CN110627495B - 一种低热导高熵铝酸盐陶瓷及其制备方法 - Google Patents
一种低热导高熵铝酸盐陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN110627495B CN110627495B CN201910900428.4A CN201910900428A CN110627495B CN 110627495 B CN110627495 B CN 110627495B CN 201910900428 A CN201910900428 A CN 201910900428A CN 110627495 B CN110627495 B CN 110627495B
- Authority
- CN
- China
- Prior art keywords
- powder
- aluminate
- entropy
- ceramic
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本发明涉及一种低热导高熵铝酸盐陶瓷及其制备方法,尤其涉及一种高纯度、高相对密度、低热导率高熵铝酸盐陶瓷及利用真空条件下放电等离子烧结法制备低热导高熵铝酸盐陶瓷的方法,属于高温隔热陶瓷领域,所述的高纯度密度是指纯度不低于95wt%,高相对密度是指相对密度不低于97%,低热导率是指室温热导率不高于4.1W·m‑1·K‑1,高熵是指铝酸盐陶瓷中金属元素的种类不低于五种。
Description
技术领域
本发明涉及一种低热导高熵铝酸盐陶瓷及其制备方法,尤其涉及一种高纯度、高相对密度、低热导率高熵铝酸盐陶瓷及利用真空条件下放电等离子烧结法制备低热导高熵铝酸盐陶瓷的方法,属于高温隔热陶瓷领域,所述的高纯度密度是指纯度不低于95wt%,高相对密度是指相对密度不低于97%,低热导率是指室温热导率不高于4.1W·m-1·K-1,高熵是指铝酸盐陶瓷中金属元素的种类不低于五种。
背景技术
新一代的陶瓷基航空发动机叶片的高温环境障/热障涂层材料以稀土硅酸盐、稀土铝酸盐等体系为主,其中稀土铝酸盐以其良好的抗水蒸汽腐蚀能力及与基体良好的化学相容性具备更优异的实际应用潜力。但单相的稀土铝酸盐由于热导率过高,不利于降低发动机叶片表面温度,这将提高基体所承受的温度压力,威胁发动机的可靠性。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提出一种低热导高熵铝酸盐陶瓷及其制备方法。通过高熵的技术,在铝酸盐中同时引入不低于5种稀土金属元素,可有效降低铝酸盐的热导率。
本发明的技术解决方案是:
一种低热导高熵铝酸盐陶瓷,该铝酸盐陶瓷的原料包括Y(NO3)3·6H2O粉末、Nd(NO3)3·6H2O粉末、Sm(NO3)3·6H2O粉末、Eu(NO3)3·6H2O粉末、Er(NO3)3·6H2O粉末和Al(NO3)3·9H2O粉末,其中Y(NO3)3·6H2O粉末、Nd(NO3)3·6H2O粉末、Sm(NO3)3·6H2O粉末、Eu(NO3)3·6H2O粉末、Er(NO3)3·6H2O粉末和Al(NO3)3·9H2O粉末的摩尔比为1:1:1:1:1:5;该铝酸盐陶瓷的结构式为(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3;该铝酸盐陶瓷的纯度不低于95wt%;该铝酸盐陶瓷的相对密度不低于97%;该铝酸盐陶瓷的室温热导率不高于4.1W·m-1·K-1。
一种低热导高熵铝酸盐陶瓷的制备方法,该方法的步骤包括:
(1)将铝酸盐陶瓷的原料在去离子水中进行溶解,溶解时间为0.5-2小时,溶解完成后得到溶液,在得到的溶液中加入过量氨水,使溶液的pH值调至9-10,有沉淀物质析出,过滤,取滤饼即为沉淀物质;
(2)将步骤(1)得到的沉淀物质进行干燥处理得到混合粉末,将干燥后的混合粉末放入高温炉中进行煅烧,煅烧温度为1550-1600℃,煅烧时间为2-4小时,得到陶瓷粉体;
(3)将步骤(2)得到陶瓷粉体放入放电等离子烧结炉中进行高温烧结,气氛为真空,烧结温度为1600-1650℃,烧结时间为3-10分钟,烧结压强为30-35MPa,真空度为8-15Pa,升温速率为50-100℃/分,得到铝酸盐陶瓷,制备得到的铝酸盐陶瓷的纯度不低于95wt%,相对密度不低于97%,室温热导率不高于4.1W·m-1·K-1。
本发明与现有技术相比具有如下有益效果:
(1)本发明首次以Y(NO3)3·6H2O、Nd(NO3)3·6H2O、Sm(NO3)3·6H2O、Eu(NO3)3·6H2O、Er(NO3)3·6H2O和Al(NO3)3·9H2O为原料,获得了高熵铝酸盐陶瓷;在真空条件下通过放电等离子体烧结获得高纯度、高相对密度、低热导率高熵铝酸盐陶瓷,经分析表明高熵铝酸盐陶瓷具有纯度高、相对密度高、热导率低的特点,纯度在95wt%以上,相对密度在97%以上,热导率在4.1W·m-1·K-1以下。
(2)本发明制备高熵铝酸盐粉体工艺过程简单快速,从Y(NO3)3·6H2O、Nd(NO3)3·6H2O、Sm(NO3)3·6H2O、Eu(NO3)3·6H2O、Er(NO3)3·6H2O和Al(NO3)3·9H2O原料直接得到高熵铝酸盐粉体,通过放电等离子烧结法短时间内快速获得高熵铝酸盐陶瓷。
(3)本发明制备得到的高纯度、高相对密度、低热导率高熵铝酸盐陶瓷的纯度、相对密度及颗粒尺寸可调节性好,可以通过真空高温烧结工艺调节纯度、相对密度及颗粒尺寸,制备过程灵活可控。
(4)目的在于克服现有技术的上述不足,提供一种低热导率高熵铝酸盐陶瓷及其制备方法,该制备方法工艺简单快速、实用性强,在工艺过程中不需要加入高温助烧结剂,制备得到的高熵铝酸盐陶瓷具有纯度高、相对密度高、热导率低等优点。
(5)一种低热导率高熵铝酸盐陶瓷的制备方法,以Y(NO3)3·6H2O、Nd(NO3)3·6H2O、Sm(NO3)3·6H2O、Eu(NO3)3·6H2O、Er(NO3)3·6H2O和Al(NO3)3·9H2O为原料,按照摩尔比为1:1:1:1:1:5在去离子水中进行溶解混合,混合时间为0.5小时,在混合均匀的溶液中加入过量氨水,使混合溶液pH值调至10,得到沉淀物质;将得到的沉淀物过滤并进行干燥处理得到混合物粉末,将干燥后的粉末放入高温炉中进行煅烧,煅烧温度为1550-1600℃,煅烧时间为2-4小时,得到高熵铝酸盐粉体;将得到的高熵铝酸盐粉体放入放电等离子烧结炉中进行高温烧结,气氛为真空,烧结温度为1600-1650℃,烧结时间为3-10分钟,烧结压强控制为30MPa,真空度均为8-15Pa,升温速率为50-100℃/分。
附图说明
图1为本发明实施例1制备得到的低热导高熵铝酸盐陶瓷粉体的示意图;
图2为本发明实施例1制备得到的低热导高熵铝酸盐陶瓷成分的X-射线衍射图谱;
图3为本发明实施例2制备得到的低热导高熵铝酸盐陶瓷的显微结构照片及各成分分布图;
图4为本发明实施例2制备得到的低热导高熵铝酸盐陶瓷的热膨胀曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
实施例1
将Y(NO3)3·6H2O、Nd(NO3)3·6H2O、Sm(NO3)3·6H2O、Eu(NO3)3·6H2O、Er(NO3)3·6H2O和Al(NO3)3·9H2O按Y(NO3)3·6H2O:Nd(NO3)3·6H2O:Sm(NO3)3·6H2O:Eu(NO3)3·6H2O:Er(NO3)3·6H2O:Al(NO3)3·9H2O=1:1:1:1:1:5的摩尔比称重,加入去离子水溶解,溶解时间为0.5小时,在混合均匀的溶液中加入过量氨水,使混合溶液pH值调至10,过滤得到沉淀物质;将得到的沉淀物进行干燥处理得到混合粉末,将干燥后的混合粉末放入高温炉中进行煅烧,煅烧温度为1550℃,煅烧时间为2小时,得到高熵铝酸盐粉体。将高熵铝酸盐粉体放入放电等离子烧结炉中进行高温烧结,气氛为真空,烧结温度为1650℃,烧结时间为3分钟,烧结压强控制为30MPa,真空度均为8Pa,升温速率为100℃/分,得到的低热导高熵铝酸盐陶瓷纯度为96wt%,相对密度为97%。粉体制备过程如图1所示,得到的低热导高熵铝酸盐陶瓷成分如图2的X-射线衍射图谱所示,表明当高温反应温度为1550℃时即可制备得到纯度不小于96wt%的低热导高熵铝酸盐陶瓷。相对密度为98%。显微结构如图3所示,可以观察到其中无气孔分布,各组成元素分布均匀,表明陶瓷相对密度较高。得到的低热导高熵铝酸盐陶瓷热膨胀系数如图4所示,得到高熵铝酸盐陶瓷热膨胀系数为9.1×10-6K-1。
实施例2
将Y(NO3)3·6H2O、Nd(NO3)3·6H2O、Sm(NO3)3·6H2O、Eu(NO3)3·6H2O、Er(NO3)3·6H2O和Al(NO3)3·9H2O按Y(NO3)3·6H2O:Nd(NO3)3·6H2O:Sm(NO3)3·6H2O:Eu(NO3)3·6H2O:Er(NO3)3·6H2O:Al(NO3)3·9H2O=1:1:1:1:1:5的摩尔比称重,加入去离子水溶解,混合时间为0.5小时,在混合均匀的溶液中加入过量氨水,使混合溶液pH值调至10,过滤得到沉淀物质;将得到的沉淀物进行干燥处理得到混合物粉末,将干燥后的粉末放入高温炉中进行煅烧,煅烧温度为1600℃,煅烧时间为3小时,得到高熵铝酸盐粉体。将高熵铝酸盐粉体放入放电等离子烧结炉中进行高温烧结,气氛为真空,烧结温度为1700℃,烧结时间为5分钟,烧结压强控制为30MPa,真空度均为10Pa,升温速率为80℃/分,得到的低热导高熵铝酸盐陶瓷纯度为98wt%,相对密度为98%。显微结构如图3所示,可以观察到其中无气孔分布,各组成元素分布均匀,表明陶瓷相对密度较高。得到的低热导高熵铝酸盐陶瓷热膨胀系数如图4所示,得到高熵铝酸盐陶瓷热膨胀系数为9.1×10-6K-1。
Claims (5)
1.一种低热导高熵铝酸盐陶瓷,其特征在于:该铝酸盐陶瓷的原料包括Y(NO3)3·6H2O粉末、Nd(NO3)3·6H2O粉末、Sm(NO3)3·6H2O粉末、Eu(NO3)3·6H2O粉末、Er(NO3)3·6H2O粉末和Al(NO3)3·9H2O粉末,其中Y(NO3)3·6H2O粉末、Nd(NO3)3·6H2O粉末、Sm(NO3)3·6H2O粉末、Eu(NO3)3·6H2O粉末、Er(NO3)3·6H2O粉末和Al(NO3)3·9H2O粉末的摩尔比为1:1:1:1:1:5;
该低热导高熵铝酸盐陶瓷的制备方法,该方法的步骤包括:
(1)将铝酸盐陶瓷的原料在去离子水中进行溶解,溶解时间为0.5-2小时,溶解完成后得到溶液,在得到的溶液中加入过量氨水,使溶液的pH值调至9-10,有沉淀物质析出,过滤,取滤饼即为沉淀物质;
(2)将步骤(1)得到的沉淀物质进行干燥处理得到混合粉末,将干燥后的混合粉末放入高温炉中进行煅烧,煅烧温度为1550-1600℃,煅烧时间为2-4小时,得到陶瓷粉体;
(3)将步骤(2)得到陶瓷粉体放入放电等离子烧结炉中进行高温烧结,气氛为真空,烧结温度为1600-1650℃,烧结时间为3-10分钟,烧结压强为30-35MPa,真空度为8-15Pa,升温速率为50-100℃/分,得到铝酸盐陶瓷。
2.根据权利要求1所述的一种低热导高熵铝酸盐陶瓷,其特征在于:该铝酸盐陶瓷的结构式为(Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3。
3.根据权利要求1所述的一种低热导高熵铝酸盐陶瓷,其特征在于:该铝酸盐陶瓷的纯度不低于95wt%。
4.根据权利要求1所述的一种低热导高熵铝酸盐陶瓷,其特征在于:该铝酸盐陶瓷的相对密度不低于97%。
5.根据权利要求1所述的一种低热导高熵铝酸盐陶瓷,其特征在于:该铝酸盐陶瓷的室温热导率不高于4.1W·m-1·K-1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910900428.4A CN110627495B (zh) | 2019-09-23 | 2019-09-23 | 一种低热导高熵铝酸盐陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910900428.4A CN110627495B (zh) | 2019-09-23 | 2019-09-23 | 一种低热导高熵铝酸盐陶瓷及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110627495A CN110627495A (zh) | 2019-12-31 |
CN110627495B true CN110627495B (zh) | 2021-09-03 |
Family
ID=68973956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910900428.4A Active CN110627495B (zh) | 2019-09-23 | 2019-09-23 | 一种低热导高熵铝酸盐陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110627495B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111825452B (zh) * | 2020-06-02 | 2022-09-06 | 航天材料及工艺研究所 | 一种低热导高熵铝酸盐陶瓷及其制备方法 |
CN113248271A (zh) * | 2021-06-25 | 2021-08-13 | 中国地质大学(武汉) | 高熵稀土铝酸盐-高熵稀土锆酸盐复合热障涂层材料及其制备方法和应用 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4950435A (en) * | 1986-07-18 | 1990-08-21 | Tokuyama Soda Kabushiki Kaisha | Process for producing aluminum nitride sintered body |
EP1013412A1 (en) * | 1998-12-23 | 2000-06-28 | Boeing North American, Inc. | Integrally woven ceramic composites |
US6451077B1 (en) * | 2000-02-02 | 2002-09-17 | 3M Innovative Properties Company | Fused abrasive particles, abrasive articles, and methods of making and using the same |
CN1670337A (zh) * | 2004-03-17 | 2005-09-21 | 联合工艺公司 | 具有绝热涂层的涡轮部件 |
GB0611013D0 (en) * | 2005-06-13 | 2006-07-12 | Gen Electric | Corrosion resistant sealant for ebc of silcon-containing substrate and processes for preparing same |
CN101767987A (zh) * | 2010-02-01 | 2010-07-07 | 中国地质大学(北京) | 一种用于热障涂层陶瓷层的钇铒铝酸盐粉体及其制备方法 |
CN103205254A (zh) * | 2013-04-10 | 2013-07-17 | 中国科学院福建物质结构研究所 | 包含新型固态透明荧光材料的白光led及其制备方法 |
CN105130415A (zh) * | 2015-08-14 | 2015-12-09 | 东台市圣德尔耐热材料有限公司 | Ln1-xSrxMg1-yMnyAl11-zTizO19纳米陶瓷热障涂层材料及其制备方法 |
CN106083026A (zh) * | 2016-06-17 | 2016-11-09 | 航天材料及工艺研究所 | 一种微波介质陶瓷纳米粉体铝酸钕的超低温熔盐制备方法 |
CN108588627A (zh) * | 2018-04-10 | 2018-09-28 | 北京工业大学 | 一种隔热防护用高熵合金涂层 |
CN109338172A (zh) * | 2018-12-11 | 2019-02-15 | 西安工业大学 | 一种高熵合金增强的2024铝基复合材料及其制备方法 |
CN109879669A (zh) * | 2019-03-11 | 2019-06-14 | 广东工业大学 | 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6630077B2 (en) * | 2001-10-11 | 2003-10-07 | General Electric Company | Terbium- or lutetium - containing garnet phosphors and scintillators for detection of high-energy radiation |
US9988309B2 (en) * | 2012-05-20 | 2018-06-05 | Skyworks Solutions, Inc. | Thermal barrier coating material with enhanced toughness |
-
2019
- 2019-09-23 CN CN201910900428.4A patent/CN110627495B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4950435A (en) * | 1986-07-18 | 1990-08-21 | Tokuyama Soda Kabushiki Kaisha | Process for producing aluminum nitride sintered body |
EP1013412A1 (en) * | 1998-12-23 | 2000-06-28 | Boeing North American, Inc. | Integrally woven ceramic composites |
US6451077B1 (en) * | 2000-02-02 | 2002-09-17 | 3M Innovative Properties Company | Fused abrasive particles, abrasive articles, and methods of making and using the same |
CN1670337A (zh) * | 2004-03-17 | 2005-09-21 | 联合工艺公司 | 具有绝热涂层的涡轮部件 |
GB0611013D0 (en) * | 2005-06-13 | 2006-07-12 | Gen Electric | Corrosion resistant sealant for ebc of silcon-containing substrate and processes for preparing same |
CN101767987A (zh) * | 2010-02-01 | 2010-07-07 | 中国地质大学(北京) | 一种用于热障涂层陶瓷层的钇铒铝酸盐粉体及其制备方法 |
CN103205254A (zh) * | 2013-04-10 | 2013-07-17 | 中国科学院福建物质结构研究所 | 包含新型固态透明荧光材料的白光led及其制备方法 |
CN105130415A (zh) * | 2015-08-14 | 2015-12-09 | 东台市圣德尔耐热材料有限公司 | Ln1-xSrxMg1-yMnyAl11-zTizO19纳米陶瓷热障涂层材料及其制备方法 |
CN106083026A (zh) * | 2016-06-17 | 2016-11-09 | 航天材料及工艺研究所 | 一种微波介质陶瓷纳米粉体铝酸钕的超低温熔盐制备方法 |
CN108588627A (zh) * | 2018-04-10 | 2018-09-28 | 北京工业大学 | 一种隔热防护用高熵合金涂层 |
CN109338172A (zh) * | 2018-12-11 | 2019-02-15 | 西安工业大学 | 一种高熵合金增强的2024铝基复合材料及其制备方法 |
CN109879669A (zh) * | 2019-03-11 | 2019-06-14 | 广东工业大学 | 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用 |
Non-Patent Citations (4)
Title |
---|
AlCoCrFeNiTiSi高熵合金在酸性介质中的耐蚀性;梁红英;《机械工程师》;20170224(第12期);11-13 * |
High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising;Zifan Zhaoa;《Journal of Materials Science & Technology》;20200221;第47卷;45-51 * |
Thermodynamic properties of SrAl12O19 and SrAl4O7;Jacob, KT ;《JOURNAL OF MATERIALS SCIENCE》;20180228;第53卷(第3期);1723-1730 * |
Xiang, HM.Theoretical investigations on mechanical anisotropy and intrinsic thermal conductivity of YbAlO3.《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》.2015,第35卷(第5期),1549-1557. * |
Also Published As
Publication number | Publication date |
---|---|
CN110627495A (zh) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111763087B (zh) | 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法 | |
CN110272278B (zh) | 热障涂层用高熵陶瓷粉体及其制备方法 | |
JP7412019B2 (ja) | 低融点酸化物による腐食を防止する希土類タンタル酸塩セラミックス及びその製造方法 | |
CN113105237B (zh) | 一种ab2o6型钽酸盐陶瓷及其制备方法 | |
CN111825452B (zh) | 一种低热导高熵铝酸盐陶瓷及其制备方法 | |
WO2020244484A1 (zh) | 一种常压固相烧结的高纯SiC陶瓷及其制备方法 | |
CN110627495B (zh) | 一种低热导高熵铝酸盐陶瓷及其制备方法 | |
CN101224974A (zh) | 钇铝系小晶粒透明陶瓷材料及制备方法 | |
CN110002870A (zh) | 一种抗低熔点氧化物腐蚀的稀土钽酸盐陶瓷及其制备方法 | |
CN112341197B (zh) | 一种抗cmas腐蚀的高熵陶瓷材料、制备方法及其应用 | |
CN106517273B (zh) | 一种制备低钠勃姆石的生产工艺 | |
CN113416072B (zh) | 一种熔盐法制备高熵稀土钽酸盐球形粉体的方法 | |
WO2020057373A1 (zh) | 一种钨合金前驱复合粉体的制备方法、陶瓷氧化铝增强钨合金及其制备方法 | |
CN114230339A (zh) | 一种稀土钽酸盐高熵陶瓷材料及其制备方法和应用 | |
CN104016668B (zh) | 一种莫来石陶瓷粉体的制备方法 | |
CN108640692B (zh) | 一种等离子物理气相沉积用稀土氧化物掺杂锆酸钆粉末及其制备方法 | |
CN110818432A (zh) | 一种超细高熵硼化物纳米粉体及其制备方法 | |
CN103864419A (zh) | 一种高致密锆酸钡陶瓷的制备方法 | |
CN107032788B (zh) | 一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法 | |
CN112939606A (zh) | 一种多孔碳化硅陶瓷及其制备方法 | |
CN108939944B (zh) | 一种非金属离子掺杂的钙钛矿型混合导体透氢膜及其制备方法和应用 | |
CN112479724B (zh) | 一种Yb2Si2O7超细粉体的碳包覆-共沉淀制备方法 | |
CN107473742A (zh) | 一种高质量单相双钙钛矿Sr2FeMoO6陶瓷的制备方法 | |
CN109400165B (zh) | 一种简易批量合成高纯五碳化四钽铪陶瓷粉体的方法 | |
CN113121227A (zh) | 一种钆镍共掺杂镁基六铝酸镧陶瓷及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |