CN110707769A - Battery charging method and control unit - Google Patents
Battery charging method and control unit Download PDFInfo
- Publication number
- CN110707769A CN110707769A CN201910613970.1A CN201910613970A CN110707769A CN 110707769 A CN110707769 A CN 110707769A CN 201910613970 A CN201910613970 A CN 201910613970A CN 110707769 A CN110707769 A CN 110707769A
- Authority
- CN
- China
- Prior art keywords
- pulse
- charging
- control unit
- battery
- energy source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007600 charging Methods 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims abstract description 25
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000010278 pulse charging Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00711—Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/448—End of discharge regulating measures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明涉及一种用于借助电能量源(3)给电池(2)充电的方法以及一种控制单元(5),其中选择充电段(QS)和时间段(tS),其中给所述电能量源(3)分配控制能量源(3)或脉冲发生器(4)的控制单元(5),其中所述控制单元(5)控制所述能量源(3)或所述脉冲发生器(4),使得在所述时间段(tS)内产生充电脉冲(LP),以便在所述充电段(QS)内给电池(2)充电,其中所述充电脉冲(LP)具有至少一个脉冲(P)和脉冲暂停(PP),其中一直继续所述方法,直至达到预给定的中止条件。
The invention relates to a method for charging a battery (2) by means of an electrical energy source (3) and to a control unit (5), in which a charging period ( Qs ) and a time period ( ts ) are selected, in which The electrical energy source (3) distributes a control unit (5) that controls the energy source (3) or the pulse generator (4), wherein the control unit (5) controls the energy source (3) or the pulse generator (4) such that a charge pulse (LP) is generated within the time period (t S ) to charge the battery (2) within the charge period (Q S ), wherein the charge pulse (LP) has at least A pulse (P) and a pulse pause (PP), in which the method continues until a predetermined stop condition is reached.
Description
技术领域technical field
本发明涉及一种对电池充电的方法和控制单元。The present invention relates to a method and a control unit for charging a battery.
背景技术Background technique
目前,电池(例如锂离子电池)以越来越高的电流充电,以便随着容量的增加而可以保持充电时间恒定。在此,在达到充电结束电压之前,一直以恒定电流进行充电,然后电压保持恒定,同时减小电流。由于低充电电流,该CV阶段需要长的充电时间。这种方法也称为CC / CV方法(恒定电流/恒定电压),并且在DE 10 2010 051 016 A1中作为现有技术予以描述。Currently, batteries, such as lithium-ion batteries, are charged at higher and higher currents so that the charging time can be kept constant as the capacity increases. Here, charging is performed with a constant current until the end-of-charge voltage is reached, and then the current is decreased while the voltage is kept constant. Due to the low charging current, this CV phase requires a long charging time. This method is also known as the CC/CV method (Constant Current/Constant Voltage) and is described as prior art in DE 10 2010 051 016 A1.
此外,已知以下充电方法,其使用充电脉冲形式的电流。从US2013 / 0026976A1中已知一种方法,其中充电脉冲具有正脉冲以及脉冲暂停和放电脉冲,其中在脉冲暂停期间,电流可以大于或等于零。根据电池的电压,减小脉冲的长度。在此,还规定,减小放电脉冲的高度。如果电池上的电压超过阈值,则终止该方法。在此,充电脉冲的时间段朝向末端减小。在一种替代实施方式中,仅脉冲关闭时间以脉冲时间缩短的程度进行延长。最后,还公开一种实施方式,其中放电脉冲由两个脉冲暂停包围。最后的方法也从US 5,481,174 A中已知。Furthermore, charging methods are known which use current in the form of charging pulses. A method is known from US2013/0026976A1 in which the charging pulse has a positive pulse and a pulse pause and a discharge pulse, wherein during the pulse pause the current can be greater than or equal to zero. Depending on the voltage of the battery, reduce the length of the pulse. Here, it is also provided that the height of the discharge pulse is reduced. If the voltage on the battery exceeds the threshold, the method is terminated. Here, the time period of the charging pulse decreases towards the end. In an alternative embodiment, only the pulse off time is extended by the shortening of the pulse time. Finally, an embodiment is also disclosed in which the discharge pulse is surrounded by two pulse pauses. The last method is also known from US 5,481,174 A.
脉冲充电方法有显著缩短充电时间的潜力。The pulse charging method has the potential to significantly shorten the charging time.
发明内容SUMMARY OF THE INVENTION
本发明所基于技术问题是,进一步改进对电池充电的方法以及提供一种适用于此的控制单元。The technical problem underlying the present invention is to further improve the method for charging the battery and to provide a control unit suitable for this.
该技术问题的解决方案由具有权利要求1的特征的方法和具有权利要求9的特征的控制单元得出。本发明的其他有利的设计方案由从属权利要求中得出。The solution to this technical problem results from a method with the features of
在此,借助电能量源给电池充电,其中选择充电段和时间段,其中给电能量源分配控制能量源或脉冲发生器的控制单元,其中控制单元控制能量源或脉冲发生器,使得在所述时间段内产生充电脉冲,以便在充电段内给电池充电,其中充电脉冲具有至少一个脉冲和脉冲暂停,其中一直继续该方法,直至达到预给定的中止条件。本发明的基本思想是,不强制性地以最高可能的电流尽可能长地充电,而是通过以下方式实现非常经济的、但快速的充电:尝试在所述时间段内连续地安排确定的充电段。优选地,充电脉冲恰好具有一个脉冲。In this case, the battery is charged by means of an electrical energy source, wherein a charging period and a time period are selected, wherein a control unit that controls the energy source or the pulse generator is assigned to the electrical energy source, wherein the control unit controls the energy source or the pulse generator such that in all A charging pulse is generated within the time period in order to charge the battery during the charging period, wherein the charging pulse has at least one pulse and a pulse pause, wherein the method is continued until a predetermined termination condition is reached. The basic idea of the invention is not to force charging at the highest possible current for as long as possible, but to achieve a very economical, but fast charging by trying to schedule a certain charging continuously within the stated time period part. Preferably, the charging pulse has exactly one pulse.
在此,脉冲暂停中的充电电流可以大于零或等于零地来设定。在脉冲暂停中充电电流大于零的优点是不会错误地推断出充电中止。Here, the charging current in the pulse pause can be set to be greater than or equal to zero. The advantage of having the charging current greater than zero in the pulse pause is that it is not erroneously inferred that the charging is paused.
附加地或替代地,可以在脉冲暂停中设置放电脉冲,如从现有技术中已知的那样。Additionally or alternatively, discharge pulses can be provided in pulse pauses, as is known from the prior art.
在另一实施方式中,脉冲上升或下降的梯度被限制到预给定值上,例如限制到20A/ s上。In another embodiment, the gradient of the rise or fall of the pulse is limited to a predetermined value, for example to 20 A/s.
在另一实施方式中,当脉冲达到所述时间段或超过预给定的最大充电时间时,减小充电段。In another embodiment, the charging period is reduced when the pulse reaches the time period or exceeds a predetermined maximum charging time.
相反,当脉冲短于预给定的最小充电时间时,提高充电段。Conversely, when the pulse is shorter than the predetermined minimum charging time, the charging segment is increased.
在一个实施方式中,预给定的中止条件是电池的充电状态的极限值,其中该极限值至少为SOC = 80%,优选大于/等于85%,并且特别优选大于/等于90%。In one embodiment, the predetermined termination condition is a limit value of the state of charge of the battery, wherein the limit value is at least SOC=80%, preferably greater than/equal to 85% and particularly preferably greater than/equal to 90%.
在另一实施方式中,在控制单元中考虑用于电池的最大电流,最大电压和温度的特性曲线。In another embodiment, the characteristic curves for the maximum current, maximum voltage and temperature of the battery are taken into account in the control unit.
用于控制电能量源或脉冲发生器来产生对电池充电的充电脉冲的控制单元被构造为,控制电能量源或脉冲发生器,使得产生充电脉冲,以便在预给定的时间段内产生预给定的充电段,其中充电脉冲具有至少一个脉冲和脉冲暂停,其中控制单元还被构造为,一直产生充电脉冲,直到达到预给定的中止条件。The control unit for controlling the electrical energy source or the pulse generator to generate the charging pulses for charging the battery is designed to control the electrical energy source or the pulse generator so that the charging pulses are generated so as to generate a pre-charged pulse for a predetermined time period. For a given charging segment, wherein the charging pulse has at least one pulse and a pulse pause, the control unit is further configured to generate the charging pulse until a predetermined stop condition is reached.
关于控制单元的可能的其他设计方案,参考关于方法的前述实施方案。With regard to possible further configurations of the control unit, reference is made to the aforementioned embodiments with regard to the method.
附图说明Description of drawings
下面参考优选实施例更详细地解释本发明。其中:The present invention is explained in more detail below with reference to preferred embodiments. in:
图1示出了用于对电池充电的装置的示意性框图,Figure 1 shows a schematic block diagram of an apparatus for charging a battery,
图2示出了第一实施方式中的充电脉冲,Figure 2 shows the charging pulse in the first embodiment,
图3示出了第二实施方式中的充电脉冲,Figure 3 shows the charging pulse in the second embodiment,
图4示出了第三实施方式中的充电脉冲,Figure 4 shows the charging pulse in the third embodiment,
图5示出了第四实施方式中的充电脉冲,Fig. 5 shows the charging pulse in the fourth embodiment,
图6示出了具有减少的充电段的充电脉冲序列,Figure 6 shows a charging pulse sequence with reduced charging segments,
图7示出了具有增加的充电段的充电脉冲序列,以及Figure 7 shows a charge pulse sequence with increasing charge segments, and
图8示出了示例性充电脉冲序列。FIG. 8 shows an exemplary charge pulse sequence.
具体实施方式Detailed ways
在图1中示意性地示出了用于对电池2充电的装置1的框图。装置1具有电能量源3,脉冲发生器4以及控制单元5。电能量源3在此可以是直流或交流电压源,其中脉冲发生器4被构造用于将能量源3的电能转换成充电脉冲LP。控制单元5具有输入单元,通过该输入单元可以输入诸如充电段QS和时间段tS的输入。此外,控制单元5从电池2获得数据、诸如电压和温度。附加地,在控制单元5中保存有电流I、电压V和温度T的特性曲线,从其中得出在电池2的确定的温度和电压下的最大允许的电流I。最后,还保存有最小充电时间tlade,min和最大充电时间tlade,max。在此,时间段tS在所有充电脉冲LP上保持相同。充电段除了少数例外(关于这一点在后面更多地参考图6和图7)也保持恒定,其中在充电段QS上动态地控制脉冲与脉冲暂停的比率,这还要更详细地解释。在此,脉冲发生器4也可以集成到能量源3中。A block diagram of a
首先,应该参考图2至图5更详细地解释充电脉冲LP的一些可能的实施方式。在此,在图2中示出充电脉冲LP的第一可能实施方式。充电脉冲LP由脉冲P和脉冲暂停PP组成,其中充电脉冲LP 的时间段tS由充电时间tlade和暂停时间tPP组成。总之,在时间段tS中,在充电段QS内对电池2充电。在所示出的示例中,在脉冲暂停PP中的充电电流I大于零,使得充电段QS的一部分也在脉冲暂停PP中对电池2充电。显然,QS是充电脉冲LP的积分。在此应注意:优选地,脉冲P的电流Imax被选择为电池2的当前环境条件(U,T,SOC)下的最大可能电流。例如,电流Imax可以是200A。First, some possible implementations of the charging pulse LP should be explained in more detail with reference to FIGS. 2 to 5 . Here, a first possible embodiment of the charging pulse LP is shown in FIG. 2 . The charging pulse LP consists of a pulse P and a pulse pause PP, wherein the time period tS of the charging pulse LP consists of a charging time tlade and a pause time tPP . In summary, in the time period tS , the
在图3中示出了替代的充电脉冲LP,其中与根据图2的充电脉冲LP的区别在于脉冲暂停PP中的电流强度I为零。An alternative charging pulse LP is shown in FIG. 3 , wherein the difference from the charging pulse LP according to FIG. 2 is that the current intensity I in the pulse pause PP is zero.
在图4中,在脉冲暂停PP中还附加地设置了放电脉冲EP。该放电脉冲也可以设置在充电脉冲LP结束时或在脉冲暂停PP之内。如图所示,脉冲暂停PP的电流强度I可以大于零或等于零。In FIG. 4 , a discharge pulse EP is additionally provided in the pulse pause PP. The discharge pulse can also be placed at the end of the charge pulse LP or within the pulse pause PP. As shown, the current intensity I of the pulse pause PP may be greater than or equal to zero.
在图5中示出了充电脉冲LP,其中限制了脉冲上升和下降。在此应该注意,该实施方式也可以与其他充电脉冲LP组合。例如,梯度的量值被限制到20A / s上。The charging pulse LP is shown in FIG. 5, where the pulse rise and fall are limited. It should be noted here that this embodiment can also be combined with other charging pulses LP. For example, the magnitude of the gradient is limited to 20A/s.
在图6中现在示出了必须减小充电段QS的情况,因为已经超过最大充电时间tlade,max。相应地,控制单元5针对下个充电脉冲LP将充电段QS降低到QS',使得不再超过最大充电时间tlade,max。FIG. 6 now shows the situation in which the charging segment Q S has to be reduced because the maximum charging time tlade,max has been exceeded. Accordingly, the
在图7中示出了将充电段QS提高到QS'的情况,因为低于最小充电时间tlade,min。 替代地,在这样的情况下,也可以降低脉冲P的电流强度。The case of raising the charging segment Q S to Q S ′ is shown in FIG. 7 because the minimum charging time tlade,min is below. Alternatively, in such a case, the current intensity of the pulses P can also be reduced.
在图8中示出了示例性脉冲序列,其中充电段QS保持恒定。如果由于电池2的环境条件(例如U,T和/或SOC)必须减小电流强度I,则相应地延长充电时间tlade并缩短脉冲暂停PP。An exemplary pulse sequence is shown in FIG. 8 where the charging segment Q S is held constant. If the amperage I must be reduced due to the ambient conditions of the battery 2 (eg U, T and/or SOC), the charging time tlade is correspondingly extended and the pulse pause PP is shortened.
然后,当达到中止条件(例如,SOC = 90%)时,终止该方法。Then, when an abort condition (eg, SOC = 90%) is reached, the method is terminated.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018211264.9 | 2018-07-09 | ||
DE102018211264.9A DE102018211264A1 (en) | 2018-07-09 | 2018-07-09 | Method of charging a battery and control unit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110707769A true CN110707769A (en) | 2020-01-17 |
Family
ID=68943787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910613970.1A Pending CN110707769A (en) | 2018-07-09 | 2019-07-09 | Battery charging method and control unit |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110707769A (en) |
DE (1) | DE102018211264A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112928351A (en) * | 2021-02-10 | 2021-06-08 | 中国科学院金属研究所 | Pulse charging technology of lithium-sulfur battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020127500A1 (en) | 2020-10-19 | 2022-04-21 | Einhell Germany Ag | Charging an accumulator unit |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1531164A (en) * | 2003-03-12 | 2004-09-22 | 三美电机株式会社 | Charging method of secondary battery and device using same |
US20100060240A1 (en) * | 2006-11-06 | 2010-03-11 | Commissariat A L'energie Atomique | Method for managing charging of a rechargeable battery |
US20130026976A1 (en) * | 2011-07-26 | 2013-01-31 | Getac Technology Corporation | Pulse modulation charging method and apparatus |
WO2016097340A1 (en) * | 2014-12-19 | 2016-06-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method and device for charging a lithium-ion battery by pulses |
CN107093777A (en) * | 2017-04-13 | 2017-08-25 | 宁德时代新能源科技股份有限公司 | Battery charging method and device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5481174A (en) | 1993-12-27 | 1996-01-02 | Motorola, Inc. | Method of rapidly charging a lithium ion cell |
DE102010051016A1 (en) | 2010-11-10 | 2012-05-10 | Daimler Ag | Traction battery i.e. lithium ion battery, charging method for hybrid vehicle, involves enabling priming charge up to predetermined state of charge of battery after connecting traction battery to charging device |
DE102013105119B4 (en) * | 2013-05-17 | 2016-03-03 | H-Tech Ag | Method and device for charging rechargeable cells |
WO2015162877A1 (en) * | 2014-04-24 | 2015-10-29 | 日本電気株式会社 | Lithium ion secondary battery system and lithium secondary battery system operation method |
GB2518759A (en) * | 2014-09-29 | 2015-04-01 | Daimler Ag | Battery management system for a motor vehicle |
DE102015200730A1 (en) * | 2015-01-19 | 2016-07-21 | Leopold Schoeller | Battery-charging method |
DE102015217815A1 (en) * | 2015-09-17 | 2017-03-23 | Robert Bosch Gmbh | Method for operating a battery cell |
-
2018
- 2018-07-09 DE DE102018211264.9A patent/DE102018211264A1/en active Pending
-
2019
- 2019-07-09 CN CN201910613970.1A patent/CN110707769A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1531164A (en) * | 2003-03-12 | 2004-09-22 | 三美电机株式会社 | Charging method of secondary battery and device using same |
US20100060240A1 (en) * | 2006-11-06 | 2010-03-11 | Commissariat A L'energie Atomique | Method for managing charging of a rechargeable battery |
US20130026976A1 (en) * | 2011-07-26 | 2013-01-31 | Getac Technology Corporation | Pulse modulation charging method and apparatus |
WO2016097340A1 (en) * | 2014-12-19 | 2016-06-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method and device for charging a lithium-ion battery by pulses |
CN107093777A (en) * | 2017-04-13 | 2017-08-25 | 宁德时代新能源科技股份有限公司 | Battery charging method and device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112928351A (en) * | 2021-02-10 | 2021-06-08 | 中国科学院金属研究所 | Pulse charging technology of lithium-sulfur battery |
Also Published As
Publication number | Publication date |
---|---|
DE102018211264A1 (en) | 2020-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5952436B2 (en) | Battery energy storage device charge / discharge control method and battery energy storage device therefor | |
US8896272B2 (en) | Systems and methods of battery charging with dynamic float voltage | |
JP4121945B2 (en) | Method and apparatus for charging a rechargeable battery with a non-liquid electrolyte | |
EP3157131B1 (en) | Charge control device and charge control method | |
CN1200204A (en) | Constant-current/constant-voltage battery charger | |
JP2007288982A (en) | Charging circuit and charging method for the same | |
JP2015515321A5 (en) | ||
JPH08508609A (en) | Battery charging method and device | |
JP3213401B2 (en) | Charging method for non-aqueous secondary batteries | |
RU2017117680A (en) | METHOD AND SYSTEM OF ADAPTIVE CHARGING THE BATTERY | |
US11196244B2 (en) | Electronic device and control method thereof | |
JP2017093284A (en) | Battery charging method and battery charging apparatus | |
JP2010252474A (en) | Method of charging secondary battery | |
TWI584554B (en) | Temperature-controlled power supply system and method | |
WO2015162877A1 (en) | Lithium ion secondary battery system and lithium secondary battery system operation method | |
CN110707769A (en) | Battery charging method and control unit | |
US6326769B1 (en) | Limitation of power dissipation in Li battery | |
JP2019205242A (en) | Charge control device | |
US9379575B2 (en) | Battery charger noise reduction by frequency switching | |
CN109217407B (en) | Electronic device | |
JP2007259632A (en) | Charging circuit and charging control method | |
JP2001298872A (en) | Power storage system | |
JP2019129686A (en) | Dc/dc converter and power supply system | |
CN110707770B (en) | Control unit and method for charging a battery pack | |
KR102516361B1 (en) | Method and apparatus for charging battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |