[go: up one dir, main page]

CN110606736A - 一种无溶剂合成的陶瓷微球及其制备方法和应用 - Google Patents

一种无溶剂合成的陶瓷微球及其制备方法和应用 Download PDF

Info

Publication number
CN110606736A
CN110606736A CN201910785170.8A CN201910785170A CN110606736A CN 110606736 A CN110606736 A CN 110606736A CN 201910785170 A CN201910785170 A CN 201910785170A CN 110606736 A CN110606736 A CN 110606736A
Authority
CN
China
Prior art keywords
ceramic
solvent
microspheres
ceramic microspheres
interface material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910785170.8A
Other languages
English (en)
Inventor
刘伟
梁坚伟
杨高
黄梅鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910785170.8A priority Critical patent/CN110606736A/zh
Publication of CN110606736A publication Critical patent/CN110606736A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/1115Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/623Oxide fuels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明属于陶瓷微球技术领域,公开了一种无溶剂合成的陶瓷微球及其制备方法和应用。所述陶瓷微球是将陶瓷浆料滴加到超疏水纳米界面材料或超双疏纳米界面材料,获得乳液状陶瓷微球;将该乳液状陶瓷微球在0~200℃加热或静置固化,将固化后的乳液陶瓷微球在1600~2300℃加热使其致密化制得。本发明不需要溶剂,操作简单,方便,成本低,方法绿色环保,无污染。本发明制得的多孔陶瓷微球可调节其圆度和粒径,具有蜂窝状结构且有序排列,这样的结构使得陶瓷膜具有轻质高强的特点。可在生物医用、核燃料元件、石油开采、化工催化或分离提纯领域中应用。

Description

一种无溶剂合成的陶瓷微球及其制备方法和应用
技术领域
本发明属于陶瓷微球技术领域,更具体地,涉及一种无溶剂合成的陶瓷微球及其制备方法和应用。
背景技术
近年来,陶瓷微球得到了愈来愈多的应用,已经在核燃料元件、石油开采、化工催化、分离提纯等领域取得了一系列成功的应用。例如,在核燃料元件中,陶瓷微球燃料元件在辐照和温度的作用下会发生致密化,可以大幅度得缓解圆柱状芯块因辐照而导致的膨胀变形问题;而在石油开采中,陶瓷微球可以作为油气井压裂时的支撑剂,随着压裂液进入裂缝、撑开油层裂缝、增大油流通道,有效提高石油的开采效率;由于多孔陶瓷微球做成的载体具有耐酸碱腐蚀性好、化学性能稳定、便于回收、可循环使用等显著优点,所以可以应用在化学催化领域中;此外,陶瓷微球还可以作为塑料、橡胶、尼龙制品中的增强填充了,可使填充更均匀。
超疏水表面是指与水的静态接触角大于150°,并且滚动角小于10°的表面。超疏油表面是指与油的静态接触角大于150°,并且滚动角小于10°的表面。而超双疏则是指与水和油的静态接触角均大于150°,并且滚动角小于10°的表面。它在工农业生产上和人们的日常生活中都有着非常广阔的应用前景。这种特殊浸润性的智能纳米界面材料在许多领域已经得到了应用,但是用来做陶瓷微球还没有发现。
目前,制备多孔陶瓷微球的方法根据成球的原理可以分为三类,基于机械力、基于表面张力、基于微球模板。第一类是通过机械力,如挤压、摩擦、碰撞等作用力成球的方法,主要包括挤压成型—滚球法(如微丸机成球)、滚球法(如糖衣机成球)、撒粉抛丸法等。但是这类方法虽然操作简单,生产周期短,但是成球的圆度和尺寸难以控制。第二类方法是基于表面张力的原理进行成球,如冷冻凝固法、溶胶-凝胶法、热固化成球法等。如申请号为CN2016101924487的发明专利“一种无机微球的制备方法及由此制得的无机微球及其用途”;申请号为CN2012102314080的发明专利“一种陶瓷微球的新型制备方法”;申请号为CN200610113783X的发明专利“一种注凝成型制备陶瓷微球的方法及其装置”等。此类方法操作复杂,需要的条件比较高,而且用到的原材料具有一定的毒性或价格昂贵,因为在成本和环境友好等方面很差。第三种则是基于微球模板制备陶瓷微球。例如申请号为CN2013103155211的发明专利“一种空心陶瓷微球及其制备方法”。这种方法对模板的要求比较高,而且加工流程过长,对陶瓷微球的大小和圆度均难以控制。
综上所述,现有的大多数制备方法虽然能够生产出满足不同需要的陶瓷微球,但是很难同时满足价格便宜,操作简单,对微球的大小、圆度可控性高的方法。因此,有必要去寻找一种相应的方法去满足它。
发明内容
为了解决上述现有技术中存在的不足之处,本发明首要目的在于提供一种无溶剂合成陶瓷微球。
本发明的另一目的在于提供上述陶瓷微球的制备方法。该方法利用制成超疏水或超双疏纳米界面材料,通过滴加陶瓷浆料的大小以及改变双疏的程度,可以改变微球的圆度。
本发明的再一目的在于提供上述陶瓷微球的应用。
本发明的目的通过下述技术方案来实现:
一种无溶剂合成的陶瓷微球,所述陶瓷微球是将陶瓷浆料滴加到超疏水纳米界面材料或超双疏纳米界面材料,获得乳液状陶瓷微球;将该乳液状陶瓷微球在30~200℃加热或静置固化,将固化的陶瓷微球在1600~2300℃加热使其致密化制得。
优选地,所述陶瓷浆料为多孔陶瓷浆料或非多孔陶瓷浆料。
更为优选地,所述陶瓷浆料为氧化铝、氧化锆、氮化硼、氧化硅、二氧化硅或碳化硅。
优选地,所述的多孔陶瓷浆料的制备方法为溶胶-凝胶法、造孔剂法或自组装法。
进一步地,所述溶胶-凝胶法是将金属醇盐溶于低级醇中,滴入水进行水解反应,得到相应金属氧化物的溶胶,调节溶胶的pH值,形成凝胶制得;所述造孔剂法为在陶瓷配料中加入可燃尽物质制得;所述自组装法是在加入水基乳液中加入表面活性剂,然后加入有机溶剂,表面活性剂把有机溶剂分割成无数小油滴,陶瓷粉体包覆小油滴形成自组装制得。
更为优选地,所述可燃尽物质为木炭、煤粉或石墨粉;所述金属醇盐为Si(OC2H5)4或CH3SI(OC2H5)3;所述低级醇为乙醇或甲醇,所述表面活性剂为丙酸、聚乙烯醇、聚乙二醇、十八烷基硫酸钠或硬脂酸钠中的一种以上;所述有机溶剂为正辛烷、十六烷、正己烷或正庚烷中的一种以上。
优选地,所述超疏水纳米界面材料或超双疏纳米界面材料的制备方法包括油异相成核法、等离子体处理法、刻蚀法、溶胶-凝胶法、气象沉淀法、电化学法、交替沉淀法、模板法、自组装法、溶剂-非溶剂法或直接成膜法。
优选地,所述加热的时间为3~7min;所述静置的时间为10~72h。
所述的无溶剂合成的陶瓷微球的制备方法,包括如下具体步骤:
S1.超疏水纳米界面材料或超双疏纳米界面材料;
S2.制备出多孔陶瓷浆料或非多孔陶瓷浆料;
S3.将步骤S2所述制得的陶瓷浆料滴加到步骤S1所制成的超疏水纳米界面材料或超双疏纳米界面材料,获得乳液状陶瓷微球;
S4.将步骤S3所述制得的乳液状陶瓷微球在30~200℃加热3~7min或静置10~72h固化,得到固化的陶瓷微球;
S5.将固化的陶瓷微球在1600~2300℃加热1~3h使其致密化,制得陶瓷微球。
所述的无溶剂合成的陶瓷微球在生物医用、核燃料元件、石油开采、化工催化或分离提纯领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明不需要溶剂,操作简单,方便,成本低,方法绿色环保,无污染。
2.本发明制得的陶瓷微球可调节其圆度和粒径,将中间制得的乳液陶瓷微球滚动起来,制得的乳液陶瓷微球的圆度可以更高,而且适用于多孔陶瓷微球的制备。
3.本发明制备的多孔结构具有蜂窝状且有序排列,这样的结构使得陶瓷膜具有轻质高强的特点。
附图说明
图1为本发明制备方法示意图。
图2为本发明方法原理图;
图3为实施例1中的乳液陶瓷微球实物图。
图4为实施例1中的多孔陶瓷微球的SEM照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
(1)将玻璃片放入蜡烛上方,以5cm/s的水平移动中,使其表面覆盖一层烟灰层。
(2)在密封容器中放入覆盖烟灰的玻璃片,通过放入2mL氨水和2mL正硅酸乙酯24小时使其表面覆盖二氧化硅层。
(3)在600℃保温2h烧去烟灰。
(4)将烧去烟灰的玻璃片与0.1mL氟硅烷一同放入干燥器中,抽到绝对真空5分钟,放置3h,处理成超双疏玻璃片。
(5)将陶瓷粉料氧化铝、去离子水混合(氧化铝和去离子水的体积比为30-70vol%)。其中,所述的陶瓷粉料、去离子水二者的质量比为1:(0~10);
(6)通过滴加2mol/L的稀盐酸溶剂调节pH到5以下,经球磨12h后得到均匀的混合料。
(7)将制得的混合料通过滴加2mol/L的稀盐酸溶剂调节pH到5.5左右,然后在搅拌下加入PVA(PVA先溶解在水中后加入,或加入后把溶液加温或搅拌促使PVA完全溶解)。其中,所述PVA的含量为1~10wt%(相对于去离子水的含量);
(8)再在搅拌下逐滴加入丙酸,使其改性;其中,所述丙酸含量为0.01~1mol%(相对于陶瓷粉体);
(9)接着加入正辛烷,充分搅拌制成陶瓷浆料;其中,所述正辛烷的含量为1~100vol%(相对于加入前的总体积);
(10)将6μL步骤(9)所述制得的浆料滴加到步骤(4)所制成的超双疏玻璃片的超双疏表面,获得陶瓷微球。
(11)将步骤3所述制得的陶瓷微球静置24h固化,可让陶瓷微球在界面滚动,使其获得较完好的圆度。
(12)将固化后的陶瓷微球在1650℃下保温3h,制得氧化铝多孔陶瓷微球,具体制备方法示意图如图1所示。
图2为本发明方法原理图;从图2可知通过氟硅烷修饰,将氟分子修饰到基材上,因为氟的表面能比水和油都低,所以能够实现超双疏或者超疏水。图3为本实施例中的乳液陶瓷微球实物图。从图3可知,陶瓷浆料成功形成类球形,图4为本实施例中的氧化铝多孔陶瓷微球的SEM照片。从图4可知成功制备的氧化铝多孔陶瓷微球具有有序蜂窝状的多孔结构。
实施例2
(1)利用溶胶-凝胶法在玻璃片上制备了Al2O3凝胶薄膜,然后在沸水中浸泡进行粗糙化处理。
(2)30s之后再用氟硅烷修饰这种薄膜,得到超疏水性透明薄膜;
(3)将30g氮化硼陶瓷粉体加入200g去离子水,球磨3~6h后,制得陶瓷浆料;
(4)将陶瓷浆料滴加到修饰后的玻璃片上静置72h后,得到固化的陶瓷微球;
(5)将固化的陶瓷微球在氮气氛围下烧结到1850℃,制备出直径为6μL氮化硼陶瓷微球。
对比例1
(1)配制含有1.5mol/LZrO(NO3)2的水溶液,以及含有2.5mol/L六次甲基四胺和2.4mol/L尿素的水溶液。选取200nm的炭黑,加入到含有六次甲基四胺和尿素的溶液中,超声15分钟使其充分分散。将配制好的两种溶液置于4℃冷却70分钟备用。之后向ZrO(NO3)2溶液中加入100μL的浓硝酸,将含有炭黑、六次甲基四胺和尿素的混合液逐滴加入到ZrO(NO3)2溶液中,边滴入边搅拌。之后搅拌6分钟,使溶液充分混合,获得胶液待用;
(2)将上述步骤(1)获得的含有炭黑的胶液置于4℃冷却60分钟保证其稳定性。然后将得到的胶液逐滴分散到85℃的硅油中,形成凝胶微球。得到的凝胶微球置于热硅油中陈化50分钟;
(3)将凝胶微球取出进行洗涤。首先用三氯乙烯洗涤4次,每次洗涤20分钟;然后用0.6mol/L的氨水洗涤8次,每次洗涤220分钟,直至洗涤后氨水废液的电导率500μS/cm以下;之后将凝胶微球置于聚四氟乙烯反应釜中,于300℃条件下水热5小时使微球内部大量的有机物分解;水热洗涤后取出凝胶微球,用去离子水洗涤500次,每次洗涤20分钟,直至洗涤后废液的电导率小于20μS/cm;最后采用丙二醇甲醚洗涤去除水分,洗涤4次,每次洗涤20分钟;
(4)将上述步骤(3)洗涤后得到的凝胶微球先置于室温下干燥30分钟,然后置于60℃干燥箱中干燥12小时,制得凝胶干燥;
(5)将上述步骤(4)得到的凝胶干燥微球置于方形的石墨坩埚中,坩埚置于加热炉中进行碳热氮化烧结。微球平铺于坩埚底部,坩埚上方加盖石墨板,以保证微球在高温状态下处于强还原性气氛中,同时也确保了N2流通参与反应。升温过程中分别在60、80、200、300、470℃分别保温30min,使吸附水、结晶水、残余有机物缓慢充分释放;分别在600、800、1000℃保温一段时间,使氧化锆结晶缓慢充分进行;在1500℃保温5h,使碳热氮化反应充分进行。此外,在600℃以下加热速率为0.5℃/分钟,在600℃以上为1℃/分钟,以防止微球产生裂纹。在800℃以下通入Ar,气体流量100mL/min,目的在于带出水蒸气、残余有机物分解产物;在800℃以上改为通入N2,气体流量300mL/min,目的在于使N2作为氮源,进行碳热氮化反应得到氮化锆产物。之后的降温过程中冷却速率为5℃/分钟,降温至600℃后随炉冷却,降温过程中仍通入N2直至降温至300℃,以防止产物微球在较高温度下与空气接触而发生氧化。
在对比例1中采用有溶剂的方法需要加入大量得有机物,之后还需要进一步的排掉,而且使用凝胶法制备,过程繁琐,而使用本发明实施例只需用超疏水或超双疏,而无需有机溶剂就可简单制备陶瓷微球。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种无溶剂合成的陶瓷微球,其特征在于,所述陶瓷微球是将陶瓷浆料滴加到超疏水纳米界面材料或超双疏纳米界面材料,获得乳液状陶瓷微球;将该乳液状陶瓷微球在30~200℃加热或静置固化,将固化的陶瓷微球在1600~2300℃加热使其致密化制得。
2.根据权利要求1所述的无溶剂的合成的陶瓷微球,其特征在于,所述陶瓷浆料为多孔陶瓷浆料或非多孔陶瓷浆料。
3.根据权利要求2所述的无溶剂的合成的陶瓷微球,其特征在于,所述陶瓷浆料为氧化铝、氧化锆、氮化硼、氧化硅、二氧化硅或碳化硅。
4.根据权利要求2所述的无溶剂合成的陶瓷微球,其特征在于,所述的多孔陶瓷浆料的制备方法为溶胶-凝胶法、造孔剂法或自组装法。
5.根据权利要求4所述的无溶剂合成的陶瓷微球,其特征在于,所述溶胶-凝胶法是将金属醇盐溶于低级醇中,滴入水进行水解反应,得到相应金属氧化物的溶胶,调节溶胶的pH值,形成凝胶制得;所述造孔剂法为在陶瓷配料中加入可燃尽物质制得;所述自组装法是在加入水基乳液中加入表面活性剂,然后加入有机溶剂,表面活性剂把有机溶剂分割成无数小油滴,陶瓷粉体包覆小油滴形成自组装制得。
6.根据权利要求5所述的无溶剂合成的陶瓷微球,其特征在于,所述可燃尽物质为木炭、煤粉或石墨粉;所述金属醇盐为Si(OC2H5)4或CH3SI(OC2H5)3;所述低级醇为乙醇或甲醇,所述表面活性剂为丙酸、聚乙烯醇、聚乙二醇、十八烷基硫酸钠或硬脂酸钠中的一种以上;所述有机溶剂为正辛烷、十六烷、正己烷或正庚烷中的一种以上。
7.根据权利要求1所述的无溶剂合成的陶瓷微球,其特征在于,所述超疏水纳米界面材料或超双疏纳米界面材料的制备方法包括油异相成核法、等离子体处理法、刻蚀法、溶胶-凝胶法、气象沉淀法、电化学法、交替沉淀法、模板法、自组装法、溶剂-非溶剂法或直接成膜法。
8.根据权利要求1所述的无溶剂合成的陶瓷微球,其特征在于,所述加热的时间为3~7min;所述静置的时间为10~72h。
9.根据权利要求1-8任一项所述的无溶剂合成的陶瓷微球的制备方法,其特征在于,包括如下具体步骤:
S1.超疏水纳米界面材料或超双疏纳米界面材料的制备;
S2.制备出多孔陶瓷浆料或非多孔陶瓷浆料;
S3.将步骤S2制得的陶瓷浆料滴加到步骤S1所制成的超疏水纳米界面材料或超双疏纳米界面材料,获得乳液状陶瓷微球;
S4.将步骤S3制得的乳液状陶瓷微球在30~200℃加热3~7min或静置10~72h固化,得到固化的陶瓷微球;
S5.将固化的陶瓷微球在1600~2300℃加热1~3h使其致密化,制得陶瓷微球。
10.权利要求1-8任一项所述的无溶剂合成的陶瓷微球在生物医用、核燃料元件、石油开采、化工催化或分离提纯领域中的应用。
CN201910785170.8A 2019-08-23 2019-08-23 一种无溶剂合成的陶瓷微球及其制备方法和应用 Pending CN110606736A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910785170.8A CN110606736A (zh) 2019-08-23 2019-08-23 一种无溶剂合成的陶瓷微球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910785170.8A CN110606736A (zh) 2019-08-23 2019-08-23 一种无溶剂合成的陶瓷微球及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110606736A true CN110606736A (zh) 2019-12-24

Family

ID=68890492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910785170.8A Pending CN110606736A (zh) 2019-08-23 2019-08-23 一种无溶剂合成的陶瓷微球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110606736A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079651A (zh) * 2020-08-26 2020-12-15 广东工业大学 一种基于光固化成型的多孔陶瓷微珠及其制备方法和应用
CN112939611A (zh) * 2021-01-28 2021-06-11 中国船舶重工集团公司第七二五研究所 一种采用直接滴定成型技术制备陶瓷微球的方法
CN113956864A (zh) * 2021-09-22 2022-01-21 河南龙德福新材料科技研究院有限公司 利用二氧化硅包覆的低密度高强度陶粒支撑剂及制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096019A (zh) * 1994-04-12 1994-12-07 南京化工学院陶瓷厂 陶瓷微珠及其制造方法
CN1468826A (zh) * 2002-07-17 2004-01-21 杨金龙 制备陶瓷小球的方法和装置
CN1935478A (zh) * 2006-10-16 2007-03-28 清华大学 一种注凝成型制备陶瓷微球的方法及其装置
CN101225510A (zh) * 2008-01-11 2008-07-23 东华大学 超疏水性和超亲水性二氧化钛薄膜的等离子体制备方法
CN102898174A (zh) * 2011-07-29 2013-01-30 深圳光启创新技术有限公司 一种多孔陶瓷微球材料及其制备方法
CN103060927A (zh) * 2012-12-24 2013-04-24 吉林大学 一种基于超疏水界面的水溶性蛋白的磁性可控书写方法
CN103787343A (zh) * 2014-01-28 2014-05-14 广州大学 一种基于超疏水表面的微球形气凝胶制备方法、该方法获得产品及其应用
CN203639164U (zh) * 2013-12-06 2014-06-11 吴会军 一种应用超疏水表面快速制备SiO2凝胶微球的装置
CN105349036A (zh) * 2015-11-30 2016-02-24 东南大学 一种水性透明超双疏纳米涂料及其制备方法和应用
CN105582852A (zh) * 2016-03-28 2016-05-18 四川大学 一种湿法滚动造粒的方法
CN106179121A (zh) * 2016-08-10 2016-12-07 深圳市大西塔科技有限公司 一种造粒装置
CN107418872A (zh) * 2016-08-31 2017-12-01 四川蓝光英诺生物科技股份有限公司 制备微球的装置和制备微球的方法
CN108355588A (zh) * 2018-01-03 2018-08-03 成都高界科技有限公司 一种在超双疏表面上合成微球的方法
CN108585798A (zh) * 2018-05-09 2018-09-28 安徽中航名坤新材料科技有限公司 一种纳米多孔氧化铝气凝胶陶瓷小球及其制备方法
CN109134170A (zh) * 2018-09-27 2019-01-04 西南科技大学 基于界面张力制备超疏水球形二硝酰胺铵的方法
CN110003501A (zh) * 2019-04-22 2019-07-12 电子科技大学 一种合成聚合物微球的方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096019A (zh) * 1994-04-12 1994-12-07 南京化工学院陶瓷厂 陶瓷微珠及其制造方法
CN1468826A (zh) * 2002-07-17 2004-01-21 杨金龙 制备陶瓷小球的方法和装置
CN1935478A (zh) * 2006-10-16 2007-03-28 清华大学 一种注凝成型制备陶瓷微球的方法及其装置
CN101225510A (zh) * 2008-01-11 2008-07-23 东华大学 超疏水性和超亲水性二氧化钛薄膜的等离子体制备方法
CN102898174A (zh) * 2011-07-29 2013-01-30 深圳光启创新技术有限公司 一种多孔陶瓷微球材料及其制备方法
CN103060927A (zh) * 2012-12-24 2013-04-24 吉林大学 一种基于超疏水界面的水溶性蛋白的磁性可控书写方法
CN203639164U (zh) * 2013-12-06 2014-06-11 吴会军 一种应用超疏水表面快速制备SiO2凝胶微球的装置
CN103787343A (zh) * 2014-01-28 2014-05-14 广州大学 一种基于超疏水表面的微球形气凝胶制备方法、该方法获得产品及其应用
CN105349036A (zh) * 2015-11-30 2016-02-24 东南大学 一种水性透明超双疏纳米涂料及其制备方法和应用
CN105582852A (zh) * 2016-03-28 2016-05-18 四川大学 一种湿法滚动造粒的方法
CN106179121A (zh) * 2016-08-10 2016-12-07 深圳市大西塔科技有限公司 一种造粒装置
CN107418872A (zh) * 2016-08-31 2017-12-01 四川蓝光英诺生物科技股份有限公司 制备微球的装置和制备微球的方法
CN108355588A (zh) * 2018-01-03 2018-08-03 成都高界科技有限公司 一种在超双疏表面上合成微球的方法
CN108585798A (zh) * 2018-05-09 2018-09-28 安徽中航名坤新材料科技有限公司 一种纳米多孔氧化铝气凝胶陶瓷小球及其制备方法
CN109134170A (zh) * 2018-09-27 2019-01-04 西南科技大学 基于界面张力制备超疏水球形二硝酰胺铵的方法
CN110003501A (zh) * 2019-04-22 2019-07-12 电子科技大学 一种合成聚合物微球的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
任占春: "《新型压裂材料与技术》", 31 March 2017, 中国石油大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079651A (zh) * 2020-08-26 2020-12-15 广东工业大学 一种基于光固化成型的多孔陶瓷微珠及其制备方法和应用
CN112939611A (zh) * 2021-01-28 2021-06-11 中国船舶重工集团公司第七二五研究所 一种采用直接滴定成型技术制备陶瓷微球的方法
CN113956864A (zh) * 2021-09-22 2022-01-21 河南龙德福新材料科技研究院有限公司 利用二氧化硅包覆的低密度高强度陶粒支撑剂及制备方法

Similar Documents

Publication Publication Date Title
CN106009428B (zh) 一种二氧化硅填充ptfe复合材料及其制备方法
CN105289433B (zh) 一种规模化制备过渡金属氧化物多孔微球的方法
CN102050479B (zh) 一种二氧化铈纳米棒及其制备方法
CN110606736A (zh) 一种无溶剂合成的陶瓷微球及其制备方法和应用
CN103288093B (zh) 一种采用喷雾干燥制备空心氧化硅微球的方法
CN109019613B (zh) 一种稀土增韧固态硅气凝胶的制备工艺
CN105948098B (zh) 一种球形氧化镧
CN111099596B (zh) 一种在二氧化硅气凝胶颗粒表面包覆高疏水氮化硼纳米片薄层的简易方法
CN104558664A (zh) 利用氧化石墨烯和纳米二氧化硅制备强亲水pet膜的方法
CN102433033A (zh) 一种非水解溶胶-凝胶法制备原位生成炭黑包裹色料的方法
CN104261462A (zh) 一种微纳二氧化锡实心球的制备方法
CN105217676B (zh) 具有纳米片及纳米多孔结构的氧化钛气凝胶及其制备方法
CN107572509B (zh) 一种氮掺杂空心碳/石墨球纳米材料及其制备方法
CN112473579A (zh) 一种具有热胀空腔的金属相变微胶囊及其制备方法
CN107572568A (zh) 一种微米级球形氧化铝粉体的制备方法
CN108024493B (zh) 一种莲蓬结构的介孔碳与纳米钴复合物及其制备方法和应用
CN101734706B (zh) 一种菱形片状氧化铈的制备方法
CN103191588B (zh) 一种疏水性白炭黑的制备方法
CN109761261B (zh) 粒径形貌可控大比表面积二氧化铈粉体的绿色制备方法
CN110105871B (zh) 一种以铁铜锰金属盐和纳米二氧化硅为原料的超疏水光热抑冰涂层的制备方法
CN106187265A (zh) 一种Ca3Co4O9热电材料的制备方法
CN101343043B (zh) 两性金属化合物纳米材料及其制备方法
CN111470867B (zh) 一种碳化锆陶瓷空心微球及其制备方法
CN108483493A (zh) 一种高强度氧化锆气凝胶的制备方法
CN112194144A (zh) 一种球形硅微粉的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191224

RJ01 Rejection of invention patent application after publication