CN110441235A - A kind of Multiple modes coupling original position microspectrum imaging system - Google Patents
A kind of Multiple modes coupling original position microspectrum imaging system Download PDFInfo
- Publication number
- CN110441235A CN110441235A CN201910867527.7A CN201910867527A CN110441235A CN 110441235 A CN110441235 A CN 110441235A CN 201910867527 A CN201910867527 A CN 201910867527A CN 110441235 A CN110441235 A CN 110441235A
- Authority
- CN
- China
- Prior art keywords
- optical path
- light source
- imaging
- reflector
- microscopic imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开一种多模耦合原位显微光谱成像系统,该系统是由倒置显微镜、激发光光源模块、光路切换模块、显微成像及光谱测试模块组成,涉及样品同一微米级区域多项光谱及成像测量的功能,包括微区拉曼光谱、微区荧光光谱、荧光显微成像、微区透射光谱、透射显微成像、微区反射光谱、反射显微成像。该系统具有无需移动样品到多种检测设备,便能实现对样品同一微区进行多模式、多维度的原位检测分析的特点,可原位表征获得样品微区信息,即可实时获得样品同一微区的拉曼光谱、荧光光谱及成像、透射光谱及成像、反射光谱及成像等多重信息。并消除由于样品转移而造成的测量误差,极大提高了测试结果的可靠性。
The invention discloses a multi-mode coupling in-situ microspectral imaging system. The system is composed of an inverted microscope, an excitation light source module, an optical path switching module, a microscopic imaging and a spectral testing module, and involves multiple spectra in the same micron-level region of the sample. And imaging measurement functions, including micro-area Raman spectroscopy, micro-area fluorescence spectroscopy, fluorescence microscopic imaging, micro-area transmission spectroscopy, transmission microscopic imaging, micro-area reflectance spectroscopy, reflection microscopic imaging. The system has the characteristics of realizing multi-mode and multi-dimensional in-situ detection and analysis of the same micro-area of the sample without moving the sample to a variety of detection equipment. Multiple information such as Raman spectrum, fluorescence spectrum and imaging, transmission spectrum and imaging, reflection spectrum and imaging of the micro-area. And eliminate the measurement error caused by sample transfer, greatly improving the reliability of test results.
Description
技术领域technical field
本发明属于光学分析检测领域,具体涉及一种多模耦合原位显微光谱成像系统。The invention belongs to the field of optical analysis and detection, and in particular relates to a multi-mode coupling in-situ microspectral imaging system.
背景技术Background technique
显微光谱及成像技术,主要包括测量样品微区的拉曼光谱、荧光光谱及成像、透射光谱及成像和反射光谱及成像等分析测试技术。物质的拉曼光谱可反映物质分子结构信息;荧光光谱及成像可反映物质的能级信息;透射光谱及成像与反射光谱及成像可直观并精确反映物质的颜色及颜色变化。显微光谱及成像技术不仅具有空间分辨能力,而且还具有光谱分辨能力,可获知样品微区的成分及结构。该技术在工业、分析检测、科学研究等领域的应用十分广泛。Microspectroscopy and imaging technology mainly includes analysis and testing technologies such as Raman spectroscopy, fluorescence spectroscopy and imaging, transmission spectroscopy and imaging, and reflectance spectroscopy and imaging of sample micro-regions. The Raman spectrum of a substance can reflect the molecular structure information of the substance; the fluorescence spectrum and imaging can reflect the energy level information of the substance; the transmission spectrum and imaging and reflection spectrum and imaging can intuitively and accurately reflect the color and color change of the substance. Microspectroscopy and imaging technology not only has the ability of spatial resolution, but also has the ability of spectral resolution, and can know the composition and structure of the micro-region of the sample. This technology is widely used in industry, analysis and detection, scientific research and other fields.
然而在实际应用中,显微光谱及成像技术中的各项光谱分析及测试技术相互独立,需要移动样品至不同仪器进行分析测试,造成不可避免的测量误差。现有的仪器设备系统无法满足对样品同一微区进行多项原位显微光谱及成像测量的需求。若能够在不转移样品的前提下,在一套测试系统上同时实现拉曼光谱、荧光光谱及成像、透射光谱及成像和反射光谱及成像的分析测试功能,将能够更全面地原位表征样品微区的成分及结构,从而进一步拓展显微光谱及成像技术的应用,促进光学分析检测领域的进一步发展。However, in practical applications, various spectral analysis and testing technologies in microspectroscopy and imaging technology are independent of each other, and samples need to be moved to different instruments for analysis and testing, resulting in inevitable measurement errors. Existing instrument and equipment systems cannot meet the needs of multiple in-situ microspectroscopy and imaging measurements on the same micro-region of the sample. If the analysis and testing functions of Raman spectroscopy, fluorescence spectroscopy and imaging, transmission spectroscopy and imaging, and reflection spectroscopy and imaging can be realized simultaneously on a test system without transferring samples, it will be possible to characterize samples more comprehensively in situ The composition and structure of the micro-area will further expand the application of micro-spectroscopy and imaging technology, and promote the further development of the field of optical analysis and detection.
发明内容Contents of the invention
本发明的目的在于,提供一种多模耦合原位显微光谱成像系统,该系统是由倒置显微镜、激发光光源模块、光路切换模块、显微成像及光谱测试模块组成,具有无需移动样品到多种检测设备,便能实现对样品同一微区进行多模式、多维度的原位检测分析的特点,可原位表征获得样品微区信息,即可实时获得样品同一微区的拉曼光谱、荧光光谱及成像、透射光谱及成像、反射光谱及成像等多重信息。并消除由于样品转移而造成的测量误差,极大提高了测试结果的可靠性。The object of the present invention is to provide a multi-mode coupling in-situ microspectral imaging system, which is composed of an inverted microscope, an excitation light source module, an optical path switching module, a microscopic imaging and a spectral testing module, and has the advantages of not needing to move samples to A variety of detection equipment can realize the characteristics of multi-mode and multi-dimensional in-situ detection and analysis of the same micro-area of the sample, and can obtain the information of the sample micro-area by in-situ characterization, and can obtain the Raman spectrum, Fluorescence spectrum and imaging, transmission spectrum and imaging, reflection spectrum and imaging and other multiple information. And eliminate the measurement error caused by sample transfer, greatly improving the reliability of test results.
本发明所述的一种多模耦合原位显微光谱成像系统,该系统是由倒置显微镜、激发光光源模块、光路切换模块、显微成像及光谱测试模块组成,所述激发光光源模块是由拉曼光源单元、荧光激发光源单元、反射照明光源单元三部分组成;其中,拉曼光源单元是由532nm高亮度半导体激光器(1)、第一透镜(2)、第二透镜(3)、第一可变光阑(4)、带通滤波片(5)、双色分光镜(6)、长通滤波片(7)、第一光纤耦合器(8)、第一反射镜(9)和第二反射镜(10)组成;荧光激发光源单元是由第二可变光阑(15)、第三反射镜(16)、第二可调式反射镜(17)和氙灯光源(19)组成;反射照明光源单元是由第四反射镜(18)和白光光源(20)组成;所述光路切换模块是由光路切换器第一光路切换器(11)和第二光路切换器(24)组成,其中第一光路切换器(11)包括第三透镜(12)、第一可调式反射镜(13)和第四透镜(14);第二光路切换器(24)包括第五透镜(25)、第三可调式反射镜(26)和第六透镜(27);所述显微成像及光谱测试模块是由第一显微成像用检测器(23)、第二光纤耦合器(28)、光谱仪(29)、第二显微成像用检测器(30)和计算机(31)组成,其中第一显微成像用检测器(23)为CMOS面阵相机,第二显微成像用检测器(30)为CCD面阵相机;激发光光源模块中的拉曼光源单元分别与光路切换模块中的第一光路切换器(11)和第二光路切换器(24)连接,荧光激发光源单元和反射照明光源单元分别与第一光路切换器(11)连接;光路切换模块中的第一光路切换器(11)和第二光路切换器(24)分别与倒置显微镜(22)连接,第二光路切换器(24)与显微成像及光谱测试模块中的第二光纤耦合器(28)连接;显微成像及光谱测试模块中的光谱仪(29)上设有第二显微成像用检测器(30),计算机(31)分别与第一显微成像用检测器(23)和第二显微成像用检测器(30)串接。A multi-mode coupling in-situ microspectral imaging system described in the present invention is composed of an inverted microscope, an excitation light source module, an optical path switching module, a microscopic imaging and a spectrum testing module, and the excitation light source module is It consists of three parts: a Raman light source unit, a fluorescent excitation light source unit, and a reflected illumination light source unit; among them, the Raman light source unit is composed of a 532nm high-brightness semiconductor laser (1), a first lens (2), a second lens (3), The first variable diaphragm (4), the band-pass filter (5), the dichroic beam splitter (6), the long-pass filter (7), the first fiber coupler (8), the first mirror (9) and The second reflector (10) is composed; the fluorescent excitation light source unit is composed of a second iris diaphragm (15), a third reflector (16), a second adjustable reflector (17) and a xenon lamp light source (19); The reflective lighting light source unit is composed of a fourth reflector (18) and a white light source (20); the optical path switching module is composed of an optical path switcher, a first optical path switcher (11) and a second optical path switcher (24), Wherein the first optical path switcher (11) includes the third lens (12), the first adjustable reflector (13) and the fourth lens (14); the second optical path switcher (24) includes the fifth lens (25), The 3rd adjustable reflector (26) and the 6th lens (27); Described microscopic imaging and spectrum testing module are made up of first microscopic imaging with detector (23), the second optical fiber coupler (28), spectrometer (29), the second microscopic imaging is made up of detector (30) and computer (31), wherein the first microscopic imaging detector (23) is a CMOS area array camera, and the second microscopic imaging detector (30) ) is a CCD area array camera; the Raman light source unit in the excitation light source module is connected with the first optical path switcher (11) and the second optical path switcher (24) in the optical path switching module respectively, and the fluorescence excitation light source unit and reflected lighting The light source unit is respectively connected with the first optical path switcher (11); the first optical path switcher (11) and the second optical path switcher (24) in the optical path switching module are respectively connected with the inverted microscope (22), and the second optical path switcher (24) is connected with the second optical fiber coupler (28) in the microscopic imaging and spectral test module; The spectrometer (29) in the microscopic imaging and spectral test module is provided with the detector (30) for the second microscopic imaging , the computer (31) is respectively connected in series with the first detector for microscopic imaging (23) and the second detector for microscopic imaging (30).
所述倒置显微镜(22)的一个C-mount接口与第一显微成像用检测器(23)连接,另一C-mount接口与第二光路切换器(24)连接,后侧接口与第三可变光阑(21)连接。A C-mount interface of the inverted microscope (22) is connected with the first microscopic imaging detector (23), another C-mount interface is connected with the second optical path switcher (24), and the rear side interface is connected with the third The iris (21) is connected.
激发光光源模块中双色分光镜(6)反射532nm的拉曼激发光,并同时透射500-2500nm的拉曼散射信号;长通滤波片(7)透射510-2500nm的拉曼散射信号;第一反射镜(9)、第二反射镜(10)、第三反射镜(16)和第四反射镜(18)均为全反镜;第二可调式反射镜(17)为90°可调式表面反射镜。The dichromatic beam splitter (6) in the excitation light source module reflects the Raman excitation light of 532nm, and simultaneously transmits the Raman scattering signal of 500-2500nm; the long-pass filter (7) transmits the Raman scattering signal of 510-2500nm; the first Reflector (9), the second reflector (10), the third reflector (16) and the fourth reflector (18) are all reflective mirrors; the second adjustable reflector (17) is a 90 ° adjustable surface Reflector.
光路切换模块中第一可调式反射镜(13)和第三可调式反射镜(26)均为45°可调式滑动反射镜。Both the first adjustable reflector (13) and the third adjustable reflector (26) in the optical path switching module are 45° adjustable sliding reflectors.
本发明所述的一种多模耦合原位显微光谱及成像系统,该系统具体操作按下列步骤进行:A multi-mode coupling in-situ microspectroscopy and imaging system described in the present invention, the specific operation of the system is carried out according to the following steps:
a、调节第一光路切换器(11),使拉曼光源进入到倒置显微镜(22)的载物台样品上,聚焦至样品微区,激发样品微区并产生拉曼散射信号,拉曼散射信号由倒置显微镜(22)返回第一光路切换器(11),经过第二反射镜(10)、第一反射镜(9)、双色分光镜(6)、长通滤波片(7)、第一光纤耦合器(8)、第二光路切换器(24)、第二光纤耦合器(28)入射至光谱仪(29)及第二显微成像用检测器(30),计算机(31)显示样品微区的拉曼光谱;a. Adjust the first optical path switcher (11), so that the Raman light source enters the stage sample of the inverted microscope (22), focuses on the sample micro-area, excites the sample micro-area and generates Raman scattering signals, Raman scattering The signal returns to the first optical path switcher (11) from the inverted microscope (22), passes through the second reflector (10), the first reflector (9), the dichroic beam splitter (6), the long-pass filter (7), the second A fiber coupler (8), a second optical path switcher (24), and a second fiber coupler (28) are incident to the spectrometer (29) and the second microscopic imaging detector (30), and the computer (31) displays the sample Raman spectrum of the micro-area;
b、调节第一光路切换器(11),使荧光激发光源、反射照明光源、透射光激发光源分别进入到倒置显微镜(22)载物台的样品上,聚焦至样品微区,激发样品微区,根据激发光光源的不同,样品微区产生对应的光谱信号,其由第一显微成像用检测器(23)接收时,计算机(31)分别独立显示样品微区的荧光、反射及透射图像;当样品受激产生的光谱信号切换至经过第二光路切换器(24)时,荧光、反射、透射光谱信号通过第二光纤耦合器(28)入射至光谱仪(29)及第二显微成像用检测器(30),根据对应的光谱信号,计算机(31)分别独立显示样品微区的荧光光谱、反射光谱和透射光谱。b. Adjust the first optical path switcher (11), so that the fluorescence excitation light source, reflected illumination light source, and transmitted light excitation light source respectively enter the sample on the stage of the inverted microscope (22), focus on the sample micro-area, and excite the sample micro-area , according to the difference of the excitation light source, the sample micro-area generates corresponding spectral signals, and when it is received by the first microscopic imaging detector (23), the computer (31) independently displays the fluorescence, reflection and transmission images of the sample micro-area respectively ; When the spectral signal generated by the sample is switched to pass through the second optical path switcher (24), the fluorescence, reflection, and transmission spectral signals are incident on the spectrometer (29) and the second microscopic imaging through the second optical fiber coupler (28) Using the detector (30), according to the corresponding spectral signal, the computer (31) independently displays the fluorescence spectrum, reflection spectrum and transmission spectrum of the micro-region of the sample.
本发明所述的一种多模耦合原位显微光谱成像系统,该系统与现有技术比较,具有以下有益效果:A multi-mode coupling in-situ microspectral imaging system described in the present invention, compared with the prior art, has the following beneficial effects:
(1)对待测样品的微米级区域实现原位拉曼光谱、荧光光谱及成像、透射光谱及成像和反射光谱及成像等多模分析检测表征,有效地避免了由于移动样品造成的测量偏差,在样品的原位表征方面具有不可替代的优势;(1) In-situ Raman spectroscopy, fluorescence spectroscopy and imaging, transmission spectroscopy and imaging, reflection spectroscopy and imaging and other multi-mode analysis, detection and characterization of the micron-scale area of the sample to be tested can effectively avoid measurement deviation caused by moving samples, It has irreplaceable advantages in in-situ characterization of samples;
(2)此外,本发明可实现拉曼光谱、荧光光谱及成像、透射光谱及成像和反射光谱及成像等多重信息的独立获取,可突破以往仪器设备设计中仅单一信号收集的局限性,实现样品多层次信息的原位获取。(2) In addition, the present invention can realize the independent acquisition of multiple information such as Raman spectrum, fluorescence spectrum and imaging, transmission spectrum and imaging, reflection spectrum and imaging, and can break through the limitation of only single signal collection in previous instrument and equipment design, realizing In situ acquisition of multi-level information of samples.
附图说明Description of drawings
图1为本发明多模耦合原位显微光谱成像系统示意图;Fig. 1 is the schematic diagram of multimode coupled in situ microspectral imaging system of the present invention;
图2为本发明多模耦合原位显微光谱成像系统结构示意图;Fig. 2 is a schematic structural diagram of the multi-mode coupling in-situ microspectral imaging system of the present invention;
图3为本发明拉曼激光单元结构示意图;Fig. 3 is the structure schematic diagram of Raman laser unit of the present invention;
图4为本发明荧光激发光源单元结构示意图;Fig. 4 is a structural schematic diagram of the fluorescent excitation light source unit of the present invention;
图5为本发明反射照明光源单元结构示意图;Fig. 5 is a structural schematic diagram of a reflective lighting light source unit according to the present invention;
图6为本发明光路切换模块结构示意图,其中a为第一光路切换器,b为第二光路切换器;6 is a schematic structural diagram of the optical path switching module of the present invention, wherein a is the first optical path switcher, and b is the second optical path switcher;
图7为本发明显微成像及光谱测试模块结构示意图。Fig. 7 is a schematic structural diagram of the micro-imaging and spectral testing module of the present invention.
具体实施方式Detailed ways
下面结合附图,对本发明的技术方案进行具体说明。The technical solution of the present invention will be specifically described below in conjunction with the accompanying drawings.
实施例Example
本发明所述的一种多模耦合原位显微光谱成像系统,该系统是由倒置显微镜、激发光光源模块、光路切换模块、显微成像及光谱测试模块组成,所述激发光光源模块是由拉曼光源单元、荧光激发光源单元、反射照明光源单元三部分组成;其中,拉曼光源单元是由532nm高亮度半导体激光器1、第一透镜2、第二透镜3、第一可变光阑4、带通滤波片5、双色分光镜6、长通滤波片7、第一光纤耦合器8、第一反射镜9和第二反射镜10组成;荧光激发光源单元是由第二可变光阑15、第三反射镜16、第二可调式反射镜17和氙灯光源19组成;反射照明光源单元是由第四反射镜18和白光光源20组成;所述光路切换模块是由光路切换器第一光路切换器11和第二光路切换器24组成,其中第一光路切换器11包括第三透镜12、第一可调式反射镜13和第四透镜14;第二光路切换器24包括第五透镜25、第三可调式反射镜26和第六透镜27;所述显微成像及光谱测试模块是由第一显微成像用检测器23、第二光纤耦合器28、光谱仪29、第二显微成像用检测器30和计算机31组成,其中第一显微成像用检测器23为CMOS面阵相机,第二显微成像用检测器30为CCD面阵相机;激发光光源模块中的拉曼光源单元分别与光路切换模块中的第一光路切换器11和第二光路切换器24连接,荧光激发光源单元和反射照明光源单元分别与第一光路切换器11连接;光路切换模块中的第一光路切换器11和第二光路切换器24分别与倒置显微镜22连接,第二光路切换器24与显微成像及光谱测试模块中的第二光纤耦合器28连接;显微成像及光谱测试模块中的光谱仪29上设有第二显微成像用检测器30,计算机31分别与第一显微成像用检测器23和第二显微成像用检测器30串接;A multi-mode coupling in-situ microspectral imaging system described in the present invention is composed of an inverted microscope, an excitation light source module, an optical path switching module, a microscopic imaging and a spectrum testing module, and the excitation light source module is It consists of three parts: a Raman light source unit, a fluorescent excitation light source unit, and a reflected illumination light source unit; among them, the Raman light source unit is composed of a 532nm high-brightness semiconductor laser 1, a first lens 2, a second lens 3, and a first iris diaphragm 4. Band-pass filter 5, dichroic beam splitter 6, long-pass filter 7, first fiber coupler 8, first reflector 9 and second reflector 10; Diaphragm 15, the third reflector 16, the second adjustable reflector 17 and xenon light source 19; the reflective illumination light source unit is composed of the fourth reflector 18 and white light source 20; the optical path switching module is composed of the first optical path switcher An optical path switcher 11 and a second optical path switcher 24, wherein the first optical path switcher 11 includes a third lens 12, a first adjustable reflector 13 and a fourth lens 14; the second optical path switcher 24 includes a fifth lens 25. The third adjustable reflector 26 and the sixth lens 27; the microscopic imaging and spectrum testing module is composed of the first microscopic imaging detector 23, the second optical fiber coupler 28, the spectrometer 29, the second microscopic Imaging is composed of a detector 30 and a computer 31, wherein the first detector 23 for microscopic imaging is a CMOS area array camera, and the second detector 30 for microscopic imaging is a CCD area array camera; the Raman light source in the excitation light source module The units are respectively connected to the first optical path switcher 11 and the second optical path switcher 24 in the optical path switching module, and the fluorescent excitation light source unit and the reflective illumination light source unit are respectively connected to the first optical path switcher 11; the first optical path in the optical path switching module The switcher 11 and the second optical path switcher 24 are connected with the inverted microscope 22 respectively, and the second optical path switcher 24 is connected with the second optical fiber coupler 28 in the microscopic imaging and spectrum testing module; The spectrometer 29 is provided with a second microscopic imaging detector 30, and the computer 31 is respectively connected in series with the first microscopic imaging detector 23 and the second microscopic imaging detector 30;
所述倒置显微镜22的一个C-mount接口与第一显微成像用检测器23连接、另一C-mount接口与第二光路切换器24连接、后侧接口与第三可变光阑21连接;One C-mount interface of the inverted microscope 22 is connected to the first microscopic imaging detector 23, the other C-mount interface is connected to the second optical path switcher 24, and the rear side interface is connected to the third iris diaphragm 21 ;
激发光光源模块中双色分光镜6反射532nm的拉曼激发光,并同时透射500-2500nm的拉曼散射信号;长通滤波片7透射510-2500nm的拉曼散射信号;第一反射镜9、第二反射镜10、第三反射镜16、第四反射镜18均为全反镜;第二可调式反射镜17为90°可调式表面反射镜;In the excitation light source module, the two-color spectroscope 6 reflects the Raman excitation light of 532nm, and simultaneously transmits the Raman scattering signal of 500-2500nm; the long-pass filter 7 transmits the Raman scattering signal of 510-2500nm; the first reflector 9, The second reflecting mirror 10, the third reflecting mirror 16, and the fourth reflecting mirror 18 are all mirrors; the second adjustable reflecting mirror 17 is a 90 ° adjustable surface reflecting mirror;
光路切换模块中第一可调式反射镜13和第三可调式反射镜26均为45°可调式滑动反射镜;Both the first adjustable reflector 13 and the third adjustable reflector 26 in the optical path switching module are 45° adjustable sliding reflectors;
在使用时,通过调节激发光源模块、光路切换模块和显微成像及光谱测试模块,实现在不同激发光源下样品微米级区域多重信息的独立获取;When in use, by adjusting the excitation light source module, optical path switching module, and microscopic imaging and spectral testing module, the independent acquisition of multiple information of the micron-scale area of the sample under different excitation light sources is realized;
选择荧光碳量子点纳米纤维膜样品为例:Select fluorescent carbon quantum dot nanofiber membrane sample as an example:
荧光碳量子点纳米纤维膜样品任一微米级区域拉曼光谱的测量:Measurement of Raman spectrum in any micron-scale region of fluorescent carbon quantum dot nanofiber film sample:
将该样品至于倒置显微镜22载物台,打开532nm高亮度半导体激光器,532nm绿色激光经过由第一透镜2、第二透镜3构成的光束扩束器、第一可变光阑4、带通滤波片5,在双色分光镜6上反射532nm的入射光,经过第一反射镜9、第二反射镜10,调节第一光路切换器11中的第一可调式反射镜13和第三可变光阑21,最终进入倒置显微镜22,聚焦至样品微区,调节第一可变光阑4和第三可变光阑21可调节激光强度及光斑大小,调节倒置显微镜22光路切换模块,使得样品的拉曼散射信号沿着原光路返回直接透过双色分光镜,经长通滤波片7过滤纯化后,利用第一光纤耦合器8导入第二光路切换器24,调节第三可调式反射镜26,使得拉曼散射信号通过第六透镜27经过第二光纤耦合器28进入光谱仪29中,实现对样品微区拉曼光谱信号的采集,可在计算机上呈现样品微区的拉曼光谱;Put the sample on the stage of an inverted microscope 22, turn on the 532nm high-brightness semiconductor laser, and the 532nm green laser passes through the beam expander composed of the first lens 2 and the second lens 3, the first variable diaphragm 4, and the bandpass filter. Slice 5 reflects the incident light of 532nm on the dichroic beam splitter 6, passes through the first reflector 9 and the second reflector 10, and adjusts the first adjustable reflector 13 and the third variable light in the first optical path switcher 11 Diaphragm 21 finally enters the inverted microscope 22 to focus on the micro area of the sample, adjust the first iris diaphragm 4 and the third iris diaphragm 21 to adjust the laser intensity and spot size, and adjust the optical path switching module of the inverted microscope 22 to make the sample The Raman scattering signal returns along the original optical path and directly passes through the dichroic beam splitter. After being filtered and purified by the long-pass filter 7, the first optical fiber coupler 8 is used to guide the second optical path switcher 24, and the third adjustable reflector 26 is adjusted. The Raman scattering signal enters the spectrometer 29 through the sixth lens 27 through the second fiber coupler 28 to realize the collection of the Raman spectrum signal of the micro-area of the sample, and the Raman spectrum of the micro-area of the sample can be presented on the computer;
该样品同一微区荧光光谱及成像的分析测量:Analysis and measurement of the fluorescence spectrum and imaging of the same micro-area of the sample:
打开氙灯光源19,调节第一光路转换器11中的第一可调式反射镜13及第二可调式反射镜17,使532nm拉曼激发光无法进入倒置显微镜22并使氙灯激发光进入倒置显微镜22,聚焦至样品同一微区,调节倒置显微镜22光路切换模块,使得样品的荧光光谱信号进入第一显微成像用检测器23,实现对样品微区荧光图像的采集;调节倒置显微镜22光路切换模块,使得样品的荧光光谱信号通过第五透镜25,并调节第二光路切换器24中的第三可调式反射镜26,再通过第六透镜27,经过第二光纤耦合器28进入光谱仪29及第二显微成像用检测器30,实现对样品同一微区荧光光谱信号的采集,此时在计算机上显示样品同一微区的荧光光谱及成像;Turn on the xenon lamp light source 19, adjust the first adjustable reflector 13 and the second adjustable reflector 17 in the first optical path converter 11, so that the 532nm Raman excitation light cannot enter the inverted microscope 22 and the xenon lamp excitation light enters the inverted microscope 22 , focus on the same micro-area of the sample, adjust the optical path switching module of the inverted microscope 22, so that the fluorescence spectrum signal of the sample enters the first microscopic imaging detector 23, and realize the collection of the fluorescent image of the micro-area of the sample; adjust the optical path switching module of the inverted microscope 22 , so that the fluorescence spectrum signal of the sample passes through the fifth lens 25, and adjusts the third adjustable reflector 26 in the second optical path switcher 24, then passes through the sixth lens 27, and enters the spectrometer 29 and the second optical fiber coupler 28 through the second optical fiber coupler 28. 2. The detector 30 for microscopic imaging realizes the collection of the fluorescence spectrum signal of the same micro-area of the sample, and at this time displays the fluorescence spectrum and imaging of the same micro-area of the sample on the computer;
该样品同一微区反射光谱及成像的分析测量:Analysis and measurement of reflection spectrum and imaging of the same micro-area of the sample:
打开白光光源20,调节第一光路转换器11中的第一可调式反射镜13及第二可调式反射镜17,使得532nm拉曼激发光、反射照明光均无法进入倒置显微镜22仅使白光进入倒置显微镜22,聚焦至样品同一微区,调节倒置显微镜22光路切换模块,使得样品的反射光谱信号进入第一显微成像用检测器23,实现对样品微区反射图像的采集;调节倒置显微镜22光路切换模块,使得样品的反射光谱信号通过第五透镜25,并调节第二光路切换器24中的第三可调式反射镜26,再通过第六透镜27,经过第二光纤耦合器28进入光谱仪29及第二显微成像用检测器30,实现对样品同一微区反射光谱信号的采集,此时在计算机上显示样品同一微区的反射光谱及成像;Turn on the white light source 20, adjust the first adjustable reflector 13 and the second adjustable reflector 17 in the first optical path converter 11, so that neither the 532nm Raman excitation light nor the reflected illumination light can enter the inverted microscope 22, and only white light enters. The inverted microscope 22 is focused on the same micro-area of the sample, and the optical path switching module of the inverted microscope 22 is adjusted so that the reflection spectrum signal of the sample enters the first micro-imaging detector 23 to realize the acquisition of the reflection image of the micro-area of the sample; adjust the inverted microscope 22 Optical path switching module, so that the reflection spectrum signal of the sample passes through the fifth lens 25, and adjusts the third adjustable reflector 26 in the second optical path switcher 24, then passes through the sixth lens 27, and enters the spectrometer through the second fiber coupler 28 29 and the second micro-imaging detector 30 to realize the acquisition of the reflection spectrum signal of the same micro-area of the sample, and at this time, the reflection spectrum and imaging of the same micro-area of the sample are displayed on the computer;
该样品同一微区透射光谱及成像的分析测量:Analysis and measurement of the transmission spectrum and imaging of the same micro-area of the sample:
调节第一光路转换器11中的第一可调式反射镜13及第二可调式反射镜17,使得532nm拉曼激发光、荧光激发光、反射照明光等外界光源均无法进入倒置显微镜22,使用倒置显微镜22自带光源,并聚焦至样品同一微区,调节倒置显微镜22光路切换模块,使得样品的透射光谱信号进入第一显微成像用检测器23,实现对样品微区透射图像的采集;调节倒置显微镜22光路切换模块,使得样品的透射光谱信号通过第五透镜25,并调节第二光路切换器24中的第三可调式反射镜26,再通过第六透镜27,经过第二光纤耦合器28进入光谱仪29及第二显微成像用检测器30,实现对样品同一微区透射光谱信号的采集,此时在计算机上显示样品同一微区的透射光谱及成像。Adjust the first adjustable reflector 13 and the second adjustable reflector 17 in the first optical path converter 11, so that external light sources such as 532nm Raman excitation light, fluorescence excitation light, and reflected illumination light cannot enter the inverted microscope 22. The inverted microscope 22 has its own light source and focuses on the same micro-area of the sample. Adjust the optical path switching module of the inverted microscope 22 so that the transmission spectrum signal of the sample enters the first micro-imaging detector 23 to realize the acquisition of the transmission image of the micro-area of the sample; Adjust the optical path switching module of the inverted microscope 22 so that the transmitted spectrum signal of the sample passes through the fifth lens 25, adjust the third adjustable mirror 26 in the second optical path switcher 24, pass through the sixth lens 27, and couple through the second optical fiber The detector 28 enters the spectrometer 29 and the second micro-imaging detector 30 to realize the acquisition of the transmission spectrum signal of the same micro-area of the sample. At this time, the transmission spectrum and imaging of the same micro-area of the sample are displayed on the computer.
本发明提供一种多模耦合原位显微光谱及成像系统,该系统能够实现对样品同一微米级区域原位检测显微拉曼光谱、显微荧光光谱及成像、显微透射光谱及成像、显微反射光谱及成像的功能,从而实现对样品微区进行多维度、多模式的快速检测。The invention provides a multi-mode coupling in-situ microspectroscopy and imaging system, which can realize in-situ detection of microscopic Raman spectroscopy, microfluorescence spectroscopy and imaging, microtransmission spectroscopy and imaging, Microreflectance spectroscopy and imaging functions, so as to realize multi-dimensional and multi-mode rapid detection of sample micro-regions.
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。The above are the preferred embodiments of the present invention, and all changes made according to the technical solution of the present invention, when the functional effect produced does not exceed the scope of the technical solution of the present invention, all belong to the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910867527.7A CN110441235A (en) | 2019-09-13 | 2019-09-13 | A kind of Multiple modes coupling original position microspectrum imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910867527.7A CN110441235A (en) | 2019-09-13 | 2019-09-13 | A kind of Multiple modes coupling original position microspectrum imaging system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110441235A true CN110441235A (en) | 2019-11-12 |
Family
ID=68440115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910867527.7A Pending CN110441235A (en) | 2019-09-13 | 2019-09-13 | A kind of Multiple modes coupling original position microspectrum imaging system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110441235A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111458312A (en) * | 2020-03-09 | 2020-07-28 | 哈尔滨工业大学 | Detection optical system for fluorescent defects of micro-regions on processing surface layer of soft and brittle optical crystal |
CN112285090A (en) * | 2020-09-29 | 2021-01-29 | 军事科学院系统工程研究院卫勤保障技术研究所 | Portable confocal unicellular Raman scattering detecting system |
CN112577931A (en) * | 2020-11-25 | 2021-03-30 | 江苏度微光学科技有限公司 | Sample rod suitable for microspectroscopic imaging test in low-temperature high-intensity magnetic field environment and test method thereof |
CN112649368A (en) * | 2020-12-25 | 2021-04-13 | 厦门大学 | Objective coupling type-based surface plasma coupling emission directional enhancement type microscopic fluorescence imaging and spectrum detection method and device |
CN112730275A (en) * | 2021-02-04 | 2021-04-30 | 华东理工大学 | Micro-spectral imaging system, pesticide detection system and method |
CN113834803A (en) * | 2021-09-22 | 2021-12-24 | 福州大学 | A Multifunctional Microscopic Imaging Optical System |
CN114235696A (en) * | 2021-12-17 | 2022-03-25 | 清华大学 | Material micro-area optical property measuring device |
CN114324281A (en) * | 2021-12-30 | 2022-04-12 | 中国科学院合肥物质科学研究院 | A fluorescence collection device for in-situ monitoring and analysis of soil organic pollutants |
CN115568822A (en) * | 2022-09-09 | 2023-01-06 | 上海家化联合股份有限公司 | Device for detecting skin autofluorescence and anti-glycation efficacy evaluation method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10281876A (en) * | 1997-04-09 | 1998-10-23 | Bunshi Bio Photonics Kenkyusho:Kk | Polarizing imaging system |
CN101216414A (en) * | 2007-12-29 | 2008-07-09 | 中国科学院西安光学精密机械研究所 | multifunctional optical micromanipulator |
CN104931479A (en) * | 2015-06-16 | 2015-09-23 | 吉林大学 | Integrated imageable portable laser-Raman spectrum detector |
CN105424189A (en) * | 2015-12-04 | 2016-03-23 | 江南大学 | Scanning type multifunctional microscopic-spectral imaging method |
CN107044959A (en) * | 2017-02-16 | 2017-08-15 | 江苏大学 | Micro- multi-modal fusion spectral detection system |
CN108645831A (en) * | 2018-06-14 | 2018-10-12 | 厦门大学 | Multifunction surface plasmon coupling emits fluorescence and Raman detector and its detection method |
CN209215732U (en) * | 2018-11-28 | 2019-08-06 | 上海复享光学股份有限公司 | Parallel light path switching device and microscopic system |
-
2019
- 2019-09-13 CN CN201910867527.7A patent/CN110441235A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10281876A (en) * | 1997-04-09 | 1998-10-23 | Bunshi Bio Photonics Kenkyusho:Kk | Polarizing imaging system |
CN101216414A (en) * | 2007-12-29 | 2008-07-09 | 中国科学院西安光学精密机械研究所 | multifunctional optical micromanipulator |
CN104931479A (en) * | 2015-06-16 | 2015-09-23 | 吉林大学 | Integrated imageable portable laser-Raman spectrum detector |
CN105424189A (en) * | 2015-12-04 | 2016-03-23 | 江南大学 | Scanning type multifunctional microscopic-spectral imaging method |
CN107044959A (en) * | 2017-02-16 | 2017-08-15 | 江苏大学 | Micro- multi-modal fusion spectral detection system |
CN108645831A (en) * | 2018-06-14 | 2018-10-12 | 厦门大学 | Multifunction surface plasmon coupling emits fluorescence and Raman detector and its detection method |
CN209215732U (en) * | 2018-11-28 | 2019-08-06 | 上海复享光学股份有限公司 | Parallel light path switching device and microscopic system |
Non-Patent Citations (1)
Title |
---|
程晨: "几种二维材料在波导激光中的应用及超快激光修饰研究", 《中国博士学位论文全文数据库 信息科技辑》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111458312B (en) * | 2020-03-09 | 2023-03-14 | 哈尔滨工业大学 | Detection optical system for fluorescent defects of micro-regions on processing surface layer of soft and brittle optical crystal |
CN111458312A (en) * | 2020-03-09 | 2020-07-28 | 哈尔滨工业大学 | Detection optical system for fluorescent defects of micro-regions on processing surface layer of soft and brittle optical crystal |
CN112285090A (en) * | 2020-09-29 | 2021-01-29 | 军事科学院系统工程研究院卫勤保障技术研究所 | Portable confocal unicellular Raman scattering detecting system |
CN112577931A (en) * | 2020-11-25 | 2021-03-30 | 江苏度微光学科技有限公司 | Sample rod suitable for microspectroscopic imaging test in low-temperature high-intensity magnetic field environment and test method thereof |
CN112577931B (en) * | 2020-11-25 | 2024-04-19 | 江苏度微光学科技有限公司 | Microscopic spectrum imaging test sample rod suitable for low-temperature strong magnetic field environment and test method thereof |
CN112649368A (en) * | 2020-12-25 | 2021-04-13 | 厦门大学 | Objective coupling type-based surface plasma coupling emission directional enhancement type microscopic fluorescence imaging and spectrum detection method and device |
CN112649368B (en) * | 2020-12-25 | 2022-05-13 | 厦门大学 | Surface plasmon coupled emission directional enhanced fluorescence imaging and spectral detection method and device based on objective lens coupling |
CN112730275A (en) * | 2021-02-04 | 2021-04-30 | 华东理工大学 | Micro-spectral imaging system, pesticide detection system and method |
CN112730275B (en) * | 2021-02-04 | 2023-06-30 | 华东理工大学 | Microscopic spectrum imaging system, pesticide detection system and method thereof |
CN113834803A (en) * | 2021-09-22 | 2021-12-24 | 福州大学 | A Multifunctional Microscopic Imaging Optical System |
CN114235696A (en) * | 2021-12-17 | 2022-03-25 | 清华大学 | Material micro-area optical property measuring device |
CN114324281A (en) * | 2021-12-30 | 2022-04-12 | 中国科学院合肥物质科学研究院 | A fluorescence collection device for in-situ monitoring and analysis of soil organic pollutants |
CN115568822A (en) * | 2022-09-09 | 2023-01-06 | 上海家化联合股份有限公司 | Device for detecting skin autofluorescence and anti-glycation efficacy evaluation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110441235A (en) | A kind of Multiple modes coupling original position microspectrum imaging system | |
CN101556386B (en) | Interference type double-imaging measurement device for multi-parameters of liquid crystal spatial light modulator | |
WO2020192153A1 (en) | Coherent anti-stokes raman scattering microscope imaging apparatus | |
WO2023029471A1 (en) | Multi-modal nonlinear microscopic imaging system | |
CN110398479B (en) | A kind of microspectrometric measurement device and method based on optical chip substrate | |
CN107167455A (en) | Light splitting pupil laser differential confocal CARS micro-spectrometer method and devices | |
CN107167456A (en) | Transmission-type differential confocal CARS micro-spectrometer method and devices | |
CN110579462A (en) | A time-resolved wide-spectrum CARS spectral imaging device based on high repetition frequency femtosecond laser | |
CN102519909A (en) | Air-space low-interference phase microscope based on liquid crystal tunable filter | |
CN106990095A (en) | Reflection-type confocal CARS micro-spectrometer method and devices | |
CN107037031A (en) | The confocal CARS micro-spectrometers method and device of reflection type differential | |
CN113484293A (en) | Microscopic circular polarization fluorescence spectrum detection system and method based on single photon counting method | |
CN108732155A (en) | Raman probe | |
CN107167457A (en) | The confocal CARS micro-spectrometers method and device of transmission-type | |
CN116399222A (en) | Dark field nonlinear thermal wave confocal microscopic measurement device and method based on circular dichroism | |
CN116380867A (en) | Raman/fluorescence dual-light-path spectrum detection device and detection method | |
CN103884659B (en) | Angular resolution micro-nano spectral analysis device | |
CN114353947A (en) | A Micro Raman Spectrometer Based on Light Field Imaging | |
CN115684079A (en) | Transient absorption spectrum measuring system with high sensitivity and high signal-to-noise ratio | |
CN116256377A (en) | Dark field confocal microscopic measurement device and method based on circular dichroism | |
CN110715732B (en) | Multifunctional Stokes-Mueller imaging and spectrum detection system and detection method | |
CN115046933B (en) | Micro-area circular dichroism and circularly polarized luminescence testing device | |
CN104568710A (en) | High time-space resolution optical detection and microscopic imaging method and device | |
CN218823921U (en) | Transient absorption spectrum and magneto-optical polarization parallel measurement system | |
CN106645097A (en) | Optical path system for laser probe component analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20191112 |