CN110649462B - A method for compressing the spectral linewidth of quantum cascade lasers - Google Patents
A method for compressing the spectral linewidth of quantum cascade lasers Download PDFInfo
- Publication number
- CN110649462B CN110649462B CN201910822328.4A CN201910822328A CN110649462B CN 110649462 B CN110649462 B CN 110649462B CN 201910822328 A CN201910822328 A CN 201910822328A CN 110649462 B CN110649462 B CN 110649462B
- Authority
- CN
- China
- Prior art keywords
- quantum cascade
- cascade laser
- laser
- optical feedback
- feedback
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003595 spectral effect Effects 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims abstract description 69
- 238000005259 measurement Methods 0.000 claims description 9
- 230000010287 polarization Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 5
- 230000006835 compression Effects 0.000 abstract description 7
- 238000007906 compression Methods 0.000 abstract description 7
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010905 molecular spectroscopy Methods 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4018—Lasers electrically in series
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明涉及一种压缩量子级联激光器光谱线宽的方法,在量子级联激光器输出光路上设置光反馈装置,其特征在于,量子级联激光器的输出光经过光反馈装置后部分光返回到量子级联激光器的激光腔中与量子级联激光器的输出光发生耦合,光反馈比达到强光反馈,同时,对光反馈相位不进行控制,从而在无反馈相位控制的条件下使用强光反馈压缩量子级联激光器的光谱线宽。与传统光反馈的方案相比,本发明不需要使用压电传感器控制光反馈的相位,因此具有装置简单、成本低的优势。
The invention relates to a method for compressing the spectral line width of a quantum cascade laser. An optical feedback device is arranged on the output optical path of the quantum cascade laser. The invention is characterized in that the output light of the quantum cascade laser passes through the optical feedback device. The laser cavity of the cascade laser is coupled with the output light of the quantum cascade laser, and the optical feedback ratio reaches the strong optical feedback. At the same time, the optical feedback phase is not controlled, so the strong optical feedback compression is used under the condition of no feedback phase control. Spectral linewidths of quantum cascade lasers. Compared with the traditional optical feedback solution, the present invention does not need to use a piezoelectric sensor to control the phase of the optical feedback, so it has the advantages of simple device and low cost.
Description
技术领域technical field
本发明涉及半导体光电技术领域激光器稳频的方法,尤其涉及一种压缩量子级联激光器光谱线宽的方法。The invention relates to a method for stabilizing the frequency of a laser in the technical field of semiconductor optoelectronics, in particular to a method for compressing the spectral line width of a quantum cascade laser.
背景技术Background technique
量子级联激光器是一种基于电子在导带中的子带间跃迁实现受激辐射的半导体激光光源。其辐射光谱覆盖中红外和太赫兹波段,在分子光谱学、气体检测、自由空间光通信、光电对抗等领域有重要的应用价值。以上应用通常需要使用单纵模的量子级联激光器,包括单模激发的法布里-珀罗腔激光器、分布反馈激光器、分布布拉格反射激光器、垂直腔面发射激光器,以及外腔激光器。由于激光器中自发辐射所产生的噪声、激光器电流源的噪声和激光器温度控制器的噪声,以上单纵模量子级联激光器输出的激光存在有限的光谱线宽,通常在兆赫兹量级。这一线宽能够满足通常的气体检测需求,但是无法满足高分辨率分子光谱学、窄吸收峰气体小分子等场合的检测需要。因此需要压缩量子级联激光器的光谱线宽。A quantum cascade laser is a semiconductor laser light source that realizes stimulated emission based on the transition of electrons between subbands in the conduction band. Its radiation spectrum covers the mid-infrared and terahertz bands, and has important application value in the fields of molecular spectroscopy, gas detection, free-space optical communication, and optoelectronic countermeasures. The above applications usually require the use of single longitudinal mode quantum cascade lasers, including single mode excited Fabry-Perot cavity lasers, distributed feedback lasers, distributed Bragg reflection lasers, vertical cavity surface emitting lasers, and external cavity lasers. Due to the noise generated by spontaneous emission in the laser, the noise of the laser current source and the noise of the laser temperature controller, the laser output from the above single longitudinal mode quantum cascade laser has a limited spectral linewidth, usually in the order of megahertz. This linewidth can meet the general gas detection requirements, but it cannot meet the detection needs of high-resolution molecular spectroscopy, small gas molecules with narrow absorption peaks, etc. Therefore, it is necessary to compress the spectral linewidth of quantum cascade lasers.
压缩量子级联激光器光谱线宽的常用方法包括:I.将激光器锁相到某种气体的吸收峰上,通过检测激光器频率变化所产生的误差信号控制激光器的电流进行稳频[Williams et al.,Opt.Lett.24,1844(1999)]。但是这一方法要求激光器的频率与气体的吸收峰频率近似,因此激光器丧失可调谐性。II.将激光器锁相到高品质因子光学腔的某个纵模上,当激光器频率与光学腔纵模频率不一致时产生误差信号,从而控制激光器的电流进行稳频[Taubman et al.,Spectr.Acta 60,3457(2004)]。但是这一方法要求对激光器进行相位调制。III.将激光器通过差频或者和频技术锁相到近红外波段的光频梳上[Argenceet al.,Nature Photon.9,456(2015)]。但是这一方法所需要的实验装置极为复杂。相对简易的方法包括:通过检测量子级联激光器电压的变化进行稳频[专利号WO2014/198707A1;Tombez et al.,Opt.Lett.38,5079(2013);Sergachev,Opt.Lett.39,6411(2014)],以及将激光器锁相到光学延迟线上[Shehzad et al.,Opt.Lett.44,3470(2019)]。以上所有方法均需要对激光器进行主动稳频,本发明提出一种利用强光反馈对量子级联激光器进行被动稳频的简易方法。Common methods of compressing the spectral linewidth of quantum cascade lasers include: I. Phase-lock the laser to the absorption peak of a certain gas, and control the current of the laser to stabilize the frequency by detecting the error signal generated by the frequency change of the laser [Williams et al. , Opt. Lett. 24, 1844 (1999)]. But this method requires the laser frequency to approximate the absorption peak frequency of the gas, so the laser loses tunability. II. Phase-lock the laser to a certain longitudinal mode of the high-quality optical cavity, and generate an error signal when the frequency of the laser is inconsistent with the frequency of the longitudinal mode of the optical cavity, thereby controlling the current of the laser to stabilize the frequency [Taubman et al., Spectr. Acta 60, 3457 (2004)]. But this method requires phase modulation of the laser. III. Phase-lock the laser to an optical frequency comb in the near-infrared band by difference frequency or sum frequency technology [Argence et al., Nature Photon. 9,456 (2015)]. However, the experimental setup required for this method is extremely complex. Relatively simple methods include: frequency stabilization by detecting changes in quantum cascade laser voltage [Patent No. WO2014/198707A1; Tombez et al., Opt. Lett. 38, 5079 (2013); Sergachev, Opt. Lett. 39, 6411 (2014)], and phase locking a laser to an optical delay line [Shehzad et al., Opt. Lett. 44, 3470 (2019)]. All the above methods require active frequency stabilization of the laser, and the present invention provides a simple method for passive frequency stabilization of the quantum cascade laser by using strong light feedback.
如图1所示,光反馈是指在激光器输出光路上由于某种反射装置如平面镜的存在,部分光返回到激光腔中与激光器的输出光发生耦合的现象。激光器的光谱行为与光反馈比和光反馈相位相关。光反馈比定义为反射光的光功率与自由运转激光器光功率的比值。光反馈相位由激光器和反射装置之间的距离决定。一般的半导体激光器在强光反馈条件下(反馈比大于约1%)会发生失稳,光谱线宽急剧增加。在弱光反馈条件下(反馈比小于约1%),当反馈相位同相或近似同相时,激光器光谱线宽压缩[Schunk and Petermann,IEEEJ.Quantum.Electron.24,1242(1988)]。当反馈初始相位反相或近似反相时,激光器光谱线宽展宽。因此,在使用弱光反馈且精确控制光反馈相位的条件下能够压缩激光器的线宽。如图1所示,光反馈相位通常由压电传感器控制[Dahmani et al.,Opt.Lett.12,876(1987)]。但是以上系统的稳定性和可靠性差,因此对半导体激光器线宽压缩的效果一般。As shown in Figure 1, optical feedback refers to the phenomenon in which part of the light returns to the laser cavity and couples with the output light of the laser due to the existence of a certain reflective device such as a plane mirror on the output optical path of the laser. The spectral behavior of a laser is related to the optical feedback ratio and optical feedback phase. The optical feedback ratio is defined as the ratio of the optical power of the reflected light to the optical power of the free-running laser. The optical feedback phase is determined by the distance between the laser and the reflector. Under the condition of strong light feedback (the feedback ratio is greater than about 1%), the general semiconductor laser will be unstable, and the spectral linewidth will increase sharply. Under weak light feedback conditions (feedback ratios less than about 1%), the laser spectral linewidth is compressed when the feedback phases are in-phase or nearly in-phase [Schunk and Petermann, IEEE J. Quantum. Electron. 24, 1242 (1988)]. When the initial phase of the feedback is reversed or approximately reversed, the laser spectral linewidth broadens. Therefore, the linewidth of the laser can be compressed under the condition that weak optical feedback is used and the phase of the optical feedback is precisely controlled. As shown in Fig. 1, the optical feedback phase is usually controlled by a piezoelectric sensor [Dahmani et al., Opt. Lett. 12, 876 (1987)]. However, the stability and reliability of the above systems are poor, so the effect on the linewidth compression of semiconductor lasers is general.
发明内容SUMMARY OF THE INVENTION
自由运转的量子级联激光器的光谱线宽无法满足高分辨率分子光谱学和气体小分子窄吸收峰的检测需求。为此,本发明的目的是提出一种基于强光反馈压缩量子级联激光器光谱线宽的方法。The spectral linewidth of free-running quantum cascade lasers cannot meet the requirements of high-resolution molecular spectroscopy and detection of narrow absorption peaks of small gas molecules. Therefore, the purpose of the present invention is to propose a method for compressing the spectral linewidth of a quantum cascade laser based on strong light feedback.
为了达到上述目的,本发明的技术方案是提供了一种压缩量子级联激光器光谱线宽的方法,在量子级联激光器输出光路上设置光反馈装置,其特征在于,量子级联激光器的输出光经过光反馈装置后部分光返回到量子级联激光器的激光腔中与量子级联激光器的输出光发生耦合,光反馈比达到强光反馈,同时,对光反馈相位不进行控制,从而在无反馈相位控制的条件下使用强光反馈压缩量子级联激光器的光谱线宽。In order to achieve the above object, the technical solution of the present invention is to provide a method for compressing the spectral linewidth of a quantum cascade laser, and an optical feedback device is arranged on the output optical path of the quantum cascade laser, which is characterized in that the output light of the quantum cascade laser is After passing through the optical feedback device, part of the light returns to the laser cavity of the quantum cascade laser and is coupled with the output light of the quantum cascade laser. The optical feedback ratio achieves strong optical feedback. At the same time, the phase of the optical feedback is not controlled, so that there is no feedback Compression of the spectral linewidth of a quantum cascade laser using intense light feedback under phase control.
优选地,采用市电驱动的电流源、市电驱动的电压源、电池驱动的低噪声电流源或电池驱动的低噪声电压源为所述量子级联激光器供电。Preferably, a mains-driven current source, a mains-driven voltage source, a battery-driven low-noise current source or a battery-driven low-noise voltage source are used to power the quantum cascade laser.
优选地,所述光反馈装置采用部分反射的光学透镜,或者采用与所述量子级联激光器输出光偏振方向有一定夹角的偏振片。Preferably, the optical feedback device adopts a partially reflective optical lens, or adopts a polarizer that has a certain angle with the polarization direction of the output light of the quantum cascade laser.
优选地,所述光反馈装置包括分束镜、偏振片一、偏振片二和反射镜,其中:Preferably, the optical feedback device includes a beam splitter, a polarizer, a polarizer and a reflector, wherein:
分束镜用于将所述量子级联激光器的输出光分为两路,一路用于光反馈,另外一路用于线宽测量;The beam splitter is used to divide the output light of the quantum cascade laser into two paths, one for optical feedback and the other for line width measurement;
偏振片一的偏振方向保持与所述量子级联激光器的输出光偏振方向一致;The polarization direction of the first polarizer is kept consistent with the polarization direction of the output light of the quantum cascade laser;
通过旋转偏振片二改变其与偏振片一的夹角控制所述光反馈比的大小。The magnitude of the light feedback ratio is controlled by rotating the second polarizer to change its angle with the first polarizer.
优选地,还包括用于进行线宽测量的线宽测量装置,通过分束镜分出的用于线宽测量的一路光输入该线宽测量装置。Preferably, a line width measuring device for measuring the line width is also included, and a line of light for the line width measurement split by the beam splitter is input to the line width measuring device.
优选地,还包括光束准直镜,所述量子级联激光器的输出光经过光束准直镜准直后再输入所述分束镜。Preferably, a beam collimating mirror is also included, and the output light of the quantum cascade laser is collimated by the beam collimating mirror and then input to the beam splitting mirror.
优选地,所述量子级联激光器输出波长在中红外波段或太赫兹波段,输出模式为单纵模。Preferably, the output wavelength of the quantum cascade laser is in the mid-infrared band or the terahertz band, and the output mode is a single longitudinal mode.
与传统光反馈的方案相比,本发明不需要使用压电传感器控制光反馈的相位,因此具有装置简单、成本低的优势。另外,本发明对光反馈不可避免的相位抖动不敏感,因此具有稳定性高的优势。另一方面,本发明使用强光反馈(反馈比大于约1%),而传统光反馈的方案只能使用弱光反馈(反馈比大于约1%),因此,本发明对量子级联激光器光谱线宽压缩的效果好。与常用的压缩量子级联激光器的三种方案相比,本发明所提出的方案大大简化了装置的复杂度和成本。Compared with the traditional optical feedback solution, the present invention does not need to use a piezoelectric sensor to control the phase of the optical feedback, so it has the advantages of simple device and low cost. In addition, the present invention is not sensitive to the inevitable phase jitter of optical feedback, and thus has the advantage of high stability. On the other hand, the present invention uses strong light feedback (the feedback ratio is greater than about 1%), while the traditional optical feedback scheme can only use weak light feedback (the feedback ratio is greater than about 1%). The line width compression effect is good. Compared with the three commonly used solutions of compressed quantum cascade lasers, the solution proposed by the present invention greatly simplifies the complexity and cost of the device.
附图说明Description of drawings
图1为传统弱光反馈对半导体激光器稳频的示意图。该装置需要压电传感器精确控制平面镜的位置,且光反馈强度弱(反馈比小于约1%)。Figure 1 is a schematic diagram of the frequency stabilization of a semiconductor laser by traditional weak light feedback. This device requires a piezoelectric sensor to precisely control the position of the flat mirror, and the intensity of the optical feedback is weak (the feedback ratio is less than about 1%).
图2为本发明量子级联激光器光谱线宽压缩比与光反馈比和光反馈相位的关系图。线宽压缩比定义为自由运转激光器的线宽与光反馈下激光器的线宽比值。FIG. 2 is a graph showing the relationship between the spectral line width compression ratio of the quantum cascade laser of the present invention, the optical feedback ratio and the optical feedback phase. The linewidth compression ratio is defined as the ratio of the linewidth of the free-running laser to the linewidth of the laser under optical feedback.
图3为本发明强光反馈对量子级联激光器稳频的示意图。该装置不需要压电传感器控制平面镜的位置,且光反馈强度强(反馈比大于约1%)。FIG. 3 is a schematic diagram of frequency stabilization of a quantum cascade laser by strong light feedback according to the present invention. The device does not require piezoelectric sensors to control the position of the flat mirror, and the optical feedback intensity is strong (the feedback ratio is greater than about 1%).
图4为本发明使用强光反馈压缩量子级联激光器光谱线宽的实施例效果图。FIG. 4 is an effect diagram of an embodiment of the present invention using strong light feedback to compress the spectral linewidth of a quantum cascade laser.
图5为本发明使用强光反馈压缩量子级联激光器光谱线宽及其测量的实施例图。FIG. 5 is a diagram of an embodiment of the present invention using strong light feedback to compress the spectral linewidth of a quantum cascade laser and its measurement.
图6为本发明使用强光反馈抑制量子级联激光器频率噪声的实施例效果图。FIG. 6 is an effect diagram of an embodiment of the present invention using strong light feedback to suppress frequency noise of a quantum cascade laser.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
如图2所示,在弱光反馈条件下(反馈比小于约1%),取决于光反馈相位,量子级联激光器的光谱线宽可能压缩或者展宽。在强光反馈条件下(反馈比大于约1%),对于任何光反馈相位,量子级联激光器的线宽均被压缩。因此,在强光反馈条件下,不需要任何包括压电传感器在内的相位控制装置即可有效的压缩量子级联激光器的线宽。基于以上分析,本发明提出的技术方案原理如图3所示,该方案主要包括量子级联激光器和平面镜,而不包括且不需要图1中的压电传感器。使用该方案,图4给出了强光反馈在不同反馈比下对量子级联激光器光谱线宽的压缩效果。自由运转条件下,量子级联激光器的光谱线宽为7.8MHz。反馈比为42%的条件下,该量子级联激光器的光谱线宽压缩到了107kHz。这一方案将量子级联激光器的线宽压缩了约73倍,远远优于专利WO2014/198707A1中利用量子级联激光器电压稳频方案中的2.8倍。As shown in Fig. 2, under weak optical feedback conditions (feedback ratio less than about 1%), the spectral linewidth of the quantum cascade laser may be compressed or broadened depending on the optical feedback phase. Under strong optical feedback conditions (feedback ratio greater than about 1%), the linewidth of the quantum cascade laser is compressed for any optical feedback phase. Therefore, under the condition of strong light feedback, the linewidth of the quantum cascade laser can be effectively compressed without any phase control devices including piezoelectric sensors. Based on the above analysis, the principle of the technical solution proposed by the present invention is shown in FIG. 3 . The solution mainly includes a quantum cascade laser and a plane mirror, but does not include and does not require the piezoelectric sensor in FIG. 1 . Using this scheme, Fig. 4 shows the compression effect of the strong light feedback on the spectral linewidth of the quantum cascade laser under different feedback ratios. Under free-running conditions, the spectral linewidth of the quantum cascade laser is 7.8 MHz. With a feedback ratio of 42%, the spectral linewidth of the quantum cascade laser is compressed to 107kHz. This scheme compresses the linewidth of the quantum cascade laser by about 73 times, which is far superior to the 2.8 times of the voltage stabilization scheme of the quantum cascade laser in the patent WO2014/198707A1.
本发明的一种具体实现方式如图5所示,应当说明的是本发明并不限于以下描述的实施方式,还可以通过其他类似的装置,基于本发明提出的原理和原则实现相同的功能。A specific implementation of the present invention is shown in FIG. 5 . It should be noted that the present invention is not limited to the embodiments described below, and other similar devices can also be used to achieve the same functions based on the principles and principles proposed by the present invention.
图5中的装置包括三个主要组成部分:I.光源部分;II.光反馈装置;III.线宽测量装置。The device in FIG. 5 includes three main components: I. Light source part; II. Optical feedback device; III. Line width measurement device.
I.光源部分包括激光器驱动电源1、量子级联激光器2和光束准直镜3。本实施例中采用的激光器驱动电源1为市电驱动的电流源。量子级联激光器2是法布里-珀罗腔激光器。量子级联激光器2输出波长在中红外波段,输出模式为单纵模。光束准直镜3为非球面透镜,对量子级联激光器输出的激光束进行准直。I. The light source part includes a laser driving
除上述技术方案之外,激光器驱动电源1还可以采用市电驱动的电压源,或电池驱动的低噪声电流源,或电池驱动的低噪声电压源为量子级联激光器2供电。量子级联激光器2还可以是分布反馈激光器、分布布拉格反射激光器、垂直腔面发射激光器、以及外腔激光器等可以输出单纵模的激光器。激光器输出波长可以在太赫兹波段。光束准直镜3并不是实施例中必须的元件,本领域技术人员也可以不使用光束准直镜3。In addition to the above technical solutions, the laser driving
II.光反馈装置包括分束镜4、偏振片5、偏振片6和反射镜7。分束镜4将经过光束准直镜3准直后的激光束分为两路:一路用于光反馈,另外一路用于线宽测量。本实施例中偏振片5的偏振方向保持与激光器输出光偏振方向一致,以下将激光器输出光偏振方向简称为TM方向。偏振片6用于控制反馈光的强度。通过旋转偏振片6改变其与偏振片5的夹角能够控制光反馈比的大小。反射镜7为平面反射镜。II. The optical feedback device includes a
除上述技术方案之外,光反馈装置还有多种其他实现方式,例如采用部分反射的光学透镜,或者采用与TM方向有一定夹角的偏振片等实现光反馈。In addition to the above technical solutions, there are many other implementations of the optical feedback device, such as using a partially reflective optical lens, or using a polarizer with a certain angle to the TM direction to achieve optical feedback.
III.线宽测量装置包括光隔离器8、鉴频器9、光电探测器10和电谱分析仪11。本实施例中,光隔离器8用于避免测量光路中器件产生的光反馈。鉴频器9使用CO气池,目的是将量子级联激光器2的频率噪声转化为强度噪声。光电探测器10将转化后的强度噪声转化为电学信号。电谱分析仪11将量子级联激光器2的频率噪声谱在频域中显示出来。量子级联激光器2的光谱线宽是通过分析其频率噪声谱得出来的。III. The line width measurement device includes an
除上述技术方案之外,线宽测量装置可以通过与其他窄线宽的激光器如光学频率梳进行混频得出来。In addition to the above technical solutions, the linewidth measurement device can be obtained by mixing with other narrow linewidth lasers such as optical frequency combs.
图6给出了使用本发明抑制量子级联激光器频率噪声的效果图。相对于自由运转的激光器,强光反馈减小了100MHz以下的频率噪声。尤其是100kHz以下的频率噪声被抑制了约40dB。激光器的光谱线宽由图中高于β线的频率噪声所决定,通过对这一部分频率噪声进行积分得到图4中的量子级联激光器光谱线宽随反馈比的变化图(具体方法参考[Domenico et al.Appl.Opt.49,4801(2010).])。Fig. 6 shows the effect diagram of using the present invention to suppress the frequency noise of the quantum cascade laser. Strong light feedback reduces frequency noise below 100MHz relative to a free-running laser. Especially the frequency noise below 100kHz is suppressed by about 40dB. The spectral linewidth of the laser is determined by the frequency noise higher than the β line in the figure. By integrating this part of the frequency noise, the change of the spectral linewidth of the quantum cascade laser with the feedback ratio in Figure 4 is obtained (for the specific method, refer to [Domenico et al. al. Appl. Opt. 49, 4801 (2010).]).
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910822328.4A CN110649462B (en) | 2019-09-02 | 2019-09-02 | A method for compressing the spectral linewidth of quantum cascade lasers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910822328.4A CN110649462B (en) | 2019-09-02 | 2019-09-02 | A method for compressing the spectral linewidth of quantum cascade lasers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110649462A CN110649462A (en) | 2020-01-03 |
CN110649462B true CN110649462B (en) | 2020-12-04 |
Family
ID=68991424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910822328.4A Active CN110649462B (en) | 2019-09-02 | 2019-09-02 | A method for compressing the spectral linewidth of quantum cascade lasers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110649462B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112864797B (en) * | 2021-03-02 | 2024-11-08 | 苏州大学 | Optically pumped spin VCSEL periodic oscillation millimeter wave signal generation device and method |
CN114414522B (en) * | 2021-12-27 | 2024-06-11 | 中国科学院上海微系统与信息技术研究所 | Device and method for representing optical frequency comb coherent spectrum by adopting terahertz optical self-detection |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5537432A (en) * | 1993-01-07 | 1996-07-16 | Sdl, Inc. | Wavelength-stabilized, high power semiconductor laser |
CN207691195U (en) * | 2018-01-02 | 2018-08-03 | 杭州兰特普光电子技术有限公司 | Narrow linewidth semiconductor laser based on bulk of optical feedback |
CN110190508A (en) * | 2019-05-27 | 2019-08-30 | 深港产学研基地(北京大学香港科技大学深圳研修院) | A kind of miniaturization narrow linewidth semiconductor laser |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6729857B2 (en) * | 2015-09-28 | 2020-07-29 | 日本電気株式会社 | Semiconductor laser light source |
CN108110611A (en) * | 2018-01-02 | 2018-06-01 | 杭州兰特普光电子技术有限公司 | Narrow linewidth semiconductor laser based on bulk of optical feedback |
-
2019
- 2019-09-02 CN CN201910822328.4A patent/CN110649462B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5537432A (en) * | 1993-01-07 | 1996-07-16 | Sdl, Inc. | Wavelength-stabilized, high power semiconductor laser |
CN207691195U (en) * | 2018-01-02 | 2018-08-03 | 杭州兰特普光电子技术有限公司 | Narrow linewidth semiconductor laser based on bulk of optical feedback |
CN110190508A (en) * | 2019-05-27 | 2019-08-30 | 深港产学研基地(北京大学香港科技大学深圳研修院) | A kind of miniaturization narrow linewidth semiconductor laser |
Non-Patent Citations (3)
Title |
---|
Intrinsic stability of quantum cascade lasers against optical feedback;F. P. Mezzapesa et al.;《OPTICS EXPRESS》;20130603;第21卷(第11期);摘要,第13750-13756页,图1、4 * |
Opticsl-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser;G. Maisons et al.;《OPTICS LETTERS》;20101101;第35卷(第21期);摘要,图1及其描述 * |
Simple approach to the relation between laser frequency noise and laser line shape;Gianni Di Domenico et al.;《APPLIED OPTICS》;20100901;第49卷(第25期);第4801-4807页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110649462A (en) | 2020-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5432610A (en) | Diode-pumped power build-up cavity for chemical sensing | |
US5134622A (en) | Diode-pumped optical parametric oscillator | |
CN106711745A (en) | Wide-tuning and narrow-linewidth nanosecond pulse double-resonance medium-infrared parameter oscillator | |
US20050254056A1 (en) | System and method for controlling the light source of a cavity ringdown spectrometer | |
US20130175450A1 (en) | Optical chamber module assembly | |
Kitching et al. | Room temperature generation of amplitude squeezed light from a semiconductor laser with weak optical feedback | |
Risk et al. | Diode laser pumped blue‐light source based on intracavity sum frequency generation | |
CN110649462B (en) | A method for compressing the spectral linewidth of quantum cascade lasers | |
Camargo et al. | Coherent Dual-Frequency Emission of a Vertical External-Cavity Semiconductor Laser at the Cesium ${\rm D} _ {2} $ Line | |
Marin et al. | Demonstration of high sensitivity spectroscopy with squeezed semiconductor lasers | |
CN110888118B (en) | A Differential Absorption LiDAR Transmitter for Detecting Atmospheric Pressure | |
Galiev et al. | Mirror-assisted self-injection locking of a laser to a whispering-gallery-mode microresonator | |
Stry et al. | Widely tunable diffraction limited 1000 mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy | |
CN118174129A (en) | Laser frequency stabilization system and method based on saturated absorption spectrum | |
Melentiev et al. | Simple and effective modulation of diode lasers | |
CN113113843B (en) | Coupled dual-wavelength laser frequency stabilization optical circuit system and method based on polarization spectroscopy | |
US10281391B2 (en) | Spectrally pure short-pulse laser | |
Chernyshov et al. | Diode laser with external double reflector for gas analysis | |
Ono et al. | Newly developed 1.7 μm band external cavity laser and its application to evaluation of ethanol concentration in distilled spirits | |
Camargo et al. | Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm | |
Kilper et al. | Nonclassical amplitude-squeezed light generated by semiconductor quantum well lasers | |
Balzer et al. | All semiconductor high power fs laser system with variable repetition rate | |
Gao et al. | A Power Efficient Faraday Laser at 780nm Rb Transition | |
Zhu et al. | Cavity-enhanced Raman spectroscopy for simultaneous detection of multiple gases using Pound-Drever-Hall technology | |
Hempler et al. | Advances in narrow-linewidth continuous wave semiconductor disk laser pumped optical parametric oscillators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |