[go: up one dir, main page]

CN110629194B - 一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法 - Google Patents

一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法 Download PDF

Info

Publication number
CN110629194B
CN110629194B CN201911055503.8A CN201911055503A CN110629194B CN 110629194 B CN110629194 B CN 110629194B CN 201911055503 A CN201911055503 A CN 201911055503A CN 110629194 B CN110629194 B CN 110629194B
Authority
CN
China
Prior art keywords
stainless steel
craln
transition layer
diamond film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911055503.8A
Other languages
English (en)
Other versions
CN110629194A (zh
Inventor
李晓
李传星
胡晓君
陈成克
蒋梅燕
刘成
吕枫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201911055503.8A priority Critical patent/CN110629194B/zh
Publication of CN110629194A publication Critical patent/CN110629194A/zh
Application granted granted Critical
Publication of CN110629194B publication Critical patent/CN110629194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:包括以下步骤:S1:不锈钢样品前处理:将不锈钢样品进行砂纸打磨,用丙酮和无水乙醇超声处理,烘干备用;S2:不锈钢表面沉积Cr/CrAlN过渡层:将S1步骤中的不锈钢样品装入磁控溅射设备的样品台,将Cr、Al靶材安装到靶座上,在不锈钢基底表面沉积Cr膜及CrAlN薄膜,得到含Cr/CrAlN过渡层的不锈钢样品;S3:在不锈钢表面制备金刚石薄膜:将S2步骤中含Cr/CrAlN过渡层的不锈钢样品进行超声种晶,利用热丝HFCVD进行沉积金刚石薄膜,实现在含Cr/CrAlN为过渡层的不锈钢表面上制备金刚石薄膜。采用本发明的技术,使金刚石膜与不锈钢之间结合力高,在洛氏硬度计150 kg载荷作用下薄膜未发生脱落。

Description

一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的 方法
技术领域
本发明属于金刚石薄膜制备领域,具体涉及一种以Cr/CrAlN为过渡层在不锈钢表面制备的金刚石薄膜结合力好且整个薄膜硬度高的方法。
背景技术
金刚石是碳的一种同素异形体,也是目前自然界中最硬的天然物质。在金刚石晶体中每个碳原子都以sp3杂化轨道与另外4个碳原子形成共价键,构成正四面体。金刚石中的C–C键很强,所有的价电子都参与了共价键的形成,没有自由电子,这种特殊的结构赋予了金刚石优异的性能,如高强度、高硬度、良好的化学稳定性、高热导率和良好的生物相容性。不锈钢是一类重要的金属材料,具有良好的力学性能和较好的耐腐蚀性能,广泛应用于食品、医疗器械等产品中,但是它还存在耐磨性不足、生物相容性不足和导热性差等问题。如果将金刚石以薄膜形式沉积在不锈钢表面上,则其耐磨性能、生物相容性、导热性能和寿命都会得到明显提高。因此,不锈钢表面沉积金刚石膜具有重要的意义。
然而,在不锈钢表面直接沉积金刚石薄膜存在如下问题:(1)碳在不锈钢中具有较高的扩散速率,当 CVD气氛中的碳到达不锈钢表面时会快速向不锈钢内扩散,导致无法达到金刚石形核所需临界碳浓度而难以形成金刚石薄膜。(2)不锈钢中Fe 、Ni元素的石墨催化作用,会使样品表面优先形成一层疏松的石墨层,导致薄膜脱落。(3)不锈钢与金刚石薄膜之间存在巨大热膨胀系数差,使得在CVD降温工艺阶段,金刚石薄膜与不锈钢之间形成巨大的热应力导致薄膜脱落。解决上述问题的方法是在不锈钢与金刚石薄膜之间引入过渡层。到目前为止,已经被研究的过渡层有:Cr、Al、Al/AlN、Al/W、Cr/CrN、Cr/CrN/CrTiAlN和Fe2B等。在这些过渡层中,CrN过渡层由于在CVD过程中会形成碳化物Cr3C2或Cr7C3,它们与金刚石之间存在共价键,整个薄膜表现出良好的结合力。但是,由于CrN过渡层的硬度为18GPa,比金刚石低很多,导致整个薄膜硬度偏低,影响使用性能和寿命。如果能提高CrN的硬度,并保持其优异的膜基结合力,则可以提高金刚石薄膜的使用性能和寿命。因此,在CrN膜的基础上开发一种具有更高硬度且保持优异膜基结合力的过渡层并沉积金刚石膜具有重要的意义。
发明内容
鉴于现有技术存在的问题,本发明的目的在于提供一种采用Cr/CrAlN作为过渡层在不锈钢基底上沉积出连续致密附着力好的金刚石薄膜且整个薄膜具有高硬度的方法。
所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:包括以下步骤:
S1:不锈钢样品前处理:将不锈钢样品进行砂纸打磨,用丙酮和无水乙醇超声处理,烘干备用;
S2:不锈钢表面沉积Cr/CrAlN过渡层:将S1步骤中的不锈钢样品装入磁控溅射设备的样品台,将Cr、Al靶材安装到靶座上,在不锈钢基底表面沉积Cr膜及CrAlN薄膜,得到含Cr/CrAlN过渡层的不锈钢样品;
S3:在不锈钢表面制备金刚石薄膜:将S2步骤中含Cr/CrAlN过渡层的不锈钢样品进行超声种晶,利用热丝HFCVD进行沉积金刚石薄膜,实现在含Cr/CrAlN为过渡层的不锈钢表面上制备金刚石薄膜。
所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:所述S2步骤不锈钢表面沉积Cr/CrAlN薄膜的具体过程如下:将S1处理后的不锈钢样品装入磁控溅射设备样品台上,将Cr、Al靶材安装在靶座上,调整Cr、Al靶材与基片的距离为68-71mm,关闭真空室,抽真空气压至1×10-3 Pa,打开加热装置,通入Ar气,调节腔体气压至1-2 Pa进行启辉,启辉成功后调节气压至0.7-0.8 Pa工作气压,进行Cr膜沉积 ,Cr膜沉积结束后,关闭样品挡板阀,通入N2,调节腔体气压至1-2Pa,进行Al靶启辉,启辉成功后调节气压至电离规0.8-1Pa,沉积CrAlN薄膜,沉积完成后,关闭电源、氩气、放气后,取出得到的含Cr/CrAlN为过渡层的不锈钢样品。
所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:沉积Cr层的工艺参数为: Ar气流量为19-22sccm,Cr靶功率为98-102W,基底温度为295-305℃,优选Ar气流量为20sccm,Cr靶功率为100W,基底温度为300℃,沉积时间为10–40min,Cr膜厚度为0.2-0.8µm。
所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:沉积CrAlN薄膜过程中Ar气流量为18-23sccm,N2气流量为4.8-5.2sccm,优选 Ar气流量为20sccm,N2气流量为5.0sccm,Al靶的功率为30–200 W,基底温度为295-305℃,优选为300℃,沉积时间20-120min,N含量为Cr与Al、N总量的31-40 at.%,Al含量为Cr与Al、N总量的3.6 at.%-24.3 at.%,CrAlN层厚度为0.7-3µm 。
所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:所述S3步骤中不锈钢表面沉积金刚石薄膜的具体过程包括如下步骤:
(1)将S2步骤中得到的含Cr/CrAlN过渡层的不锈钢样品放入含金刚石粉末、氧化铝和丙酮的悬浮溶液内超声震荡,取出吹干备用;
(2)将吹干的含Cr/CrAlN过渡层的不锈钢样品放入HFCVD炉中,抽真空并通入氢气和碳源,打开电源,利用热丝HFCVD进行金刚石薄膜沉积。
所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:丙酮悬浮液中,丙酮的体积与金刚石、氧化铝的质量比为20:0.19-0.25: 0.19-0.25,优选为20:0.2:0.2,体积单位为 ml,质量单位为g,金刚石的平均粒径250nm,氧化铝的平均粒径63 µm。
所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:碳源为丙酮,以氢气为载气采用鼓泡法引入,步骤(2)中的氢气分为两路引入,一路纯氢气气体直接通入CVD炉,另一路作为载气经丙酮溶液将丙酮一起通入CVD炉,纯氢气与氢气载气的流量比为180-220:80,优选为200:80。
所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:金刚石薄膜沉积的过程如下:先以功率1795-1805 W,气压1.5-1.8 kPa下沉积36-38min,优选功率为1800W,气压为1.6kPa,沉积时间为37min,然后调节工作气压至3.5-4.2kPa,优选为4.0 kPa,在其他工艺参数不变的条件下继续生长40-90 min,沉积完成后,关闭电源、冷却,打开真空室,取出得到产品。
所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:热丝高度为18-22mm,偏流为3.9-4.2 A,优选热丝高度为20mm,偏流为4.0 A。
本发明的有益效果:
(1)本发明通过采用上述技术,首先利用磁控溅射设备在不锈钢表面沉积一层Cr/CrAlN,再利用热丝化学沉积法在其上制备金刚石薄膜,并将氢气一分为二,其中一份作为载气将丙酮一起进料,且限定了通过限定纯氢气与氢气载气的流量比为180-220:80,优选为200:80,金刚石薄膜具有优异的膜基结合力,在洛氏硬度计以150 kgf的压入作用下薄膜不发生脱落;
(2)在同样的CVD条件下,与Cr/CrN过渡层上生长的金刚石薄膜相比,整个薄膜维氏硬度提高10 %以上。
(3)本发明中沉积的Cr膜厚度为0.2-0.8 µm。当厚度小于0.2 µm时,不锈钢与CrAlN结合力低,不能获得高结合力的金刚石薄膜,当厚度大于0.8 µm时,由于Cr硬度低,CrAlN的硬度支撑不能得到有效发挥。本发明中沉积CrAlN薄膜中Al含量为Cr与Al、N总量的3.6 at.%-24.3 at.%,CrAlN层厚度为0.7-3 µm,当Al含量小于3.6 at.%时,一方面由于Al对CrN的固溶强化效果不明显,整个薄膜的硬度提高不明显,另一方面Al元素提高金刚石形核率和质量的作用不明显,金刚石薄膜结合力不高。当Al含量大于24.3 at.%时,与金刚石和过渡层都具有优异结合力的铬碳化合物难以形成,薄膜结合力不高。当CrAlN厚度小于0.7 µm时,过渡层因阻碍Fe、C互扩散能力差,难以获得结合力优异的高质量金刚石薄膜。当CrAlN厚度大于3 µm时,过渡层内应力大,薄膜容易脱落,结合力不好。所以,只有在沉积的Cr膜在0.2-0.8 µm,且CrAlN薄膜中Al含量为3.6 at.%-24.3 at.%,厚度为0.7-3 µm时,配合CVD工艺在不锈钢表面材可以获得结合力优异的金刚石薄膜,整个薄膜硬度高。
附图说明
图1是实施例1中Cr/CrAlN(Al 18.2 at.%)过渡层上沉积的金刚石薄膜的Raman图谱;
图2是实施例1中Cr/CrAlN(Al 18.2 at.%)过渡层上沉积的金刚石薄膜在150 kgf作用下的洛氏硬度压痕图;
图3是实施例2中Cr/CrAlN(Al 24.3 at.%)过渡层上沉积的金刚石薄膜的Raman图谱;
图4是实施例2中Cr/CrAlN(Al 24.3 at.%)过渡层上沉积的金刚石薄膜在150 kgf作用下的洛氏硬度压痕图;
图5是实施例3中Cr/CrAlN(Al 3.6 at.%)过渡层上沉积的金刚石薄膜的Raman图谱;
图6是实施例3中Cr/CrAlN (Al 3.6 at.%)过渡层上沉积的金刚石薄膜在150 kgf作用下的洛氏硬度压痕图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的说明,但本发明所保护的范围不局限于所述范围。
实施例1:
将3Cr13不锈钢用600#、800#、1200#、1500#、2000#的砂纸依次打磨处理,接着将打磨好的样品分别用丙酮和无水乙醇超声震荡20min,用吹风机快速吹干,放入PVD设备中进行Cr/CrAlN过渡层沉积。沉积过程中采用的Cr靶和Al靶纯度都为99.999%,靶基距为70 mm。沉积Cr层的工艺参数为:真空度1×10–3 Pa,Ar气流量为20 sccm,工作气压为0.8 Pa,Cr靶功率为100 W,基底温度为300 ℃,沉积时间为20min。制备CrAlN层的工艺参数为:Ar气流量为20 sccm,N2气流量为5 sccm,工作气压为1 Pa,Al靶功率为120 W,Cr靶的功率为100 W,基底温度为300 ℃,沉积时间为60min;再将已经制备好Cr/CrAlN过渡层的样品在含金刚石粉末和氧化铝的丙酮溶液(0.2 g平均粒度为250 nm的金刚石粉、0.2g平均直径63μm的Al2O3粉末和20 ml丙酮三者混合)中超声种晶30min,取出烘干,然后放入HFCVD腔体中沉积金刚石薄膜,以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中,其中氢气流量为200sccm,载气(即氢气)流量为80 sccm,热丝高度20 mm,功率1800 W,气压1.6 kPa,沉积时间37 min,偏流4 A,然后增加工作气压至4 kPa,维持其他参数不变生长60min。
通过能谱仪(EDS)测得过渡层中N含量为32.6 at.%,Al含量为18.2 at.%。采用样品截面FESEM检测得Cr层厚度为0.5µm,CrAlN层厚度为2µm,金刚石厚度为1.2µm。使用维氏硬度计测量其涂层硬度HV1.96N,值为556.6,相对于Cr/CrN过渡层沉积金刚石薄膜的硬度值(358)提高了56%。由样品Raman图(图1)可见,金刚石峰明显且较尖,说明金刚石薄膜的质量较好。由洛氏压痕图(图2)知,可以看出压痕周围无脱落现象,表明金刚石薄膜附着力良好。
实施例2:
将3Cr13不锈钢用600#、800#、1200#、1500#、2000#的砂纸依次打磨,接着将打磨好的样品分别用丙酮和无水乙醇超声震荡20min,用吹风机快速吹干,放入PVD设备中进行Cr/CrAlN过渡层的沉积。沉积过程中Cr靶和Al靶纯度都为99.999%,靶基距为70 mm。沉积Cr层的工艺参数为:真空度0.8×10–3 Pa,Ar气流量为20 sccm,工作气压为0.8 Pa,Cr靶功率为100 W,沉积时间为40min。制备CrAlN层的工艺参数为:Ar气流量为20 sccm,N2气流量为5sccm,工作气压为1.0 Pa,Al靶功率为180 W,Cr靶的功率为100 W,基底温度为300 ℃,沉积时间为120min;再将已经制备好Cr/CrAlN薄膜过渡层的样品在含金刚石粉末和氧化铝的丙酮溶液(0.2 g平均粒度为250 nm的金刚石粉、0.2g平均直径63 μm的Al2O3粉末和20 ml丙酮三者混合)中超声震荡30min,进行种晶处理,然后放入热丝CVD腔体中制备金刚石薄膜,以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中,其中氢气流量为200 sccm,载气(即氢气)流量为80 sccm,热丝高度20 mm,功率1800 W,气压1.6 kPa,沉积时间37 min,偏流4 A,然后增加工作气压至4 kPa,维持其他参数不变生长90min生长结束后在氢气氛围下缓慢冷却得到金刚石薄膜。
通过能谱仪(EDS)测得过渡层中N含量为32.6 at.%、Al含量为24.3 at.%。采用样品截面FESEM检测得Cr层厚度为0.8 µm,CrAlN层厚度为3 µm,金刚石厚度为1.5 µm;采用Raman光谱分析金刚石薄膜的成分,由图3可见金刚石峰明显且较尖,说明获得了质量较好的金刚石薄膜。由图4可以看出在150 kgf力作用下,压痕周围只有少量脱落,表明金刚石薄膜与过渡层之间的附着力良好。使用维氏硬度计测量其涂层硬度HV1.96N,值为605.5,相比于Cr/CrN上沉积的金刚石薄膜的硬度值(358)了提高69 %。
实施例3:
将3Cr13不锈钢用600#、800#、1200#、1500#、2000#的砂纸依次打磨,将打磨好的样品分别用丙酮和无水乙醇超声震荡20min,用吹风机快速吹干,放入PVD设备中进行Cr/CrAlN过渡层沉积。沉积过程中所采用的Cr靶和Al靶纯度都为99.999%,靶基距为70 mm。沉积Cr层的工艺参数为:真空度为0.7×10–3 Pa,Ar气流量为20 sccm,工作气压为0.8 Pa,Cr靶功率为100 W,沉积时间为10min。制备CrAlN层的工艺参数为:Ar气流量为20 sccm,N2气流量为5 sccm,工作气压为1 Pa,Al靶功率为30 W,Cr靶的功率为100 W,基底温度为300℃,沉积时间为20min。再将已经制备好Cr/CrAlN薄膜过渡层的样品在含金刚石粉末和氧化铝的丙酮溶液(0.2 g平均粒度为250nm的金刚石粉、0.2g平均直径63μm的Al2O3粉末和20 ml丙酮三者混合)中超声震荡30min,进行种晶处理,然后放入热丝CVD腔体中沉积金刚石薄膜,以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中,其中氢气流量为200 sccm,载气(即氢气)流量为80 sccm,热丝高度20 mm,功率1800 W,气压1.6 kPa,沉积时间37min,偏流4 A;然后增加工作气压至4 kPa,维持其他参数不变生长40min,生长结束后在氢气氛围下缓慢冷却得到金刚石薄膜。
通过能谱仪(EDS)测得过渡层中N含量32.6 at.%,Al含量为3.6 at.%。采用样品截面FESEM检测得Cr层厚度为0.2 µm,CrAlN层厚度为0.7 µm,金刚石厚度为1.0 µm。采用Raman光谱分析金刚石薄膜的成分,由图5可见金刚石峰明显且较尖,说明获得了质量较好的金刚石薄膜。采用150 kgf洛氏压痕测试来表征薄膜结合力,由图6可见压痕周围无脱落现象,表明金刚石薄膜结合力较好。使用维氏硬度计测量其涂层硬度HV1.96N,值为395.5,相比于Cr/CrN过渡层上沉积的金刚石薄膜的硬度值(358)了提高11 %。

Claims (10)

1.一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:包括以下步骤:
S1:不锈钢样品前处理:将不锈钢样品进行砂纸打磨,用丙酮和无水乙醇超声处理,烘干备用;
S2:不锈钢表面沉积Cr/CrAlN过渡层:将S1处理后的不锈钢样品装入磁控溅射设备样品台上,将Cr、Al靶材安装在靶座上,调整Cr、Al靶材与基片的距离为68-71mm,关闭真空室,抽真空气压至1×10-3 Pa,打开加热装置,通入Ar气,调节腔体气压至1-2 Pa进行启辉,启辉成功后调节气压至0.7-0.8 Pa工作气压,进行Cr膜沉积 ,Cr膜沉积结束后,关闭样品挡板阀,通入N2,调节腔体气压至1-2Pa,进行Al靶启辉,启辉成功后调节气压至电离规0.8-1Pa,沉积CrAlN薄膜,Ar气流量为18-23sccm,N2气流量为4.8-5.2sccm,Al靶的功率为30–200 W,基底温度为295-305℃,沉积时间20-120min,沉积完成后,关闭电源、氩气、放气后,取出得到的含Cr/CrAlN为过渡层的不锈钢样品,N含量为Cr与Al、N总量的31-40 at.%,Al含量为Cr与Al、N总量的3.6 at.%-24.3 at.%,CrAlN层厚度为0.7-3µm;
S3:在不锈钢表面制备金刚石薄膜:(1)将S2步骤中得到的含Cr/CrAlN过渡层的不锈钢样品放入含金刚石粉末、氧化铝和丙酮的悬浮溶液内超声震荡,丙酮悬浮液中,丙酮的体积与金刚石、氧化铝的质量比为20:0.19-0.25: 0.19-0.25,体积单位为 ml,质量单位为g,取出吹干备用;
(2)将吹干的含Cr/CrAlN过渡层的不锈钢样品放入HFCVD炉中,抽真空并通入氢气和碳源,打开电源,利用热丝HFCVD进行金刚石薄膜沉积,先以功率1795-1805 W,气压1.5-1.8kPa下沉积36-38min,然后调节工作气压至3.5-4.2 kPa,在其他工艺参数不变的条件下继续生长40–90 min,沉积完成后,关闭电源、冷却,打开真空室,取出得到产品。
2.根据权利要求1所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:沉积Cr层的工艺参数为:Ar气流量为19-22sccm,Cr靶功率为98-102W,基底温度为295-305℃,沉积时间为10–40min,Cr膜厚度为0.2-0.8µm。
3.根据权利要求2所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:沉积Cr层的工艺参数为:Ar气流量为20sccm,Cr靶功率为100W,基底温度为300℃。
4.根据权利要求1所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:沉积CrAlN薄膜过程中 Ar气流量为20sccm,N2气流量为5.0sccm,基底温度为300℃。
5.根据权利要求1所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:丙酮的体积与金刚石、氧化铝的质量比为20:0.2:0.2,金刚石的平均粒径250nm,氧化铝的平均粒径63 µm。
6.根据权利要求1所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:碳源为丙酮,以氢气为载气采用鼓泡法引入,步骤(2)中的氢气分为两路引入,一路纯氢气气体直接通入CVD炉,另一路作为载气经丙酮溶液将丙酮一起通入CVD炉,纯氢气与氢气载气的流量比为180-220:80。
7.根据权利要求6所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:所述纯氢气与氢气载气的流量比为200:80。
8.根据权利要求1所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:金刚石薄膜沉积的过程的功率为1800W,气压为1.6kPa,沉积时间为37min。
9.根据权利要求1所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:热丝高度为18-22mm,偏流为3.9-4.2 A。
10.根据权利要求9所述一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法,其特征在于:所述热丝高度为20mm,偏流为4.0 A。
CN201911055503.8A 2019-10-31 2019-10-31 一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法 Active CN110629194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911055503.8A CN110629194B (zh) 2019-10-31 2019-10-31 一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911055503.8A CN110629194B (zh) 2019-10-31 2019-10-31 一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法

Publications (2)

Publication Number Publication Date
CN110629194A CN110629194A (zh) 2019-12-31
CN110629194B true CN110629194B (zh) 2021-11-02

Family

ID=68978686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911055503.8A Active CN110629194B (zh) 2019-10-31 2019-10-31 一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法

Country Status (1)

Country Link
CN (1) CN110629194B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850483A (zh) * 2020-07-22 2020-10-30 常州夸克涂层科技有限公司 一种多层梯度硬质涂层及其制备工艺
CN112877637B (zh) * 2021-01-12 2022-02-08 兰州理工大学 一种耐热蚀复合防护涂层及其制备方法
CN114411117B (zh) * 2021-12-31 2024-05-03 浙江工业大学 一种在不锈钢上制备表面微织构金刚石薄膜的方法
CN116043159A (zh) * 2023-01-16 2023-05-02 江西理工大学 一种提高CrAlN涂层耐磨抗腐蚀性能的后处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866252A (zh) * 2012-12-18 2014-06-18 中国科学院兰州化学物理研究所 在活塞表面制备复合薄膜技术
CN106244986A (zh) * 2016-08-08 2016-12-21 珠海罗西尼表业有限公司 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN107740068A (zh) * 2017-11-27 2018-02-27 浙江工业大学 一种在不锈钢表面沉积金刚石薄膜的新方法
CN107937914A (zh) * 2017-11-27 2018-04-20 浙江工业大学 一种在不锈钢表面的新颖过渡层上制备金刚石薄膜的方法
CN108179393A (zh) * 2018-01-18 2018-06-19 合肥永信等离子技术有限公司 一种CrAlSiCON纳米复合涂层及其制备方法
CN108660454A (zh) * 2017-03-28 2018-10-16 上海名古屋精密工具股份有限公司 涂层及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590579B2 (ja) * 2000-12-11 2004-11-17 オーエスジー株式会社 ダイヤモンド被覆部材およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866252A (zh) * 2012-12-18 2014-06-18 中国科学院兰州化学物理研究所 在活塞表面制备复合薄膜技术
CN106244986A (zh) * 2016-08-08 2016-12-21 珠海罗西尼表业有限公司 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN108660454A (zh) * 2017-03-28 2018-10-16 上海名古屋精密工具股份有限公司 涂层及其应用
CN107740068A (zh) * 2017-11-27 2018-02-27 浙江工业大学 一种在不锈钢表面沉积金刚石薄膜的新方法
CN107937914A (zh) * 2017-11-27 2018-04-20 浙江工业大学 一种在不锈钢表面的新颖过渡层上制备金刚石薄膜的方法
CN108179393A (zh) * 2018-01-18 2018-06-19 合肥永信等离子技术有限公司 一种CrAlSiCON纳米复合涂层及其制备方法

Also Published As

Publication number Publication date
CN110629194A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN110629194B (zh) 一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法
JP2999346B2 (ja) 基体表面被覆方法及び被覆部材
Michler et al. DLC Films deposited by bipolar pulsed DC PACVD
US6083570A (en) Synthetic diamond coatings with intermediate amorphous metal bonding layers and methods of applying such coatings
Saijo et al. The improvement of the adhesion strength of diamond films
JPH0535221B2 (zh)
CN1296518C (zh) 复合材料及其制备方法
CN101880866B (zh) 一种在硬质合金上为金刚石涂层制备金刚石-碳化硅-硅化钴复合中间层的方法
JP4330859B2 (ja) 被覆超硬合金およびその製造方法
CN105039928B (zh) 一种金刚石/碳化硅三维复合结构的制备方法及其制备的产品
Gaydaychuk et al. Influence of Al-Si-N interlayer on residual stress of CVD diamond coatings
US6821919B2 (en) Superior toughness and adhesive strength ceramic coating of titanium aluminum carbon nitride-amorphous carbon nanocomposite
Li et al. Thickness-controllable diamond films deposited on stainless steel using a Cr/Cr-Si-N interlayer prepared at different N2/Ar flow ratios
CN101451232B (zh) 一种纳米复合多层硬质薄膜制备方法
JPH0819522B2 (ja) 付着性にすぐれたダイヤモンド被覆焼結合金及びその製造方法
Haubner et al. Influence of the cobalt content in hot-pressed cemented carbides on the deposition of low-pressure diamond layers
KR100305315B1 (ko) 다이아몬드 막이 코팅된 절삭공구 및 그 제조방법
TW201016861A (en) Cemented WC with diamond film
Haubner et al. Diamond nucleation and growth on refractory metals using microwave plasma deposition
CN113308675A (zh) 一种高熵合金氮化物刀具涂层及其制备方法
Peng et al. Effect of traceable nitrogen from low-pressure plasma nitriding on diamond growth over WC-co cemented carbides
Shih et al. Application of diamond coating to tool steels
WO1993000454A1 (en) Diamond-covered member and production thereof
CN116240544A (zh) Pvd复合cvd的金刚石涂层制备方法及所制成的涂层和刀具
CN110527971B (zh) 一种以Cr/Cr-Si为过渡层在不锈钢表面制备金刚石薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant