[go: up one dir, main page]

CN110616405B - 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法 - Google Patents

一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法 Download PDF

Info

Publication number
CN110616405B
CN110616405B CN201910973802.3A CN201910973802A CN110616405B CN 110616405 B CN110616405 B CN 110616405B CN 201910973802 A CN201910973802 A CN 201910973802A CN 110616405 B CN110616405 B CN 110616405B
Authority
CN
China
Prior art keywords
layer
substrate
resistant
oxide
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910973802.3A
Other languages
English (en)
Other versions
CN110616405A (zh
Inventor
鲜广
鲜丽君
赵海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910973802.3A priority Critical patent/CN110616405B/zh
Publication of CN110616405A publication Critical patent/CN110616405A/zh
Application granted granted Critical
Publication of CN110616405B publication Critical patent/CN110616405B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开的耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层是由CoNiCrAlY高熵合金粘结层、α‑Cr2O3氧化物模板层、α‑Al2O3氧化物阻扩散层、AlTiCrO氧化物过渡层、AlTiCrN氮化物耐磨层五个子层构成的整体,这五个子层的顺序是由内至外,涂层总厚度为1~3.5μm。其制备方法为:基底被加热和离子刻蚀后,先利用电弧蒸发镀工艺在基底上沉积CoNiCrAlY层;然后使用阴极电弧离子镀工艺,再继续依次沉积α‑Cr2O3层、α‑Al2O3层、AlTiCrO层和AlTiCrN层。α‑Al2O3与氮化物硬质耐磨层的合理搭配使得涂层具有很好的阻元素原子扩散能力和耐磨性,且制备工艺简单,易于实施。

Description

一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备 方法
技术领域
本发明属于切削刀具表面涂层技术领域,具体涉及一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法。
背景技术
切削加工时切削刀具表面与被加工材料之间剧烈的摩擦磨损作用致使刀具承受较高的温度,特别是干式切削条件下的温度可达1000℃甚至更高。对于涂层刀具而言,涂层在高温条件下是否耐磨至关重要。研究发现,随着工作温度的升高,空气中的氧加速向涂层内部扩散,同时,涂层中的元素原子也剧烈地向涂层表面扩散,当氮化物硬质涂层工作温度超过一定的温度时,涂层便发生氧化,氮化物涂层转变成氧化物层,在这种转变过程中,因涂层晶格发生膨胀而在涂层内部形成较大的应用,极易剥落,另一方面,转变成的氧化物层本身结构疏松、硬度较低,不耐磨损。因此,氮化物硬质涂层在高温切削加工条件下的耐磨性和原子扩散性问题亟需解决。
发明内容
本发明的目的是克服现有技术存在的问题,提供一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层。
本发明的另一目的是提供一种上述耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层的制备方法。
本发明提供的耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物阻扩散层、氧化物过渡层、氮化物耐磨层五个子层构成的整体,这五个子层的顺序是由内至外,涂层总厚度为1~3.5μm。
其中,上述涂层中,所述高熵合金粘结层为CoaNibCrcAldYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为50~200nm。
其中,上述涂层中,所述氧化物模板层为α-Cr2O3,厚度为100~300nm。
其中,上述涂层中,所述氧化物阻扩散层为α-Al2O3,厚度为500~2000nm。
其中,上述涂层中,所述氧化物过渡层为AlTiCrO,厚度为50~200nm。
其中,上述涂层中,所述氮化物耐磨层为AlTiCrN,厚度为300~800nm。
本发明提供的上述耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层的制备方法,包括以下步骤:
A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热;
B、对基底表面进行离子刻蚀;
C、利用电弧蒸镀工艺制备高熵合金粘结层;
D、利用阴极电弧镀膜工艺制备氧化物模板层;
E、利用阴极电弧镀膜工艺制备氧化物阻扩散层;
F、利用阴极电弧镀膜工艺制备氧化物过渡层;
G、利用阴极电弧镀膜工艺制备氮化物耐磨层。
其中,上述方法步骤A中,所述抽真空并加热是先将背底真空抽至0.05Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃;上述方法步骤B中,所述离子刻蚀是向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min;上述方法步骤C中,所述电弧蒸镀工艺制备高熵合金粘结的工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为180~220A,蒸镀坩埚内放置的材料为CoaNibCrcAldYe高熵合金, a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为5~10min;上述方法步骤D中,所述阴极电弧镀膜工艺制备氧化物模板层的工作气体为Ar+O2,工作压强为1.5~3.5Pa,工作靶材为Cr电弧靶,靶电流为50~100A,基底施加的偏压为-30~-90V,沉积时间8~20min;上述方法步骤E中,所述阴极电弧镀膜工艺制备氧化物阻扩散层的工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为Al电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间40~150min;上述方法步骤F中,所述阴极电弧镀膜工艺制备氧化物过渡层的工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为AlTiCr合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间8~15min;上述方法步骤G中,所述阴极电弧镀膜工艺制备氮化物耐磨层的工作气体为N2,工作压强为1.5~3.5Pa,工作靶材为AlTiCr合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间20~45min。
本发明与现有技术相比,具有如下优点:
1)本发明提供的耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层由功能与成分均不同的五个子层构成,首先,高熵合金粘结层相比于传统的Cr、Ti纯金属粘结层及TiAl合金粘结层而言,具有更高的强韧性,能在刀具基底材料与表面涂层材料之间起到很好的粘结作用,使涂层与基底结合牢固;其次,使用的α-Cr2O3氧化物模板层有利于Al2O3按照α-Cr2O3的晶体结构结构外延生长,解决了物理气相沉积法由于温度低制备α-Al2O3困难的问题;再次,α-Al2O3氧化物阻扩散层与AlTiCrN氮化物耐磨层相结合,避免了单纯氧化物涂层红硬性低、高温耐磨性不足的问题和单纯氮化物涂层阻扩散性能低的问题;最后,AlTiCrO氧化物过渡层实现了α-Al2O3层与AlTiCrN层的有机过渡,避免了α-Al2O3氧化物阻扩散层与AlTiCrN氮化物耐磨层的界面突变造成的应力过大或层间结合不稳的问题。
2)本发明提供的耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层的制备方法是一种以阴极电弧沉积为主、蒸发镀工艺制备粘结层为辅的组合式离子镀工艺。镀膜前通过加热使基底材料中吸附的杂质释放,同时采用离化的Ar+对基底表面进行轰击刻蚀,增强了涂层与基底的结合;采用电弧蒸镀工艺蒸发高熵合金材料,在基底上沉积高熵合金粘结层,进一步地增强涂层与基底的结合能力,电弧蒸发镀制备粘结层的优势是,沉积速率快,蒸发原料的尺寸、形状几乎不受限制,称重后装入蒸发坩埚内即可,而采用阴极电弧离子镀沉积粘结层,则需要将蒸发原料制成具有一定形状和尺寸的靶材;阴极电弧离子镀过程中的粒子离化率高且离子能量高,相比磁控溅射更容易获得α-Al2O3。在沉积涂层过程中,通过切换不同的电弧靶工作,很容易多层复合涂层的制备,操作工艺简单且易于掌握和控制。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,但本发明保护的内容不局限于以下实施例。
实施例1
将清洁的金属陶瓷基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.05Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.20Pa,然后对基底施加-200V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.15Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为180A,蒸发原料为Co0.15Ni0.15Cr0.4Al0.15Y0.15块,蒸发沉积10min;关闭主弧电源,开启Cr电弧靶,靶电流设为80A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为3.0Pa,对基底施加偏压-60V,沉积15min;开启Al电弧靶,靶电流设为98A,然后关闭纯Cr电弧靶电源,调节气体流量,控制压强为2.2Pa,基底偏压保持不变继续沉积135min;开启AlTiCr合金电弧靶,靶电流设为115A,然后关闭Al电弧靶电源,调节气体流量,控制工作压强为2.0Pa,基底偏压设置为-45V,沉积10min;通入氮气,关闭氧气和氩气,调节流量使压强保持2.5Pa,靶电流调节为100A,基底偏压设置为-90V,沉积45min后结束。制备的耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物阻扩散层、AlTiCrO氧化物过渡层和AlTiCrN氮化物耐磨层共五个子层组成,各个子层之间以及涂层与基底结合牢固,在高温工作条件下具有良好的阻扩散性能和高温耐磨损性能。
实施例2
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.05Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.15Pa,然后对基底施加-200V的直流偏压和-300V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀80min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.2Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为220A,蒸发原料为Co0.2Ni0.2Cr0.2Al0.2Y0.2块,蒸发沉积5min;关闭主弧电源,开启Cr电弧靶,靶电流设为90A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为3.0Pa,对基底施加偏压-70V,沉积15min;开启Al电弧靶,靶电流设为120A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为2.5Pa,基底偏压调节为-85V,沉积120min;开启AlTiCr合金电弧靶,靶电流设为80A,然后关闭纯Al电弧靶电源,调节气体流量,控制工作压强为2.5Pa,基底偏压调节为-30V,沉积15min;关闭氧气和氩气,开启氮气并调节流量使压强为3.0Pa,靶电流调节为90A,基底偏压调节为-45V,沉积20min后结束。制备的耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物阻扩散层、AlTiCrO氧化物过渡层和AlTiCrN氮化物耐磨层共五个子层组成,各个子层之间以及涂层与基底结合牢固,在高温工作条件下具有良好的阻扩散性能和高温耐磨损性能。
实施例3
将清洁的金属陶瓷基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.04Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.25Pa,然后对基底施加-100V的直流偏压和-300V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀90min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.15Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为210A,蒸发原料为Co0.2Ni0.2Cr0.2Al0.2Y0.2块,蒸发沉积7min;关闭主弧电源,开启Cr电弧靶,靶电流设为50A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为1.5Pa,对基底施加偏压-60V,沉积15min;开启Al电弧靶,靶电流设为110A,然后关闭纯Cr电弧靶电源,调节气体流量,控制压强为2.5Pa,基底偏压保持不变继续沉积90min;开启AlTiCr合金电弧靶,靶电流设为120A,然后关闭Al电弧靶电源,调节气体流量,控制工作压强为1.7Pa,基底偏压继续保持不变,沉积8min;通入氮气,关闭氧气和氩气,调节流量使压强为2.0Pa,靶电流和基底偏压保持不变,沉积30min后结束。制备的耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物阻扩散层、AlTiCrO氧化物过渡层和AlTiCrN氮化物耐磨层共五个子层组成,各个子层之间以及涂层与基底结合牢固,在高温工作条件下具有良好的阻扩散性能和高温耐磨损性能。
实施例4
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.05Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.1Pa,然后对基底施加-100V的直流偏压和-150V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀60min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.2Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为200A,蒸发原料为Co0.2Ni0.2Cr0.2Al0.2Y0.2块,蒸发沉积8min;关闭主弧电源,开启Cr电弧靶,靶电流设为60A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为2.5Pa,对基底施加偏压-45V,沉积10min;开启Al电弧靶,靶电流设为90A,然后关闭Cr电弧靶电源,工作压强和基底偏压均保持不变,继续沉积120min;开启AlTiCr合金电弧靶,靶电流设为100A,然后关闭Al电弧靶电源,调节气体流量,控制工作压强为2.0Pa,基底偏压调节为-60V,沉积10min;通入氮气,关闭氧气和氩气,调节流量使压强保持2.7Pa,靶电流和基底偏压保持不变,沉积30min后结束。制备的耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层由CoNiCrAlY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物阻扩散层、AlTiCrO氧化物过渡层和AlTiCrN氮化物耐磨层共五个子层组成,各个子层之间以及涂层与基底结合牢固,在高温工作条件下具有良好的阻扩散性能和高温耐磨损性能。

Claims (2)

1.一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物阻扩散层、氧化物过渡层、氮化物耐磨层五个子层构成的整体,这五个子层的顺序是由内至外,涂层总厚度为1~3.5μm;所述高熵合金粘结层为CoaNibCrcAldYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为50~200nm;所述氧化物模板层为α-Cr2O3,厚度为100~300nm;所述氧化物阻扩散层为α-Al2O3,厚度为500~2000nm;所述氧化物过渡层为AlTiCrO,厚度为50~200nm;所述氮化物耐磨层为AlTiCrN,厚度为300~800nm。
2.一种权利要求1所述的耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层的制备方法,其特征在于,包括以下步骤:
A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热,先将背底真空抽至0.05Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃;
B、对基底表面进行离子刻蚀,向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min;
C、利用电弧蒸镀工艺制备高熵合金粘结层,工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为180~220A,蒸镀坩埚内放置的材料为CoaNibCrcAldYe高熵合金, a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为5~10min;
D、利用阴极电弧镀膜工艺制备氧化物模板层,工作气体为Ar+O2,工作压强为1.5~3.5Pa,工作靶材为Cr电弧靶,靶电流为50~100A,基底施加的偏压为-30~-90V,沉积时间8~20min;
E、利用阴极电弧镀膜工艺制备氧化物阻扩散层,工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为Al电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间40~150min;
F、利用阴极电弧镀膜工艺制备氧化物过渡层,工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为AlTiCr合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间8~15min;
G、利用阴极电弧镀膜工艺制备氮化物耐磨层,工作气体为N2,工作压强为1.5~3.5Pa,工作靶材为AlTiCr合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-90V,沉积时间20~45min。
CN201910973802.3A 2019-10-14 2019-10-14 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法 Active CN110616405B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910973802.3A CN110616405B (zh) 2019-10-14 2019-10-14 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910973802.3A CN110616405B (zh) 2019-10-14 2019-10-14 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN110616405A CN110616405A (zh) 2019-12-27
CN110616405B true CN110616405B (zh) 2021-11-12

Family

ID=68925796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910973802.3A Active CN110616405B (zh) 2019-10-14 2019-10-14 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN110616405B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305441B (zh) * 2022-08-25 2023-09-05 株洲钻石切削刀具股份有限公司 具有多个氧化物层结构的复合涂层切削刀具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821445A (zh) * 2005-02-18 2006-08-23 通用电气公司 金属和含硅部件的组件的扩散阻挡层及其形成方法
JP2006312767A (ja) * 2005-05-09 2006-11-16 Ayabo:Kk 鉄鋼製部材の耐摩耗、耐酸化、表面処理方法
CN104862643A (zh) * 2015-04-27 2015-08-26 大连理工大学 钢铁、钛合金低温脉冲离子氮碳共渗及阴极电弧离子镀m/mn交替镀厚膜工艺
CN106086806A (zh) * 2016-08-18 2016-11-09 兰州空间技术物理研究所 一种AlTiCrN高温耐磨涂层及其制备方法
CN108517492A (zh) * 2018-03-26 2018-09-11 天津大学 铬铝钛氮合金涂层及制备方法
CN108517488A (zh) * 2018-05-14 2018-09-11 武汉大学 一种合金材料部件表面防腐耐磨复合涂层及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526604C2 (sv) * 2002-03-22 2005-10-18 Seco Tools Ab Belagt skärverktyg för svarvning i stål
CN104087898B (zh) * 2014-07-18 2017-05-03 上海理工大学 一种具有超高硬度、低摩擦系数的TiSiCN纳米复合涂层及制备方法
CN105506622A (zh) * 2015-12-13 2016-04-20 河南广度超硬材料有限公司 复合涂层刀具及其制造方法
CN105887083B (zh) * 2016-04-14 2018-12-21 富耐克超硬材料股份有限公司 用于刀具的硬质涂层、涂层制备方法及刀具
DE102016108734B4 (de) * 2016-05-11 2023-09-07 Kennametal Inc. Beschichteter Körper und Verfahren zur Herstellung des Körpers
CN107354438B (zh) * 2017-06-28 2019-07-09 缙云县先锋工具有限公司 一种圆锯片表面的复合纳米涂层

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821445A (zh) * 2005-02-18 2006-08-23 通用电气公司 金属和含硅部件的组件的扩散阻挡层及其形成方法
JP2006312767A (ja) * 2005-05-09 2006-11-16 Ayabo:Kk 鉄鋼製部材の耐摩耗、耐酸化、表面処理方法
CN104862643A (zh) * 2015-04-27 2015-08-26 大连理工大学 钢铁、钛合金低温脉冲离子氮碳共渗及阴极电弧离子镀m/mn交替镀厚膜工艺
CN106086806A (zh) * 2016-08-18 2016-11-09 兰州空间技术物理研究所 一种AlTiCrN高温耐磨涂层及其制备方法
CN108517492A (zh) * 2018-03-26 2018-09-11 天津大学 铬铝钛氮合金涂层及制备方法
CN108517488A (zh) * 2018-05-14 2018-09-11 武汉大学 一种合金材料部件表面防腐耐磨复合涂层及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TiC、TiN和Al2O3涂层硬质合金结构的磨损研究;王志阳等;《河南理工大学学报(自然科学版)》;20151231;第845-850页 *
高功率脉冲磁控溅射低温沉积α-(Al,Cr)2O3薄膜及其性能的研究;王书林;《中国优秀硕士学位论文全文数据库 工程科技 I辑》;20190115;B022-647 *

Also Published As

Publication number Publication date
CN110616405A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
CN107937873B (zh) 碳掺杂的过渡金属硼化物涂层、碳-过渡金属硼化物复合涂层、制备方法及应用和切削工具
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN109628896B (zh) 一种梯度结构TiAlSiYN多元纳米涂层及其制备方法
CN104789933A (zh) 一种纳米复合涂层及其沉积方法
CN103774096B (zh) 一种抗氧化复合硬质涂层的制备方法
CN110004409A (zh) 具有高硬度和高结合力的CrAlN纳米梯度涂层及其制备工艺
CN112689688B (zh) 一种钛合金和高温合金加工用的涂层刀具及其制备方法
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN110643953B (zh) 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法
CN110643936B (zh) 一种适合铣削加工用的多层复合涂层及其制备方法
CN101294284A (zh) 一种耐冲蚀抗疲劳等离子表面复合强化方法
CN110616405B (zh) 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法
CN106756841A (zh) 一种刀具复合涂层的制备方法
CN106868450A (zh) 一种利用调制高功率脉冲磁控溅射制备AlTiN硬质涂层的方法
CN112553580A (zh) 一种二硼化物复合涂层及其制备方法和应用
CN110158035B (zh) 耐高温海洋环境腐蚀的金属-金属氮化物多层涂层及制备
CN110670020B (zh) 一种与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层及其制备方法
CN110643951B (zh) 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法
CN110656313B (zh) 一种与硬质合金结合牢固的氮化锆铝/氧化铝复合涂层及其制备方法
CN110670019B (zh) 一种抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层及其制备方法
CN110643952B (zh) 一种抗氧化的氧化铝/氮化钛硅复合涂层及其制备方法
CN110791733B (zh) 一种耐磨阻扩散的铝铬钛氮与氧化铝多层复合涂层及其制备方法
CN109666887B (zh) 一种TiAlN硬质涂层及其制备方法和应用
WO2024065970A1 (zh) 氧化物硬质涂层的复合沉积方法及涂层刀具
CN110565051B (zh) 具有颜色层的金刚石涂层刀具及其制备方法、加工设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant