CN110429134B - IGBT device with asymmetric primitive cells and preparation method - Google Patents
IGBT device with asymmetric primitive cells and preparation method Download PDFInfo
- Publication number
- CN110429134B CN110429134B CN201910711494.7A CN201910711494A CN110429134B CN 110429134 B CN110429134 B CN 110429134B CN 201910711494 A CN201910711494 A CN 201910711494A CN 110429134 B CN110429134 B CN 110429134B
- Authority
- CN
- China
- Prior art keywords
- trench
- cell
- type
- gate oxide
- effective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 239000010410 layer Substances 0.000 claims abstract description 99
- 239000011229 interlayer Substances 0.000 claims abstract description 20
- 238000002955 isolation Methods 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 32
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 238000005530 etching Methods 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 10
- 229920005591 polysilicon Polymers 0.000 claims description 10
- 238000002161 passivation Methods 0.000 claims description 9
- 238000002513 implantation Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
- H10D64/516—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
- H10D12/032—Manufacture or treatment of IGBTs of vertical IGBTs
- H10D12/038—Manufacture or treatment of IGBTs of vertical IGBTs having a recessed gate, e.g. trench-gate IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
- H10D12/461—Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions
- H10D12/481—Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions having gate structures on slanted surfaces, on vertical surfaces, or in grooves, e.g. trench gate IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
Landscapes
- Electrodes Of Semiconductors (AREA)
- Thyristors (AREA)
Abstract
Description
技术领域technical field
本发明涉及IGBT器件,特别是涉及一种具有非对称原胞的IGBT器件及制备方法。The invention relates to an IGBT device, in particular to an IGBT device with an asymmetric primary cell and a preparation method.
背景技术Background technique
现有技术中的IGBT器件的结构如图1所示,有效原胞和虚拟原胞(dummy原胞)呈对称分布,沟槽底部的栅氧化层的厚度、虚拟原胞中沟槽侧壁的栅氧化层的厚度以及有效原胞中沟槽侧壁的栅氧化层的厚度均相同。沟槽超出P型井的部分作为器件积累区,器件积累区的长度与器件导通压降及米勒电容密切相关,器件积累区长度减小,米勒电容会减小,而器件导通压降则会增大。然而,从应用角度来看,希望器件导通压降和米勒电容越小越好。因此,现有技术中的IGBT器件无法实现减小米勒电容的同时保持器件导通压降不变。The structure of the IGBT device in the prior art is shown in Figure 1, the effective primary cell and the dummy primary cell (dummy primary cell) are symmetrically distributed, the thickness of the gate oxide layer at the bottom of the trench, the thickness of the trench sidewall in the dummy primary cell The thickness of the gate oxide layer and the thickness of the gate oxide layer on the trench sidewalls in the effective cells are the same. The part of the groove beyond the P-type well is used as the device accumulation area. The length of the device accumulation area is closely related to the device on-voltage drop and Miller capacitance. If the length of the device accumulation area decreases, the Miller capacitance will decrease, and the device on-voltage drop will decrease. decrease will increase. However, from an application point of view, it is desirable that the device conduction voltage drop and Miller capacitance be as small as possible. Therefore, the IGBT device in the prior art cannot reduce the Miller capacitance while keeping the turn-on voltage drop of the device constant.
发明内容Contents of the invention
发明目的:本发明的目的是提供一种具有非对称原胞的IGBT器件及制备方法,能够实现减小米勒电容的同时保持器件导通压降不变。Purpose of the invention: The purpose of the invention is to provide an IGBT device with an asymmetric primary cell and its preparation method, which can reduce the Miller capacitance while keeping the on-voltage drop of the device constant.
技术方案:本发明所述的具有非对称原胞的IGBT器件,包括P型收集极,P型收集极顶部设有N型衬底,N型衬底上设有多个沟槽,沟槽的侧壁和底部均设有栅氧化层,一个沟槽的一半部分属于有效原胞,另一半部分属于虚拟原胞,沟槽底部的栅氧化层的厚度和虚拟原胞中沟槽侧壁的栅氧化层的厚度均大于有效原胞中沟槽侧壁的栅氧化层的厚度,沟槽内设有多晶硅层,相邻两个沟槽之间设有P型井,P型井中设有重掺杂P型区和重掺杂N型区,重掺杂N型区属于有效原胞,重掺杂P型区一半属于有效原胞,另一半属于虚拟原胞,沟槽顶部设有层间隔离层,层间隔离层上设有接触孔,层间隔离层外覆盖有收集极金属层。Technical solution: The IGBT device with asymmetric primary cells according to the present invention includes a P-type collector, an N-type substrate is arranged on the top of the P-type collector, and a plurality of grooves are arranged on the N-type substrate. Both the sidewall and the bottom are provided with a gate oxide layer. Half of a trench belongs to the effective cell, and the other half belongs to the dummy cell. The thickness of the gate oxide layer at the bottom of the trench and the gate thickness of the trench sidewall in the dummy cell The thickness of the oxide layer is greater than the thickness of the gate oxide layer on the side wall of the trench in the effective cell. There is a polysilicon layer in the trench, a P-type well is set between two adjacent trenches, and a heavily doped well is set in the P-type well. Miscellaneous P-type region and heavily doped N-type region, the heavily doped N-type region is an effective cell, half of the heavily doped P-type region is an effective cell, and the other half is a virtual cell, and the top of the trench is provided with interlayer isolation layer, the interlayer isolation layer is provided with a contact hole, and the interlayer isolation layer is covered with a collector metal layer.
进一步,所有沟槽的大小均相同。Further, all grooves have the same size.
进一步,所述沟槽底部的栅氧化层的厚度和虚拟原胞中沟槽侧壁的栅氧化层的厚度均大于有效原胞中沟槽侧壁的栅氧化层的厚度通过以下方式实现:对有效原胞中沟槽侧壁进行氮元素注入,对沟槽底部和虚拟原胞中沟槽侧壁不进行氮元素注入,然后再在有效原胞中沟槽侧壁、沟槽底部和虚拟原胞中沟槽侧壁生成栅氧化层。Further, the thickness of the gate oxide layer at the bottom of the trench and the thickness of the gate oxide layer on the sidewall of the trench in the dummy cell are greater than the thickness of the gate oxide layer on the sidewall of the trench in the effective cell by the following method: Nitrogen is injected into the side wall of the trench in the effective cell, and no nitrogen is injected into the bottom of the trench and the side wall of the trench in the dummy cell, and then the side wall of the trench in the effective cell, the bottom of the trench and the dummy cell A gate oxide layer is formed on the sidewall of the trench in the cell.
制备本发明所述的具有非对称原胞的IGBT器件的方法,包括以下步骤:The method for preparing the IGBT device with an asymmetric primary cell of the present invention comprises the following steps:
S1:在终端区进行环注入、场氧化层的生长和刻蚀;S1: Perform ring implantation, field oxide growth and etching in the termination area;
S2:在原胞区生成N型衬底;S2: generating an N-type substrate in the original cell region;
S3:对N型衬底刻蚀出多个沟槽;S3: Etching multiple grooves on the N-type substrate;
S4:对有效原胞中沟槽侧壁进行氮元素注入;S4: Nitrogen element implantation is performed on the side wall of the trench in the effective cell;
S5:在有效原胞中沟槽侧壁、沟槽底部和虚拟原胞中沟槽侧壁上生长栅氧化层;S5: growing a gate oxide layer on the sidewalls of the trenches in the effective cells, the bottom of the trenches, and the sidewalls of the trenches in the virtual cells;
S6:进行多晶硅层沉积,然后将沟槽以外的多晶硅层刻蚀干净;S6: performing polysilicon layer deposition, and then etching the polysilicon layer outside the trench;
S7:在相邻两个沟槽之间进行P型井的注入和退火;S7: performing injection and annealing of a P-type well between two adjacent trenches;
S8:在P型井中形成重掺杂P型区和重掺杂N型区,重掺杂N型区属于有效原胞,重掺杂P型区一半属于有效原胞,另一半属于虚拟原胞;S8: Form a heavily doped P-type region and a heavily doped N-type region in the P-type well, the heavily doped N-type region belongs to the effective original cell, half of the heavily doped P-type region belongs to the effective original cell, and the other half belongs to the virtual original cell ;
S9:在沟槽顶部沉积层间隔离层;S9: Depositing an interlayer isolation layer on top of the trench;
S10:在层间隔离层上刻蚀出接触孔,相邻两个沟槽之间有一个接触孔;S10: Etching a contact hole on the interlayer isolation layer, and there is a contact hole between two adjacent trenches;
S11:在层间隔离层表面沉积收集极金属层;S11: Depositing a collector metal layer on the surface of the interlayer isolation layer;
S12:在收集极金属层表面和终端区均沉积钝化层,然后将收集极金属层表面的钝化层移除,仅保留终端区的钝化层;S12: depositing a passivation layer on both the surface of the collector metal layer and the terminal area, and then removing the passivation layer on the surface of the collector metal layer, leaving only the passivation layer in the terminal area;
S13:在N型衬底底部生成P型收集极。S13: generating a P-type collector at the bottom of the N-type substrate.
进一步,所述步骤S4中,氮元素注入的方向与沟槽对称轴之间的夹角为20°~75°。Further, in the step S4, the included angle between the direction of nitrogen implantation and the symmetry axis of the trench is 20°-75°.
进一步,所述步骤S4中,氮元素的浓度为2×1013~1×1015atom/cm2,能量为30KeV~60KeV。Further, in the step S4, the concentration of the nitrogen element is 2×10 13 -1×10 15 atom/cm 2 , and the energy is 30KeV-60KeV.
有益效果:本发明公开了一种具有非对称原胞的IGBT器件及制备方法,通过将沟槽底部的栅氧化层的厚度和虚拟原胞中沟槽侧壁的栅氧化层的厚度设置为均大于有效原胞中沟槽侧壁的栅氧化层的厚度,不需要改变器件积累区的长度,就能实现米勒电容大大减小而器件导通压降保持不变。Beneficial effects: the invention discloses an IGBT device with an asymmetric primary cell and its preparation method, by setting the thickness of the gate oxide layer at the bottom of the trench and the thickness of the gate oxide layer on the sidewall of the trench in the dummy cell to be uniform If the thickness of the gate oxide layer is greater than that of the sidewall of the trench in the effective cell, the Miller capacitance can be greatly reduced without changing the length of the accumulation region of the device, while the conduction voltage drop of the device remains unchanged.
附图说明Description of drawings
图1为现有技术中IGBT器件的示意图;Fig. 1 is the schematic diagram of IGBT device in the prior art;
图2为本发明具体实施方式中IGBT器件的示意图;Fig. 2 is the schematic diagram of IGBT device in the specific embodiment of the present invention;
图3为本发明具体实施方式中氮元素注入的示意图;Fig. 3 is the schematic diagram of nitrogen element injection in the specific embodiment of the present invention;
图4为本发明具体实施方式中栅氧化层形成之后的示意图;4 is a schematic diagram after the gate oxide layer is formed in a specific embodiment of the present invention;
图5为本发明具体实施方式中多晶硅层形成之后的示意图。FIG. 5 is a schematic diagram after forming a polysilicon layer in a specific embodiment of the present invention.
具体实施方式Detailed ways
现有技术中的IGBT器件结构如图1所示,包括收集极金属层11、沟槽12、N型衬底13、P型收集极14、层间隔离层15、P型井16、重掺杂N型区17、重掺杂P型区18、有效原胞101、虚拟原胞102和接触孔19。可见,有效原胞101和虚拟原胞102是对称的,沟槽12底部的栅氧化层的厚度、虚拟原胞102中沟槽12侧壁的栅氧化层的厚度以及有效原胞101中沟槽12侧壁的栅氧化层的厚度均相同。The IGBT device structure in the prior art is shown in Figure 1, including a
本具体实施方式公开了一种具有非对称原胞的IGBT器件,如图2所示,包括P型收集极24,P型收集极24顶部设有N型衬底23,N型衬底23上设有多个沟槽22,沟槽22的侧壁和底部均设有栅氧化层,一个沟槽22的一半部分属于有效原胞201,另一半部分属于虚拟原胞202,沟槽22底部的栅氧化层221的厚度和虚拟原胞202中沟槽22侧壁的栅氧化层221的厚度均大于有效原胞201中沟槽22侧壁的栅氧化层221的厚度,沟槽22内设有多晶硅层222,相邻两个沟槽22之间设有P型井26,P型井26中设有重掺杂P型区28和重掺杂N型区27,重掺杂N型区27属于有效原胞201,重掺杂P型区28一半属于有效原胞201,另一半属于虚拟原胞202,沟槽22顶部设有层间隔离层25,层间隔离层25上设有接触孔29,层间隔离层25外覆盖有收集极金属层21。所有沟槽22的大小均相同。This specific embodiment discloses an IGBT device with an asymmetric primary cell, as shown in FIG. A plurality of
沟槽22底部的栅氧化层221的厚度和虚拟原胞202中沟槽22侧壁的栅氧化层221的厚度均大于有效原胞201中沟槽22侧壁的栅氧化层221的厚度通过以下方式实现:对有效原胞201中沟槽22侧壁进行氮元素注入,对沟槽22底部和虚拟原胞202中沟槽22侧壁不进行氮元素注入,然后再在有效原胞201中沟槽22侧壁、沟槽22底部和虚拟原胞202中沟槽22侧壁生成栅氧化层221。The thickness of the
本具体实施方式还公开了制备具有非对称原胞的IGBT器件的方法,包括以下步骤:This specific embodiment also discloses a method for preparing an IGBT device with an asymmetric primary cell, including the following steps:
S1:在终端区进行环注入、场氧化层的生长和刻蚀;S1: Perform ring implantation, field oxide growth and etching in the termination area;
S2:在原胞区生成N型衬底23;S2: generating an N-
S3:对N型衬底23刻蚀出多个沟槽22;S3: Etching a plurality of
S4:对有效原胞201中沟槽22侧壁进行氮元素注入,如图3所示;氮元素注入的方向与沟槽22对称轴之间的夹角为20°~75°,氮元素的浓度为2×1013~1×1015atom/cm2,能量为30KeV~60KeV;S4: Nitrogen element is implanted into the side wall of the
S5:在有效原胞201中沟槽22侧壁、沟槽22底部和虚拟原胞202中沟槽22侧壁上生长栅氧化层221,如图4所示;S5: growing a
S6:进行多晶硅层222沉积,然后将沟槽22以外的多晶硅层222刻蚀干净,如图5所示;S6: Deposit the
S7:在相邻两个沟槽22之间进行P型井26的注入和退火;S7: performing injection and annealing of the P-
S8:在P型井26中形成重掺杂P型区28和重掺杂N型区27,重掺杂N型区27属于有效原胞201,重掺杂P型区28一半属于有效原胞201,另一半属于虚拟原胞202;S8: Form a heavily doped P-
S9:在沟槽22顶部沉积层间隔离层25;S9: Depositing an
S10:在层间隔离层25上刻蚀出接触孔29,相邻两个沟槽22之间有一个接触孔29;S10: etching a
S11:在层间隔离层25表面沉积收集极金属层21;S11: depositing the
S12:在收集极金属层21表面和终端区均沉积钝化层,然后将收集极金属层21表面的钝化层移除,仅保留终端区的钝化层;S12: Deposit a passivation layer on both the surface of the
S13:在N型衬底23底部生成P型收集极24。S13: forming a P-
之所以对有效原胞201中沟槽22侧壁进行氮元素注入,是因为氮元素注入之后栅氧化层221的生长速率会变慢,这样使得沟槽22底部的栅氧化层221的厚度和虚拟原胞202中沟槽22侧壁的栅氧化层221的厚度均大于有效原胞201中沟槽22侧壁的栅氧化层221的厚度。The reason why the nitrogen element is implanted on the sidewall of the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910711494.7A CN110429134B (en) | 2019-08-02 | 2019-08-02 | IGBT device with asymmetric primitive cells and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910711494.7A CN110429134B (en) | 2019-08-02 | 2019-08-02 | IGBT device with asymmetric primitive cells and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110429134A CN110429134A (en) | 2019-11-08 |
CN110429134B true CN110429134B (en) | 2023-03-24 |
Family
ID=68413992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910711494.7A Active CN110429134B (en) | 2019-08-02 | 2019-08-02 | IGBT device with asymmetric primitive cells and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110429134B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111477679B (en) * | 2020-04-17 | 2023-06-13 | 重庆伟特森电子科技有限公司 | Preparation method of asymmetric groove type SiC-MOSFET gate |
CN113571575B (en) * | 2021-06-09 | 2023-01-10 | 松山湖材料实验室 | Silicon carbide power semiconductor devices and field effect transistors |
CN113394280A (en) * | 2021-06-15 | 2021-09-14 | 扬州国扬电子有限公司 | Grid-controlled power device with asymmetric primitive cell structure and preparation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030023189A (en) * | 2001-09-12 | 2003-03-19 | 페어차일드코리아반도체 주식회사 | MOS gated power semiconductor device and method for fabricating the same |
KR20090049770A (en) * | 2007-11-14 | 2009-05-19 | 주식회사 하이닉스반도체 | Dual Gate of Semiconductor Device and Formation Method |
CN103956379A (en) * | 2014-05-09 | 2014-07-30 | 常州中明半导体技术有限公司 | CSTBT device with optimized plugged cell structure |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6580123B2 (en) * | 2000-04-04 | 2003-06-17 | International Rectifier Corporation | Low voltage power MOSFET device and process for its manufacture |
US6489202B1 (en) * | 2001-05-29 | 2002-12-03 | Ememory Technology, Inc. | Structure of an embedded channel write-erase flash memory cell and fabricating method thereof |
TWI278876B (en) * | 2006-01-03 | 2007-04-11 | Delta Electronics Inc | Transformer structure |
JP2009070849A (en) * | 2007-09-10 | 2009-04-02 | Rohm Co Ltd | Semiconductor device |
CN101246886B (en) * | 2008-03-19 | 2010-06-02 | 江苏宏微科技有限公司 | MOS structure power transistor and manufacturing method thereof |
CN102456738A (en) * | 2010-10-29 | 2012-05-16 | 上海宏力半导体制造有限公司 | VDMOS transistor |
US8637370B2 (en) * | 2012-01-19 | 2014-01-28 | Globalfoundries Singapore Pte. Ltd. | Integration of trench MOS with low voltage integrated circuits |
TW201419532A (en) * | 2012-11-08 | 2014-05-16 | Anpec Electronics Corp | Gold oxygen half field effect transistor element with low Miller capacitance and manufacturing method thereof |
CN209087841U (en) * | 2018-10-16 | 2019-07-09 | 扬州国扬电子有限公司 | Optimize the grid-controlled type power device of input capacitance |
-
2019
- 2019-08-02 CN CN201910711494.7A patent/CN110429134B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030023189A (en) * | 2001-09-12 | 2003-03-19 | 페어차일드코리아반도체 주식회사 | MOS gated power semiconductor device and method for fabricating the same |
KR20090049770A (en) * | 2007-11-14 | 2009-05-19 | 주식회사 하이닉스반도체 | Dual Gate of Semiconductor Device and Formation Method |
CN103956379A (en) * | 2014-05-09 | 2014-07-30 | 常州中明半导体技术有限公司 | CSTBT device with optimized plugged cell structure |
Also Published As
Publication number | Publication date |
---|---|
CN110429134A (en) | 2019-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108364870B (en) | Fabrication method of shielded gate trench MOSFET with improved gate oxide quality | |
CN114975602B (en) | High-reliability IGBT chip and manufacturing method thereof | |
JP2004031963A (en) | Self-aligned differential oxidation in trenches by ion implantation | |
CN110429134B (en) | IGBT device with asymmetric primitive cells and preparation method | |
CN103094324B (en) | Trench-type insulated gate bipolar transistor and preparation method thereof | |
CN105590844B (en) | The manufacturing method of super-junction structure deep trench | |
CN106449753A (en) | Low on-state resistance groove power MOS (Metal Oxide Semiconductor) device structure and fabrication method thereof | |
CN105679667A (en) | Manufacturing method for terminal structure of trench IGBT device | |
CN111244171A (en) | A trench RC-IGBT device structure and fabrication method thereof | |
CN111755502A (en) | A trench RC-IGBT device structure and fabrication method thereof | |
CN105655402A (en) | Low-voltage super-junction MOSFET (metal-oxide-semiconductor field effect transistor) terminal structure and method for manufacturing same | |
CN108831927A (en) | Super junction metal oxide semiconductor field effect transistor and manufacturing method thereof | |
WO2024037276A1 (en) | Igbt device having deep buffer layer and high-density trenches, and preparation method for igbt device | |
CN107818920B (en) | Gate oxide layer structure of shielded gate trench MOSFET and manufacturing method thereof | |
CN107342226B (en) | Manufacturing method of ultra-small unit size longitudinal super junction semiconductor device | |
CN110223959B (en) | Metal oxide semiconductor field effect transistor with deep and shallow grooves and preparation method thereof | |
CN106920752A (en) | Low pressure super node MOSFET grid source aoxidizes Rotating fields and manufacture method | |
CN106129126A (en) | A kind of trench schottky diode and preparation method thereof | |
CN101506956A (en) | A method for fabricating a semiconductor device | |
CN113517350A (en) | A low-voltage shielded gate MOSFET device and its manufacturing method | |
CN116779666B (en) | An IGBT chip with ESD structure and its manufacturing method | |
CN105280493A (en) | Trench IGBT device manufacturing method | |
CN104934470B (en) | A kind of igbt chip and its manufacturing method | |
CN116646384A (en) | IGBT chip with trench field cut-off structure and manufacturing method thereof | |
CN214226914U (en) | A superjunction device with improved EMI and reduced characteristic resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |