxide sorbent capable of effectively removing low-concentrated phosphate radical | |
CN110451597A (en) | A kind of nano zero valence iron@molecular sieves compound material and preparation method thereof and purposes | |
CN110170316A (en) | A kind of resin-base nano composite material, preparation method and its depth go copper-citric acid method in water removal | |
WO2009036660A1 (en) | A method for preparing film of layered double hydroxides | |
MX2014006245A (en) | Multilayer organic-templated-boehmite-nanoarchitecture for water purification. | |
Ogata et al. | Adsorption of phosphate ion in aqueous solutions by calcined cobalt hydroxide at different temperatures | |
JP6099040B2 (en) | Composite layered double hydroxide | |
CN103331141B (en) | The preparation method of heavy metal ion adsorbed porous ferric oxide | |
CN109692648B (en) | Adsorbent for efficiently adsorbing sulfate ions in water and preparation method thereof | |
CN112316903A (en) | One-step solvothermal preparation method and application of carbon fiber @ MAL hydrotalcite composite film | |
TWI612998B (en) | Anion adsorption method | |
CN108367267B (en) | Adsorbent particles | |
CN113842874B (en) | Modified bentonite and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |