[go: up one dir, main page]

CN110437341A - One kind having the active detection albumen of red fluorescence and its application - Google Patents

One kind having the active detection albumen of red fluorescence and its application Download PDF

Info

Publication number
CN110437341A
CN110437341A CN201910766160.XA CN201910766160A CN110437341A CN 110437341 A CN110437341 A CN 110437341A CN 201910766160 A CN201910766160 A CN 201910766160A CN 110437341 A CN110437341 A CN 110437341A
Authority
CN
China
Prior art keywords
protein
rfp
seq
detection
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910766160.XA
Other languages
Chinese (zh)
Other versions
CN110437341B (en
Inventor
朱传刚
沈元曦
纪荣毅
柴瑞
林矫矫
洪炀
马以桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Veteromaru Research Institute Caas China Animal Health And Epidemiology Center Shanghan Branch Center
Original Assignee
Shanghai Veteromaru Research Institute Caas China Animal Health And Epidemiology Center Shanghan Branch Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Veteromaru Research Institute Caas China Animal Health And Epidemiology Center Shanghan Branch Center filed Critical Shanghai Veteromaru Research Institute Caas China Animal Health And Epidemiology Center Shanghan Branch Center
Priority to CN201910766160.XA priority Critical patent/CN110437341B/en
Publication of CN110437341A publication Critical patent/CN110437341A/en
Application granted granted Critical
Publication of CN110437341B publication Critical patent/CN110437341B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供一种具有红色荧光活性的检测蛋白及其应用,其特征在于所述检测蛋白包括链球菌蛋白G(SPG)片段和荧光蛋白,所述链球菌蛋白G(SPG)片段为SPG的C3区段,所述荧光蛋白为优化后的红色荧光蛋白,所述检测蛋白具有荧光活性和与不同物种抗体结合的双重活性。本发明公开的检测蛋白,其可以广谱结合包括人及多种动物总IgG及不同亚类的IgG,与现有技术中的免疫球蛋白结合分子相比,它结合力也比现有的免疫球蛋白结合分子高。

The present invention provides a detection protein with red fluorescent activity and its application, characterized in that the detection protein includes a streptococcal protein G (SPG) fragment and a fluorescent protein, and the streptococcal protein G (SPG) fragment is C3 of SPG In the section, the fluorescent protein is an optimized red fluorescent protein, and the detection protein has dual activities of fluorescent activity and binding to antibodies of different species. The detection protein disclosed by the present invention can broadly bind human and various animal total IgG and IgG of different subclasses. Protein binding molecules are high.

Description

一种具有红色荧光活性的检测蛋白及其应用A detection protein with red fluorescent activity and its application

技术领域technical field

本发明涉及免疫检测领域,特别涉及一种具有红色荧光活性的检测蛋白及其应用。The invention relates to the field of immunoassay, in particular to a detection protein with red fluorescence activity and application thereof.

背景技术Background technique

各种传染性疾病大范围的流行传播,对我国的国家安全和人口健康造成严重威胁。发展灵敏、准确的病原分析方法和检测技术对于相关疾病的快速诊断和及时治疗、生物恐怖和突发性公共卫生事件的有效防范和快速处置具有重要意义。经典的微生物分离鉴定麻烦费时,难以应用于致病微生物的现场快速检测;基于病原核酸的检测方法大多具有较高的检测灵敏度,但需要复杂的核酸抽提过程,而且容易出现假阳性;免疫学方法因基于抗体对病原的特异性识别作用而具有较好的特异性,同时操作简单,因此,广泛应用于临床和基础研究的各个领域。常规的免疫分析方法虽然能够实现快速检测,但由于该方法通常通过肉眼识别纳米金聚集显色,其灵敏度较低。针对于此,我们亟需开发一种快速、高灵敏的免疫检测方法。The widespread spread of various infectious diseases poses a serious threat to my country's national security and population health. The development of sensitive and accurate pathogen analysis methods and detection technologies is of great significance for the rapid diagnosis and timely treatment of related diseases, the effective prevention and rapid treatment of bioterrorism and public health emergencies. The classic isolation and identification of microorganisms is cumbersome and time-consuming, and it is difficult to apply to the on-site rapid detection of pathogenic microorganisms; most of the detection methods based on pathogenic nucleic acids have high detection sensitivity, but require complex nucleic acid extraction processes, and are prone to false positives; immunology Because the method is based on the specific recognition of antibodies to pathogens, it has good specificity and is easy to operate. Therefore, it is widely used in various fields of clinical and basic research. Although the conventional immunoassay method can achieve rapid detection, its sensitivity is low because the method usually recognizes the aggregation of gold nanoparticles by naked eyes. For this, we urgently need to develop a rapid and highly sensitive immunoassay method.

链球菌蛋白G(SPG)是能与人及多种动物的抗体IgG结合的一种链球菌细胞壁蛋白,最早由Kronvall在1973年报道。A、C、G群链球菌的细胞壁及培养上清液中均含有该蛋白,SPG与葡萄球菌蛋白A(SPA)的特性明显不同。在1984年,Bjorck等人将这种蛋白统称为链球菌蛋白G,并对其进行了分离和纯化。目前,虽然SPA由于具有与抗体Fc端结合的特性,较为广泛的应用于免疫学实验中。然而,SPG与SPA相比,SPG与IgG的结合力更强,结合谱也更广(曹之舫,1989)。Streptococcal protein G (SPG) is a streptococcal cell wall protein that can bind to IgG antibodies from humans and various animals. It was first reported by Kronvall in 1973. The cell wall and culture supernatant of group A, C, and G streptococci all contain this protein, and the characteristics of SPG and staphylococcal protein A (SPA) are obviously different. In 1984, Bjorck et al. collectively referred to this protein as streptococcal protein G, and isolated and purified it. At present, although SPA has the characteristic of binding to the Fc end of antibodies, it is widely used in immunological experiments. However, compared with SPA, SPG has a stronger binding force to IgG and a wider binding spectrum (Cao Zhifang, 1989).

SPG从N段开始,有三个同源结构区域A1、A2、A3,每个同源结构都由24个氨基酸组成,同时这三个同源结构被51个氨基酸组成的同源区域B1、B2隔开,接着是一个间隔的区域S,随后是55个氨基酸组成的同源结构区C1、C2、C3,它们之间又被D1和D2区所隔开,C3区之后为亲水区域W,最后为M区(Sjobring,1991)。有研究表明,SPG的三个同源的氨基酸序列C1、C2和C3区域与抗体IgG Fc端的结合相关,并且C1和C2区只有2个氨基酸序列不同,C1和C3区有6个氨基酸序列不同,并且C3区与抗体IgG的结合能力相当于C1区的7倍(Kobatake,1990)。而SPG的A、B区则具有与抗体Fab段结合以及与血清白蛋白结合的活性,被认为会起到干扰抗体与抗原的作用以及带来非特异性反应的问题。Starting from the N segment, SPG has three homologous structural regions A1, A2, and A3, and each homologous structure is composed of 24 amino acids, and these three homologous structures are separated by homologous regions B1 and B2 composed of 51 amino acids. followed by a spacer region S, followed by a homologous structural region C1, C2, and C3 composed of 55 amino acids, which are separated by D1 and D2 regions, followed by a hydrophilic region W after the C3 region, and finally For the M area (Sjobring, 1991). Studies have shown that the three homologous amino acid sequences C1, C2 and C3 of SPG are related to the binding of antibody IgG Fc terminal, and only 2 amino acid sequences are different between C1 and C2 regions, and 6 amino acid sequences are different between C1 and C3 regions. And the binding capacity of the C3 region to antibody IgG is equivalent to 7 times that of the C1 region (Kobatake, 1990). The A and B regions of SPG have the activity of binding to antibody Fab fragments and serum albumin, which are considered to interfere with the effect of antibodies and antigens and cause non-specific reactions.

红色荧光蛋白(Red fluorescent protein,RFP)是香菇珊瑚中分离的一种生物发光蛋白,它是一个由约248个氨基酸组成的蛋白质,RFP发射的荧光强度比最好的绿色荧光蛋白(GFP)突变体更高。具有较强的穿透力,且持续时间长的特点。DsRed2是源于野生型DsRed的一种人工突变基因,该突变基因的表达产物RFP2,蛋白结构与绿色荧光蛋白(GFP)相似。在自然光下就可以发射出红色荧光,是极具潜力的新的可视性报告基因。Red fluorescent protein (RFP) is a bioluminescent protein isolated from the mushroom coral. It is a protein composed of about 248 amino acids. The fluorescence intensity emitted by RFP is higher than that of the best green fluorescent protein (GFP) mutation. higher body. It has the characteristics of strong penetrating power and long duration. DsRed2 is an artificial mutant gene derived from wild-type DsRed. The expression product of the mutant gene, RFP2, has a protein structure similar to that of green fluorescent protein (GFP). It can emit red fluorescence under natural light, which is a new visibility reporter gene with great potential.

红色荧光蛋白等标记抗体或G蛋白等活性物质的方法,涉及到化学偶联,偶联后提纯,透析,浓缩等繁琐步骤;而且由于本身生物大分子的特点,偶联的结合位点多样,不仅可能造成生物大分子的失活,而且影响稳定性。The method of labeling active substances such as antibodies or G proteins such as red fluorescent protein involves chemical coupling, purification after coupling, dialysis, concentration and other cumbersome steps; and due to the characteristics of biological macromolecules, the coupling binding sites are diverse. Not only may cause the inactivation of biological macromolecules, but also affect the stability.

发明内容Contents of the invention

本发明主要解决的技术问题是提供一种快速、高灵敏的免疫检测产品及方法,实现高效、高密度的免疫检测。The technical problem mainly solved by the present invention is to provide a fast and highly sensitive immunoassay product and method to realize efficient and high-density immunoassay.

为了实现上述技术方案,本发明提供一种能高效的结合IgG的工具蛋白,将SPG基因的IgG结合片段进行重构,只保留蛋白G能与抗体IgG的Fc端特异性相结合的C3区,并连接RFP,制备的重组蛋白具有荧光活性和与不同物种抗体结合的双重活性。In order to realize the above technical solution, the present invention provides a tool protein capable of efficiently binding IgG, remodeling the IgG binding fragment of the SPG gene, and only retaining the C3 region where protein G can specifically bind to the Fc end of antibody IgG, And connected with RFP, the prepared recombinant protein has dual activity of fluorescent activity and binding to antibodies of different species.

为了实现本发明的目的,本发明采用如下技术方案:In order to realize the purpose of the present invention, the present invention adopts following technical scheme:

一种具有红色荧光活性的检测蛋白,包括链球菌蛋白G(SPG)片段和荧光蛋白,所述链球菌蛋白G(SPG)片段为SPG的C3区段,所述荧光蛋白为红色荧光蛋白;A detection protein with red fluorescent activity, comprising a streptococcal protein G (SPG) fragment and a fluorescent protein, the streptococcal protein G (SPG) fragment is the C3 segment of SPG, and the fluorescent protein is red fluorescent protein;

优选的,其中SPG的C3区段的核苷酸序列为SEQ ID NO.6所示,氨基酸序列如SEQ IDNO.7所示。Preferably, the nucleotide sequence of the C3 segment of SPG is shown in SEQ ID NO.6, and the amino acid sequence is shown in SEQ ID NO.7.

其中优化后的红色荧光蛋白的核苷酸序列为如SEQ ID NO.8所示;氨基酸序列如SEQ ID NO.9所示。The nucleotide sequence of the optimized red fluorescent protein is shown in SEQ ID NO.8; the amino acid sequence is shown in SEQ ID NO.9.

融合后的C3-RFP的核苷酸序列为如SEQ ID NO.10所示;氨基酸序列如SEQ IDNO.11所示。The nucleotide sequence of the fused C3-RFP is shown in SEQ ID NO.10; the amino acid sequence is shown in SEQ ID NO.11.

优选的,一种具有红色荧光活性的检测蛋白,所述检测蛋白的核苷酸序列为SEQID NO.5所示。Preferably, a detection protein with red fluorescent activity, the nucleotide sequence of the detection protein is shown in SEQ ID NO.5.

本发明同时提供一种具有红色荧光活性的检测蛋白的构建方法,所述方法为:The present invention also provides a method for constructing a detection protein with red fluorescent activity, the method being:

(1)根据C3片段的基因序列,从含有C3片段的菌液中PCR扩增出C3序列;(1) According to the gene sequence of the C3 fragment, PCR amplifies the C3 sequence from the bacterial solution containing the C3 fragment;

(2)通过PCR从含有RFP序列的菌液中扩增出RFP序列;(2) Amplify the RFP sequence from the bacterial liquid containing the RFP sequence by PCR;

(3)先将扩增出的RFP序列双酶切后,连接到表达载体上,经鉴定后再将C3片段双酶切后连接上去,构建重组蛋白的原核表达质粒;(3) The amplified RFP sequence was double-enzymatically digested and connected to the expression vector. After identification, the C3 fragment was double-digested and connected to construct the prokaryotic expression plasmid of the recombinant protein;

(4)将共表达载体转入表达宿主中培养,活化至对数生长期后加入诱导表白蛋白;(4) Transfer the co-expression vector into the expression host for culture, and add inducible epialbumin after activation to the logarithmic growth phase;

(5)经破碎、纯化后制得融合蛋白C3-RFP(5) The fusion protein C3-RFP was prepared after fragmentation and purification

其中,步骤(1)中使用的引物对如SEQ ID NO.1、2所示;Wherein, the primer pair used in step (1) is shown as SEQ ID NO.1, 2;

步骤(2)中使用的引物对如SEQ ID NO.3、4所示;The primer pair used in step (2) is shown in SEQ ID NO.3 and 4;

上述方法中,融合蛋白基因的表达、纯化可采用本领域常规用于蛋白表达纯化的方法,例如将融合蛋白基因克隆入表达载体,将表达载体和/或共表达载体转入表达宿主中培养,活化至对数生长期后加入诱导表白蛋白,经破碎、纯化后得到融合蛋白。其中,本发明对表达载体、共表达载体、表达宿主的种类和类别不作限定,可选用本领域常规用于遗传修饰的载体和宿主,具体的,表达载体可为pET-28、pET-32、pET-15或pET-11的等,共表达载体可为pCDFDuet-1等;表达宿主可选自大肠杆菌、枯草芽孢杆菌、巨大芽孢杆菌、棒状杆菌、酿酒酵母、毕赤酵母或哺乳动物细胞。In the above method, the expression and purification of the fusion protein gene can be performed by conventional methods used in the art for protein expression and purification, such as cloning the fusion protein gene into an expression vector, transferring the expression vector and/or co-expression vector into an expression host for cultivation, After activation to the logarithmic growth phase, the induced epialbumin was added, and the fusion protein was obtained after crushing and purification. Among them, the present invention does not limit the types and types of expression vectors, co-expression vectors, and expression hosts. Vectors and hosts commonly used in the field for genetic modification can be selected. Specifically, the expression vectors can be pET-28, pET-32, For pET-15 or pET-11, etc., the co-expression vector can be pCDFDuet-1, etc.; the expression host can be selected from Escherichia coli, Bacillus subtilis, Bacillus megaterium, coryneform bacteria, Saccharomyces cerevisiae, Pichia pastoris or mammalian cells.

本发明中,克隆可通过例如链式酶聚合反应(PCR)完成。In the present invention, cloning can be accomplished by, for example, polymerase chain reaction (PCR).

本发明同时提供一种用于免疫分析的产品,所述产品包括本发明所述的融合蛋白C3-RFP。The present invention also provides a product for immune analysis, which includes the fusion protein C3-RFP of the present invention.

其中,产品的形式可为探针(传感器)、试纸条、芯片、试剂盒等,在使用时,将本发明所述的融合蛋白C3-RFP与其它现有的商业试剂(如酶标抗体、荧光标记抗体、显色剂、底物等)混合,可用于各种形式的免疫分析,例如抗体检测、抗体筛选、抗原检测、病原检测、蛋白检测、蛋白相互作用筛查、高通量靶标蛋白检测、蛋白-核酸相互作用分析、药物筛选等。Wherein, the form of product can be probe (sensor), test strip, chip, test kit etc., when using, the fusion protein C3-RFP of the present invention and other existing commercial reagent (such as enzyme-labeled antibody , fluorescently labeled antibodies, chromogenic reagents, substrates, etc.), can be used in various forms of immune analysis, such as antibody detection, antibody screening, antigen detection, pathogen detection, protein detection, protein interaction screening, high-throughput targets Protein detection, protein-nucleic acid interaction analysis, drug screening, etc.

产品以试纸条的形式存在时,可将本发明复合物置于检测线,用于捕获目标分子,采用金标纳米粒子等进行检测;进一步的,当复合物融合不同的功能配体时,可实现多种目标分子的同时检测。When the product exists in the form of test strips, the complex of the present invention can be placed on the detection line for capturing target molecules, and gold-labeled nanoparticles can be used for detection; further, when the complex is fused with different functional ligands, it can be Realize the simultaneous detection of multiple target molecules.

本发明中,免疫分析可为间接免疫、夹心免疫等方式,可用于各种形式的免疫分析,例如抗体检测、抗体筛选、抗原检测、病原检测、蛋白检测、蛋白相互作用筛查、高通量靶标蛋白检测、蛋白-核酸相互作用分析、药物筛选等。In the present invention, immune analysis can be indirect immunization, sandwich immunization, etc., and can be used in various forms of immune analysis, such as antibody detection, antibody screening, antigen detection, pathogen detection, protein detection, protein interaction screening, high-throughput Target protein detection, protein-nucleic acid interaction analysis, drug screening, etc.

有益效果Beneficial effect

(1)本发明采用分子生物学的方法,重新构建了一个自然界不存在的新型双功能分子,重组的G蛋白与红色荧光蛋白C3-RFP,构建时不仅设计了连接片段保证两种活性不相互干扰,而且进行了密码子优化及纯化标签。该蛋白由于是通过原核表达获得,产量高,可以通过纯化标签进行亲和层析,纯度得到了保证。提纯的蛋白经过检测,具有与多物种IgG的结合活性,同时具有红色荧光活性。在应用到试纸条等检测中时,显示了该发明蛋白具有的高灵敏性。(1) The present invention adopts the method of molecular biology to reconstruct a new bifunctional molecule that does not exist in nature, the recombinant G protein and red fluorescent protein C3-RFP, not only the connecting fragment is designed to ensure that the two activities do not interact with each other. Interference, and codon optimization and purification tags. Since the protein is obtained through prokaryotic expression, the yield is high, and affinity chromatography can be performed through a purification tag, and the purity is guaranteed. The purified protein has been tested and has binding activity to IgG of multiple species, as well as red fluorescent activity. When applied to the detection of test strips and the like, it shows the high sensitivity of the inventive protein.

(2) 本发明将SPG基因的IgG结合片段进行重构,只保留蛋白G能与抗体IgG的Fc端特异性相结合的C3区,并连接RFP,制备的重组蛋白具有荧光活性与与不同物种抗体结合的双重活性。 (2) The present invention remodels the IgG-binding fragment of the SPG gene, retains only the C3 region where protein G can specifically bind to the Fc end of antibody IgG, and connects RFP, and the prepared recombinant protein has fluorescence activity and is compatible with different species Dual activity of antibody binding.

(3)本发明基于融合蛋白C3-RFP可高效、高密度的捕获目标分子,达到快速、高灵敏的检测。(3) Based on the fusion protein C3-RFP, the present invention can efficiently and densely capture target molecules to achieve rapid and highly sensitive detection.

(4)本发明的融合蛋白C3-RFP制备过程简单、易行,可适用于不同的免疫检测模式,如可用于间接ELISA、夹心ELISA等,尤其适用于液相中的免疫分析,仅仅是替换原有检测方法中的一种试剂,不改变原有操作步骤,不需要额外的设备和仪器。(4) The preparation process of the fusion protein C3-RFP of the present invention is simple and easy, and can be applied to different immunoassay modes, such as indirect ELISA, sandwich ELISA, etc., and is especially suitable for immunoassays in liquid phase. A reagent in the original detection method does not change the original operation steps and does not require additional equipment and instruments.

附图说明Description of drawings

图1 SPG的结构示意图。Fig. 1 Schematic diagram of the structure of SPG.

图2 对重组蛋白的原核表达质粒pET-28a(+)-C3-RFP,进行PCR鉴定(A)和双酶切鉴定(B),其中,Figure 2 PCR identification (A) and double enzyme digestion identification (B) of the prokaryotic expression plasmid pET-28a(+)-C3-RFP of the recombinant protein, in which,

A:M:DNA标志物;1:质粒pET-28a(+)-C3-RFP经PCR,得到的C3序列,大小为165bp;2:质粒pET-28a(+)-C3-RFP经PCR,得到的RFP序列,大小为687bp;3:质粒pET-28a(+)-C3-RFP经PCR,得到的C3-RFP序列,大小为852bpA: M: DNA marker; 1: The C3 sequence obtained by PCR of plasmid pET-28a(+)-C3-RFP, the size is 165bp; 2: The plasmid pET-28a(+)-C3-RFP was obtained by PCR The size of the RFP sequence is 687bp; 3: The plasmid pET-28a(+)-C3-RFP is subjected to PCR to obtain the C3-RFP sequence, the size is 852bp

B:M:DNA标志物;1:质粒pET-28a(+)-C3-RFP经双酶切得到的C3-RFP序列,大小为852bp;2:质粒pET-28a(+)-C3-RFP经双酶切得到的RFP序列,大小为687bp。B: M: DNA marker; 1: C3-RFP sequence obtained by double digestion of plasmid pET-28a(+)-C3-RFP, the size is 852bp; 2: Plasmid pET-28a(+)-C3-RFP The RFP sequence obtained by double enzyme digestion is 687bp in size.

图3 pET-28a(+)-C3-RFP表达蛋白的SDS-PAGE分析,其中,图A .SDS-PAGE分析pET-28a(+)-C3-RFP时相表达情况;图B .SDS-PAGE分析pET-28a(+)-C3-RFP蛋白纯化情况Figure 3 SDS-PAGE analysis of pET-28a(+)-C3-RFP expression protein, in which, Figure A. SDS-PAGE analysis of the phase expression of pET-28a(+)-C3-RFP; Figure B. SDS-PAGE Analysis of pET-28a(+)-C3-RFP protein purification

A:M:蛋白标志物;0h:无IPTG诱导;1h-8h:IPTG诱导1h,2h,4h,6h,8h;A: M: protein markers; 0h: no IPTG induction; 1h-8h: IPTG induction 1h, 2h, 4h, 6h, 8h;

B:M:蛋白标志物;1:超声破碎沉淀物;2:超声破碎上清液;3:上样后;4:BindingBuffer;5:Wash Buffer;6:Strip Buffer。B: M: protein marker; 1: sonicated precipitate; 2: sonicated supernatant; 3: after sample loading; 4: Binding Buffer; 5: Wash Buffer; 6: Strip Buffer.

图4 pET-28a(+)-C3-RFP表达情况诱导表达后的荧光活性观察,其中,0h:无IPTG诱导;1h-8h:IPTG诱导1h,2h,4h,6h,8hFigure 4 The expression of pET-28a(+)-C3-RFP and the observation of fluorescence activity after induction, where, 0h: no IPTG induction; 1h-8h: IPTG induction 1h, 2h, 4h, 6h, 8h

图5 Western-blot分析pET-28a(+)-C3-RFP与IgG结合活力,其中,Figure 5 Western-blot analysis of pET-28a(+)-C3-RFP binding activity to IgG, in which,

A:M:蛋白标志物;1:重组蛋白与羊的结合活性;2:重组蛋白与驴的结合活性;3:重组蛋白与鼠的结合活性;4:重组蛋白与兔的结合活性A: M: Protein marker; 1: Binding activity of recombinant protein to sheep; 2: Binding activity of recombinant protein to donkey; 3: Binding activity of recombinant protein to mouse; 4: Binding activity of recombinant protein to rabbit

B:M:蛋白标志物;1:重组蛋白与His抗体的结合活性B: M: protein marker; 1: binding activity of recombinant protein to His antibody

图6 Elisa法分析pET-28a(+)-C3-RFP与多物种的IgG的亲和常数,其中,图A:Elisa法分析pET-28a(+)-C3-RFP与兔的IgG的亲和常数;图B:Elisa法分析pET-28a(+)-C3-RFP与驴的IgG的亲和常数;图C:Elisa法分析pET-28a(+)-C3-RFP与鼠的IgG的亲和常数;图D:Elisa法分析pET-28a(+)-C3-RFP与羊的IgG的亲和常数。Figure 6 Elisa analysis of affinity constants between pET-28a(+)-C3-RFP and IgG of multiple species, among them, Figure A: Elisa analysis of affinity constants between pET-28a(+)-C3-RFP and rabbit IgG Constant; Figure B: Elisa analysis of the affinity constant of pET-28a(+)-C3-RFP and donkey IgG; Figure C: Elisa analysis of the affinity of pET-28a(+)-C3-RFP and mouse IgG Constant; Figure D: Elisa analysis of the affinity constant between pET-28a(+)-C3-RFP and sheep IgG.

具体实施方式Detailed ways

以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明, 均为自常规生化试剂商店购买得到的。The following examples facilitate a better understanding of the present invention, but do not limit the present invention. The experimental methods in the following examples are conventional methods unless otherwise specified. The test materials used in the following examples, unless otherwise specified, were purchased from conventional biochemical reagent stores.

实施例1重组蛋白G的构建The construction of embodiment 1 recombinant protein G

1.1 生物材料1.1 Biomaterials

大肠埃希氏杆菌BL21购自南京诺唯赞生物科技有限公司;质粒pET-28a(+)为实验室保存,含有C3片段的菌液[1]、含有RFP序列的菌液[2]为实验室保存。Escherichia coli BL21 was purchased from Nanjing Novizan Biotechnology Co., Ltd.; the plasmid pET-28a(+) was stored in the laboratory, and the bacterial liquid containing the C3 fragment[1] and the bacterial liquid containing the RFP sequence[2] were used for the experiment Room preservation.

[1]许瑞,赵登云,洪炀,陆珂,李浩,林矫矫,冯金涛,徐玉梅,朱传刚.链球菌蛋白G的结构域重构、表达及鉴定[J].中国动物传染病学报,2015,23(05):46-52.[1] Xu Rui, Zhao Dengyun, Hong Yang, Lu Ke, Li Hao, Lin Jiaojiao, Feng Jintao, Xu Yumei, Zhu Chuangang. Domain remodeling, expression and identification of streptococcal protein G [J]. Chinese Journal of Animal Infectious Diseases ,2015,23(05):46-52.

[2]康泽然. 单体红色荧光蛋白基因DsRed2的克隆、原核表达特性及其生物信息分析[D].延边大学,2016.[2] Kang Zeran. Cloning, prokaryotic expression characteristics and biological information analysis of monomeric red fluorescent protein gene DsRed2[D]. Yanbian University, 2016.

1.2 重组蛋白G基因序列的构建和合成1.2 Construction and synthesis of recombinant protein G gene sequence

根据C3片段的基因序列,设计引物如表1所示,从含有C3片段的菌液中P出C3序列。同时,通过PCR从含有RFP序列的菌液中扩增出RFP序列先将扩增出的RFP序列双酶切后连接到pET-28a(+)上,经鉴定后再将C3片段经双酶切后连接上去,构建重组蛋白的原核表达质粒pET-28a(+)-C3-RFP。(C3片段PCR对应上下游引物:SEQ ID NO.1、2;RFP PCR对应上下游引物:SEQ ID NO.3、4;全片段PCR对应上下游引物:SEQ ID NO.1、4;C3片段双酶切:BamH1、EcoR1;RFP片段双酶切:EcoR1、Xhol1;全片段双酶切:BamH1、Xhol1)According to the gene sequence of the C3 fragment, the primers were designed as shown in Table 1, and the C3 sequence was extracted from the bacterial solution containing the C3 fragment. At the same time, the RFP sequence was amplified from the bacterial solution containing the RFP sequence by PCR. Firstly, the amplified RFP sequence was double-enzymatically digested and then connected to pET-28a(+). After identification, the C3 fragment was double-enzymatically digested. After connecting, construct the prokaryotic expression plasmid pET-28a(+)-C3-RFP of the recombinant protein. (C3 fragment PCR corresponds to upstream and downstream primers: SEQ ID NO.1, 2; RFP PCR corresponds to upstream and downstream primers: SEQ ID NO.3, 4; full fragment PCR corresponds to upstream and downstream primers: SEQ ID NO.1, 4; C3 fragment Double digestion: BamH1, EcoR1; RFP fragment double digestion: EcoR1, Xhol1; full fragment double digestion: BamH1, Xhol1)

表1 引物序列Table 1 Primer sequences

注:划线部分为酶切位点Note: The underlined part is the enzyme cutting site

1.3 重组质粒鉴定1.3 Identification of recombinant plasmids

对合成后的基因序列进行PCR反应,反应体系如下:Perform PCR reaction on the synthesized gene sequence, the reaction system is as follows:

将各组分混匀后,短暂离心置于PCR仪中进行反应,反应参数如下:After mixing the components, briefly centrifuge and place in a PCR instrument for reaction. The reaction parameters are as follows:

对PCR产物进行电泳鉴定;同时,对产物进行BamH1和Xho1双酶切鉴定(图2),电泳结果显示:目的基因全片段大小约为852bp;C3片段大小约为165bp,RFP片段大小约为687bp,与预测相同。同时对PCR产物进行测序鉴定,序列如序列表SEQ ID NO.5所示,测序鉴定结果显示与设计的序列一致。(C3片段对应上下游引物:SEQ ID NO.1、2;RFP对应上下游引物:SEQID NO.3、4;全片段对应上下游引物:SEQ ID NO.1、4)The PCR product was identified by electrophoresis; at the same time, the product was identified by BamH1 and Xho1 double enzyme digestion (Figure 2). The electrophoresis results showed that the size of the entire fragment of the target gene was about 852bp; the size of the C3 fragment was about 165bp, and the size of the RFP fragment was about 687bp , same as predicted. At the same time, the PCR product was sequenced and identified, and the sequence was shown in SEQ ID NO.5 in the sequence table, and the sequence identification result showed that it was consistent with the designed sequence. (C3 fragment corresponds to upstream and downstream primers: SEQ ID NO.1, 2; RFP corresponds to upstream and downstream primers: SEQ ID NO.3, 4; full fragment corresponds to upstream and downstream primers: SEQ ID NO.1, 4)

实施例2重组蛋白G的表达和纯化Expression and purification of embodiment 2 recombinant protein G

2.1 重组质粒的表达2.1 Expression of recombinant plasmids

时相phase

(1)将鉴定结果正确的pET-28a(+)-C3-RFP重组质粒分别转入BL21(DE3),并接种于5ml含Kan+的LB液体培养基中,置于37℃震荡培养箱中,250rpm震荡培养。(1) Transfer the pET-28a(+)-C3-RFP recombinant plasmids with correct identification results into BL21(DE3), inoculate them in 5ml LB liquid medium containing Kan+, and place them in a shaking incubator at 37°C. Shake culture at 250rpm.

(2)(2)当生长至对数期(OD600约为0.6时),加入终浓度为1mmol/L的IPTG进行诱导表达。在诱导表达前、诱导表达后1h、2h、4h、6h、8h分别取0.5ml菌液,应用SDS-PAGE电泳分析最佳诱导时间。(图3A)(2) (2) When growing to the logarithmic phase (OD600 is about 0.6), add IPTG with a final concentration of 1 mmol/L to induce expression. Take 0.5ml bacterial liquid before induction and 1h, 2h, 4h, 6h, 8h after induction, and analyze the best induction time by SDS-PAGE electrophoresis. (Figure 3A)

大量表达:Massive expression:

(1)将鉴定结果正确的pET-28a(+)-C3-RFP重组质粒分别转入BL21(DE3),并接种于150ml含Kan+的LB液体培养基中,置于37℃震荡培养箱中,250rpm震荡培养。(1) Transform the pET-28a(+)-C3-RFP recombinant plasmids with correct identification results into BL21(DE3), inoculate them in 150ml LB liquid medium containing Kan+, and place them in a shaking incubator at 37°C. Shake culture at 250rpm.

(2)当生长至对数期(OD600约为0.6时),加入终浓度为1mmol/L的IPTG进行诱导表达。将诱导8h后的菌液12000rpm离心20min弃上清,沉淀用20ml 1×PBS重悬,反复冻融三次后,冰浴超声破碎20min(超2s隔9s)后12000rpm离心15min,收集沉淀和上清。(2) When growing to the logarithmic phase (OD600 is about 0.6), add IPTG with a final concentration of 1 mmol/L to induce expression. After 8 hours of induction, centrifuge at 12000rpm for 20min and discard the supernatant, resuspend the pellet with 20ml 1×PBS, freeze and thaw three times, sonicate in an ice bath for 20min (over 2s every 9s), then centrifuge at 12000rpm for 15min, collect the precipitate and supernatant .

(4)将离心后的沉淀用5ml 8mol 尿素重悬,重复上述离心步骤,收集上清。(4) Resuspend the centrifuged pellet with 5ml 8mol urea, repeat the above centrifugation steps, and collect the supernatant.

(5)将超声后上清、沉淀重悬后上清,分别加入等体积蛋白电泳缓冲液,用SDS-PAGE电泳分析表达产物的可溶性。(5) Add an equal volume of protein electrophoresis buffer to the supernatant after sonication and the supernatant after resuspension of the precipitate, and analyze the solubility of the expressed product by SDS-PAGE electrophoresis.

2.2重组蛋白的纯化2.2 Purification of recombinant protein

使用Ni-NTA Hisbind Resin试剂盒(序列号:70666-3)对重组蛋白进行纯化,根据产品说明书进行操作,简易操作步骤如下:Use the Ni-NTA Hisbind Resin kit (serial number: 70666-3) to purify the recombinant protein, and operate according to the product manual. The simple operation steps are as follows:

(1)取5ml树脂加入新空柱中静置平衡,当液面降到树脂表面时,依次加入15ml ddH2O,25ml 1×Charge Buffer,15ml 1×Binding Buffer溶液洗涤。(1) Add 5ml of resin to a new empty column and let it stand for equilibrium. When the liquid level drops to the resin surface, add 15ml of ddH 2 O, 25ml of 1×Charge Buffer, and 15ml of 1×Binding Buffer for washing.

(2)当液面降到树脂表面时,加入超声破碎后的上清溶液,并重复上样3次,收集过柱后的溶液。(2) When the liquid level drops to the surface of the resin, add the supernatant solution after ultrasonic crushing, repeat the sample loading 3 times, and collect the solution after passing through the column.

(3)依次加入50ml 1×Binding Buffer和30ml 1×Wash Buffer洗涤,分别收集过柱后的溶液。(3) Add 50ml 1×Binding Buffer and 30ml 1×Wash Buffer successively for washing, and collect the solutions after passing through the column respectively.

(4)加入20ml 1×Stripe Buffer洗去Ni离子,收集过柱后的溶液。(4) Add 20ml 1×Stripe Buffer to wash away Ni ions, and collect the solution after passing through the column.

(5)加入适量1×Stripe Buffer,保存树脂。(5) Add an appropriate amount of 1×Stripe Buffer to preserve the resin.

(6)将上述收集的溶液进行SDS-PAGE电泳,分析蛋白纯化情况。(6) Perform SDS-PAGE electrophoresis on the above collected solution to analyze the protein purification.

SDS-PAGE分析显示(图3),重组质粒pET-28a(+)-C3-RFP在大肠杆菌BL21(DE3)中成功表达,且1mmol/L IPTG诱导后1-6h表达量随着时间的增长而增加,诱导8h后表达量达到最高并趋于稳定。同时,SDS-PAGE分析显示,重组质粒pET-28a(+)-C3-RFP表达的蛋白在超声上清和沉淀中都有所表达,沉淀中的蛋白含量高于上清中的蛋白含量,表示该蛋白具有一定的水溶性,包涵体也同时存在。SDS-PAGE analysis showed (Figure 3) that the recombinant plasmid pET-28a(+)-C3-RFP was successfully expressed in Escherichia coli BL21(DE3), and the expression level increased with time 1-6h after induction with 1mmol/L IPTG The expression level reached the highest and tended to be stable after 8 hours of induction. At the same time, SDS-PAGE analysis showed that the protein expressed by the recombinant plasmid pET-28a(+)-C3-RFP was expressed in both the ultrasonic supernatant and the precipitate, and the protein content in the precipitate was higher than that in the supernatant, indicating that the The protein has a certain water solubility, and the inclusion body also exists at the same time.

实施例3 C3-RFP重组蛋白活性鉴定Example 3 Activity identification of C3-RFP recombinant protein

3.1 荧光活性的观察3.1 Observation of fluorescence activity

将上述时相中收集到的菌液,10000rpm离心5min,弃上清,加入200ul ddH2O重悬菌体,重悬后,吸取10ul于干净载玻片上,盖上盖玻片,于荧光电子显微镜下用RFP激发光激发,观察菌体有无红色荧光。荧光电子显微镜观察显示(图4),重组质粒pET-28a(+)-C3-RFP在大肠杆菌BL21(DE3)中成功诱导表达后1-8h荧光随着时间的增长而增加,诱导8h后荧光达到最高并趋于稳定。Centrifuge the bacterial solution collected in the above phase at 10,000rpm for 5min, discard the supernatant, add 200ul ddH 2 O to resuspend the bacterial cells, after resuspending, pipette 10ul onto a clean glass slide, cover with a cover glass, and place in the fluorescent electron Under the microscope, use RFP excitation light to excite, and observe whether the cells have red fluorescence. Fluorescent electron microscope observation (Figure 4) showed that the fluorescence of the recombinant plasmid pET-28a(+)-C3-RFP in Escherichia coli BL21(DE3) increased with time at 1-8 hours after the expression was successfully induced, and the fluorescence increased after 8 hours of induction reached a maximum and stabilized.

3.2 Western blotting检测重组蛋白与IgG的结合活性3.2 Western blotting to detect the binding activity of recombinant protein and IgG

(1)将纯化后的蛋白进行SDS-PAGE电泳,之后将蛋白转移至NC膜上,130mA,75min。(1) Perform SDS-PAGE electrophoresis on the purified protein, then transfer the protein to NC membrane, 130mA, 75min.

(2)将NC膜浸泡于PBST稀释的5%脱脂奶粉中,室温封闭2h。(2) Soak the NC membrane in 5% skimmed milk powder diluted with PBST, and seal at room temperature for 2 hours.

(3)将封闭后的NC膜用PBST洗涤三次,每次5min。(3) Wash the blocked NC membrane three times with PBST, 5 min each time.

(4)将NC膜用HRP标记的山羊抗小鼠IgG,兔抗山羊IgG,小鼠抗兔IgG,驴抗山羊IgG,(用PBST 1:2000稀释)作为抗体,室温孵育1h。(4) The NC membrane was incubated with HRP-labeled goat anti-mouse IgG, rabbit anti-goat IgG, mouse anti-rabbit IgG, and donkey anti-goat IgG (diluted with PBST 1:2000) as antibodies, and incubated for 1 h at room temperature.

(5)将孵育后的NC膜用PBST洗涤三次,每次10min。(5) Wash the incubated NC membrane three times with PBST, 10 min each time.

(6)将NC膜用DAB双组份显色液试剂盒进行显色,显色后用流水冲洗,终止反应。(6) The NC membrane was developed with DAB two-component chromogenic solution kit, and after color development, it was washed with running water to terminate the reaction.

结果显示重组蛋白具有与驴,山羊,鼠,兔等IgG的结合能力(图5)The results show that the recombinant protein has the ability to bind to IgG from donkey, goat, mouse, rabbit, etc. (Figure 5)

3.3 ELISA法测定重组蛋白与不同物种IgG亲和常数3.3 ELISA method to determine the affinity constant of recombinant protein and IgG of different species

(1)用BCA法测定重组蛋白的浓度,并用商品化的标准蛋白G(SPG)作为对照。(1) The concentration of recombinant protein was determined by BCA method, and commercial standard protein G (SPG) was used as a control.

(2)用包被液将蛋白从10μg/ml开始进行倍比稀释,共进行8个稀释度,以100μl每孔包被于96孔板上,每个浓度设置3个重复,4℃包被过夜。(2) Use the coating solution to dilute the protein from 10 μg/ml to a total of 8 dilutions, coat each well on a 96-well plate with 100 μl, set 3 replicates for each concentration, and coat at 4°C overnight.

(3)将96孔板用PBST洗涤三次,200μl每孔,每次5min。(3) Wash the 96-well plate three times with PBST, 200 μl per well, 5 min each time.

(4)加入用PBST稀释的5%脱脂奶粉的溶液,150μl每孔,37℃封闭2h。(4) Add a solution of 5% skimmed milk powder diluted with PBST, 150 μl per well, and block at 37°C for 2 hours.

(5)将96孔板用PBST洗涤三次,200μl每孔,每次5min。(5) Wash the 96-well plate three times with PBST, 200 μl per well, 5 min each time.

(6)将HRP标记的山羊抗鼠、兔抗山羊、鼠抗兔、驴抗山羊这四种二抗,分别用PBST按1:500、1:1000、1:2000、1:4000、1:8000进行倍比稀释,100μl每孔,37℃孵育2h。(6) HRP-labeled goat anti-mouse, rabbit anti-goat, mouse anti-rabbit, and donkey anti-goat four secondary antibodies were used in PBST at 1:500, 1:1000, 1:2000, 1:4000, 1: 8000 for doubling dilution, 100 μl per well, and incubated at 37°C for 2h.

(7)将96孔板用PBST洗涤三次,200μl每孔,每次5min。(7) Wash the 96-well plate three times with PBST, 200 μl per well, 5 min each time.

(8)加入TMB进行显色,100μl每孔,室温反应15min。(8) Add TMB for color development, 100 μl per well, and react at room temperature for 15 minutes.

(9)加入2mol/L H2SO4终止反应,30μl每孔,读取OD450值。(9) Add 2mol/L H 2 SO 4 to terminate the reaction, 30μl per well, and read the OD450 value.

测得数据如表2所示,亲和曲线如图6所示。The measured data are shown in Table 2, and the affinity curve is shown in Figure 6.

表2 ELISA法测定重组蛋白与不同物种IgG亲和常数Table 2 Determination of recombinant protein and IgG affinity constants of different species by ELISA

KK C3-RFPC3-RFP rabbit 1.9*10<sup>5</sup>1.9*10<sup>5</sup> donkey 4.1*10<sup>5</sup>4.1*10<sup>5</sup> mouse 1.7*10<sup>5</sup>1.7*10<sup>5</sup> sheep 5.4*10<sup>5</sup>5.4*10<sup>5</sup>

结果显示本实验将SPG基因与红色荧光蛋白(RFP)基因片段进行重构。保留SPG中能与抗体IgG的Fc端特异性相结合的C3区,然后连接RFP基因片段,构建rSPG-RFP重组蛋白的原核表达质粒构建的原核表达质粒成功表达了重组蛋白rSPG-RFP。该重组蛋白同时具有SPG与不同物种IgG结合的能力以及RFP发射荧光的功能,是一种新型的双功能重组蛋白。The results showed that the SPG gene and red fluorescent protein (RFP) gene fragments were reconstructed in this experiment. The C3 region in SPG that can specifically bind to the Fc end of antibody IgG was retained, and then the RFP gene fragment was connected to construct the prokaryotic expression plasmid of the rSPG-RFP recombinant protein. The constructed prokaryotic expression plasmid successfully expressed the recombinant protein rSPG-RFP. The recombinant protein has both the ability of SPG to bind to IgG of different species and the function of RFP to emit fluorescence, and is a new type of dual-functional recombinant protein.

重组蛋白的荧光活性在细菌中已经逐步出现。一般认为蛋白的正确折叠是产生荧光的基础。细菌表达重组蛋白的初期,SDS-PAGE时相分析已经出现重组蛋白,但对应的荧光信号并不强,这可能是由于蛋白的折叠需要一个过程。通过分析重组蛋白的荧光特性,重组蛋白在表达4h时开始出现较强荧光,在8h荧光强度增强数倍,检测其在532nm激发光下,582nm反射光下荧光强度,与RFP没有明显差别,提示重组蛋白rSPG-RFP折叠正确,两段基因重组表达不影响其功能。The fluorescent activity of recombinant proteins has gradually appeared in bacteria. It is generally believed that the correct folding of proteins is the basis for fluorescence. In the early stage of bacterial expression of recombinant protein, recombinant protein has appeared in SDS-PAGE phase analysis, but the corresponding fluorescent signal is not strong, which may be due to the need for a process of protein folding. By analyzing the fluorescence characteristics of the recombinant protein, the recombinant protein began to show strong fluorescence when it was expressed for 4 hours, and the fluorescence intensity increased several times at 8 hours. It was detected that the fluorescence intensity under 532nm excitation light and 582nm reflection light was not significantly different from that of RFP, suggesting that The recombinant protein rSPG-RFP was correctly folded, and the recombinant expression of the two segments of the gene did not affect its function.

应当理解,虽然上文中已经用一般性说明及具体实施方案对本发明内容作了详尽的描述,但在本发明的基础上,可以对之进行一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。It should be understood that although the content of the present invention has been described in detail above with general descriptions and specific embodiments, some modifications or improvements can be made on the basis of the present invention, which will be obvious to those skilled in the art of. Therefore, the modifications or improvements made on the basis of not departing from the spirit of the present invention all belong to the protection scope of the present invention.

<110> 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心)<110> Shanghai Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences (Shanghai Branch of China Center for Animal Health and Epidemiology)

<120>一种具有红色荧光活性的检测蛋白及其应用<120> A detection protein with red fluorescent activity and its application

<160> 11<160> 11

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 19<211> 19

<212> DNA<212>DNA

<213> C区上游引物<213> C region upstream primer

<400>CGCGGATCCACCTACAAAC<400>CGCGGATCCACCTACAAAAC

<210>2<210>2

<211> 16<211> 16

<212> DNA<212>DNA

<213> C区下游引物<213> C region downstream primer

<400>CCGGAATTCGCTACCG<400>CCGGAATTCGCTACCG

<210>3<210>3

<211> 25<211> 25

<212> DNA<212>DNA

<213> RFP区上游引物<213> RFP region upstream primer

<400>CCCGGAATTCGCCTCCTCCGAGAAC<400>CCCGGAATTCGCCTCCTCCGAGAAC

<210>4<210>4

<211> 18<211> 18

<212> DNA<212>DNA

<213> RFP区下游引物<213> RFP region downstream primer

<400>GGCCTCGAGCAGGAACAG<400>GGCCTCGAGCAGGAACAG

<210>5<210>5

<211> 891<211> 891

<212> DNA<212>DNA

<213> 重组蛋白C3-RFP的核苷酸序列<213> Nucleotide sequence of recombinant protein C3-RFP

<400>CGCGGATCCACCTACAAACTGGTGATCAACGGCAAAACTTTAAAAGGTGAGACCACCACAAAAGCAGTGGATGCCGAGACCGCACAGAAGGCCTTCAAGCAGTATGCCAACGACAATGGCGTGGATGGCGTGTGGACCTATGACGATGCCACCAAAACCTTCCGCGTGACAGAGGGCGGTGGTGGTAGTGGTGGTGGCGGTAGCGAATTCGCCTCCTCCGAGAACGTCATCACCGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCACCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCCACAACACCGTGAAGCTGAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCCAGTACGGCTCCAAGGTGTACGTGAAGCACCCCGCCGACATCCCCGACTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGCGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCTGCTTCATCTACAAGGTGAAGTTCATCGGCGTGAACTTCCCCTCCGACGGCCCCGTGATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTGAAGGGCGAGACCCACAAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGTCCATCTACATGGCCAAGAAGCCCGTGCAGCTGCCCGGCTACTACTACGTGGACGCCAAGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAGCAGTACGAGCGCACCGAGGGCCGCCACCACCTGTTCCTGTAGCTCGAG<400>CGCGGATCCACCTACAAACTGGTGATCAACGGCAAAACTTTAAAAGGTGAGACCACCACAAAAGCAGTGGATGCCGAGACCGCACAGAAGGCCTTCAAGCAGTATGCCAACGACAATGGCGTGGATGGCGTGTGGACCTATGACGATGCCACCAAAACCTTCCGCGTGACAGAGGGCGGTGGTGGTAGTGGTGGTGGCGGTAGCGAATTCGCCTCCTCCGAGAACGTCATCACCGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCACCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCCACAACACCGTGAAGCTGAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCCAGTACGGCTCCAAGGTGTACGTGAAGCACCCCGCCGACATCCCCGACTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGCGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCTGCTTCATCTACAAGGTGAAGTTCATCGGCGTGAACTTCCCCTCCGACGGCCCCGTGATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTGAAGGGCGAGACCCACAAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGTCCATCTACATGGCCAAGAAGCCCGTGCAGCTGCCCGGCTACTACTACGTGGACGCCAAGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAGCAGTACGAGCGCACCGAGGGCCGCCACCACCTGTTCCTGTAGCTCGAG

<210>6<210>6

<211> 165<211> 165

<212> DNA<212>DNA

<213> SPG的C3片段的核苷酸序列<213> Nucleotide sequence of the C3 fragment of SPG

<400>ACTTACAAACTTGTTATTAATGGTAAAACGCTGAAGGGTGAAACCACCACCAAAGCGGTGGATGCCGAAACCGCGCAGAAGGCCTTTAAGCAGTACGCCAACGACAATGGCGT GGATGGTGTTTGGACCTACGACGACGCGACCAAAACCTTTCGTGTTACCGAA<400>ACTTACAAACTTGTTATTAATGGTAAAACGCTGAAGGGTGAAACCACCACCAAGCGGTGGATGCCGAAACCGCGCAGAAGGCCTTTAAGCAGTACGCCAACGACAATGGCGT GGATGGTGTTTGGACCTACGACGACGCGACCAAAACCTTTCGTGTTACCGAA

<210>7<210>7

<211> 55<211> 55

<212> protein<212> protein

<213> SPG的C3片段的氨基酸序列<213> Amino acid sequence of the C3 fragment of SPG

<400>TYKLVINGKTLKGETTTKAVDAETAQKAFKQYANDNGVDGVWTYDDATKTFRVTE<400>TYKLVINGKTLKGETTTKAVDAETAQKAFKQYANDNGVDGVWTYDDATKTFRVTE

<210>8<210>8

<211> 678<211> 678

<212>DNA<212>DNA

<213>RFP优化后核苷酸序列:<213> Nucleotide sequence after RFP optimization:

<400>GAA TTC GCC TCC TCC GAG AAC GTC ATC ACC GAG TTC ATG CGC TTC AAA GTGCGC ATG GAA GGC ACC GTG AAT GGC CAC GAG TTC GAG ATT GAA GGC GAA GGT GAA GGCCGC CCA TAC GAA GGC CAC AAC ACC GTG AAG CTG AAG GTG ACC AAA GGC GGT CCA CTGCCG TTC GCG TGG GAT ATT CTG AGC CCG CAG TTC CAG TAC GGC AGC AAG GTG TAC GTTAAG CAT CCG GCG GAC ATC CCG GAT TAC AAG AAG CTG AGC TTC CCG GAA GGC TTC AAATGG GAG CGC GTG ATG AAC TTC GAG GAC GGC GGC GTT GCC ACG GTT ACC CAA GAT AGTAGT CTG CAA GAT GGC TGC TTC ATC TAC AAG GTG AAG TTC ATC GGC GTG AAC TTC CCGAGC GAT GGC CCA GTG ATG CAG AAA AAG ACC ATG GGC TGG GAA GCG AGC ACC GAA CGTCTG TAC CCG CGC GAT GGT GTT CTG AAA GGC GAA ACG CAC AAG GCG CTG AAA CTG AAAGAC GGC GGC CAC TAC CTC GTG GAG TTC AAG AGC ATC TAC ATG GCC AAA AAG CCG GTGCAA CTG CCG GGC TAT TAC TAC GTG GAC GCC AAG CTG GAC ATC ACC AGC CAT AAC GAGGAC TAC ACG ATC GTG GAG CAG TAC GAA CGC ACC GAA GGT CGC CAC CAC CTG TTC CTG<400>GAA TTC GCC TCC TCC GAG AAC GTC ACC GAG TTC ATG CGC TTC AAA GTGCGC ATG GAA GGC ACC GTG AAT GGC CAC GAG TTC GAG ATT GAA GGC GAA GGT GAA GGCCGC CCA TAC GAA GGC CAC AAC ACC GTG AAG CTG AAG GTG ACC AAA GGC GGT CCA CTGCCG TTC GCG TGG GAT ATT CTG AGC CCG CAG TTC CAG TAC GGC AGC AAG GTG TAC GTTAAG CAT CCG GCG GAC ATC CCG GAT TAC AAG AAG CTG AGC TTC CCG GAA GGC TTC AAATGG GAG CGC GTG ATG AAC TTC GAG GAC GGC GGC GTT GCC ACG GTT ACC CAA GAT AGTAGT CTG CAA GAT GGC TGC TTC ATC TAC AAG GTG AAG TTC ATC GGC GTG AAC TTC CCGAGC GAT GGC CCA GTG ATG CAG AAA AAG ACC ATG GGC TGG GAA GCG AGC ACC GAA CGTCTG TAC CCG CGC GAT GGT GTT CTG AAA GGC GAA ACG CAC AAG GCG CTG AAA CTG AAAGAC GGC GGC CAC TAC CTC GTG GAG TTC AAG AGC ATC TAC ATG GCC AAA AAG CCG GTGCAA CTG CCG GGC TAT TAC TAC GTG GAC GCC AAG CTG GAC ATC ACC AGC CAT AAC GAGGAC TAC ACG ATC GTG GAG CAG TAC GAA CGC ACC GAA GGT CGC CAC CAC CTG TTC CTG

<210>9<210>9

<211>226<211>226

<212>PROTEIN<212> PROTEIN

<213>RFP氨基酸序列<213> RFP amino acid sequence

<400>EFASSENVITEFMRFKVRMEGTVNGHEFEIEGEGEGRPYEGHNTVKLKVTKGGPLPFAWDILSPQFQYGSKVYVKHPADIPDYKKLSFPEGFKWERVMNFEDGGVATVTQDSSLQDGCFIYKVKFIGVNFPSDGPVMQKKTMGWEASTERLYPRDGVLKGETHKALKLKDGGHYLVEFKSIYMAKKPVQLPGYYYVDAKLDITSHNEDYTIVEQYERTEGRHHLFL<400>EFASSENVITEFMRFKVRMEGTVNGHEFEIEGEGEGRPYEGHNTVKLKVTKGGPLPFAWDILSPQFQYGSKVYVKHPADIPDYKKLSFPEGFKWERVMNFEDGGVATVTQDSSLQDGCFIYKVKFIGVNFPSDGPVMQKKTMGWEASTERLYPRDGVLKGETHKALKLKDGGHYLVEFKSIYMAKKPVQLPGYYYVDAKLDITSHNEDYTIVEQYERTEGRHHLFL

<210>10<210>10

<211> 888<211> 888

<212> DNA<212>DNA

<213> C3-RFP核苷酸序列<213> C3-RFP nucleotide sequence

<400>GGA TCC ACC TAC AAA CTG GTG ATC AAC GGC AAA ACT TTA AAA GGT GAG ACCACC ACA AAA GCA GTG GAT GCC GAG ACC GCA CAG AAG GCC TTC AAG CAG TAT GCC AACGAC AAT GGC GTG GAT GGC GTG TGG ACC TAT GAC GAT GCC ACC AAA ACC TTC CGC GTGACA GAG GGC GGT GGT GGT AGT GGT GGT GGC GGT AGC GAA TTC GCC TCC TCC GAG AACGTC ATC ACC GAG TTC ATG CGC TTC AAA GTG CGC ATG GAA GGC ACC GTG AAT GGC CACGAG TTC GAG ATT GAA GGC GAA GGT GAA GGC CGC CCA TAC GAA GGC CAC AAC ACC GTGAAG CTG AAG GTG ACC AAA GGC GGT CCA CTG CCG TTC GCG TGG GAT ATT CTG AGC CCGCAG TTC CAG TAC GGC AGC AAG GTG TAC GTT AAG CAT CCG GCG GAC ATC CCG GAT TACAAG AAG CTG AGC TTC CCG GAA GGC TTC AAA TGG GAG CGC GTG ATG AAC TTC GAG GACGGC GGC GTT GCC ACG GTT ACC CAA GAT AGT AGT CTG CAA GAT GGC TGC TTC ATC TACAAG GTG AAG TTC ATC GGC GTG AAC TTC CCG AGC GAT GGC CCA GTG ATG CAG AAA AAGACC ATG GGC TGG GAA GCG AGC ACC GAA CGT CTG TAC CCG CGC GAT GGT GTT CTG AAAGGC GAA ACG CAC AAG GCG CTG AAA CTG AAA GAC GGC GGC CAC TAC CTC GTG GAG TTCAAG AGC ATC TAC ATG GCC AAA AAG CCG GTG CAA CTG CCG GGC TAT TAC TAC GTG GACGCC AAG CTG GAC ATC ACC AGC CAT AAC GAG GAC TAC ACG ATC GTG GAG CAG TAC GAACGC ACC GAA GGT CGC CAC CAC CTG TTC CTG TAG CTC GAG<400>GGA TCC ACC TAC AAA CTG GTG ATC AAC GGC AAA ACT TTA AAA GGT GAG ACCACC ACA AAA GCA GTG GAT GCC GAG ACC GCA CAG AAG GCC TTC AAG CAG TAT GCC AACGAC AAT GGC GTG GAT GGC GTG TGG ACC TAT GAC GAT GCC ACC AAA ACC TTC CGC GTGACA GAG GGC GGT GGT GGT AGT GGT GGT GGC GGT AGC GAA TTC GCC TCC TCC GAG AACGTC ATC ACC GAG TTC ATG CGC TTC AAA GTG CGC ATG GAA GGC ACC GTG AAT GGC CACGAG TTC GAG ATT GAA GGC GAA GGT GAA GGC CGC CCA TAC GAA GGC CAC AAC ACC GTGAAG CTG AAG GTG ACC AAA GGC GGT CCA CTG CCG TTC GCG TGG GAT ATT CTG AGC CCGCAG TTC CAG TAC GGC AGC AAG GTG TAC GTT AAG CAT CCG GCG GAC ATC CCG GAT TACAAG AAG CTG AGC TTC CCG GAA GGC TTC AAA TGG GAG CGC GTG ATG AAC TTC GAG GACGGC GGC GTT GCC ACG GTT ACC CAA GAT AGT AGT CTG CAA GAT GGC TGC TTC ATC TACAAG GTG AAG TTC ATC GGC GTG AAC TTC CCG AGC GAT GGC CCA GTG ATG CAG AAA AAGACC ATG GGC TGG GAA GCG AGC ACC GAA CGT CTG TAC CCG CGC GAT GGT GTT CTG AAAGGC GAA ACG CAC AAG GCG CTG AAA CTG AAA GAC GGC GGC CAC TAC CTC GTG GAG TTCAAG AGC ATC TAC ATG GCC AAA AAG CCG GTG CAA CTG CCG GGC TAT TAC TAC GTG GACGCC AAG CTG GAC ATC ACC AGC CAT AAC GAG GAC TAC ACG ATC GTG GAG CAG TAC GAACGC ACC GAA GGT CGC CAC CAC CTG TTC CTG TAG CTC GAG

<210>11<210>11

<211> 295<211> 295

<212> protein<212> protein

<213>C3-RFP氨基酸序列:<213>C3-RFP amino acid sequence:

<400>GSTYKLVINGKTLKGETTTKAVDAETAQKAFKQYANDNGVDGVWTYDDATKTFRVTEGGGGSGGGGSEFASSENVITEFMRFKVRMEGTVNGHEFEIEGEGEGRPYEGHNTVKLKVTKGGPLPFAWDILSPQFQYGSKVYVKHPADIPDYKKLSFPEGFKWERVMNFEDGGVATVTQDSSLQDGCFIYKVKFIGVNFPSDGPVMQKKTMGWEASTERLYPRDGVLKGETHKALKLKDGGHYLVEFKSIYMAKKPVQLPGYYYVDAKLDITSHNEDYTIVEQYERTEGRHHLFLLE<400>GSTYKLVINGKTLKGETTTKAVDAETAQKAFKQYANDNGVDGVWTYDDATKTFRVTEGGGGSGGGGSEFASSENVITEFMRFKVRMEGTVNGHEFEIEGEGEGRPYEGHNTVKLKVTKGGPLPFAWDILSPQFQYGSKVYVKHPADIPDYKKLSFPEGFKWERVMNFEDGGVATVTQDSSLQDGCFIYKVKFIGVNFPSDGPVMQKKTMGWEASTERLYPRDGVLKGETHKALKLKDGGHYLVEFKSIYMAKKPVQLPGYYYVDAKLDITSHNEDYTIVEQYERTEGRHHLFLLE

Claims (8)

1.一种具有红色荧光活性的检测蛋白,其特征在于所述检测蛋白包括链球菌蛋白G(SPG)片段和荧光蛋白,所述链球菌蛋白G(SPG)片段为SPG的C3区段,所述荧光蛋白为优化后的红色荧光蛋白,所述检测蛋白具有荧光活性和与不同物种抗体结合的双重活性。1. A detection protein with red fluorescent activity, characterized in that the detection protein comprises a streptococcal protein G (SPG) fragment and a fluorescent protein, and the streptococcal protein G (SPG) fragment is the C3 segment of SPG, so The above-mentioned fluorescent protein is an optimized red fluorescent protein, and the detection protein has dual activities of fluorescent activity and binding to antibodies of different species. 2.如权利要求1所述的一种具有红色荧光活性的检测蛋白,其中SPG的C3区段的核苷酸序列为SEQ ID NO.6所示,氨基酸序列如SEQ ID NO.7所示;其中优化后的红色荧光蛋白的核苷酸序列为如SEQ ID NO.8所示;氨基酸序列如SEQ ID NO.9所示。2. A detection protein with red fluorescent activity as claimed in claim 1, wherein the nucleotide sequence of the C3 segment of SPG is shown in SEQ ID NO.6, and the amino acid sequence is shown in SEQ ID NO.7; The nucleotide sequence of the optimized red fluorescent protein is shown in SEQ ID NO.8; the amino acid sequence is shown in SEQ ID NO.9. 3.如权利要求1所述的一种具有红色荧光活性的检测蛋白,所述检测蛋白C3-RFP的核苷酸序列为如SEQ ID NO.10所示;氨基酸序列如SEQ ID NO.11所示。3. A kind of detection protein with red fluorescent activity as claimed in claim 1, the nucleotide sequence of described detection protein C3-RFP is as shown in SEQ ID NO.10; Amino acid sequence is as shown in SEQ ID NO.11 Show. 4.一种制备具有红色荧光活性的检测蛋白的构建方法,所述方法为:4. A construction method for preparing a detection protein with red fluorescent activity, the method is: 根据C3片段的基因序列,从含有C3片段的菌液中PCR扩增出C3序列;According to the gene sequence of the C3 fragment, the C3 sequence is amplified by PCR from the bacterial solution containing the C3 fragment; 通过PCR从含有RFP序列的菌液中扩增出RFP序列;Amplify the RFP sequence from the bacterial solution containing the RFP sequence by PCR; 先将扩增出的RFP序列双酶切后,连接到表达载体上,经鉴定后再将C3片段双酶切后连接上去,构建重组蛋白的原核表达质粒;Firstly, the amplified RFP sequence was double-enzymatically digested and then connected to the expression vector. After identification, the C3 fragment was double-digested and connected to construct the prokaryotic expression plasmid of the recombinant protein; 将共表达载体转入表达宿主中培养,活化至对数生长期后加入诱导表白蛋白;Transfer the co-expression vector into the expression host for culture, activate to the logarithmic growth phase and add inducible epibumin; 经破碎、纯化后制得融合蛋白C3-RFPFusion protein C3-RFP was obtained after fragmentation and purification 其中,步骤(1)中使用的引物对如SEQ ID NO.1、2所示;Wherein, the primer pair used in step (1) is shown as SEQ ID NO.1, 2; 步骤(2)中使用的引物对如SEQ ID NO.3、4所示。The primer pair used in step (2) is shown in SEQ ID NO.3,4. 5.如权利要求4所述的构建方法,其中所述的检测蛋白C3-RFP的核苷酸序列为如SEQID NO.10所示;氨基酸序列如SEQ ID NO.11所示。5. The construction method according to claim 4, wherein the nucleotide sequence of the detection protein C3-RFP is shown in SEQ ID NO.10; the amino acid sequence is shown in SEQ ID NO.11. 6.如权利要求1所述的具有红色荧光活性的检测蛋白在抗体的体外免疫学检测中的应用。6. The application of the detection protein with red fluorescent activity as claimed in claim 1 in the in vitro immunological detection of antibodies. 7.如权利要求1所述的具有红色荧光活性的检测蛋白在纯化抗体中的应用。7. The application of the detection protein with red fluorescence activity as claimed in claim 1 in purifying antibodies. 8.如权利要求1所述的具有红色荧光活性的检测蛋白制备免疫分析产品的应用,所述应用为探针(传感器)、试纸条、芯片、试剂盒等,在使用时,将权利要求1所述的融合蛋白C3-RFP与其它现有的商业试剂(如酶标抗体、荧光标记抗体、显色剂、底物等)混合。8. the detection protein with red fluorescent activity as claimed in claim 1 prepares the application of immunoassay product, and described application is probe (sensor), test strip, chip, test kit etc., when using, claim The fusion protein C3-RFP described in 1 is mixed with other existing commercial reagents (such as enzyme-labeled antibodies, fluorescently-labeled antibodies, chromogenic reagents, substrates, etc.).
CN201910766160.XA 2019-08-19 2019-08-19 Detection protein with red fluorescence activity and application thereof Expired - Fee Related CN110437341B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910766160.XA CN110437341B (en) 2019-08-19 2019-08-19 Detection protein with red fluorescence activity and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910766160.XA CN110437341B (en) 2019-08-19 2019-08-19 Detection protein with red fluorescence activity and application thereof

Publications (2)

Publication Number Publication Date
CN110437341A true CN110437341A (en) 2019-11-12
CN110437341B CN110437341B (en) 2022-05-17

Family

ID=68436482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910766160.XA Expired - Fee Related CN110437341B (en) 2019-08-19 2019-08-19 Detection protein with red fluorescence activity and application thereof

Country Status (1)

Country Link
CN (1) CN110437341B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040477A1 (en) * 1997-03-14 1998-09-17 The Regents Of The University Of California Fluorescent protein sensors for detection of analytes
US5976796A (en) * 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes
US5998204A (en) * 1997-03-14 1999-12-07 The Regents Of The University Of California Fluorescent protein sensors for detection of analytes
CN101124472A (en) * 2004-03-17 2008-02-13 夏威夷大学 Sensor constructs and detection methods
CN108267582A (en) * 2016-12-30 2018-07-10 中国农业科学院上海兽医研究所 Infection of Toxoplasma Gondii colloidal gold immuno-chromatography test paper strip and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976796A (en) * 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes
WO1998040477A1 (en) * 1997-03-14 1998-09-17 The Regents Of The University Of California Fluorescent protein sensors for detection of analytes
US5998204A (en) * 1997-03-14 1999-12-07 The Regents Of The University Of California Fluorescent protein sensors for detection of analytes
CN101124472A (en) * 2004-03-17 2008-02-13 夏威夷大学 Sensor constructs and detection methods
CN108267582A (en) * 2016-12-30 2018-07-10 中国农业科学院上海兽医研究所 Infection of Toxoplasma Gondii colloidal gold immuno-chromatography test paper strip and preparation method thereof

Also Published As

Publication number Publication date
CN110437341B (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP5188808B2 (en) Homogeneous analyte detection
CN110093356B (en) DNA sequence encoding African swine fever virus antigen, composition of antigen encoded by it and its application in immunological detection
CN107643405B (en) A kind of lung cancer diagnosis kit based on autoantibody detection and its application
CN107561288B (en) Lung cancer diagnostic kit for detecting blood autoantibody and application thereof
CN108796041A (en) A kind of amplification of signal system and its detection method based on bioluminescence resonance energy transfer
CN101149372A (en) Immunofluorescence label reagent kit
CN112415195A (en) Kit for detecting dual targets of novel coronavirus and its application
CN111087453A (en) Preparation method and application method of chlamydia pneumoniae recombinant antigen
CN104845981B (en) Babesiamicrofti Bm1524 antigens and its application
JPWO2018190357A1 (en) Lectin immobilization method
WO2017125007A1 (en) Method and kit for diagnosis of active tuberculosis
CN103336133A (en) Kit for detecting anti-MDA 5 antibody and detection method thereof
CN110437341A (en) One kind having the active detection albumen of red fluorescence and its application
CN110615844A (en) Multi-species universal detection protein with green fluorescence activity and application thereof
CN105037555A (en) Conjugate, preparation method and application thereof
AU2008255631B2 (en) Fluorescent protein particles
CN109957027A (en) A set of centromeric protein F (CENPF) fragment antigens and their applications
JP4832291B2 (en) Labeling substances and chimeric substances, methods for producing these substances, and methods for capturing, analyzing and / or identifying biological substances using the labeling substances
CN110511281B (en) Schistosoma japonicum antibody detection kit for detection protein with red fluorescence activity
CN110615846B (en) Bifunctional protein with IgG (immunoglobulin G) binding activity and biotin binding activity and ELISA (enzyme-linked immunosorbent assay) kit thereof
CN110423270B (en) Preparation of Toxoplasma gondii surface antigens GRA1 and GRA7 recombinant protein
CN110615845B (en) Bifunctional protein with IgG (immunoglobulin G) binding activity and biotin binding activity and immune PCR (polymerase chain reaction) kit thereof
CN117924439B (en) Recombinant CagA protein and preparation method and application thereof
CN108165569A (en) A kind of recombinant protein of quick detection Infection of Toxoplasma Gondii and its preparation method and application
KR101993100B1 (en) Peptide for detecting shigella flexneri and salmonella enteritidis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220517

CF01 Termination of patent right due to non-payment of annual fee