CN110520719B - 一次性多通道生物分析盒和使用其的用于生物分析的毛细管电泳系统 - Google Patents
一次性多通道生物分析盒和使用其的用于生物分析的毛细管电泳系统 Download PDFInfo
- Publication number
- CN110520719B CN110520719B CN201780089621.3A CN201780089621A CN110520719B CN 110520719 B CN110520719 B CN 110520719B CN 201780089621 A CN201780089621 A CN 201780089621A CN 110520719 B CN110520719 B CN 110520719B
- Authority
- CN
- China
- Prior art keywords
- cartridge
- channel
- capillary column
- separation
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44717—Arrangements for investigating the separated zones, e.g. localising zones
- G01N27/44721—Arrangements for investigating the separated zones, e.g. localising zones by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44756—Apparatus specially adapted therefor
- G01N27/44782—Apparatus specially adapted therefor of a plurality of samples
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种用于生物分子分离的多通道盒(60),包括多个联接的盒元件(60’)。每个盒元件(60’)具有单独分离的集成试剂(即,分离缓冲液)容器(62),其专门用于每个分离通道。多个分离通道包括由每个盒元件本体(80)保持或在其内部的毛细管柱(10),并且可以不同的特性,例如不同化学性质的不同分离介质、不同分离长度、不同通道尺寸和内部涂层。盒元件本体(80)包块检测窗口(86)。不是所有的通道都需要是可操作的。盒中的一个或多个通道的可以是不起作用的“无用通道”(例如,未配备毛细管)。毛细管(10)可在一个通道的容器/电极(66)(阳极)与另一通道的电极(67)(阴极)之间布线,从而允许使用更长的毛细管长度来限定更长的分离通道,以提高分辨率。多通道生物分离系统提供了高通量功能,用于在DNA/RNA/蛋白质分析中提供更快、更高分辨率和更好的检测灵敏度。多通道系统设计用于在一台仪器中同时进行PCR扩增和电泳/检测。
Description
以下讨论的所有文件都通过引用完全并入本文中,如同在此完全阐述一样。
技术领域
本发明涉及生物分析,具体涉及用于进行生物分析的盒和使用该盒的毛细管电泳仪。
背景技术
当前,实验室中使用的大多数生物分离工具都采用基于平板凝胶的电泳技术,自20多年前问世以来,已被常规用于生物分子(即DNA,蛋白质和碳水化合物)的生物分析。然而,用于生物分析的平板凝胶电泳是劳动密集型的,并且在分辨能力、通量和每个样品的成本方面需要大大改善。
毛细管电泳(CE)是用于凝胶电泳(简化凝胶电泳的微通道设备)的微流体方法,其最大优点是其广泛的应用范围。CE技术已被生物技术行业普遍接受,特别是在基于核酸的测试中,作为一种可靠、高分辨率和高灵敏度的检测工具,并且CE已应用于例如蛋白质、碳水化合物和与DNA相关的分析,例如寡核苷酸分析、DNA测序、dsDNA片段分析和聚糖谱分析。通常,在常规分析中避免使用CE,因为它被认为是故障率高且麻烦的技术。但是,这不再是正确的,因为仪器制造商已大大改善了仪器设计,并且整体CE知识增加。降低故障率并生成准确、精确和可靠的CE数据的三个关键因素是:操作员培训、系统稳定性以及仪器操作简便而维护成本低。
毫无疑问,带有激光诱导荧光(LIF)的CE是用于快速、高灵敏度和高分辨率生物分析的最强大的分析工具之一。然而,由于复杂的光学检测机制,基于CE的LIF系统的当前售价比传统的基于平板凝胶的生物分析系统昂贵得多。因此,昂贵的基于CE的系统几乎是除少数几个资金雄厚的实验室外所无法企及的,并且似乎是扩展生物分析应用程序/业务的高成本障碍。
共同转让给本发明的受让人的美国专利号第8,784,626号公开了一种简化的,低成本,有效,高度灵敏,不移动且稳定的微光学检测配置,用于通过填充有分离支持介质(例如包括运行缓冲液的液体或筛分凝胶)的分离通道(例如由柱定义)进行生物分离(例如毛细管电泳)。更具体地,所公开的发明针对一种改进的检测配置,该检测配置包括光学器件,该光学器件用于沿分离通道在检测区施加入射辐射并检测来自检测区的输出辐射,以用于检测样品分析物所发射的辐射(例如,辐射诱导的荧光发射)。在所公开的发明的一方面,入射辐射的方向(例如,来自激光或LED源),在检测区处的分离通道的轴线以及输出辐射的收集方向都基本上在同一平面上。在一个实施例中,使用光纤形式的光导将入射辐射提供给检测区和/或从检测区收集输出辐射。在一个实施例中,本发明的检测配置具有沿着分离通道位于检测区的相对侧的光纤。为了高检测灵敏度,光纤可以彼此间隔小于180度(例如40至160度,例如120度)放置。在所公开的发明的另一方面,该发明的检测配置结合了球端光纤以提供入射辐射和输出辐射的收集。在所公开的发明的另一方面,该发明的检测光学配置可以在改进的生物分离仪器,特别是毛细管电泳仪中实施。
共同转让给本发明的受让人的美国专利号第8,778,155号公开了一种基于盒的生物分离系统,该系统被配置为利用易于组装和使用的笔形生物分离盒,其没有移动部件,并且具有集成的试剂(分离缓冲液)容器。该盒包括:本体,该本体限定了作为用于接收外部检测光学器件的检测窗口的开口;至少一个毛细管柱,支撑在该本体中,该毛细管柱的第一端延伸超过该本体的第一端,其中,检测窗口暴露出沿毛细管柱的一部段,外部光学器件通过检测窗口与该部段对齐;以及附接到本体第二端并与毛细管柱的第二端流体连通的容器。容器的结构设计为与气压泵或N2储罐联接,该储罐对凝胶容器加压以吹洗并填充毛细管,以缓冲液/凝胶作为分离支持介质。
共同转让给本发明的受让人的公开号为US20150338347A1的美国专利申请第14/720,723号公开了一种通过毛细管电泳(CE)进行聚糖谱分析的方法,以及一种用于聚糖分析(N-聚糖)的CE系统。CE系统使用集成的双光纤进行辐射激发和发射检测。CE系统配置为执行双色检测以进行数据分析。单个辐射激发源用于激发待分析样品溶液中的两种发射荧光团或染料。一种发射染料用于标记样品,另一种染料用于为样品运行提供参考标记(例如Dextran Ladder)。应用两个检测器(例如光电倍增管(PMT))同时检测染料的荧光发射。将两个检测器收集的数据进行关联(例如,同步和/或叠加以进行分析),以进行准确的数据峰识别。
基于以上公开的检测技术,需要一种多通道毛细管电泳系统,该系统简单且操作成本较低(即,每次样品运行的成本较低),从而提供具有高效率、灵敏度和通量的快速分析。
发明内容
本发明提供了一种简化的,低成本,高效率,高灵敏度,高通量的多通道生物分离系统(例如,毛细管电泳系统)。生物分离系统包括仪器,其包括用于沿着每个分离通道在检测区施加入射辐射和沿着每个分离通道检测来自检测区的输出辐射的光学器件,用于检测样品分析物发出的辐射(例如,辐射诱导的荧光发射),而无需将光学器件与每个分离柱(毛细管或柱)精确对准。该仪器被配置为以自动方式在生物分离盒的分离通道中进行生物分离。
在本发明的一方面,本发明针对基于多通道盒的生物分离系统,其配置成利用可靠,紧凑,简化,可移动,便携式,可互换,可重复使用,低成本,可回收和/或一次性使用的生物分离盒,该生物分离盒易于组装和使用,没有移动部件,并且具有专用于每个分离通道的单独的、分离的、集成试剂(即,分离缓冲液)容器。生物分离盒包括在其中限定的多个分离通道。多个通道可以具有不同的特性,例如不同化学性质的不同分离介质,不同分离长度,不同通道尺寸和内部涂层。
在一实施例中,盒的整体尺寸的特征在于,分离通道具有有效的分离长度(即,毛细管的长度,预期沿该长度在阴极和检测区之间进行生物分离,这将短于毛细管柱的实际长度),其不超过50cm,优选在11至15cm的范围内。在一个实施例中,生物分离系统包括设置有检测配置的仪器,该检测配置包括用于沿着每个分离通道在检测区施加入射辐射和沿着每个分离通道检测来自检测区的输出辐射的光学器件,用于检测样品分析物发出的辐射(例如,辐射诱导的荧光发射),而无需将光学器件与毛细管柱精确对准。该仪器被配置为以自动方式在生物分离盒的每个分离通道中进行生物分离。可以控制每个分离通道以在不同参数(例如,不同的施加电压,不同的入射波长,不同的运行时间等)下进行生物分离。
在一个实施例中,由盒支撑并在盒内的毛细管柱限定了每个分离通道。在本发明的一个实施例中,生物分离系统用于毛细管电泳分离和分析,并且其中的仪器被构造成利用毛细管盒以自动化方式进行毛细管电泳分离,检测和分析。在一个实施例中,毛细管柱由用于每个通道的毛细管限定,该毛细管具有特定的长度,尺寸(内径)和内部涂层。在一个实施例中,多通道盒包括:多个盒元件,其中每个盒元件包括本体,该本体限定开口作为用于接收外部检测光学器件的检测窗口;支撑在本体中的毛细管柱;容器,附接到本体的第一端、与毛细管柱的第一端流体流动连通,其中容器专用于单个盒元件;其中,盒元件联接,并且其中,各个盒元件的容器不流动连通。
在本发明的另一方面,介质的化学性质和分离柱的特征(例如,对于由毛细管限定的分离通道,毛细管尺寸I.D.,内部涂层和长度)是针对盒中的每个通道定义的。不同的盒可以容易地互换以用于生物分离系统中,以适合基于特定样品的分离。每个通道的缓冲液容器被构造成与气压泵或N2气体相连,其对容器加压以吹扫并用缓冲液(例如凝胶)作为分离支撑介质填充相关的分离通道。盒不需要将检测光学器件集成到盒中,并且分离通道不需要相对于检测区精确对准。在一实施例中,盒不包括集成的检测光学器件。
在一个实施例中,并非所有通道都需要操作。盒中的一个或多个通道可以是不起作用的“无用通道”(例如,未配备毛细管)。
在一个实施例中,毛细管可在一个通道的容器/电极(阳极)与另一通道中的电极(阴极)之间布线,从而允许使用更长的毛细管长度来定义更长的分离通道,以提高分辨率。
在一个实施例中,盒设置有RFID以识别盒的配置,例如操作通道的数量,每个通道中的化学物质以及每个通道中的分离柱(例如毛细管)的特性。盒可用于多次运行,而无需更换盒或用新鲜的分离介质翻新盒以重新使用。RFID可以配置为跟踪已完成的运行次数,以确定盒的使用寿命。可以通过更换分离介质和其他部件(例如毛细管和密封件)来处理或翻新用过的盒。
附图说明
为了更全面地理解本发明的性质和优点以及优选的使用方式,应当参考结合附图阅读的以下详细描述。在以下附图中,在整个附图中,相同的附图标记表示相同或相似的部分。
图1A是根据本发明的一个实施例的毛细管电泳系统的示意图,该毛细管电泳系统结合了多色检测配置和盒;图1B示出了图1A中的包括检测区的区域A,并且示意性地示出了激发光纤、发射光纤和毛细管柱的构造。
图2A示出了根据本发明的一个实施例的毛细管电泳(CE)仪的外部视图,图2B和2C是示出内部部件的截面图,图2D和2E是内部视图。
图3A至3H示出了根据本发明的一个实施例的多通道盒的各个视图。
图4A是盒的分解透视图;图4B和4C是盒的截面图。
图5A至5C是根据本发明的一个实施例的盒的前盖的各个视图。
图6A至6B是根据本发明的一个实施例的盒的后盖的各个视图。
图7A至7C是根据本发明的一个实施例的盒的容器的各个视图。
图8A和8B示出了根据本发明的一个实施例的盒内的毛细管的内部布线。
图9A示出了根据本发明的一个实施例的将盒插入仪器中的接收器块中,并且,图9B示出了用于接收器块的附加加热/冷却模块。图9C示出了根据本发明的一个实施例的接收器块,图9D是示出了在接收器块的内部的叉组件的剖视图。
图10A至10D是根据本发明的一个实施例的叉组件的各个视图。
图11示意性地示出了根据本发明的一个实施例的双色检测方案。
图12示出了从分离中确定碱基的分离度。
图13-15示出了本发明的CE仪器和根据本发明的方法的荧光检测的分辨率。
图16-19示出了本发明的CE仪器和根据本发明的方法的荧光检测的结果。
具体实施方式
下面参照附图参考各种实施例描述本发明。尽管以实现本发明目的的最佳方式描述了本发明,但是本领域技术人员将理解,根据这些教导可以实现各种变化而不会背离本发明的精神或范围。
本发明提供了一种用于高效、高速、高通量生物分子分析的高通量毛细管凝胶电泳(4通道)系统。4通道CGE分析仪(Qsep400)是新开发的产品,它将大大提高实验室中DNA研究的速度,节省准备时间,并确保准确、一致和经济的结果。在本发明的一个方面,已经针对DNA/RNA/糖蛋白应用优化了多通道高性能毛细管凝胶电泳分析仪系统。该系统使用集成的双光纤荧光检测技术(激发和发射检测)和新颖的4通道一次性凝胶盒。该系统总共可以容纳96个样品,可以在1-2小时内自动进行分析。这种具有基于多色光纤的荧光检测的高通量CGE系统可用于实验室中的高速基因分型应用。
参考包括在美国专利第8,778,155和8,784,626号中公开的检测系统以及美国专利申请公开号US20150338347A1中公开的生物分析系统,其全部内容通过引用并入本文,如同在此完全阐述一样。这些专利和专利申请共同转让给本发明的申请人和受让人BiOptic,Inc.。特别地,这些专利公开了一种简化的,低成本,高效率,高灵敏度,高通量的生物分离系统(例如,毛细管电泳(CE)系统)。生物分离系统包括被配置为与单通道毛细管盒一起使用并且设置有检测配置的仪器,该检测配置包括用于沿着分离通道在检测区施加入射辐射和沿着分离通道检测来自检测区的输出辐射的光学器件,用于检测样品分析物发出的辐射(例如,辐射诱导的荧光发射),而无需将光学器件与分离柱精确对准。该仪器被配置为以自动方式在生物分离盒的分离通道中进行生物分离。CE系统具有不太复杂的光学检测机制以降低成本,从而补充了操作的简便性,具有高效率、灵敏度和通量的快速分析。US20150338347A1进一步公开了两种颜色的荧光检测。本发明采用并修改了这些系统,以包括对根据以下公开内容的系统(即,具有单独的,分离的容器的多通道盒)的改进。
为了说明本发明的原理而非限制,通过参考针对使用毛细管分离柱的毛细管电泳的实施方案来描述本发明。此外,将结合辐射诱导的荧光检测(例如,使用激光或LED源)而无限制地描述本发明。荧光分析是一种分光光度法的分析方法,其中分析物的分子通过一定波长的辐射而激发,并发出不同波长的辐射。发射光谱为定性和定量分析提供信息。通常,荧光检测相对于吸光检测的优势是优越的可检测性(检测灵敏度)。对于有效的荧光团,已经证明了小体积的单分子检测。这部分是因为荧光信号是在相对较暗的背景下测量的,作为在与入射辐射的波长不同的波长下检测到发出的辐射的结果(例如,发出的荧光的波长比激发辐射处于更长的波长)。
系统总览
与常规的劳动密集型技术(即,手动平板凝胶电泳)相比,分析仪器的小型化和自动化具有许多优点。这些优势包括改进的数据精度和可重复性,缩短的分析时间,最小的样品消耗,改进的自动化以及复杂工作流程的集成。
参考图1A,毛细管电泳(CE)系统100结合了示意性示出的检测配置。CE系统100通常包括毛细管分离柱10(例如,外径200-500μm),其限定内部分离通道12(例如,内径25-200μm),可以是毛细管柱10(为了简单起见,只示出了一个分离通道/毛细管柱)。毛细管柱10可以由熔融二氧化硅、玻璃、聚酰亚胺或其他陶瓷/玻璃材料制成。分离柱10的内壁(即,限定分离通道12的壁)可以涂覆有可以积累静电荷以促进样品成分的电泳和/或电动迁移的材料。分离通道12可以填充有分离支持介质,该分离支持介质可以简单地是运行缓冲液,或者是本领域已知的筛分凝胶基质(线性或非线性聚合物组合物)。
毛细管柱10的一端联接到运行缓冲液的容器14。毛细管柱10的另一端联接到另一个容器16,该容器可以交替地包含样品(将被注入到分离通道12中)和运行缓冲液(在样品注入之后,进行分离)。电源18通过电极20和22将高电压提供给容器14和16。
当单独考虑时电泳和辐射诱导的荧光的机理不在本发明的范围内。为了完整起见,简要提及CE系统100的操作就足够了。在操作中,通过不属于本发明一部分的多种方式中的任何一种,将标有至少一种已知荧光团的制备好的生物样品引入远离检测区的毛细管柱的远端(例如,从样品容器中进行电动注射或使用注射泵进行物理压力注射)。当电源18将DC电势(例如1-30KV)施加到电极20和22时,样品在施加的电势下沿着分离通道12在方向24上迁移(例如,带负电的样品如图1所示向正电极22移动),并且分离成样品成分的带。分离的程度和沿分离通道12移动的距离取决于许多因素,例如样品成分的迁移率、样品成分的质量和大小或长度以及分离支持介质。用于分离样品的分离通道12中的驱动力可以是电泳、压力或电渗流(EOF)装置。
当样品到达检测区32时,激发辐射通过激发光纤34在检测区32上沿方向35引导。样品成分将以与各个样品成分的浓度成比例的强度发出荧光(与荧光标签材料的量成比例)。检测器42在与入射辐射的波长不同的一个或多个波长下,沿方向37检测经由发射光纤36发射的荧光的强度。可以通过多色(例如,两色)检测方案(下面参考图11进一步讨论)来分析检测到的发射辐射。对于自动化系统,具有处理器的控制器26(例如,以外部笔记本计算机或台式计算机或集成在仪器上的计算单元的形式)控制CE系统100中各个部件的操作,以实现毛细管电泳分离和数据收集,以及控制下文讨论的其他功能。给定本文的公开内容,这种控制的具体实施方式完全在本领域技术人员的知识范围内。
检测配置
在图1A所示的特定实施例中,检测光学器件配置(示意性地表示在位于检测窗口/区域32周围的区域30中)对应于图1B所示的实施例(图1A中的区域A)。入射辐射的方向35(例如,来自激光或LED源的辐射),在检测区处的分离通道的轴线以及输出辐射的收集方向37都基本上在同一平面上。在所示的实施例中,本发明的检测配置具有位于检测区分离通道的相对侧的光纤。在一个实施例中,使用光纤形式的光导,特别是球端光纤(即,以整体结构集成到光纤端部的微球端接的光纤),将入射辐射提供给检测区和/或从检测区收集输出辐射。
还参考图1B,球端光纤(激发光纤34)从辐射源(例如,LED或激光源41,在图1A中示意性示出)延伸,以将激发辐射沿方向35引导到检测区32。激发光纤34的球端围绕检测区32定位在分离柱10的外表面处或附近。在所示的实施例中,激发光纤34的球端定位在与分离柱10的外表面相距一定距离的位置上(即,非接触模式)。在该示出的实施例中,另一球端光纤(发射光纤36)延伸到检测器(例如,荧光检测器42),在图1中示意性地示出)以收集从检测区32沿方向37发出的辐射。发射光纤36的球端围绕检测区32位于分离柱10的外表面处或附近。在所示的实施例中,发射光纤36的球端定位成与分离柱10的外表面间隔开一距离(以非接触模式)。具有球形末端的激发和发射光纤34和36都以非接触方式(与毛细管柱的外部隔开)放置在分离柱10的相对两侧,以减少背景荧光并且不会对任一毛细管柱或微球造成任何物理损坏。
在图1B所示的实施例中,如图所示,在检测区32处的部件基本位于同一平面内。具体地,激发光纤34的纵向轴线、发射光纤36的纵向轴线和毛细管通道12的纵向轴线至少在检测区32中的区域处在同一平面上基本对齐(即,基本共面)。即,虽然激发光纤34、发射光纤36和毛细管柱10的长度可以整体弯曲,但是至少在检测区附近,激发光纤34的轴线、发射光纤36的轴线和毛细管通道12的轴线基本上在同一平面上对齐,使得从激发光纤34朝向检测区32的入射辐射的方向35、在检测区32处的分离通道12的轴线和沿着发射光纤36远离检测区的输出辐射的收集的方向37基本上都在同一平面上。
此外,在检测区32处,激发光纤34的轴线与发射光纤36的轴线之间的角度不以直线对齐。激发光纤34的轴线和发射光纤36的轴线中的至少一个在检测区32处不垂直于分离通道12的轴线。在图2所示的实施例中,激发光纤34的轴线和发射光纤36的轴线均不垂直于分离通道的轴线,并且在检测区32处分别与分离通道12的轴线成角度39和40。角度39和角度40可以基本相同或不同,并且可以相对于分离通道12的轴线的参考方向或毛细管柱10的参考截面(例如,毛细管柱10在光纤34和36之间的截面,如图1B所示)测量小于或大于90度。例如,从同一参考截面测量,角度39可以小于90度,角度40可以大于90度。在图1B所示的实施例中,角度39和40是相同的,并且基本上在同一平面上。
在图1B所示的实施例中,激发光纤34和发射光纤36均具有200微米直径的芯作为外部包层中的光导,以及包括熔融的芯和包层材料的350微米直径的球形末端(即,纤芯直径与球直径之比为1:1.75)。球形末端具有基本球形的轮廓。球形末端光纤可以通过使用熔接机形成,或者可以从许多可用的供应商处获得。毛细管柱10的外径为200至370微米(例如360微米),内径为20至150微米(例如75微米)。激发光纤34的球端的末端与毛细管柱的外表面间隔约50-500微米,并且发射光纤36的球端的末端与毛细管柱的外表面间隔约10至500微米(例如,50-200微米)。或者,发射光纤36可具有300微米直径的芯,在其远端具有500微米直径的球形末端(即,光纤芯直径与球直径之比为1∶2.5)。角度39和40每个可以在大于0至小于90度的范围内,优选地在20至70度之间,并且更优选地在30至45度之间。在图1B所示的实施例中,角度39和40均约为70度。光纤34和36的球端不接触毛细管柱10。
在一个实施例中,光学检测系统由作为用于荧光标记(FITC)抗体片段检测的激发辐射源的超亮UV LED(例如LG Innotek/IRTronix或Dowa)构成。模块化设计和光纤耦合为将激发辐射交换到激光模块(用于LIF应用)或其他类型的廉价光源提供了灵活性。
已经发现,与平端光纤(裸露的光纤,没有微球透镜)相比,球端光纤为激发光纤34提供了良好的入射辐射聚焦(光密度/功率密度),并为用作高角度荧光收集器的发射光纤36提供高收集效率,以提高荧光信号收集能力并提高检测灵敏度。使用大芯(例如100-1000微米)和高NA(0.15-0.5)多模光纤,它允许从LED或激光到激发光纤34的高功率光耦合。通过在激发光纤34的远端输出端处制造集成的微球透镜,其允许在分离通道12(例如20-200微米的微流体通道)内部具有良好的耦合效率,从而具有高的荧光检测灵敏度。
具有200微米芯直径和指向毛细管分离通道12的330-350微米直径的球(见图1B)的较小直径的激发光纤34导致具有较高功率密度的较小焦点,从而优化了荧光激发信号。如果将具有300微米芯直径和500微米直径的球透镜的发射光纤36用于发射收集,则可以提高发射收集效率。毛细管柱的外径为360微米,内径为75微米。
具有球端光纤的2光纤检测配置已应用于具有集成缓冲容器的一次性单通道、单毛细管盒概念(请参见美国专利号8,778,155和8,784,626,以及美国专利申请公开号US20150338347A1)。本发明提供了一种高通量仪器,该仪器利用类似设计的多个凝胶盒将分离时间(循环)加快了4X-8X倍(对于完整的96孔样品板运行需要1小时)。
通过电动注入将测试样品引入分离毛细管柱10。高压电源(例如,加利福尼亚州萨特克里克市的EMCO)用于将例如500V至20KV的电场输送到毛细管,以用于电动注入和分离每个通道中的生物分子。对于每个通道,将具有宽带光能(例如,FWHM=20-50nm)和20-100度的视角的激发LED在扁平端(抛光或劈开的末端)耦合到大芯激发光纤(例如,100-1000微米)。在将光耦合到具有直径为350微米的球端激发光纤的直径为200微米的芯之前,需要在LED前面放置线路滤波器(例如FWHM=2-50nm带通线路滤波器),以减少背景噪声。光纤的微球透镜端部是通过熔接(高压热熔)制成的,其球直径控制得当,以形成明确限定的出口NA和光斑尺寸,从而将激发辐射能耦合到毛细管柱的内径(分离通道)中。对于每个通道,然后由分离的分析物产生的荧光发射信号被使用相似的球端光纤(直径为500微米的较大芯光纤)在毛细管通道的检测区收集,并中继到外部检测器模块(例如,图1中示意性示出的荧光检测器42),其可以包括一个或多个光电倍增管(PMT)或SiPMT或CCD,并且还可以包括分束器,内置发射滤波器(例如,带通滤波器),以根据下面的进一步公开进行多色检测。
检测光学器件和检测方案的更多细节可以参考美国专利号8,778,155和8,784,626,以及美国专利申请公开号US20150338347A1,其全部内容通过引用并入本文,如同在此完全阐述一样。
CE仪器可以包括温度控制机构,例如与工作台221(参考图2D)对接(例如,在上方或下方)的珀尔帖(Peltier)加热/冷却模块207,以控制样品的温度或所需的过程,例如PCR(聚合酶链反应)扩增过程。这样的温度控制允许在单个仪器中容易地进行PCR扩增和电泳/检测两者,而不必在分开的仪器中进行两个过程。另外,提供如图9B所示的加热/冷却模块207’(例如,珀耳帖模块)以控制毛细管盒60的温度。如图所示,风扇使温度受控的空气循环到毛细管盒60。
CE仪器
图2A示出了包括在CE系统100中的CE仪器200的外观。根据本发明的一个实施例,CE仪器200在仪器内结合了上面讨论的CE系统100的一些部件(CE系统的一些部件可以是外部的,例如电源,加压气体源,计算单元等)。CE仪器200包括具有图1A中示意性示出的检测配置的部件。图2B和2C是示出根据本发明的一个实施例的CE仪器200的内部视图的截面图。CE仪器200包括各种部件,包括根据本发明的用于接收盒60的接收器块205。接收器块支撑盒接口机构204,盒接口机构204包括多个叉组件,叉组件支撑以上讨论的检测光学器件,并且使检测光学器件与盒中的毛细管柱接口/接合。图2D和图2E是进一步示出CE仪器200的位于仪器壳体内的部件的示意图。CE仪器200包括系统板201,可操作地联接至样品传输机构202(例如,三轴XYZ传输机构),盒接口机构204,光信号检测器,例如包括光电倍增管(PMT)模块206(参见图2B和2D),高压电源208(参见图2D;可以替代地位于CE仪器200的外部),检测光学器件(例如,如图1B所示)和加压气体源(其可以位于CE仪器200的外部,但连接到仪器壳体中的端口)。
提供控制器26用于用户界面以及对实验/测试设置和参数进行编程。控制器包括必要的应用程序软件例程,其中还可以包括数据缩减应用程序。控制器26可以是仪器200的组成部分(例如,作为系统板201的一部分,应用程序用ASIC编码),也可以是与CE仪器200联接/接口的独立单元。在所示的实施例中,控制器在台式计算机或笔记本计算机形式的CE仪器200的壳体的外部,该台式计算机或笔记本计算机经由系统板201经由USB接口联接至CE仪器200。外部控制器26可以包括大容量存储设备,显示器,键盘等,或者这些用户界面部件中的一些可以被配置为与CE仪器成一体(例如,前壳体上的显示器和键盘)。可替代地,在不脱离本发明的范围和精神的情况下,系统板201可以被结合为外部控制器26的一部分。
系统板201包括必要的电子设备,以驱动CE仪器中的各个部件,例如,传输机构202的运动,电源208、PMT模块206的输出,加压气体的阀释放,盒接口204、RFID发送器/读取器的运动等。注意,在图中示意性地表示了系统板201。它可以包括用于控制特定部件的其他电子板(例如,用于控制样品传输机构202中的电机的电子板),或者这些其他板可以与系统板201分离并与系统板201通信以执行预期的功能。确切的电子板配置对于本发明不是关键的,并且配置板以实现本文公开的期望功能和特征完全在本领域技术人员的知识范围内。控制器26和/或系统板201可以内置在仪器壳体的前面板203(见图2A)中,以允许用户接近以放置和移出样品和/或试剂托盘220。前面板203包括触摸屏用户界面显示面板25。触摸屏面板25因此可以用作用于设置仪器200中的控制器26的操作的控制面板。如图所示,前面板203可以由步进电机驱动以向上滑动以提供用于将托盘220(例如,支持缓冲溶液,试剂和/或样品)放置/移出传输机构202的入口,并向下滑动以防止接近。
如图2D所示,样品传输机构202包括支撑具有多个孔的托盘220(例如,标准的96孔滴定板)的工作台221和具有用于缓冲液、清洁溶液和废物收集的较大孔的托盘220a,以三个自由度移动。多个孔可以包括包含清洁溶液和样品以及用于废物收集的孔。注意,在图中,X,Y和Z是正交轴。Y是竖直轴;X在跨过仪器的水平方向上(平行于仪器的后部);Z在水平方向上进出仪器。工作台221由传输机构202控制,以上下移动,并且在平面内在直线上移动并在平面内旋转。即,工作台221在单个水平方向(Z方向)和竖直方向(Y方向)上移动。传输机构202可以被配置为额外地控制工作台221绕竖直轴(Y轴)的旋转。工作台221的运动(平移运动或旋转和平移运动的组合)将能够将多个孔中的任何一个放置在托盘220和托盘220a中,以供悬垂的毛细管柱60的末端接近(见图3A)。
加压气体源(例如,加压空气或N2)可以是安装在CE仪器壳体内的气盒,也可以是外部源(例如空气泵),通过仪器壳体处的气体连接端口将加压气体提供给CE仪器(在这种情况下,加压气体源将是连接到外部气体源的气体连接端口)。加压气体通过适当的气体管和阀(可操作地联接至系统板201)被馈送到盒60中的容器62。
电源208包括联接到系统板201的系统DC电源(例如,来自外部AC电源的12-24VDC),以及可变高压电源(例如1-30KV DC电压),为电极触点/探针提供必需的高压,以便与盒60中的电极66和67电接触,以便在其中进行电泳。替代地,代替使用具有外部AC电源的内部12-24VDC电源,CE仪器200可以使用外部12-24VDC电源,这使得该仪器在没有内部AC至DC转换的情况下更简单且更安全地使用。这也将允许电池操作以便现场携带和操作。接触探针可以被气动地致动(例如,通过调节来自气体源的加压气体,或者以机电方式,以接触电极66和67的暴露表面,或者接触探针可以被简单地弹簧加载以偏压到电极66和67的暴露表面上。接触探针的更多细节可以参考美国专利号8,778,155和8,784,626,以及美国专利申请公开号US20150338347A1,其全部内容通过引用并入本文,如同在此完全阐述一样。
激发光纤34以4通道LED模块226(图2D)的形式与光源光学耦合,该模块可以是系统板201的一部分。发射光纤36通过适当的光学滤波器光学耦合到PMT模块206。PMT模块206的电输出耦合到系统板201。
还参考图9A和9B,盒接口机构204被支撑在仪器的接收器块205中,并且被配置为接收盒60,并且相对于检测光学器件可靠且准确地支撑其位置。盒门261(图2A至2C)设置在仪器壳体的顶侧,以允许插入和取出盒60。
如图9A至9C所示,设置有打孔器119以促进对可能已经设置在样品托盘220上以防止蒸发和/或污染的密封件进行打孔。打孔器119可以被配置为固定式机械打孔器(例如,由CE仪器的底盘相对于工作台221支撑),当通过传输机构202使工作台221将样品托盘220抬起时,该打孔器在密封件上打孔,或配置为气动或机电驱动的打孔器,以进行垂直向上/向下和/或横向移动,以便在支撑在工作台221上的样品托盘220的密封件上打孔。
多通道CE盒
在本发明的一方面,系统100是基于多通道盒的生物分离系统,其包括CE仪器200(例如,图2A至图2E所示),CE仪器200配置成利用可靠,紧凑,简化,可移动,便携式,可互换,可重复使用,低成本,可回收和/或一次性使用的生物分离盒,该生物分离盒易于组装和使用,没有移动部件,并且对于每一个通道都具有单独的集成试剂(分离缓冲液)容器。在附图所示的公开实施例中,用于生物分离的多通道盒包括:多个盒元件,其中每个盒元件包括本体,该本体限定开口作为用于接收外部检测光学器件的检测窗口;支撑在本体中的毛细管柱;容器,附接到本体的第一端、与毛细管柱的第一端流体流动连通,其中容器专用于单个盒元件;其中,盒元件联接,并且其中,各个盒元件的容器不流动连通。每个盒元件可被构造成具有总体尺寸和细长形状,大体上符合笔的总体形状。生物分离系统100设置有上述检测配置,该检测配置包括用于沿着每个分离通道在检测区施加入射辐射和沿着每个分离通道检测来自检测区的输出辐射的光学器件,用于检测样品分析物发出的辐射(例如,辐射诱导的荧光发射),而无需将光学器件与毛细管柱精确对准。该系统100被配置为以自动方式在多通道生物分离盒的每个分离通道中进行生物分离。
在公开的实施例中,本发明提供了可重复使用的4通道凝胶盒,其允许在具有整合了有效分隔长度为例如11cm的4微流体玻璃毛细管(20-100μmID)的集成4独立凝胶容器设计的坚固注射成型体中容易地即插即用。缩短的毛细管长度可以降低工作电压(1–15KV),并省去了昂贵的冷却系统,例如珀尔帖或循环冷却器。该设计包括顶部和底部电极(阳极和阴极),裸露的检测区和嵌入式RFID芯片/标签,以为凝胶盒类型提供ID并跟踪每个盒的运行次数。每个盒包含线性凝胶基质,能够分析200个样品,每个样品仅需2分钟,从的样品量中仅消耗1pl。
本凝胶盒是用于大批量类型制造易于操作的CGE仪器的简单但非常可靠的设计方法,可显着降低背景噪音,从而提高了S/N,以每次样品运行非常低的成本实现了生物分子的高检测灵敏度。4通道独立的凝胶容器设计可灵活地使用不同的凝胶基质(缓冲液)组合以实现不同的分离分辨率。可以将各个通道组装成具有不同的玻璃毛细管内径和长度,以提高针对不同生物分子的性能(参见以下结合图8A和8B以及图16和17的进一步讨论)。较长的毛细管可以从一个容器循环到盒的下一部分,以进行更长的分离,从而提高分离度。
图3A至3H示出了根据本发明的一个实施例的多通道盒60。如图所示,盒60包括四个分开的盒元件60′,每个代表/对应于单个通道。每个盒元件是叶片形的。在不脱离本发明的范围和精神的情况下,可以实现更多或更少的通道(例如,2、3、6、8等通道)。毛细管柱10由盒60的每个盒元件60′/通道支撑并在其内。在所示的实施例中,每个盒元件60′具有细长的且大致纵向的本体80。尽管盒60的所示本体80通常是扁平的圆柱形或叶片形,但是它可以具有其他截面的圆柱形轮廓,例如圆形,正方形,矩形,六边形,椭圆形或其他规则和不规则轮廓。如图所示,本体80具有本体部分,该本体部分具有大致均匀或恒定的宽度,本体的底端比本体部分的均匀宽度窄。本体80的底端可以渐缩至较窄的部分,例如终止于大体上圆锥形的部分97。毛细管柱10大体上与盒本体80的纵向中心轴线成一直线地由盒本体80保持或保持在盒本体80内。在一个实施例中,盒的整体尺寸的特征在于,分离通道不超过30cm,优选地在10-20cm的范围内。
还参考图4A至图4C,图5A至图5C,图6A至图6B和图7A至图7C所示,出口缓冲液容器62附接到本体80的顶端。缓冲液容器62包括帽85(例如,旋盖或塞子),其密封容器62的顶部开口,以将分离支持介质(例如,凝胶缓冲剂)保持在其中。可以在帽85的下方设置附加的插塞盖85’。容器62的底部具有限定凹槽93的边缘88和具有用于容纳毛细管柱10的通孔91的中心短管90。容器62的帽85具有端口64(例如,小的钻孔),该端口64用于联接至外部加压气体(例如,氮气)供应源(例如,作为在下面讨论的CE仪器的一部分的气罐或泵)。(当一段时间不使用盒60时,可通过施加短胶带条来密封端口64。)加压气体提供所需的气压,以冲洗和填充毛细管柱10中的毛细管分离通道12,其中分离支持介质(缓冲液)包含在容器62中。取决于分离缓冲液的粘度,可以施加最高60PSI的压力,以通过顶部缓冲液容器62填充毛细管柱10。容器62设置有电极66(阳极),该电极66与缓冲液电接触。电极66(见图7A)具有通过开口63暴露于外部的接触表面(见图6A)。
还参考示出内部结构的图5A至5C和6A至6B,本体80包括两个半盖或半壳82和83,其在面对的内表面(即,当组装壳体82和83时不暴露于外部的表面)上包括互补结构,通常可能是彼此的镜像。半壳82和83限定通孔或窗口86,以便外部光学器件进入检测区32(如将在下面讨论的CE仪器结合进一步解释的那样)。半壳82和83的内部通常是中空的。半壳82和半壳83每个都具有凸缘92,当零件组装时,凸缘92与容器62上的凹槽93配合,以在盒本体80的顶端处在开口腔中将容器62牢固地附接到盒60的本体80。在沿着半壳82和83的内部的适当位置处设置有凹槽和凹口(在突出部101上),以使毛细管柱10穿过。在半壳82的外表面处,可以设置对准槽和/或分度凹口,以当盒60插入CE仪器中时便于将盒60中的检测窗口86相对于CE仪器进行引导和正确准确的定位和对准。类似地,在半壳83的外部,可以设置分度凹口和/或槽,以在CE仪器内对准和定位检测窗口86。在所示的实施例中,盒60沿其一个边缘具有短突片51,而在另一边缘处具有长突片52,它们与设置在CE仪器中的互补的槽/凹口相互作用,并为盒提供一些不对称性,以用于盒60相对于CE仪器可靠地对准和定向。如上所述,可替代地,可以沿着盒60的表面设置凹口/槽以用CE仪器中的互补的分度结构分度。此外,可以设置对准/分度凹口53(图7B)以促进电极67与设置在CE仪器中的外部电源的对准和定位。
还参考图3H,其是附接在一起的两个半壳的剖视图,检测区32的上游和下游的圆柱形套筒或套圈87将毛细管柱10支撑在盒60的本体80内(参见图4)。毛细管柱10穿过套圈87,并且毛细管柱10的一端延伸到容器62中,与容纳在容器62中的缓冲液流体连通,并且另一端延伸以超出盒本体80的下端。在所示的实施例中(见图4B和4C),为了将毛细管柱10的上端固定在容器62中,具有通孔的螺纹接头96被拧入容器62的底部并压紧O形环密封件96'(见图4C和7C)。毛细管柱10的上端穿过接头96插入。螺纹接头96在移除毛细管柱或容纳不同长度的毛细管柱方面提供了灵活性。替代地,代替使用接头,毛细管柱10的端部可以通过胶或环氧树脂固定到容器62。套圈87从凹口94延伸到窗口86中,但是暴露出毛细管柱10的检测区32。两个半壳82和83例如通过螺钉89(见图4A)或环氧树脂或夹子组装在一起以形成本体80。
毛细管柱10由套圈87同轴地支撑,套圈被支撑在盒本体80中,其中每个套圈87都由盒本体悬挂并且其端部延伸到检测窗口86中,并且其中,沿毛细管柱的检测区暴露在套圈87的延伸端之间。在盒60的下端是另一个电极67(阴极)。电极67具有接触表面,该接触表面通过盒本体60半壳82和83的圆锥形部分97处的开口65暴露于外部,当安装在CE仪器内部时,用于联接至CE仪器中用于电泳的外部高压电源,例如下面所述的实施例(参见图2A至2E),其被设计成容纳盒60。下电极67以金属/导电套的形式构造,从盒60的下端延伸,并且完全(例如,以同轴金属管的形式)或部分(例如,以金属丝网,纱布或网的形式,或具有C形横截面的开放通道的形式)围绕毛细管柱10的悬垂端的侧面,毛细管柱10的末端暴露出来以便与外部缓冲液容器进行流体连通。毛细管柱10的末端可以延伸超过电极67的端部(例如,超过0.5至3mm),以更好地接近样品,因此导致较少的残留问题。
为了组装所示的各种部件,将每个容器62的底部边缘88放置在半壳83的端部,并且凸缘92插入在容器62上的凹槽93中。对于每个盒元件60′,将毛细管柱10穿过套圈87,并将一端拧入底部电极67中。毛细管柱10的另一端通过接头96插入到容器62上的底部开口91中。接头96被拧紧到容器62的底部上,从而压缩O形环96'以提供对毛细管柱10的本体的密封。套圈87的远端插入半壳83上的凹口94中。下电极67位于设置在半壳83的圆锥形部分97内侧上的凹槽95中,其端部延伸超过圆锥形部分97。可以提供一滴胶以将电极67固定在凹槽95中。另一半壳82放置在半壳83上,并通过合适的紧固件,例如铆钉或螺钉89附接,如图4A所示。用所需的分离支持介质(例如凝胶缓冲液)填充容器62并加盖。完全组装的盒60可以被测试并标记。诸如RFID标签150之类的电子标签可以被嵌入或附着于盒60(例如,在容器62的外表面处),以提供识别盒的特定构造(例如,缓冲介质,毛细管尺寸,涂层和长度)的手段。RFID标签还可以包括对运行次数和带到期日期的盒类型的预设限制。在组装盒60之后,向RFID标签提供初始配置参数。RFID可以是可重新记录的,并且可以用信息更新以跟踪盒的使用情况(例如,运行次数以及运行条件和/或参数(例如,施加电压,持续时间,样品),盒已翻新的次数等),使得可以容易地确定盒的历史(例如,通过下面讨论的CE仪器或单独的读取器)。每个盒的使用寿命也可以从RFID标签中确定。或者,可以提供静态标签,例如条形码标签。
如将在下面更详细解释的那样,在安装在CE仪器200中的电泳操作中,将下电极67的端部与毛细管柱10的开口端一起浸入外部缓冲液容器中。为了进行电泳,将高电压提供给缓冲液容器62中的电极66和浸入外部储存器中的电极67,以提供跨缓冲液的高压电路以完成毛细管柱10中的电泳路径。电极67还提供保护以防止毛细管柱10的悬垂端部破裂。
盒不需要将检测光学器件集成到盒中,并且分离通道不需要相对于检测区精确对准。具体地,在所示的实施例中,盒不包括集成的检测光学器件。在围绕检测区32的区域的检测窗口86中,检测区32上游和下游的套筒或套圈87将毛细管柱10支撑在盒60的本体中。支撑在CE仪器中的外部激发光纤34和发射光纤36通过限定在分离通道/柱10中的检测窗口86与检测区32对准。在下面将进一步讨论的所示实施例中,激发光纤34和发射光纤36由CE仪器中的叉组件支撑(例如,参见图10)。光纤34和36与毛细管柱10的轴线是共面的。光纤34和36的球端靠近但不接触毛细管柱10。换句话说,光纤具有与分离通道的外部间隔开的端接整体球端结构,其中球端结构不接触分离通道的外部。这符合图1B所示的检测光学构造。
如图所示,盒60具有由分开的盒元件60'限定的分开的通道。每个盒元件60’/通道内的流动与另一个盒元件/通道是分开的,因为每个通道都设有其独立的容器。这允许针对每个盒元件60’分别定义可以彼此不同的缓冲介质的化学性质和毛细管的特性(例如,毛细管尺寸,涂层和有效的分离长度)。此外,不同的盒60可以容易地互换以用于以下讨论的CE仪器中,以适合基于特定样品的分离。盒可以被更换,翻新以重新使用(例如,用新鲜的缓冲液,密封件,新的毛细管柱和/或电极等),回收或处置。
根据本发明的盒可以以相对较低的成本制造。盒的本体可以由注模塑料(例如,PVC,聚氨酯,聚碳酸酯,乙缩醛等)制成。电极可以由不锈钢制成。套圈可由注模塑料或铝或玻璃加工零件制成。
在所示的实施例中,盒60的总尺寸在长度上小于20cm(例如,约11至15cm),在厚度上小于3cm(例如,2至3cm)。可以容纳在盒60中的毛细管柱10的长度小于50cm(例如,大约11至15cm),有效分离长度为11.5cm。容器62的容量小于20cc(例如约10至20cc)。
参考图8A,毛细管柱10可以从容器62(具有阳极66)布线到同一盒元件60'中的相应阴极67。在另一个实施例中,毛细管柱可以在一个通道的容器/电极(阳极)与另一通道中的电极(阴极)之间进行布线,从而允许使用更长的毛细管长度来定义更长的分离通道。如图8A所示,毛细管柱10’在盒元件60a’的容器62(阳极66)与相邻盒元件60b’的阴极67之间布线。这提供了更长的有效分离长度,其可以显着提高分离的碱基的分离度(将在下面结合图12-19讨论)。图8B示出了具有34.5cm的有效分离长度的38.5cm的毛细管柱的长度可以经由两个或更多个盒元件60'在盒60内成环,而不必使用纵向长度大于有效分离长度的盒,以便容纳毛细管柱。
盒接口机构
盒接口机构204被支撑在具有开口的接收器块205中,该开口的尺寸和结构被设置为如图所示接收盒60(例如,图9A至9D)。接收器块205被支撑在仪器的底盘上,并且被配置成接收盒60,并且相对于检测光学器件210(包括激发和发射光纤34和36)正确且准确地指示其位置。如图3E所示,例如,最右边的盒元件60’比最左边的盒元件60’宽(即,突片52的存在)。另外,与最右边的盒元件60′的顶部的右侧相比,最左边的盒元件60′的顶部的左侧稍微突出(即,突片51的存在)。这些特征提供了引导,以在将盒60正确地插入到CE仪器中时,便于相对于下面讨论的叉组件230在盒60中的检测窗口86进行正确且准确的定位和对准。
在该示出的实施例中,盒60在竖直方向上由接收器块205支撑,其中毛细管柱10的纵向轴线相对于托盘220的水平面基本垂直。具有相对于试剂/样品容纳件水平方向支撑的盒的纵向轴线在本发明的范围内。可以提供安全互锁特征用于接合以防止在电泳操作期间盒60被意外地从接收器块205移除。安全互锁特征还可以包括用于托盘220的前门(样品门)203和用于插入盒60的顶门(盒门)261,以防止用户在电泳操作期间意外打开这些门。安全联锁装置(未示出)将仅在执行电泳运行的终止顺序(例如,关闭高压电源以及下文所述的叉组件230的向外运动)时才被释放。接收器块205还包括RFID读取器/发送器(例如,在接收器块205的外部),用于与毛细管盒60上的RFID标签通信。
盒接口机构204包括用于每个通道的一对相对的叉组件230。对于每对叉组件230,设置轨道229以允许相对的叉组件的致动运动以将相应的叉组件接合到盒元件60'中的套圈87。也参考图10A至10C,叉组件230附接到滑动件231,滑动件231被致动以沿着轨道229朝向彼此和远离彼此滑动。换句话说,在所示的实施例中,叉组件230被支撑为沿着相同的轴线滑动。激励光纤34和发射光纤36分别支撑在单独的叉组件230上。叉组件230构造成将激发光纤34和发射光纤36的球形端部定位在毛细管柱10的检测区68附近,以检测分离的样品分析物。叉组件230的运动可以通过气动或电磁致动来实现。在所示的实施例中,叉组件230由气动活塞233移动,气动活塞233可利用由系统板201控制的适当阀(未示出)调节的加压气体212的供应。
盒60相对于叉组件230以这样的方式定位,使得对于每个通道,相对的叉组件230位于盒60的相对的侧向侧面上,其中叉组件在第一位置和第二位置之间移动,在第一位置中第一叉组件和第二叉组件不延伸到盒元件60'中限定的检测窗口中,在第二位置中第一叉组件和第二叉组件延伸到盒元件60'中限定的检测窗口中。叉组件230基本上在第一位置和第二位置之间移动,在第一位置处,叉组件分开,以允许将盒元件60'插入在叉组件230之间;在第二位置处,叉组件压靠在盒60的检测窗口86中的套圈87上(互锁)。
在所示的实施例中,有四对平行布置的叉组件230,每对叉组件在图10A中所示的方向上(即,叉组件230的平面是竖直的)。成对的叉组件中的一些叉组件的轨道229将在相邻的盒元件60′之间的空间中。
叉组件230的延伸部分设置有互补表面,该互补表面有助于延伸表面抵靠套圈87对准,例如,V形槽或凹面236以与套圈87的圆柱体互补。图10D是简化视图,其示出了左叉组件230(具有激励光纤34的叉组件)压在套圈87上(示意性地示出了单个盒元件60')。在该位置,凹面236延伸到盒元件60'中的检测窗口86中。在该位置,支撑在左叉组件230上的光纤将辐射传递至毛细管柱10。在右叉组件230也与盒元件60'中的套圈87接合的情况下,支撑在右叉组件230上的检测光纤收集来自检测区32的辐射。在特定示出的实施例中,实现了辐射诱导的荧光检测方案,但是可以替代地实施其他类型的光学检测方案,而不背离本发明的范围和精神。两个叉组件230可被控制为一起移动以在大约相同的时间压靠在套圈87上,或者被单独移动以依次压靠在套圈87上。在所示的实施例中,套圈87提供抵靠叉组件230的延伸表面的止挡,使得光纤的端接整体球端不接触毛细管柱的外表面,而是与毛细管柱的外表面间隔开预定的距离,当叉组件在上述的第一位置和第二位置之间致动时,可以重复地保持该预定的距离。
虽然图1B所示的实施例示出了以V形配置取向的光纤,该光纤可以以直线或成行的方式配置(例如,用于吸收型检测方案),或者一个或两个光纤配置成轴线垂直于毛细管柱的轴线。此外,仅可以使用一个叉组件,辐射传输光纤和辐射收集光纤都在同一叉组件上。
系统板201控制CE仪器200的各种功能,包括相对于保持在接收器块205中的盒60定位样品和缓冲托盘220,以及上述盒接口机构205的功能以及其他功能,例如检测运行结束并释放安全锁,以从接收器块205释放盒60。
电泳的系统操作
为了进行期望的电泳运行,用户例如通过使用前触摸屏面板25的界面,使用控制器26(其可以在CE仪器外部,或者可以集成在CE仪器内)预设适当的参数。将具有适当的分离支持介质(缓冲液)的盒60和在每个盒元件60'中具有所需尺寸和涂层的毛细管柱10插入接收器块205中。与系统板201相关联的控制器26接管CE仪器200的控制,以承担下述任务。
正确插入后,盒“锁定”在接收器块205中,每个盒元件60'的检测窗口86相对于叉组件230适当定位。对于每个盒元件60’,当顶门261关闭以将出空气出口的O形环压在盒容器62的进入盒容器62的端口64的帽85的顶部时,从每个盒元件60’的气源施加压缩气体。电接触探针被压靠在电极66(通过开口63的电极224(在图9D中示意性地示出))和67(通过开口65的电极225(在图9D中示出)中)。叉组件230被移动以与检测窗口86中的套圈87配合。
通过X,Y和Z方向的组合,样品输送机构相对于支撑在每个盒元件60'中的毛细管柱10的悬垂末端在样品和缓冲托盘220中定位适当的孔。如有必要,首先通过将压缩气体施加到盒容器62中来净化存在于毛细管柱10中的分离缓冲液(可以移动托盘220来定位特定的孔,以从毛细管柱中收集废物)和/或使来自容器的新鲜分离缓冲液充满分离通道。
将一个或多个测试样品放置在托盘220的一个或多个孔中,并将托盘220定位为浸没毛细管柱10的悬垂末端和每个盒元件60'的电极67的端部。通过电动注入(在限定的时间段,例如小于60秒,例如5至10秒施加适当的高压)将样品引入分离毛细管柱10中,该方法是本领域技术人员公知的。
然后,将托盘220中的缓冲液容器定位为浸没在毛细管柱10的末端和电极67的端部。通过对特定样品和分离缓冲液介质在规定的时间段内施加适当水平的高电压来执行电泳。在运行期间,通过PMT 206收集与辐射诱导的荧光相对应的数据。数据存储在电子文件中。在运行结束时,托盘220下降。
如果没有进一步运行,则可通过执行预设的释放程序来移除盒60,包括释放加压气体供应,将叉组件230从盒元件60'移开(如上所述),通过接触探针224和225(如果它们可致动)使电极66和67脱离接合,并释放盒60上的锁定。因此,盒60可以被移除,并且在期望的时间被另一盒替换以用于下一次运行。
如果期望对相同或另外的样品进行进一步的运行,则通过向容器加压以用新鲜缓冲液重新填充毛细管,将来自先前运行的旧缓冲液(例如,凝胶缓冲液)从毛细管柱60吹扫到废液孔中。托盘220被定位为使得在将另一样品加载到毛细管柱60中并如前所述进行电泳之前,用清洁溶液(在孔中)清洁每个盒元件60’中的毛细管柱60的末端。
注意,因为在毛细管柱出口处流到缓冲液容器62的样品分析物与容器的体积相比具有如此小的量和体积浓度,并且预期分析物会在凝胶容器内混合,容器中将仅存在来自过去运行分析物的可忽略的痕迹,并且其将被均匀地分布在重新填充后续运行的毛细管柱的凝胶中。来自该可忽略痕迹的任何噪声将是相对较小的背景噪声,可以在数据分析中轻松地从检测到的信号中消除噪声。
如果没有进一步运行,则可通过执行预设的释放程序来移除盒60,包括释放加压气体供应,将叉组件230从盒60移开(如上所述),通过接触探针225和225(如果它们可致动)使电极66和67脱离接合,并释放盒60上的锁定。因此,盒60可以被移除,并且在期望的时间被另一盒替换以用于下一次运行。
上述处理序列可以被编程为控制器26的自动化功能之一。
通过使用适当的应用软件例程来分析收集的数据。参考图12,峰分离间隔(时间和#碱基)的分辨率是使用半峰全宽(FWHM)方法确定的。
分辨率(碱基)=峰分离间隔(#碱基)/(峰分离间隔(时间)/FWHM(时间))。
通常具有20-100μm(通常为70μm)内径的15cm长的毛细管(有效长度为11.5厘米)用于每个盒/通道来进行DNA片段分析。使用POP-7凝胶用于155bp(碱基对)实现的分辨率为1.95。利用Qsep400的新设计,可以在4通道盒模块中使用更长的毛细管长度(见图8A和8B)。对于装满POP-7聚合物分离基质/变性凝胶(Applied Biosystems,Life Technology/ThermoFisher Scientific,Carlsbad CA)的38.5厘米的总长度(有效长度为34.5厘米),当使用GX500-ROX DNA阶梯(Applied Biosystems的末端标记ssDNA;Life Technologies/ThermoFisher Scientific,Carlsbad CA)进行测试时,对于150bp和160bp,分辨率可以达到0.675(峰分离间隔为29.64秒,FWHM=2.0秒),[将上述公式用于分辨率,所达到的分辨率=(160–150)/(29.64秒/2.0秒)=0.675。]
从机械包装的角度来看,较长的毛细管可以在单通道的两个电极之间成环,或者可以从一个通道的电极路由/成环到第二,第三或第四通道/电极(参见图8A和8B)。图13至15示出了与较短长度的毛细管的比较,可以用较长的毛细管来实现的GX500-ROX的150-160bp的分辨率(图13)。对于具有更长的毛细管的GX500-ROX的150-160bp,分辨率为0.675(请参见图14和15所示的扩大/放大视图)。图14和15是150-160碱基的图13的扩大/放大部分,并且图12详细说明了如何使用以下公式实现0.675分辨率:分辨率=(160–150)/(29.64秒/2.0秒)=0.675。
图11示出了双色检测的一个实施例,其包括用于将发射信号37分成两个信号以在两个不同波长进行荧光检测的光纤组合器/分离器61。1×2光纤组合器/分离器61将发射光纤36的输出信号37耦合到第一发射光纤36a和第二发射光纤36b的输入。发射光纤36包括至少两个波长λ1和λ2的荧光。在该实施方式中,λ1对应于检测到的葡聚糖梯子的荧光的波长,λ2对应于检测到的聚糖谱的荧光的波长。第一发射光纤36a将来自发射光纤36的发射路由到检测λ1处的荧光的第一PMT1,并且第二发射光纤36b将发射自发射光纤36的发射路由到检测λ2处的荧光的第二PMT2。光纤组合器可以是将至少两个波长(例如,λ1和λ2)或两个波长范围的正交偏振分开的类型(例如,Thorlabs 1X2耦合器或Gould 1X2光纤分离器)。另外,尽管在图11中未示出,可在PMT1和/或PMT2与第一和/或第二发射光纤36a和36b的相应输出之间设置一个或多个带通滤波器。双色检测的另一个实施例是利用二向色滤光器/分束器将发射信号37分成两个发射信号,以便在两个不同的波长进行荧光检测。合适的分束器的一个例子可能是购自ThorLabs,Inc.的DMLP P425长通型二向色镜,其入射角为45°,截止波长为425nm,透射带为440-700nm,反射带为380–410nm。另外,尽管在图11中未示出,可在PMT1和/或PMT2与第一和/或第二发射光纤36a和36b的相应输出之间设置一个或多个带通滤波器。可以在共同转让给本发明的受让人的美国专利申请公开号US20150338347A1中找到双色检测方法的更多细节,该专利已通过引用结合在此。
根据本发明,通过能够进行2色检测以更快和更准确地进行峰鉴定来改善荧光检测。单个激发(LED或激光)用于为每个分离通道激发两种不同的荧光团。一种发射染料(荧光团)用于样品,第二种染料(荧光团)用于带有两个检测器(PMT)的参考阶梯(DNA阶梯或聚糖阶梯:即葡聚糖)。来自两个检测器的结果被同步,并使用后期数据收集分析软件(CE分离后分析)显示在彼此的上方(移位电泳图),以进行准确的峰鉴定。
图16至图19示出了使用以上公开的CE仪器的各种运行的结果。具体地,图16示出了在不到1分钟的时间内进行DNA阶梯的4通道运行(20-5000bp范围)的结果。图17示出了20-1000bp范围内的2色检测(检测器#1+检测器#2)的结果。图18示出了将聚糖阶梯(检测器1)移至聚糖样品(检测器2)顶部的结果。图19示出了单独显示并通过箭头对准的聚糖阶梯(检测器1)和聚糖样品(检测器2)的结果。
使用上述的CE系统进行聚糖谱分析,已经发现本发明提供了一种用于高效,高速,高通量的聚糖分析(N-聚糖)的成本有效的毛细管凝胶电泳系统。这种新颖的方法和系统大大提高了在实验室中进行糖蛋白研究的速度,节省了准备时间,并确保了准确、一致和经济的结果。
双色检测简化并缩短了样品分离和检测的单次运行,并确保了准确的数据分析以鉴定峰。双染料检测(即两种染料标记)是一种非常健壮和准确的方法,可为聚糖谱分析或DNA分析提供可重现的峰鉴定和大小调整。
微光学检测的简便性还提供了设计更高通量(即多通道)型凝胶盒的灵活性,而无需在盒组件内部使用光学器件(激发或发射光学器件),从而降低了盒的制造成本。
因此,根据本发明的用于CE系统的新的基于荧光光纤的检测提供了设计上的简单性,操作的容易性和较低的耗材成本(例如,用于DNA和RNA分析的聚糖谱分析和/或基因分型)。它特别为需要从已安装的仪器基础以及对消耗品(例如测试试剂和含毛细管的缓冲液)的持续需求中获得持续稳定收入来源的研究和临床诊断实验室/行业提供了很好的解决方案。
尽管已经参照优选实施例具体示出和描述了本发明,但是本领域技术人员将理解,在不脱离本发明的精神,范围和教导的情况下,可以对形式和细节进行各种改变。
Claims (11)
1.一种用于样品的生物分离的多通道盒,其能够被配置为适配不同长度的毛细管柱,包括:
多个盒元件,其中,每个盒元件包括:
本体,其限定开口作为用于接收外部检测光学器件的检测窗口;
支撑在本体内的毛细管柱;
容器,其附接到本体的第一端,与所述毛细管柱的第一端流体流动连通,其中,所述容器专用于单个盒元件;
阳极,其与容纳在容器中的流体导电耦合;和
阴极,其设置在本体的第二端,
其中,所述盒元件是联接的,
其中,各个盒元件的容器不流动连通,
其中,在所述多通道盒中各个盒元件的阳极不导电耦合,
其中,每个盒元件限定不同的分离通道,
其中,如期望地,所述多通道盒能够在第一配置和第二配置之间被配置,在第一配置中,具有第一长度的短毛细管柱被配置为在盒元件的容器和所述盒元件的阴极之间延伸,以在所述盒元件的检测窗口中暴露沿着短毛细管柱的一部分,在第二配置中,具有比第一长度更长的长度的长毛细管柱被配置为在第一盒元件的容器和第二盒元件的阴极之间延伸,以在所述第一盒元件的检测窗口中暴露沿着长毛细管柱的一部分。
2.根据权利要求1所述的多通道盒,其中,盒元件在一平面中串联联接。
3.根据权利要求1或2所述的多通道盒,其中,毛细管柱的暴露部分与外部光学器件通过检测窗口对准。
4.根据权利要求1所述的多通道盒,其中,所述本体呈纵向,其中,所述毛细管柱沿本体的中心轴支撑。
5.根据权利要求1所述的多通道盒,其中,所述多通道盒能够被配置有长毛细管柱和短毛细管柱,其中,所述长毛细管柱能够被配置为在第一盒元件的容器和相邻的第二盒元件的阴极之间延伸,以在所述第一盒元件的检测窗口中暴露沿着长毛细管柱的一部分,并且,所述短毛细管柱被配置为在第三盒元件的容器和第三盒元件的阴极之间延伸,以在所述第三盒元件的检测窗口中暴露沿着短毛细管柱的一部分。
6.一种生物分离系统,包括:
底盘,
根据权利要求1至5中任一项所述的多通道盒,其中,每个盒元件的本体由所述底盘支撑;
工作台,其相对于支撑在盒中的一个盒元件中的至少一个毛细管柱的延伸端支撑包含样品和缓冲液的至少一个托盘;
至少一个叉组件,其支撑检测光学器件,其中,叉组件能够移动以延伸到限定在所述盒元件中的检测窗口中;
分离机构,其实现毛细管柱内样品的生物分离;和
控制器,其控制叉组件和分离机构的运动,以实现样品在所述毛细管柱中的生物分离。
7.根据权利要求6所述的生物分离系统,其中,叉组件包括第一叉组件和第二叉组件,其中,检测光学器件包括由第一叉组件支撑的第一光学器件和由第二叉组件支撑的第二光学器件,第一光学器件将入射辐射引导到所述盒元件的检测区,并且第二光学器件收集来自所述盒元件的检测区的辐射。
8.根据权利要求7所述的生物分离系统,其中,第一叉组件和第二叉组件位于所述盒元件的相对的侧向侧面上,其中,第一叉组件和第二叉组件在第一位置和第二位置之间移动,在第一位置中,第一叉组件和第二叉组件不延伸到所述盒元件中限定的检测窗口中,在第二位置中,第一叉组件和第二叉组件延伸到所述盒元件中限定的检测窗口中。
9.根据权利要求6至8中的任一项所述的生物分离系统,还包括温度控制机构,以控制托盘中样品的温度。
10.根据权利要求6所述的生物分离系统,还包括温度控制机构,以控制盒元件的温度。
11.根据权利要求6所述的生物分离系统,还包括由底盘支撑的打孔器,该打孔器相对于支撑在工作台上的托盘能够移动,从而在托盘上的密封件中打孔。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/438,754 | 2017-02-21 | ||
US15/438,754 US20170227493A1 (en) | 2015-05-22 | 2017-02-21 | Disposable multi-channel bio-analysis cartridge and capillary electrophoresis system for conducting bio-analysis using same |
PCT/US2017/025206 WO2018156182A1 (en) | 2017-02-21 | 2017-03-30 | Disposable multi-channel bio-analysis cartridge and capillary electrophoresis system for conducting bio-analysis using same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110520719A CN110520719A (zh) | 2019-11-29 |
CN110520719B true CN110520719B (zh) | 2022-12-27 |
Family
ID=58772626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780089621.3A Active CN110520719B (zh) | 2017-02-21 | 2017-03-30 | 一次性多通道生物分析盒和使用其的用于生物分析的毛细管电泳系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | USD859685S1 (zh) |
EP (1) | EP3586116B1 (zh) |
JP (1) | JP6933730B2 (zh) |
CN (1) | CN110520719B (zh) |
WO (1) | WO2018156182A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD772426S1 (en) * | 2014-01-13 | 2016-11-22 | Gilson, Inc. | Pipette system cartridge |
KR102408787B1 (ko) * | 2015-08-03 | 2022-06-15 | 젠-프로브 인코포레이티드 | 제어된 환경을 유지하는 장치 |
USD927685S1 (en) * | 2018-01-18 | 2021-08-10 | Gen-Probe Incorporated | Receptacle |
USD954294S1 (en) * | 2020-03-10 | 2022-06-07 | SpinDiag GmbH | Cartridge for medical testing equipment |
USD1066728S1 (en) * | 2022-09-30 | 2025-03-11 | Maxcyte, Inc. | Bag used for sample or collection |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103328963A (zh) * | 2010-08-24 | 2013-09-25 | 光鼎生物科技股份有限公司 | 一次性生物分析试剂盒和使用其进行生物分析的仪器 |
CN104407080A (zh) * | 2014-12-08 | 2015-03-11 | 同方威视技术股份有限公司 | 便携式气相色谱毛细管柱模块 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD373633S (en) * | 1994-12-23 | 1996-09-10 | Pharmacia Biotech Ab | Manifold device for chemical solid phase reactions |
USD439673S1 (en) * | 1998-10-06 | 2001-03-27 | Sorenson Bioscience | Multi-well microcentrifuge tube |
FR2808089B1 (fr) * | 2000-04-25 | 2002-07-05 | Sebia Sa | Dispositif perfectionne d'analyse d'echantillons par electrophorese multicapillaire a thermo-regulation solide/solide |
WO2002049761A2 (en) * | 2000-12-18 | 2002-06-27 | Protedyne Corporation | Automated laboratory system and method |
CN100533138C (zh) * | 2001-01-26 | 2009-08-26 | 比奥卡尔技术公司 | 多通道生物分离盒 |
US20030196896A1 (en) * | 2002-04-17 | 2003-10-23 | Mcwaid Thomas Harding | Method and apparatus for screening flowable separation media for electrophoresis and related applications |
WO2004092721A1 (en) * | 2003-04-11 | 2004-10-28 | Biocal Technology, Inc. | Multi-capillary electrophoresis cartridge interface mechanism |
JP2010054195A (ja) * | 2006-12-21 | 2010-03-11 | Panasonic Corp | キャピラリーユニット、キャピラリー電気泳動装置及びキャピラリー電気泳動方法 |
DE102007006076B4 (de) * | 2007-02-02 | 2008-10-30 | Brand Gmbh + Co Kg | Mehrkanal-Pipettiervorrichtung |
JP2007171216A (ja) * | 2007-03-26 | 2007-07-05 | Hitachi Ltd | キャピラリアレイ電気泳動装置及び試料の分離・分析方法 |
FR2920675B1 (fr) * | 2007-09-10 | 2010-12-03 | Gilson Sas | Systeme de pipetage multicanaux comprenant un porte-pistons a guidage ameliore |
AU326904S (en) * | 2009-01-05 | 2009-07-27 | Gilson Sas | Pipettes |
CN102439398A (zh) * | 2009-04-27 | 2012-05-02 | 蛋白质发现公司 | 可编程电泳凹口过滤器系统及方法 |
JP5852584B2 (ja) | 2010-01-28 | 2016-02-03 | バイオプティック インコーポレイテッドBioptic, Inc. | 球状端の入射および出力光ファイバを使用したバイオアナリシス |
DE102010029136A1 (de) * | 2010-05-19 | 2011-11-24 | Hamilton Bonaduz Ag | Vorrichtung zum automatisierten Öffnen von Fliptubes |
GB201018624D0 (en) * | 2010-11-04 | 2010-12-22 | Epistem Ltd | Reaction vessel |
USD698458S1 (en) * | 2011-08-18 | 2014-01-28 | Bioptic, Inc. | Disposable bio-analysis cartridge |
USD772426S1 (en) * | 2014-01-13 | 2016-11-22 | Gilson, Inc. | Pipette system cartridge |
ES2820520T3 (es) * | 2014-01-17 | 2021-04-21 | Coastal Genomics Inc | Casetes para su uso en ensayos electroforéticos paralelos automatizados y procedimientos para su fabricación y uso |
US20150338347A1 (en) | 2014-05-22 | 2015-11-26 | Bioptic, Inc. | Glycan profiling utilizing capillary electrophoresis |
JP6463997B2 (ja) * | 2015-03-10 | 2019-02-06 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
-
2017
- 2017-03-07 US US29/596,283 patent/USD859685S1/en active Active
- 2017-03-30 WO PCT/US2017/025206 patent/WO2018156182A1/en unknown
- 2017-03-30 EP EP17725798.7A patent/EP3586116B1/en active Active
- 2017-03-30 CN CN201780089621.3A patent/CN110520719B/zh active Active
- 2017-03-30 JP JP2019566561A patent/JP6933730B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103328963A (zh) * | 2010-08-24 | 2013-09-25 | 光鼎生物科技股份有限公司 | 一次性生物分析试剂盒和使用其进行生物分析的仪器 |
CN104407080A (zh) * | 2014-12-08 | 2015-03-11 | 同方威视技术股份有限公司 | 便携式气相色谱毛细管柱模块 |
Also Published As
Publication number | Publication date |
---|---|
EP3586116A1 (en) | 2020-01-01 |
JP6933730B2 (ja) | 2021-09-08 |
JP2020508472A (ja) | 2020-03-19 |
EP3586116C0 (en) | 2024-07-03 |
CN110520719A (zh) | 2019-11-29 |
USD859685S1 (en) | 2019-09-10 |
EP3586116B1 (en) | 2024-07-03 |
WO2018156182A1 (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11531004B2 (en) | Disposable multi-channel bio-analysis cartridge and capillary electrophoresis system for conducting bio-analysis using same | |
EP2609420B1 (en) | Disposible bio-analysis cartridge and instrument for conducting bio-analysis using same | |
CN110520719B (zh) | 一次性多通道生物分析盒和使用其的用于生物分析的毛细管电泳系统 | |
US8092762B2 (en) | Multi-capillary electrophoresis cartridge interface mechanism | |
US7309409B2 (en) | Multi-channel bio-separation cartridge | |
JP5297447B2 (ja) | 毛管、生体分析用のカートリッジ、生体分析システム、および生体分析のための方法 | |
US7622083B2 (en) | Multi-capillary electrophoresis cartridge interface mechanism | |
US20220236219A1 (en) | Glycan profiling utilizing capillary electrophoresis | |
US8784626B2 (en) | Bio-analysis using ball-ended incident and output optical fibers | |
Kerékgyártó et al. | Light‐emitting diode induced fluorescence (LED‐IF) detection design for a pen‐shaped cartridge based single capillary electrophoresis system | |
WO2006127590A2 (en) | Microfluidic detection cell for stimulated radiation measurements | |
US8500980B1 (en) | Method and apparatus for high speed genotyping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |