CN110403611B - Method, device, computer equipment and storage medium for predicting glycated hemoglobin composition value in blood - Google Patents
Method, device, computer equipment and storage medium for predicting glycated hemoglobin composition value in blood Download PDFInfo
- Publication number
- CN110403611B CN110403611B CN201810403962.XA CN201810403962A CN110403611B CN 110403611 B CN110403611 B CN 110403611B CN 201810403962 A CN201810403962 A CN 201810403962A CN 110403611 B CN110403611 B CN 110403611B
- Authority
- CN
- China
- Prior art keywords
- data
- tongue
- tested
- image
- blood component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 102000017011 Glycated Hemoglobin A Human genes 0.000 title claims abstract description 67
- 108091005995 glycated hemoglobin Proteins 0.000 title claims abstract description 65
- 210000004369 blood Anatomy 0.000 title claims abstract description 58
- 239000008280 blood Substances 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 54
- 239000000203 mixture Substances 0.000 title description 16
- 239000012503 blood component Substances 0.000 claims abstract description 226
- 238000010801 machine learning Methods 0.000 claims abstract description 45
- 238000012549 training Methods 0.000 claims abstract description 32
- 238000004458 analytical method Methods 0.000 claims abstract description 18
- 201000010099 disease Diseases 0.000 claims abstract description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 17
- 238000004590 computer program Methods 0.000 claims description 28
- 239000000306 component Substances 0.000 claims description 15
- 238000007781 pre-processing Methods 0.000 claims description 8
- 208000024891 symptom Diseases 0.000 claims description 7
- 230000027939 micturition Effects 0.000 claims description 2
- 238000003745 diagnosis Methods 0.000 abstract description 14
- 230000009286 beneficial effect Effects 0.000 abstract description 9
- 206010012601 diabetes mellitus Diseases 0.000 description 16
- 238000010586 diagram Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 10
- 239000013598 vector Substances 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 230000036541 health Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000003814 drug Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 235000000346 sugar Nutrition 0.000 description 7
- 102000001554 Hemoglobins Human genes 0.000 description 5
- 108010054147 Hemoglobins Proteins 0.000 description 5
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 4
- 230000008676 import Effects 0.000 description 4
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 108010014663 Glycated Hemoglobin A Proteins 0.000 description 2
- 208000001280 Prediabetic State Diseases 0.000 description 2
- 238000009534 blood test Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229940109239 creatinine Drugs 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000013499 data model Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 201000009104 prediabetes syndrome Diseases 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 231100001021 decreased hematocrit Toxicity 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 206010013781 dry mouth Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000036252 glycation Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- -1 white blood cells Proteins 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4854—Diagnosis based on concepts of alternative medicine, e.g. homeopathy or non-orthodox
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Artificial Intelligence (AREA)
- Optics & Photonics (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Alternative & Traditional Medicine (AREA)
- Image Analysis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本申请涉及一种血液中糖化血红蛋白成分值预测方法、系统、计算机设备和存储介质。方法包括:获取待测个体的待测舌象图像和待测问诊数据;将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至经机器学习获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。通过机器学习模型训练获得的预测模型,使得能够根据人体的舌象图像和问诊数据,获得对应的目标血液成分预测值,从而实现血液成分值快速、自动获得,有利于提高病人的疾病诊断效率,具有价格低廉,应用快捷方便的特点。
The present application relates to a method, system, computer equipment and storage medium for predicting the value of glycated hemoglobin in blood. The method includes: acquiring an image of the tongue image to be tested and data of the consultation to be tested of the individual to be tested; inputting the image of the tongue image to be tested and the data of the consultation to be tested of the individual to be tested into a prediction obtained by machine learning a model, and the predicted value of the target blood component of the individual to be tested is obtained through analysis based on the prediction model. The prediction model obtained through the training of the machine learning model makes it possible to obtain the corresponding target blood component prediction value according to the tongue image of the human body and the consultation data, so as to realize the rapid and automatic acquisition of the blood component value, which is beneficial to improve the disease diagnosis efficiency of patients. , has the characteristics of low price, fast and convenient application.
Description
技术领域technical field
本申请涉及血液成分值预测技术领域,特别是涉及一种血液中糖化血红蛋白成分值预测方法、装置、计算机设备和存储介质。The present application relates to the technical field of blood component value prediction, and in particular, to a method, device, computer equipment and storage medium for predicting the value of glycated hemoglobin in blood.
背景技术Background technique
现代社会人们对健康越来越注重,普通人也希望可以随时随地、简单、方便、廉价地得知自己的健康情况。市场上的各种智能手机、健康手环,在某种程度上迎合了这样的需求。但若要深入地了解人体的健康状况,则仍需要通过实验室数据,特别是血液成分值。血液成分种类很多,例如血红蛋白,白血球,糖化血红蛋白,肌酐,血沉等等。血液值的获取,一般是通过抽取血液作分析,是一个有创伤性的操作。分析时亦需要相关的仪器和耗材,涉及一定的费用。In modern society, people pay more and more attention to health, and ordinary people also hope to know their health status anytime, anywhere, simply, conveniently and cheaply. Various smartphones and health bracelets on the market cater to such needs to some extent. But to gain an in-depth understanding of human health, laboratory data, especially blood component values, are still needed. There are many types of blood components, such as hemoglobin, white blood cells, glycosylated hemoglobin, creatinine, erythrocyte sedimentation rate and so on. The acquisition of blood values, generally by drawing blood for analysis, is a traumatic operation. The analysis also requires related instruments and consumables, which involves a certain cost.
中医学在中国拥有数千年的历史,在治病、防病和养生领域有着非常丰富的临床经验。其中,中医的诊疗方法,以简单、方便、廉价著称。《黄帝内经》说:“有诸形于内,必形于外。”就是说人的身体内有了毛病,一定会在身体表面显现出来。中医通过望、闻、问、切的四诊方法,去采集疾病的表现,了解人体的健康。其中,舌诊和问诊,更是四诊的重要组成部份。但是,目前如CN1561904A或WO2011026305A1所描述的中医四诊类仪器,都是以采集四诊资料为主要目的,即使某些仪器有输出对四诊资料的演绎结果,也只是局限在中医方面的诊断结果,均都没有对血液成分进行预测的功能。再者,这类仪器也是专门设计的,价格昂贵,只供专业人员使用,难以普及到普罗大众。Traditional Chinese medicine has a history of thousands of years in China, and has rich clinical experience in the fields of disease treatment, disease prevention and health preservation. Among them, the diagnosis and treatment methods of traditional Chinese medicine are known for their simplicity, convenience and low cost. "The Yellow Emperor's Classic of Internal Medicine" says: "There are all kinds of shapes in the inside, and they must be in the outside." That is to say, if there is something wrong in the human body, it will definitely appear on the surface of the body. Traditional Chinese medicine uses the four diagnostic methods of looking, smelling, asking, and cutting to collect the manifestations of diseases and understand the health of the human body. Among them, tongue diagnosis and questioning are an important part of the four diagnosis. However, at present, the traditional Chinese medicine four-diagnosis instruments such as those described in CN1561904A or WO2011026305A1 are mainly aimed at collecting the four-diagnosis data. Even if some instruments can output the deduction results of the four-diagnosis data, they are only limited to the diagnosis results of traditional Chinese medicine. , and none of them have the function of predicting blood composition. Furthermore, such instruments are also specially designed, expensive, and only used by professionals, and are difficult to popularize to the general public.
多种研究已经揭示,舌象与血液某些成分的变化有着密切的关系。例如,红细胞计数值(RBC)和血红蛋白值(HGB)与舌色的深淡有关;血细胞比容值降低(HCT)与淡舌和瘦小舌有关;肾功能衰竭时血肌酐的升高与多种舌象特征有关。Various studies have revealed that there is a close relationship between tongue image and changes in some components of blood. For example, red blood cell count (RBC) and hemoglobin (HGB) are associated with darker tongue color; decreased hematocrit (HCT) is associated with pale tongue and thin tongue; elevated serum creatinine in renal failure is associated with a variety of Tongue characteristics.
又例如,糖尿病是一种血液中的血糖浓度异常的疾病。有人研究根据中医学舌诊的原理,通过舌象来诊断糖尿病。但所用的方法需要特殊的仪器。这类诊断方法既不容易普及,还涉及购买仪器的昂贵费用。As another example, diabetes is a disease in which the blood sugar concentration is abnormal. Some people have studied the diagnosis of diabetes by tongue images according to the principle of tongue diagnosis in traditional Chinese medicine. But the method used requires special equipment. Such diagnostic methods are not easy to popularize and involve expensive purchase of equipment.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对上述技术问题,提供一种血液中糖化血红蛋白成分值预测方法、装置、计算机设备和存储介质。Based on this, it is necessary to provide a method, device, computer equipment and storage medium for predicting the value of glycated hemoglobin in blood in response to the above technical problems.
一种血液中糖化血红蛋白成分值预测方法,所述方法包括:A method for predicting a glycated hemoglobin component value in blood, the method comprising:
获取待测个体的待测舌象图像和待测问诊数据;Obtain the tongue image to be tested and the consultation data to be tested of the individual to be tested;
将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。The image of the tongue to be tested and the consultation data to be tested of the individual to be tested are input into the prediction model obtained by training, and the predicted value of the target blood component of the individual to be tested is obtained through analysis based on the prediction model.
在其中一个实施例中,所述获取待测个体的待测舌象图像和待测问诊数据的步骤之前还包括:In one of the embodiments, before the step of acquiring the tongue image image to be tested and the consultation data to be tested of the individual to be tested, the step further includes:
收集目标血液成分数据;Collect target blood component data;
收集与所述目标血液成分数据对应的问诊数据和预收集舌象图像;collecting consultation data and pre-collected tongue images corresponding to the target blood component data;
对所述目标血液成分数据、所述预收集舌象图像和所述问诊数据进行预处理;Preprocessing the target blood component data, the pre-collected tongue image and the consultation data;
基于机器学习模型,解析所述预收集舌象图像和所述问诊数据,获取所述预收集舌象图像的舌象特征和问诊数据特征,根据所述预收集舌象图像的舌象特征、问诊数据特征和目标血液成分数据训练获得所述预测模型。Based on the machine learning model, the pre-collected tongue image and the interview data are parsed, the tongue characteristics and the interview data of the pre-collected tongue image are obtained, and the tongue characteristics of the pre-collected tongue image are obtained , the characteristics of the interview data and the target blood component data are trained to obtain the prediction model.
在其中一个实施例中,所述将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值的步骤包括:In one embodiment, the to-be-measured tongue image and the to-be-measured consultation data of the to-be-measured individual are input into a prediction model obtained by training, and the to-be-tested model is parsed and obtained based on the prediction model. The steps of measuring the predicted value of the target blood component of the individual include:
将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的所述预测模型;inputting the tongue image image to be tested and the consultation data to be tested of the individual to be tested into the prediction model obtained by training;
基于所述预测模型,解析所述待测舌象图像和所述待测问诊数据,获取所述待测舌象图像的舌象特征和所述待测问诊数据特征;Based on the prediction model, analyze the tongue image to be tested and the consultation data to be tested, and obtain the tongue image features of the tongue image to be tested and the features of the consultation data to be tested;
根据所述待测舌象图像的舌象特征和所述待测问诊数据特征,获得所述待测个体的目标血液成分预测值。According to the characteristics of the tongue image of the tongue image to be measured and the characteristics of the consultation data to be measured, the predicted value of the target blood component of the individual to be measured is obtained.
在其中一个实施例中,所述根据所述待测舌象图像的舌象特征和所述待测问诊数据特征,获得所述待测个体的目标血液成分预测值的步骤包括:In one of the embodiments, the step of obtaining the predicted value of the target blood component of the individual to be measured according to the characteristics of the tongue image of the tongue image to be measured and the characteristics of the consultation data to be measured includes:
确定与所述待测舌象图像的舌象特征和所述待测问诊数据特征最接近的所述预收集舌象图像的舌象特征和问诊数据特征,获得所述待测个体的目标血液成分预测值。Determine the tongue features and the data features of the pre-collected tongue images that are closest to the features of the tongue images to be tested and the features of the data to be tested, and obtain the target of the individual to be tested Predictive value of blood components.
在其中一个实施例中,所述收集与所述目标血液成分数据对应的问诊数据和预收集舌象图像的步骤包括:In one embodiment, the step of collecting the consultation data corresponding to the target blood component data and pre-collecting the tongue image includes:
获取与所述目标血液成分数据对应的所述问诊数据;obtaining the consultation data corresponding to the target blood component data;
获取人脸图像;Get face image;
解析所述人脸图像,获取所述预收集舌象图像。Parse the face image to obtain the pre-collected tongue image.
一种血液中糖化血红蛋白成分值预测装置,所述装置包括:A device for predicting the value of glycated hemoglobin in blood, the device comprising:
待测数据获取模块,用于获取待测个体的待测舌象图像和待测问诊数据;The data acquisition module to be tested is used to acquire the tongue image to be tested and the medical consultation data to be tested of the individual to be tested;
预测值获得模块,用于将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。A predicted value obtaining module, used to input the image of the tongue to be tested and the data of the consultation to be tested of the individual to be tested into the prediction model obtained by training, and to analyze and obtain the individual to be tested based on the prediction model The predicted value of the target blood composition.
在其中一个实施例中,还包括:In one embodiment, it also includes:
血液成分数据获取模块,用于收集目标血液成分数据;A blood component data acquisition module for collecting target blood component data;
采集模块,用于收集与所述目标血液成分数据对应的问诊数据和预收集舌象图像;a collection module, used for collecting the consultation data and pre-collected tongue images corresponding to the target blood component data;
模型输入模块,用于对所述目标血液成分数据、所述预收集舌象图像和所述问诊数据进行预处理;a model input module, configured to preprocess the target blood component data, the pre-collected tongue image and the interrogation data;
预测模型获得模块,用于基于机器学习模型,解析所述预收集舌象图像和所述问诊数据,获取所述预收集舌象图像的舌象特征和问诊数据特征,根据所述预收集舌象图像的舌象特征、问诊数据特征和目标血液成分数据训练获得所述预测模型。A prediction model obtaining module is used to analyze the pre-collected tongue image and the interview data based on the machine learning model, and obtain the tongue characteristics and interview data characteristics of the pre-collected tongue image, according to the pre-collection The prediction model is obtained by training the tongue features of the tongue image, the features of the consultation data and the target blood component data.
在其中一个实施例中,所述预测值获得模块包括:In one embodiment, the predicted value obtaining module includes:
待测数据输入单元,用于将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的所述预测模型;a data input unit to be tested, configured to input the tongue image image to be tested and the medical consultation data to be tested of the individual to be tested into the prediction model obtained by training;
特征解析获得单元,用于基于所述预测模型,解析所述待测舌象图像和所述待测问诊数据,获取所述待测舌象图像的舌象特征和所述待测问诊数据特征;A feature analysis and obtaining unit, configured to analyze the tongue image to be tested and the consultation data to be tested based on the prediction model, and obtain tongue features of the tongue image to be tested and the consultation data to be tested feature;
预测值获得单元,用于根据所述待测舌象图像的舌象特征和所述待测问诊数据特征,获得所述待测个体的目标血液成分预测值。A predicted value obtaining unit, configured to obtain the predicted value of the target blood component of the individual to be measured according to the tongue image feature of the tongue image image to be tested and the characteristics of the medical consultation data to be tested.
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:A computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
获取待测个体的待测舌象图像和待测问诊数据;Obtain the tongue image to be tested and the consultation data to be tested of the individual to be tested;
将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。The image of the tongue to be tested and the consultation data to be tested of the individual to be tested are input into the prediction model obtained by training, and the predicted value of the target blood component of the individual to be tested is obtained through analysis based on the prediction model.
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:A computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
获取待测个体的待测舌象图像和待测问诊数据;Obtain the tongue image to be tested and the consultation data to be tested of the individual to be tested;
将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。The image of the tongue to be tested and the consultation data to be tested of the individual to be tested are input into the prediction model obtained by training, and the predicted value of the target blood component of the individual to be tested is obtained through analysis based on the prediction model.
上述血液中糖化血红蛋白成分值预测方法、装置、计算机设备和存储介质,通过机器学习模型,解析舌象图像获得舌象特征和问诊数据特征,通过大数据学习,建立预测模型,使得能够根据人体的舌象图像和问诊数据,解析出舌象特征和问诊数据特征,进而获得对应的目标血液成分预测值,而无需对个体进行抽血化验,从而实现血液成分值快速、自动获得,有利于提高病人的疾病诊断效率,具有价格低廉,应用快捷方便的特点。The above-mentioned method, device, computer equipment and storage medium for predicting the value of glycated hemoglobin in blood, through the machine learning model, analyzing the tongue image to obtain the characteristics of the tongue image and the characteristics of the consultation data, and establishing the prediction model through the learning of big data, so that it can be based on the human body. The tongue image and consultation data are obtained by analyzing the characteristics of the tongue image and the data of the consultation, and then obtaining the corresponding predicted value of the target blood component, without the need to perform blood test on the individual, so as to realize the rapid and automatic acquisition of the blood component value. It is beneficial to improve the disease diagnosis efficiency of patients, and has the characteristics of low price, quick and convenient application.
附图说明Description of drawings
图1为一个实施例中血液中糖化血红蛋白成分值预测方法的应用场景图;1 is an application scenario diagram of a method for predicting the value of glycated hemoglobin composition in blood in one embodiment;
图2A为一个实施例中的预测模型的训练获得的流程示意图;FIG. 2A is a schematic flowchart of a training acquisition of a prediction model in one embodiment;
图2B为一个实施例中血液中糖化血红蛋白成分值预测方法的流程示意图;2B is a schematic flowchart of a method for predicting the value of glycated hemoglobin in blood in one embodiment;
图2C为一个实施例中基于机器学习的模型的训练过程与模型的预测过程的流程示意图;2C is a schematic flowchart of a training process of a machine learning-based model and a prediction process of the model in one embodiment;
图3为一个实施例中血液中糖化血红蛋白成分值预测装置的结构框图;3 is a structural block diagram of a device for predicting the value of glycated hemoglobin in blood in one embodiment;
图4为一个实施例中计算机设备的内部结构图;Fig. 4 is the internal structure diagram of the computer device in one embodiment;
图5为另一个实施例中计算机设备的内部结构图;5 is an internal structure diagram of a computer device in another embodiment;
图6为一个实施例中的问诊问卷的示意图;FIG. 6 is a schematic diagram of an inquiry questionnaire in one embodiment;
图7为一个实施例中的问诊数据特征的示意图;FIG. 7 is a schematic diagram of the features of consultation data in one embodiment;
图8为一个实施例的原始的舌象图像的示意图;8 is a schematic diagram of an original tongue image according to an embodiment;
图9为一个实施例的处理后的舌象图像的示意图;9 is a schematic diagram of a processed tongue image according to one embodiment;
图10 为一个实施例中测试多个机器分类器的结果;Figure 10 is the result of testing multiple machine classifiers in one embodiment;
图11为一个实施例中的解析获得的目标血液成分预测值与实际血液成分值的对比结果图;11 is a comparison result diagram of a target blood component predicted value and an actual blood component value obtained by analysis in one embodiment;
图12为一个实施例中的标准化混淆矩阵图。Figure 12 is a normalized confusion matrix diagram in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请提供的血液中糖化血红蛋白成分值预测方法,可以应用于如图1所示的应用环境中。其中,计算机102通过网络与服务器104通过网络进行通信。其中,计算机102可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。终端获取目标血液成分数据、预收集舌象图像以及问诊数据,并将上述的目标血液成分数据、预收集舌象图像以及问诊数据作为训练数据输入服务器104的机器学习模型,服务器104基于机器学习模型,解析所述预收集舌象图像和所述问诊数据,获取所述预收集舌象图像的舌象特征和问诊数据特征,建立预测模型。The method for predicting the glycated hemoglobin composition value in blood provided by the present application can be applied to the application environment shown in FIG. 1 . The
例如,一种血液中糖化血红蛋白成分值预测方法,所述方法包括:收集目标血液成分数据;收集与所述目标血液成分数据对应的问诊数据和预收集舌象图像;对所述目标血液成分数据、所述预收集舌象图像和所述问诊数据进行预处理;基于机器学习模型,解析所述预收集舌象图像和所述问诊数据,获取所述预收集舌象图像的舌象特征和问诊数据特征,建立预测模型。For example, a method for predicting the value of glycated hemoglobin in blood, the method includes: collecting target blood component data; collecting consultation data and pre-collected tongue images corresponding to the target blood component data; Data, the pre-collected tongue image and the interview data are preprocessed; based on the machine learning model, the pre-collected tongue image and the interview data are parsed to obtain the tongue image of the pre-collected tongue image The characteristics and the characteristics of the consultation data are used to establish a prediction model.
上述实施例中,通过机器学习模型,解析舌象图像获得舌象特征和问诊数据特征,通过大数据学习,建立预测模型,使得能够根据人体的舌象图像和问诊数据,解析出舌象特征和问诊数据特征,进而获得对应的目标血液成分预测值,从而实现血液成分值快速、自动获得,有利于提高病人的疾病诊断效率,具有价格低廉,应用快捷方便的特点。In the above-mentioned embodiment, through the machine learning model, the tongue image is analyzed to obtain the characteristics of the tongue image and the characteristics of the consultation data, and the prediction model is established through the learning of big data, so that the tongue image can be parsed according to the tongue image and the consultation data of the human body. Characteristics and data characteristics of the consultation data, and then obtain the corresponding predicted value of the target blood component, so as to realize the rapid and automatic acquisition of the blood component value, which is beneficial to improve the disease diagnosis efficiency of patients, and has the characteristics of low price and fast and convenient application.
在一个实施例中,如图2A所示,提供了一种血液中糖化血红蛋白成分值预测方法,以该方法包括以下步骤:In one embodiment, as shown in FIG. 2A , a method for predicting the value of glycated hemoglobin in blood is provided, and the method includes the following steps:
步骤202,收集目标血液成分数据。
例如,获取目标血液成分数据。具体地,该目标血液成分数据为人体的血液检测数据,例如,该目标血液成分数据为人体的血液成分数据。例如,该目标检测数据为人体的糖化血红蛋白数据。该目标血液成分数据为预先收集获取,并输入至计算机中。For example, acquire target blood component data. Specifically, the target blood component data is the blood detection data of the human body, for example, the target blood component data is the blood component data of the human body. For example, the target detection data is the glycated hemoglobin data of the human body. The target blood component data is collected and acquired in advance and input into the computer.
步骤204,收集与所述目标血液成分数据对应的问诊数据和预收集舌象图像。
例如,获取与所述目标血液成分数据对应的问诊数据和预收集舌象图像。例如,获取与所述目标血液成分数据对应的问诊数据,并获取与所述目标血液成分数据对应预收集舌象图像。也就是说,问诊数据和预收集舌象图像对应的个体与目标血液成分数据对应的个体为同一个个体。For example, the consultation data and the pre-collected tongue image corresponding to the target blood component data are acquired. For example, the consultation data corresponding to the target blood component data is acquired, and the pre-collected tongue image corresponding to the target blood component data is acquired. That is, the individual corresponding to the consultation data and the pre-collected tongue image and the individual corresponding to the target blood component data are the same individual.
具体地,该问诊数据为人体的病历数据,例如,该问诊数据为人体的病症数据,例如,该问诊数据为人体的疾病数据,例如,该问诊数据为个人健康数据。该问诊数据记载了用户的人体的病征,问诊数据还包括用户的疾病名称、用户的年龄、用户的身高、用户的体重等。例如,该问诊数据由用户输入获得。例如,获取输入至计算机的问诊数据。例如,获取输入至问诊问卷上的问诊数据,本实施例中,通过预设问诊问卷的问题,使得用户能够直接对应问诊问卷上的问题进行解答,进而获取到用户的问诊数据,有效提高问诊数据的获取效率和准确性。Specifically, the consultation data is medical record data of the human body, for example, the consultation data is disease data of the human body, for example, the consultation data is disease data of the human body, for example, the consultation data is personal health data. The consultation data records the symptoms of the user's human body, and the consultation data further includes the user's disease name, the user's age, the user's height, the user's weight, and the like. For example, the consultation data is obtained by user input. For example, to obtain the data of the consultation entered into the computer. For example, to obtain the consultation data input on the consultation questionnaire, in this embodiment, by presetting the questions of the consultation questionnaire, the user can directly answer the questions on the consultation questionnaire, and then obtain the user's consultation data , which can effectively improve the efficiency and accuracy of data acquisition.
例如,问诊数据包括用户所患的疾病名称、用户的年龄、用户的身高、用户的体重、用户的自觉症状等。本实施例中,通过基于医学知识预设问诊问卷的问题,使得用户能够直接对应问诊问卷上的问题进行解答,进而获取到用户与目标血液成分相关的问诊数据,有效提高问诊数据的获取效率及其准确性。For example, the consultation data includes the name of the disease suffered by the user, the age of the user, the height of the user, the weight of the user, the subjective symptoms of the user, and the like. In this embodiment, by presetting the questions of the consultation questionnaire based on medical knowledge, the user can directly answer the questions on the consultation questionnaire, and then obtain the consultation data related to the user and the target blood components, which effectively improves the consultation data. acquisition efficiency and accuracy.
该预收集舌象图像为预先收集的舌象图像,该舌象图像为人体的舌头的图像,人体的舌头的表征与人体血液中的部分成分的变化有着密切关系,而人体的血液的成分的变化将引起人体的身体状态的变化,人体的身体状态的变化也将会导致人体血液成分的变化。例如,人体的舌头的表征与人体血液中糖化血红蛋白的变化有着一定的关。糖化血红蛋白是红细胞中的血红蛋白与血清中的糖类相结合的产物。它是通过缓慢、持续及不可逆的糖化反应形成,其含量的多少取决于血糖浓度以及血糖与血红蛋白接触时间。所以,糖化血红蛋白值可有效地反映个体过去1~2个月内血糖控制的情况,因此被用作糖尿病控制的监测指标。由於血糖浓度与糖化血红蛋白值的变化有着密切的关系,而血糖浓度的变化也会引起人体的身体状态的变化,因此,人体如果长时间存在高血糖状态,将会通过舌象的表征体现出来。所以,不同的糖化血红蛋白值对应不同的舌头表征。The pre-collected tongue image is a pre-collected tongue image, and the tongue image is an image of the human tongue. The representation of the human tongue is closely related to the changes of some components in the human blood, and the components of the human blood are Changes will cause changes in the physical state of the human body, and changes in the physical state of the human body will also lead to changes in the blood composition of the human body. For example, the characterization of the human tongue is related to the changes of glycosylated hemoglobin in human blood. Glycated hemoglobin is the product of the combination of hemoglobin in red blood cells and sugars in serum. It is formed by a slow, continuous and irreversible glycation reaction, and its content depends on the blood sugar concentration and the contact time between blood sugar and hemoglobin. Therefore, the glycated hemoglobin value can effectively reflect the blood sugar control of an individual in the past 1 to 2 months, so it is used as a monitoring index for diabetes control. Because the blood sugar concentration is closely related to the change of the glycated hemoglobin value, and the change of the blood sugar concentration will also cause the change of the human body's physical state. Therefore, different glycated hemoglobin values correspond to different tongue characteristics.
因此,人体如果存在疾病或者状态发生变化,都会通过舌象的表征进行体现。也就是说,人体血液的成分变化将会使得人体的舌头的表征发生变化,不同的人体血液的成分对应不同的舌头的表征。例如,通过图像传感器获取预收集舌象图像。Therefore, if there is a disease or a change in the state of the human body, it will be reflected through the representation of the tongue image. That is to say, changes in the composition of human blood will change the representation of the human tongue, and different components of human blood correspond to different representations of the tongue. For example, pre-collected tongue images are acquired by an image sensor.
本实施例中,个体即检测用户,每一个体目标血液成分数据对应一问诊数据和一预收集舌象图像。In this embodiment, the individual is the detection user, and each individual target blood component data corresponds to a consultation data and a pre-collected tongue image.
例如,获取多个目标血液成分数据、多个问诊数据和多个预收集舌象图像,该多个目标血液成分数据、多个问诊数据和多个预收集舌象图像为一一对应关系。多个预收集图像具有不同的表征,而每个问诊数据也各不相同,因此,不同的表征将对应不同的问诊数据,对应不同个体的血液成分数据,也就是说,一个目标血液成分数据对应的一个问诊数据和一个预收集舌象图像。For example, acquire multiple target blood component data, multiple consultation data, and multiple pre-collected tongue images, and the multiple target blood component data, multiple consultation data, and multiple pre-collected tongue images are in a one-to-one correspondence . Multiple pre-collected images have different representations, and each consultation data is also different, therefore, different representations will correspond to different consultation data, corresponding to the blood component data of different individuals, that is, a target blood component The data corresponds to a consultation data and a pre-collected tongue image.
本实施例中,获取问诊数据,有利于进一步提高对舌象图像的解析的准确性。In this embodiment, obtaining the consultation data is beneficial to further improve the accuracy of parsing the tongue image.
例如,获取多个问诊数据,例如,每一问诊数据与一目标血液成分数据和一预收集舌象图像对应。具体地,同一用户的问诊数据与该用户的目标血液成分数据和一预收集舌象图像对应。有利于提高对数据解析的精确性。For example, a plurality of consultation data are acquired, for example, each consultation data corresponds to a target blood component data and a pre-collected tongue image. Specifically, the consultation data of the same user corresponds to the target blood component data of the user and a pre-collected tongue image. It is beneficial to improve the accuracy of data analysis.
例如,获取若干个体的糖化血红蛋白值、若干个体的问诊数据和若干个体的预收集舌象图像,该若干个体的糖化血红蛋白值、若干个体的问诊数据和若干个体的预收集舌象图像为一一对应关系。多个预收集图像具有不同的表征,而每个糖化血红蛋白值也各不相同,因此,不同的表征将对应不同的糖化血红蛋白值。而对应的糖化血红蛋白值和预收集舌象图像则对应同一个体。For example, acquiring the glycated hemoglobin values of several individuals, the interrogation data of several individuals, and the pre-collected tongue images of several individuals, the glycated hemoglobin values of several individuals, the interrogation data of several individuals, and the pre-collected tongue images of several individuals are: One-to-one correspondence. The multiple pre-collected images have different representations and each glycated hemoglobin value is different, so different characterizations will correspond to different glycated hemoglobin values. The corresponding glycated hemoglobin values and pre-collected tongue images correspond to the same individual.
步骤206,对所述目标血液成分数据、所述预收集舌象图像和所述问诊数据进行预处理。
例如,在预处理后,将预处理后的所述目标血液成分数据、所述预收集舌象图像和所述问诊数据作为训练数据输入机器学习模型。例如,机器学习模型可以是单一种模型,例如,决策树模型、线性回归模型、神经网络模型等等,也可以是两个或两个以上的模型的结合。For example, after preprocessing, the preprocessed target blood component data, the pre-collected tongue image and the interview data are input into a machine learning model as training data. For example, a machine learning model can be a single model, such as a decision tree model, a linear regression model, a neural network model, etc., or a combination of two or more models.
具体地,将所述目标血液成分数据、所述预收集舌象图像和所述问诊数据整合为数据矩阵,将该数据矩阵输入机器学习模型。Specifically, the target blood component data, the pre-collected tongue image and the consultation data are integrated into a data matrix, and the data matrix is input into a machine learning model.
例如,对预收集舌象图像的预处理包括:把拍摄的舌象图像统一整理为512x512的像素图,通过机器学习训练,以卷积网络的方法进行图像截取处理,把舌象外周的图像排除掉,得到一个新的舌象图像。在这个新的舌象图像里,不属于舌象及其周边组织的像素值被调为零。然后,通过以下算式,把这个新的舌象图像转化为一个具有某一长度的特征向量。所用的数学模型方程式如下:For example, the preprocessing of pre-collected tongue images includes: uniformly organizing the captured tongue images into 512x512 pixel maps, training through machine learning, performing image interception processing with the method of convolutional network, and excluding the images of the outer periphery of the tongue image. to get a new tongue image. In this new tongue image, the pixel values that do not belong to the tongue and its surrounding tissues are set to zero. Then, the new tongue image is converted into a feature vector with a certain length by the following formula. The mathematical model equations used are as follows:
,其中,dst(x,y)为特征向量,src 为转化函数,fx为图像,fy是向量的最终维度。 , where dst(x,y) is the feature vector, src is the transformation function, f x is the image, and f y is the final dimension of the vector.
又例如,在某些实施方案中,可以选择某些舌象图像特征作为特征向量,以代替舌象像素数据,例如,把舌象的颜色作为特征,或把舌头的形态作为特征,又或把舌头组织的纹理作为特征。计算这些特征的数学方程式可参照使用现有已公开发布的相关方法[(Zhang, D., Zhang, H., & Zhang, B.). Tongue Image Analysis (pp. 1-335).Springer. 2017]。For another example, in some embodiments, some tongue image features can be selected as feature vectors instead of tongue image pixel data, for example, the color of the tongue image is used as a feature, or the shape of the tongue is used as a feature, or the The texture of the tongue tissue serves as a feature. The mathematical equations for calculating these features can be referred to using existing published related methods [(Zhang, D., Zhang, H., & Zhang, B.). Tongue Image Analysis (pp. 1-335). Springer. 2017 ].
取决于所使用的舌象图像特征的类别,将会得到有不同维度的向量。可以通过多 种特征与指标组合,产生一个新的特征向量V.即。使用图像特征代替舌象像素数 据作为特征向量,有助提高预测的准确性。 Depending on the class of tongue image features used, vectors with different dimensions will be obtained. A new feature vector V can be generated by combining various features and indicators. . Using image features instead of tongue pixel data as feature vectors can help improve the accuracy of prediction.
在把每一个所述的截取舌象图像、或经选择后的舌象图像特征转化为向量之后,汇入相对应的问诊结果,根据不同的结果,使用二进制扩展(binary expansion)或独热码(one hot encoding)来生成不同的数值,创建一个包含舌象图像特征结果与问诊结果的最终向量。After converting each of the intercepted tongue images or selected tongue image features into vectors, import the corresponding consultation results, and use binary expansion or one-hot according to different results. code (one hot encoding) to generate different values, creating a final vector containing tongue image feature results and interview results.
把所生成的数据与相对应的目标检测值相关联。针对预收集数据的所有图像、问诊结果,重复上述过程建立训练数据集。之后,把预收集的数据集分为训练样本和测试样本,训练样本输入到机器学习模型中,测试样本用来测量模型的准确性。The generated data is associated with the corresponding object detection value. For all images and consultation results of the pre-collected data, repeat the above process to establish a training data set. After that, the pre-collected data set is divided into training samples and test samples, the training samples are input into the machine learning model, and the test samples are used to measure the accuracy of the model.
步骤208,基于机器学习模型,解析所述预收集舌象图像和所述问诊数据,获取所述预收集舌象图像的舌象特征和问诊数据特征,根据所述预收集舌象图像的舌象特征、问诊数据特征和目标血液成分数据训练获得所述预测模型。
例如,基于机器学习模型,解析所述预收集舌象图像获取所述预收集舌象图像的舌象特征,解析所述问诊数据,获取问诊数据特征与目标检测值的对应关系,根据所述预收集舌象图像的舌象特征、问诊数据特征和目标血液成分数据学习获得所述预测模型。For example, based on the machine learning model, parse the pre-collected tongue image to obtain the tongue characteristics of the pre-collected tongue image, parse the interview data, and obtain the correspondence between the characteristics of the interview data and the target detection value, according to the The prediction model is obtained by learning from the tongue characteristics, interrogation data characteristics and target blood component data of the pre-collected tongue images.
具体地,舌象特征即为舌象的表征,或者说,该舌象特征为舌象图像的表征。问诊数据特征即为问诊数据的向量化后的值。Specifically, the tongue image feature is the representation of the tongue image, or in other words, the tongue image feature is the representation of the tongue image. The feature of the consultation data is the vectorized value of the consultation data.
具体地,由于舌象特征与人体的血液成分相关,人体的血液成分的变化将造成舌象特征的改变,不同的舌象特征对应不同的人体的血液成分,因此,不同的舌象特征将对应不同的目标血液成分数据。Specifically, since the characteristics of the tongue image are related to the blood composition of the human body, changes in the blood composition of the human body will cause changes in the characteristics of the tongue image. Different tongue image characteristics correspond to different blood components of the human body. Different target blood component data.
此外,问诊数据与目标血液成分数据是一一对应的关系,不同的血液成分数据将导致个体的问诊数据不同,因此,问诊数据与血液成分数据相关联,因此,本步骤中,对预收集舌象图像和问诊数据进行解析,获得该预收集舌象图像的多个舌象特征和问诊数据特征,基于机器学习方法,学习获得各预收集舌象图像的舌象特征和问诊数据特征与目标血液成分数据的对应关系的预测模型。例如,根据预收集舌象图像以及问诊数据特征与对应的目标血液成分数据的对应关系,学习获得各预收集舌象图像的舌象特征以及问诊数据与目标血液成分数据的对应关系的规律,从而建立预测模型。In addition, there is a one-to-one correspondence between the consultation data and the target blood component data. Different blood component data will lead to different individual consultation data. Therefore, the consultation data is associated with the blood component data. Therefore, in this step, the Pre-collected tongue images and interrogation data are analyzed to obtain multiple tongue characteristics and interrogation data features of the pre-collected tongue images. Based on the machine learning method, the tongue characteristics and questions of each pre-collected tongue image are learned and obtained. A prediction model for the correspondence between diagnostic data features and target blood component data. For example, according to the correspondence between the pre-collected tongue images and the characteristics of the interview data and the corresponding target blood component data, learn to obtain the tongue characteristics of each pre-collected tongue image and the corresponding relationship between the interview data and the target blood component data. , so as to build a predictive model.
本实施例中,在获取目标血液成分数据后,建立目标血液成分数据与预收集舌象图像以及所述问诊数据的对应关系,能够使得目标血液成分数据与预收集舌象图像以及问诊数据关联,进而获得预收集舌象图像的舌象特征的变化以及问诊数据与目标血液成分数据的关系,获得预收集舌象图像的舌象特征以及问诊数据特征与目标血液成分数据的变化规律,并以此建立基于预收集舌象图像的舌象特征以及问诊数据特征与目标血液成分数据的关联关系的预测模型,使得目标血液成分预测值的获取更为准确。In this embodiment, after acquiring the target blood component data, the corresponding relationship between the target blood component data and the pre-collected tongue image and the consultation data is established, so that the target blood component data and the pre-collected tongue image and the consultation data can be Then, the changes of the tongue characteristics of the pre-collected tongue images and the relationship between the interrogation data and the target blood component data are obtained, and the tongue characteristics of the pre-collected tongue images and the change rules between the characteristics of the interrogation data and the target blood composition data are obtained. , and establish a prediction model based on the tongue image features of pre-collected tongue images and the relationship between the characteristics of the consultation data and the target blood component data, so that the acquisition of the predicted value of the target blood component is more accurate.
本实施例中,基于大量的预收集舌象图像以及问诊数据和目标血液成分数据,进行大数据解析和学习,进而学习获得预收集舌象图像的舌象特征以及问诊数据特征与目标血液成分数据的对应规律,进而建立基于所述预收集舌象图像的舌象特征以及问诊数据特征与所述目标血液成分数据的对应关系的预测模型。例如,该对应关系可以图像化为曲线图,例如,将所述预收集舌象图像的舌象特征与所述目标血液成分数据的对应关系映射为曲线。通过建立预收集舌象图像的舌象特征的对应关系,从而使得在后续的检测中,可以通过舌象图像和问诊数据获得目标血液成分预测值,有利于辅助疾病的诊断。In this embodiment, based on a large number of pre-collected tongue images, interrogation data and target blood component data, big data analysis and learning are performed, and then the tongue characteristics of the pre-collected tongue images, the characteristics of the interrogation data and the target blood are obtained by learning. According to the corresponding rule of the component data, a prediction model based on the tongue characteristics of the pre-collected tongue image and the corresponding relationship between the characteristics of the consultation data and the target blood component data is established. For example, the corresponding relationship can be visualized as a graph, for example, the corresponding relationship between the tongue feature of the pre-collected tongue image and the target blood component data is mapped as a curve. By establishing the correspondence between the tongue image features of the pre-collected tongue image images, in the subsequent detection, the target blood component prediction value can be obtained through the tongue image image and the interrogation data, which is beneficial to assist the diagnosis of diseases.
例如,基于机器学习模型,解析所述预收集舌象图像,获取所述预收集舌象图像的舌象特征,根据多个所述预收集舌象图像的舌象特征之间的变化关系以及对应的多个问诊数据的变化关系,获取有效舌象特征,建立所述预收集舌象图像的有效舌象特征与所述问诊数据的对应关系。For example, based on the machine learning model, the pre-collected tongue images are parsed, the tongue features of the pre-collected tongue images are acquired, and the relationship and correspondence between the tongue features of the plurality of pre-collected tongue images are obtained. The change relationship of a plurality of consultation data is obtained, the effective tongue image features are obtained, and the corresponding relationship between the effective tongue image features of the pre-collected tongue image images and the consultation data is established.
有效舌象特征为舌象图像中多个特征中的一个,本实施例中,有效舌象特征为预收集舌象图像中的与问诊数据的变化相关的舌象特征,因此,通过舌象特征的变化关系,结合多个问诊数据,获得有效舌象特征,建立所述预收集舌象图像的有效舌象特征与所述问诊数据的对应关系,从而使得舌象特征与所述问诊数据的对应关系的建立更为准确,有利于提高目标血液成分预测值获取的精确性。The effective tongue image feature is one of multiple features in the tongue image. In this embodiment, the effective tongue image feature is the tongue image feature related to the change of the interrogation data in the pre-collected tongue image. Therefore, through the tongue image The change relationship of the characteristics, combined with multiple consultation data, obtain the effective tongue characteristics, establish the corresponding relationship between the effective tongue characteristics of the pre-collected tongue images and the interview data, so that the tongue characteristics and the question The establishment of the corresponding relationship of the diagnostic data is more accurate, which is beneficial to improve the accuracy of obtaining the predicted value of the target blood component.
例如,基于机器学习模型,解析多个所述预收集舌象图像和问诊数据,获取每一所述预收集舌象图像的舌象特征和每一问诊数据特征,建立各所述预收集舌象图像的舌象特征以及各问诊数据特征与所述目标血液成分数据的对应关系,建立预测模型。For example, based on the machine learning model, parse a plurality of the pre-collected tongue images and interview data, obtain the tongue characteristics of each of the pre-collected tongue images and the characteristics of each interview data, and establish each of the pre-collected tongue images. A prediction model is established based on the tongue characteristics of the tongue image and the correspondence between the characteristics of each consultation data and the target blood component data.
本实施例中,通过对多个预收集舌象图像多个问诊数据进行分别解析,获得预收集图像的舌象特征和问诊数据特征的变化规律,使得预收集图像的舌象特征的变化规律以及问诊数据特征的变化规律与目标血液成分数据关联,进而精确建立各所述预收集舌象图像的舌象特征以及各问诊数据特征与所述目标血液成分数据的对应关系。In this embodiment, by separately analyzing multiple pre-collected tongue images and multiple consultation data, the tongue image features of the pre-collected images and the change rule of the interview data characteristics are obtained, so that the tongue image features of the pre-collected images change. The regularity and the changing regularity of the characteristics of the consultation data are associated with the target blood component data, so as to accurately establish the tongue characteristics of each of the pre-collected tongue images and the corresponding relationship between each of the characteristics of the consultation data and the target blood component data.
例如,基于机器学习模型,解析所述预收集舌象图像,获取所述预收集舌象图像的舌象特征,根据多个所述预收集舌象图像的舌象特征之间的变化关系以及对应的多个目标血液成分数据的变化关系,获取有效舌象特征,建立所述预收集舌象图像的有效舌象特征与所述目标血液成分数据的对应关系。值得一提的是,一个舌象图像具有多个不同的表征,也就是说,一个舌象图像具有多个舌象特征,这些特征可以是颜色、纹理、形状等等。这些特征可以在舌象图像的整体上显示,也可以在局部显示。而有些舌象特征是与目标血液成分数据相关的,而另外的舌象特征是与目标血液成分数据不相关的。本实施例中,有效舌象特征为与目标血液成分数据的变化相关的舌象特征,因此,通过舌象特征的变化关系,结合多个目标血液成分数据的变化关系,获得有效舌象特征,建立所述预收集舌象图像的有效舌象特征与所述目标血液成分数据的对应关系,从而使得舌象特征与所述目标血液成分数据的对应关系的建立更为准确,有利于提高目标血液成分预测值获取的精确性。For example, based on the machine learning model, the pre-collected tongue images are parsed, the tongue features of the pre-collected tongue images are acquired, and the relationship and correspondence between the tongue features of the plurality of pre-collected tongue images are obtained. The change relationship of the plurality of target blood component data is obtained, and the effective tongue image feature is obtained, and the corresponding relationship between the effective tongue image feature of the pre-collected tongue image image and the target blood component data is established. It is worth mentioning that a tongue image has multiple different representations, that is, a tongue image has multiple tongue features, which can be color, texture, shape, and so on. These features can be displayed in the whole tongue image or in part. While some tongue features are related to the target blood component data, other tongue features are not related to the target blood component data. In this embodiment, the effective tongue image feature is the tongue image feature related to the change of the target blood component data. Therefore, through the change relationship of the tongue image feature and the change relationship of multiple target blood component data, the effective tongue image feature is obtained, Establishing the corresponding relationship between the effective tongue feature of the pre-collected tongue image and the target blood component data, so that the establishment of the corresponding relationship between the tongue feature and the target blood component data is more accurate, which is beneficial to improve the target blood Accuracy of component predictions obtained.
如图2B所示,在步骤208之后还包括步骤210,获取待测个体的待测舌象图像和待测问诊数据。As shown in FIG. 2B , after
步骤212,将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。Step 212: Input the image of the tongue to be tested and the consultation data to be tested of the individual to be tested into the prediction model obtained by training, and analyze and obtain the target blood composition of the individual to be tested based on the prediction model. Predictive value.
例如,将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至经机器学习获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。本实施例中,训练获得的预测模型即为机器学习获得的预测模型。For example, the image of the tongue to be tested and the consultation data to be tested of the individual to be tested are input into a prediction model obtained by machine learning, and the target blood components of the individual to be tested are obtained through analysis based on the prediction model Predictive value. In this embodiment, the prediction model obtained by training is the prediction model obtained by machine learning.
例如,通过机器学习模型得到最优化的机器分类器。For example, an optimized machine classifier is obtained through a machine learning model.
本实施例中,待测个体为需要进行血液成分预测的用户个体,待测舌象图像为需要进行病症判断的用户的舌象图像,或者说,该待测舌象图像为待诊断的用户的舌头的图像,待测问诊数据为待测个体填写的问诊数据。例如,通过图像传感器获取待测舌象图像。例如,该目标血液成分预测值为待测个体的人体的血液检测数据,也就是说,该目标血液成分预测值与目标血液成分数据为同类数据,该目标血液成分预测值预测的人体的体检血液成分数据,例如,该目标血液成分预测值为预测的人体的血液检测数据,例如,该目标血液成分预测值为预测的人体的血液成分数据。该目标血液成分预测值是基于现有的目标血液成分数据而预测得到的,该目标血液成分数据为实际检测获得的体检数据,而目标血液成分预测值是基于现有的目标血液成分数据与预收集舌象图像的舌象特征以及问诊数据的对应关系预测获得的数据。In this embodiment, the individual to be tested is a user individual who needs to perform blood component prediction, and the tongue image image to be tested is the tongue image image of the user who needs to perform disease judgment, or in other words, the tongue image image to be tested is the user to be diagnosed The image of the tongue, and the data to be tested is the data filled in by the individual to be tested. For example, an image of the tongue to be tested is acquired through an image sensor. For example, the predicted value of the target blood component is the blood test data of the human body of the individual to be tested, that is, the predicted value of the target blood component and the data of the target blood component are the same data, and the predicted value of the target blood component predicts the blood of the human body for physical examination. The component data, for example, the predicted value of the target blood component is the blood detection data of the predicted human body, for example, the predicted value of the target blood component is the predicted blood component data of the human body. The target blood component prediction value is predicted based on the existing target blood component data, the target blood component data is the physical examination data obtained by actual detection, and the target blood component prediction value is based on the existing target blood component data and the predicted value. Collect the tongue characteristics of the tongue image and the data obtained by the corresponding relationship prediction of the interview data.
本实施例中,基于已有的预测模型,获取待测个体的待测舌象图像和待测问诊数据,将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至预测模型中,进而预测获得该待测个体的目标血液成分预测值,而无需对个体进行抽血化验,从而使得待测个体的血液成分获取更为高效,更为便捷。In this embodiment, based on the existing prediction model, the tongue image to be tested and the consultation data to be tested of the individual to be tested are obtained, and the tongue image to be tested of the individual to be tested and the consultation data to be tested are obtained. The data is input into the prediction model, and then the predicted value of the target blood component of the individual to be tested is predicted and obtained, without the need for blood testing of the individual, so that the acquisition of the blood component of the individual to be tested is more efficient and convenient.
在一个实施例中,所述将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值的步骤包括:将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至预测模型;基于所述预测模型,解析所述待测舌象图像和所述待测问诊数据,获取所述待测舌象图像的舌象特征和所述待测问诊数据特征;根据所述待测舌象图像的舌象特征和所述待测问诊数据特征,获得所述待测个体的目标血液成分预测值。In one embodiment, the image of the tongue to be tested and the consultation data to be tested of the individual to be tested are input into a prediction model, and the target blood of the individual to be tested is obtained through analysis based on the prediction model The step of component prediction value includes: inputting the tongue image image to be tested and the consultation data to be tested of the individual to be tested into a prediction model; based on the prediction model, parsing the tongue image image to be tested and the data to be tested. The data to be tested is obtained, and the tongue features of the tongue image to be tested and the features of the data to be tested are obtained; according to the features of the tongue image to be tested and the features of the data to be tested , to obtain the predicted value of the target blood component of the individual to be tested.
本实施例中,在获取待测个体的待测舌象图像和待测问诊数据后,将待测个体的待测舌象图像和待测问诊数据输入至预测模型,对该待测舌象图像和待测问诊数据进行解析,获取该待测舌象图像的舌象特征和待测问诊数据特征,基于该预测模型,获得目标血液成分预测值。In this embodiment, after acquiring the tongue image to be tested and the consultation data to be tested of the individual to be tested, the tongue image to be tested and the consultation data to be tested of the individual to be tested are input into the prediction model, and the tongue image to be tested and the consultation data to be tested are input into the prediction model, The image image and the consultation data to be tested are analyzed to obtain the tongue characteristics of the tongue image to be measured and the characteristics of the consultation data to be measured, and based on the prediction model, the predicted value of the target blood component is obtained.
在一个实施例中,所述根据所述待测舌象图像的舌象特征和所述待测问诊数据特征,获得所述待测个体的目标血液成分预测值的步骤包括:确定与所述待测舌象图像的舌象特征和所述待测问诊数据特征最接近的所述预收集舌象图像的舌象特征和问诊数据特征,获得所述待测个体的目标血液成分预测值。In one embodiment, the step of obtaining the predicted value of the target blood component of the individual to be tested according to the tongue image features of the tongue image image to be tested and the characteristics of the data to be tested includes: The tongue characteristics of the tongue image to be tested are closest to the tongue characteristics of the pre-collected tongue image and the characteristics of the consultation data, and the predicted value of the target blood component of the individual to be tested is obtained. .
例如,将待测舌象图像的舌象特征与预收集舌象图像的舌象特征进行对比,将待测问诊数据特征与问诊数据特征进行对比,基于预收集舌象图像的舌象特征与所述目标血液成分数据的对应关系,基于问诊数据特征与所述目标血液成分数据的对应关系,进而获取目标血液成分预测值。例如,获取所述待测舌象图像的舌象特征,对比所述待测舌象图像的舌象特征与多个所述预收集舌象图像的舌象特征,确定与该待测舌象图像的舌象特征最接近的预收集舌象图像的舌象特征,对比待测问诊数据特征与多个问诊数据特征,确定与该待测问诊数据特征最接近的问诊数据特征,基于所述预收集舌象图像的舌象特征以及问诊数据特征与所述目标血液成分数据的对应关系,根据最接近的预收集舌象图像的舌象特征以及问诊数据特征获得目标血液成分预测值。For example, the tongue features of the tongue image to be tested are compared with the tongue features of the pre-collected tongue images, and the features of the inquiries data to be tested are compared with the features of the inquiries, based on the tongue features of the pre-collected tongue images The corresponding relationship with the target blood component data is based on the corresponding relationship between the characteristics of the inquiries data and the target blood component data, and then the predicted value of the target blood component is obtained. For example, acquiring the tongue characteristics of the tongue image to be measured, comparing the tongue characteristics of the tongue image to be measured with the tongue characteristics of the plurality of pre-collected tongue images, and determining the tongue characteristics of the tongue image to be measured. The tongue image features of the pre-collected tongue images that are closest to the tongue image features of the The corresponding relationship between the tongue features of the pre-collected tongue images and the features of the interview data and the target blood component data, and the target blood component prediction is obtained according to the tongue features of the closest pre-collected tongue images and the features of the interview data. value.
当预收集舌象图像和目标血液成分数据的样本数量较少时,例如,通过待测舌象图像的舌象特征,获得与该待测舌象图像的舌象特征最接近的预收集舌象图像的舌象特征,通过待测问诊数据特征,获得与该待测问诊数据特征最接近的问诊数据特征,通过该预收集舌象图像的舌象特征和问诊数据特征获得对应的目标血液成分数据,以该目标血液成分数据为目标血液成分预测值。例如,当预收集舌象图像和问诊数据的样本数量小于预设阈值时,通过待测舌象图像的舌象特征和待测问诊数据特征,获得与该待测舌象图像的舌象特征以及和待测问诊数据特征最接近的预收集舌象图像的舌象特征和问诊数据特征,随后通过该预收集舌象图像的舌象特征和问诊数据特征获得对应的目标血液成分数据,以该目标血液成分数据为目标血液成分预测值。When the number of samples of the pre-collected tongue image and target blood component data is small, for example, the pre-collected tongue image that is closest to the tongue characteristics of the tongue image to be tested is obtained through the tongue characteristics of the tongue image to be tested. The tongue image feature of the image, through the feature of the consultation data to be tested, obtains the feature of the consultation data that is closest to the feature of the consultation data to be tested, and obtains the corresponding tongue image feature and the feature of the consultation data through the pre-collected tongue image feature. The target blood component data is used as the target blood component prediction value. For example, when the number of samples of pre-collected tongue image and consultation data is less than a preset threshold, a tongue image corresponding to the tongue image to be tested is obtained by using the tongue image features of the tongue image to be tested and the characteristics of the consultation data to be tested. characteristics, and the tongue characteristics and interrogation data characteristics of the pre-collected tongue image that are closest to the characteristics of the interrogation data to be tested, and then obtain the corresponding target blood components through the tongue characteristics and interrogation data characteristics of the pre-collected tongue image The target blood component data is used as the target blood component prediction value.
本实施例中,由于预收集舌象图像和目标血液成分数据的样本数量较少,且舌象特征不能准确量化,因此,舌象特征之间的变化并不是线性的,由此,由待测舌象图像的舌象特征并不能直接获得目标血液成分预测值,需首先获取与待测舌象图像的舌象特征最接近的预收集舌象图像的舌象特征作为参考,并以此获得对应的目标血液成分数据,进而以该目标血液成分数据作为目标血液成分预测值,从而提高目标血液成分预测值的获取的准确性。In this embodiment, since the number of samples of pre-collected tongue image and target blood component data is small, and the tongue features cannot be accurately quantified, the changes between the tongue features are not linear. The tongue characteristics of the tongue image cannot directly obtain the predicted value of the target blood components. It is necessary to first obtain the tongue characteristics of the pre-collected tongue images that are closest to the tongue characteristics of the tongue image to be tested as a reference, and then obtain the corresponding tongue characteristics. The target blood component data is obtained, and the target blood component data is further used as the target blood component prediction value, so as to improve the accuracy of acquiring the target blood component prediction value.
当预收集舌象图像和目标血液成分数据的样本数量较多时,例如,通过待测舌象图像的舌象特征和待测问诊数据特征,获得与该待测舌象图像的舌象特征和待测问诊数据特征最接近的目标血液成分数据,以该目标血液成分数据为目标血液成分预测值。例如,当预收集舌象图像和问诊数据的样本数量大于预设阈值时,通过待测舌象图像的舌象特征和待测问诊数据特征,获得与该待测舌象图像的舌象特征和待测问诊数据特征最接近的目标血液成分数据,以该目标血液成分数据为目标血液成分预测值。本实施例中,由于预收集舌象图像和问诊数据的样本数量较大,因此,舌象图像的舌象特征之间的变化可以呈线性呈现,因此,则可根据该待测舌象图像的舌象特征和待测问诊数据特征确定最接近的目标血液成分数据,以该目标血液成分数据为目标血液成分预测值,从而有效提高目标血液成分预测值的获取效率,且使得目标血液成分预测值的获取更为准确。When the number of samples of pre-collected tongue image and target blood component data is large, for example, through the tongue image features of the tongue image to be tested and the characteristics of the consultation data to be tested, the tongue image features and the characteristics of the tongue image to be tested are obtained. For the target blood component data with the closest characteristics of the data to be tested, the target blood component data is used as the predicted value of the target blood component. For example, when the number of samples of pre-collected tongue images and consultation data is greater than a preset threshold, a tongue image corresponding to the tongue image to be tested is obtained through the tongue characteristics of the tongue image to be measured and the characteristics of the consultation data to be measured. The target blood component data whose characteristics are the closest to the characteristics of the consultation data to be tested are used as the target blood component prediction value. In this embodiment, since the number of samples of pre-collected tongue image and consultation data is relatively large, the changes between the tongue characteristics of the tongue image can be presented linearly. Therefore, according to the tongue image to be tested, the The tongue image features and the characteristics of the data to be tested are used to determine the closest target blood component data, and the target blood component data is used as the target blood component prediction value, so as to effectively improve the acquisition efficiency of the target blood component prediction value, and make the target blood component Obtaining predicted values is more accurate.
在一个实施例中,所述获取目标血液成分数据和预收集舌象图像的步骤包括:获取与所述目标血液成分数据对应的所述问诊数据;获取人脸图像;解析所述人脸图像,获取所述预收集舌象图像。In one embodiment, the step of acquiring target blood component data and pre-collecting the tongue image includes: acquiring the consultation data corresponding to the target blood component data; acquiring a face image; parsing the face image , to obtain the pre-collected tongue image.
例如,获取与所述目标血液成分数据对应的所述问诊数据;获取与所述目标血液成分数据对应的个体的人脸图像;解析所述人脸图像,获取所述预收集舌象图像。For example, the consultation data corresponding to the target blood component data is obtained; the face image of the individual corresponding to the target blood component data is obtained; the face image is analyzed to obtain the pre-collected tongue image.
例如,使用专利公开号CN106859595A所公开的方法,通过摄像头检测人脸;当检测到人脸时,获取人脸图像;解析所述人脸图像,获取口部位置;根据所述口部位置获取预收集舌象图像。For example, using the method disclosed in Patent Publication No. CN106859595A, a camera is used to detect a face; when a face is detected, a face image is obtained; the face image is parsed to obtain the position of the mouth; Collect tongue images.
具体地,本步骤中,摄像头实时检测人脸,即该摄像头处于工作状态,例如,该摄像头处于拍摄状态,又如,该摄像头处于拍摄视频状态,应该理解的,视频为多个连续图像,即视频为动态图像。通过摄像头拍摄到的图像,检测图像中是否包含人脸,或者检测图像中的人脸是否正对摄像头。例如,采用HAAR-Like特征算法检测人脸,采用HAAR-Like特征算法检测图像中的人脸是否正对摄像头。例如,检测应用(App)是否开启,当检测到应用开启时,开启摄像头,通过摄像头检测人脸。具体地,应用为终端上的应用软件。例如,该终端为移动终端,例如,该移动终端为手机,例如,该移动终端为平板电脑。Specifically, in this step, the camera detects the face in real time, that is, the camera is in a working state, for example, the camera is in a shooting state, and for example, the camera is in a video shooting state, it should be understood that the video is a plurality of continuous images, namely Videos are dynamic images. Through the image captured by the camera, it is detected whether the image contains a face, or whether the face in the image is facing the camera. For example, the HAAR-Like feature algorithm is used to detect faces, and the HAAR-Like feature algorithm is used to detect whether the face in the image is facing the camera. For example, to detect whether the application (App) is open, when it is detected that the application is open, the camera is turned on, and the face is detected through the camera. Specifically, the application is application software on the terminal. For example, the terminal is a mobile terminal, for example, the mobile terminal is a mobile phone, for example, the mobile terminal is a tablet computer.
当检测到摄像头拍摄的图像中包含人脸,或者检测到摄像头拍摄的图像中的人脸正对于摄像头,则获取人脸图像。例如,拍摄人脸,获取人脸图像,例如,实时拍摄人脸,获取多个人脸图像,例如,实时拍摄人脸视频,获取多个人脸图像,本步骤中,确定了用户的人脸正对摄像头,此时,获取用户的人脸图像,例如,当检测到人脸时,拍摄人脸,获取人脸图像。例如,当检测到人脸时,开启闪光灯,拍摄人脸,获取人脸图像,开启闪光灯有利于拍摄的照片更为清晰。When it is detected that the image captured by the camera contains a human face, or it is detected that the human face in the image captured by the camera is facing the camera, a face image is acquired. For example, photographing a face, obtaining a face image, for example, photographing a face in real time, obtaining multiple face images, for example, photographing a face video in real time, obtaining multiple face images, in this step, it is determined that the user's face is facing The camera, at this time, obtains a face image of the user, for example, when a face is detected, it shoots the face and obtains the face image. For example, when a human face is detected, turn on the flash, photograph the face, and obtain an image of the face, and turning on the flash is beneficial for clearer photos.
对获取到的人脸图像进行解析,获取人脸上口部的位置,该口部位置即人脸上嘴巴的位置。例如,采用HAAR-Like特征算法解析所述人脸图像,获取口部位置,例如,采用HAAR-Like特征算法对人脸图像进行人脸各部位的侦测,识别并确认口部的位置,获取所述口部位置。The obtained face image is parsed to obtain the position of the mouth on the face, where the mouth position is the position of the mouth on the face. For example, the HAAR-Like feature algorithm is used to analyze the face image, and the position of the mouth is obtained. the mouth position.
当获取到口部位置后,对该口部位置对应的区域进行拍摄,生成舌象图像。具体地,该口部位置为人体嘴巴对应的位置,对该位置进行拍摄能够精确对准用户的舌头,进而能够精确获取舌象图像。After the mouth position is acquired, the area corresponding to the mouth position is photographed to generate a tongue image. Specifically, the position of the mouth is the position corresponding to the human mouth, and shooting the position can accurately align the user's tongue, and then can accurately acquire the tongue image image.
本实施例中,通过摄像头检测人脸时拍摄获取人脸图像,并解析人脸图像获取到脸部的口部位置,进而自动获取口部的舌象图像,使得舌象图像获取更为便捷,在用户使用后摄像头进行拍摄时,无需用户选择对齐口部,且无需用户根据拍摄的图像调整姿势,使得舌象头像更为准确,便于用户的使用。In this embodiment, a face image is captured and obtained by a camera when a face is detected, and the position of the mouth of the face is obtained by analyzing the face image, and then the tongue image of the mouth is automatically obtained, so that the acquisition of the tongue image is more convenient. When the user uses the rear camera to shoot, there is no need for the user to choose to align the mouth, and there is no need for the user to adjust the posture according to the captured image, so that the tongue portrait is more accurate and convenient for the user to use.
例如,一种血液中糖化血红蛋白成分值预测方法也称为一种基于机器学习的血液中糖化血红蛋白成分值预测方法,也可以称为一种基于机器学习以舌象和问诊资料对血液成分值进行预测的方法,请结合图2C,其包括如下步骤:For example, a method for predicting the value of glycated hemoglobin in blood is also called a method for predicting the value of glycated hemoglobin in blood based on machine learning. The method for prediction, please refer to Figure 2C, which includes the following steps:
步骤一,采集多个目标血液成分及相对应的预收集舌象图像和问诊数据,作为训练数据输入并存储。Step 1: Collect multiple target blood components and corresponding pre-collected tongue images and consultation data, input and store them as training data.
本实施例中,目标血液成分即目标血液成分数据。In this embodiment, the target blood component is the target blood component data.
步骤二,将对应目标血液成分、预收集舌象图像和问诊数据整合为一个数据记录。Step 2: Integrate the corresponding target blood components, pre-collected tongue images and consultation data into one data record.
即每一对应的目标血液成分、预收集舌象图像和问诊数据整合为一个数据记录,多个目标血液成分、预收集舌象图像和问诊数据整合为多个数据记录。That is, each corresponding target blood component, pre-collected tongue image and consultation data are integrated into one data record, and multiple target blood components, pre-collected tongue image and consultation data are integrated into multiple data records.
步骤三,将多个数据记录整合为数据矩阵,将数据矩阵导入机器学习模型的存储模块中。Step 3: Integrate the multiple data records into a data matrix, and import the data matrix into the storage module of the machine learning model.
例如,将多个目标血液成分、预收集舌象图像和问诊数据整合为数据矩阵,将数据矩阵导入机器学习模型的存储模块中。For example, multiple target blood components, pre-collected tongue images and consultation data are integrated into a data matrix, and the data matrix is imported into the storage module of the machine learning model.
步骤四,以数据矩阵为基础,对深度神经网络进行训练。训练方法如下:The fourth step is to train the deep neural network based on the data matrix. The training method is as follows:
a. 设定机器学习基本框架,将多个目标血液成分、预收集舌象图像和问诊数据按照数据特征建立包括输入层、至少一层隐层和输出层的数据模型。输入层包含预收集舌象图像与问诊数据;输出层包含所对应的血液成分估算值,每个隐层包含若干个与上一层输出值具有映射对应关系的节点。a. Set the basic framework of machine learning, and build a data model including an input layer, at least one hidden layer and an output layer according to the data characteristics of multiple target blood components, pre-collected tongue images and interrogation data. The input layer contains pre-collected tongue images and interrogation data; the output layer contains the corresponding estimated blood components, and each hidden layer contains several nodes that have a mapping relationship with the output values of the previous layer.
b. 每个节点采用数学方程建立该节点的数据模型,采用人工或随机方法预设所述数学方程中的相关参数值,输入层中各节点的输入值为所述的数据特征,各隐层及输出层中各节点的输入值为上层的输出值,每层中各节点的输出值为本节点经所述数学方程运算后所得的值。b. Each node uses a mathematical equation to establish the data model of the node, and uses manual or random methods to preset the relevant parameter values in the mathematical equation. The input value of each node in the input layer is the data feature, and each hidden layer The input value of each node in the output layer is the output value of the upper layer, and the output value of each node in each layer is the value obtained by this node after the mathematical equation is operated.
c. 初始化所述参数值Ai,将所述输出层中各节点的输出值与对应节点的目标血液成分比对,反复修正各节点的所述参数值A i,依次循环,最终获得使所述输出层中各节点的输出值生成与血液成分估算值相似度为局部最大时的输出值对应的各节点中的参数值Ai。c. Initialize the parameter value A i , compare the output value of each node in the output layer with the target blood component of the corresponding node, repeatedly correct the parameter value A i of each node, and cycle in turn, and finally obtain the The output value of each node in the output layer generates the parameter value A i in each node corresponding to the output value when the blood component estimated value similarity is the local maximum.
步骤五,将获取的预收集舌象图像和问诊资料导入该机器学习模型中,对血液成分估算值进行预测分析;
步骤六,由该机器学习模型输出与所述特定血液成分值的结果。Step 6: The machine learning model outputs the result of the specific blood component value.
在一个实施例中,以问卷形式收集未经专业知识或检查便可由所述对象提供的个人健康数据和自觉症状。In one embodiment, personal health data and subjective symptoms that can be provided by the subject without expertise or examination are collected in the form of a questionnaire.
在一个实施例中,对所述参数值Ai进行优化的方法为无监督学习方法。In one embodiment, the method for optimizing the parameter value A i is an unsupervised learning method.
在一个实施例中,对所述参数值Ai进行优化的方法为有监督学习方法。In one embodiment, the method for optimizing the parameter value A i is a supervised learning method.
在一个实施例中,所述数学方程为参数数学方程或非参数数学方程,其中,参数数学方程可为线性模型、神经元模型或卷积运算,非参数数学方程可为极值运算方程。卷积模型设定方式如下:In one embodiment, the mathematical equation is a parametric mathematical equation or a nonparametric mathematical equation, wherein the parametric mathematical equation can be a linear model, a neuron model or a convolution operation, and the nonparametric mathematical equation can be an extreme value operation equation. The convolution model is set as follows:
其中y是所述输出层中的血液成分数据,维度为Mn,X是训练素材数据,维度为M0,f1到fn为设定的每一层运算方程,而每一层方程f1的维度为Mi-1→ M i,如第一层f1就是将维度为M0的X转换成维度为M1的输出Z1,而Z1则成为第二层方程f2的输入,以此类推,其中,每一层模型fi有与之相匹配的参数组Ai。where y is the blood component data in the output layer, the dimension is M n , X is the training material data, the dimension is M 0 , f 1 to f n are the set operation equations of each layer, and each layer equation f The dimension of 1 is M i-1 → M i . For example, the first layer f 1 converts X with dimension M 0 into output Z 1 with dimension M 1 , and Z 1 becomes the input of the second layer equation f 2 , and so on, where each layer of model f i has a matching parameter set A i .
在一个实施例中,所述舌象图像以带镜头的移动智能装置进行收集,所述问诊数据以既定结构的电子问卷进行收集。In one embodiment, the tongue image is collected by a mobile smart device with a lens, and the consultation data is collected by an electronic questionnaire with a predetermined structure.
下面是一个具体实施例:The following is a specific example:
本实施例中,具体以糖化血红蛋白值为例,作为问诊数据采集的其中一个实施案例:In this embodiment, the glycated hemoglobin value is taken as an example, as one of the implementation cases of consultation data collection:
血糖浓度的变化除了会引起糖化血红蛋白值的变化,也会引起人体身体状态的变化,而这些变化会通过自觉症状反映出来。另外,人体的身体状态变化也可能与年龄、性别、身高、体质、所患疾病等有关。具体地,在糖化血红蛋白值预测的实施案例中,该问诊数据为个人的一般可以自己填写的健康数据,例如,该问诊数据为个人的年龄、性别、身高、体质、已知所患疾病等资料;又例如,该问诊数据为个人的自觉症状,包括是否有口干,是否有尿频,是否有视力模糊等。例如,该问诊数据由用户输入获得。例如,获取输入至问诊问卷上的问诊数据。例如,获取输入至计算机的问诊数据。本实施例中,通过预设问诊问卷的问题,使得用户能够直接对应问诊问卷上的问题进行解答,进而获取到用户的问诊数据,有效提高问诊数据的获取效率及其准确性。Changes in blood glucose concentration will not only cause changes in the glycated hemoglobin value, but also cause changes in the physical state of the human body, and these changes will be reflected through subjective symptoms. In addition, changes in the physical state of the human body may also be related to age, gender, height, physique, and diseases. Specifically, in the implementation case of glycated hemoglobin value prediction, the consultation data is the health data of the individual that can generally be filled in by oneself, for example, the consultation data is the individual's age, gender, height, physique, and known diseases. Other data; another example, the consultation data is the individual's subjective symptoms, including whether there is dry mouth, whether there is frequent urination, whether there is blurred vision, etc. For example, the consultation data is obtained by user input. For example, the consultation data entered on the consultation questionnaire is acquired. For example, to obtain the data of the consultation entered into the computer. In this embodiment, by presetting the questions of the consultation questionnaire, the user can directly answer the questions on the consultation questionnaire, thereby obtaining the user's consultation data, which effectively improves the efficiency and accuracy of the obtaining of the consultation data.
问诊数据的问诊问卷如图6所示,根据该问诊数据获得问诊数据特征,该问诊数据特征即为将问诊的内容向量化,其向量化后的值即问诊数据特征如图7所示,获得问诊数据的向量化后的值即获得问诊数据特征,问诊数据特征如如图7中Q1-Q35列所示。The consultation questionnaire of the consultation data is shown in Figure 6. The consultation data feature is obtained according to the consultation data. The consultation data feature is the vectorization of the content of the consultation, and the vectorized value is the consultation data feature. As shown in FIG. 7 , by obtaining the vectorized value of the consultation data, the features of the consultation data are obtained, and the features of the consultation data are shown in the columns Q1-Q35 in FIG. 7 .
本实施例中,还获取预收集舌象图像。获取预收集舌象图像,该预收集舌象图像如图8所示,随后对预收集舌象图像进行处理,对预收集舌象图像的处理采用步骤206中的方法,将预收集图像中的舌头部分截取,而图像中的其他部分则采用涂黑或者阴影遮蔽,截取处理后图像如图9所示。所述处理后图像向量化后的值即为舌象图像特征,如图7的0-191列所示。In this embodiment, pre-collected tongue images are also acquired. Acquire a pre-collected tongue image, the pre-collected tongue image is shown in Figure 8, then process the pre-collected tongue image, adopt the method in
对所述目标血液成分数据、所述预收集舌象图像和所述问诊数据进行预处理;基于机器学习模型,解析所述预收集舌象图像和所述问诊数据,获取所述预收集舌象图像的舌象特征和问诊数据特征,建立预测模型。Preprocessing the target blood component data, the pre-collected tongue image and the consultation data; based on a machine learning model, parse the pre-collected tongue image and the interview data to obtain the pre-collected image Tongue characteristics and interrogation data characteristics of tongue images are used to establish prediction models.
例如,具体地,把所收集的目标血液成分值,例如糖化血红蛋白值,及相对应的问诊数据和预收集舌象图像,组成数据集,把数据集分为训练数据集和检验数据,如图2C的流程图所示,以检验模型的准确性。其中,通过测试多个机器分类器的结果,得出最优化的模型,即优化的机器分类器模型。如图10所示,为测试多个机器分类器的结果。其中随机森林(Random Forest)的准确率最高 (0.897638)。For example, specifically, the collected target blood component values, such as the glycated hemoglobin value, and the corresponding consultation data and pre-collected tongue images, form a data set, and the data set is divided into training data set and test data, such as The flowchart in Figure 2C is shown to verify the accuracy of the model. Among them, by testing the results of multiple machine classifiers, an optimized model is obtained, that is, an optimized machine classifier model. Figure 10 shows the results of testing multiple machine classifiers. Among them, Random Forest has the highest accuracy (0.897638).
随后,获取待测个体的待测舌象图像和待测问诊数据;将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。Then, the tongue image to be tested and the consultation data to be tested of the individual to be tested are acquired; the tongue image to be tested and the consultation data to be tested of the individual to be tested are input into a prediction model, based on the prediction The model analysis obtains the predicted value of the target blood component of the individual to be tested.
通过获取多个待测个体的待测舌象图像和待测问诊数据,并将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至预测模型,基于所述预测模型解析获得多个所述待测个体的目标血液成分预测值。By acquiring the tongue images to be tested and the consultation data to be tested of a plurality of individuals to be tested, and inputting the tongue images to be tested and the consultation data to be tested of the individuals to be tested into the prediction model, based on the The prediction model is analyzed to obtain a plurality of predicted values of target blood components of the individual to be tested.
具体地,对于正常人而言,糖化血红蛋白(HbA1c)值的正常范围在4%和5.6%之间。糖化血红蛋白值介于5.7%和6.4%之间意味着受试者患糖尿病的可能性增高,称糖尿病前期(prediabetes)。 当糖化血红蛋白值达到6.5%或更高的水平时,就意味着受试者患有糖尿病(diabetes)。图11为基于所述预测模型解析获得所述待测个体的目标血液成分预测值与待测个体的实际血液成分值的对比结果图。其中,编号为待测个体的编号,糖化血红蛋白值为待测个体的实际的糖化血红蛋白值,真正标签为该待测个体的糖尿病的判定的实际结果,预测糖化血红蛋白值即为待测个体的目标血液成分预测值,即通过上述方法预测的糖化血红蛋白值,误差百分率为预测糖化血红蛋白值与实际的糖化血红蛋白值之间的误差,预测标签为对待测个体的糖尿病的预测的结果。Specifically, for normal people, the normal range of glycated hemoglobin (HbA1c) values is between 4% and 5.6%. A glycated hemoglobin value between 5.7% and 6.4% means a subject has an increased likelihood of developing diabetes, known as prediabetes. When the glycated hemoglobin value reaches a level of 6.5% or higher, it means that the subject has diabetes. FIG. 11 is a diagram showing a comparison result between the predicted value of the target blood component of the individual to be tested and the actual blood component value of the individual to be tested obtained by analyzing the prediction model based on the prediction model. The number is the number of the individual to be tested, the glycated hemoglobin value is the actual glycated hemoglobin value of the individual to be tested, the real label is the actual result of the determination of diabetes of the individual to be tested, and the predicted glycated hemoglobin value is the target of the individual to be tested. The predicted value of blood components, that is, the glycated hemoglobin value predicted by the above method, the error percentage is the error between the predicted glycated hemoglobin value and the actual glycated hemoglobin value, and the prediction label is the predicted result of the diabetes of the individual to be tested.
例如,通过多个待测个体的样本的解析,获得多个糖化血红蛋白测值。通过对比待测个体的糖化血红蛋白预测值与待测个体的实际糖化血红蛋白值,获得糖化血红蛋白预测值的准确率,结果如图12的标准混淆矩阵图所示。图12为基于对糖化血红蛋白范围预设的分类,得出待测个体的目标血液成分预测值的所属类别。其中,图12中的标准混淆矩阵图显示了优化的机器分类器对测试样本的结果,横坐标为样本的目标血液成分预测值(预测标签),纵坐标为样本的实际的血液成分值(真正标签),而横坐标和纵坐标都分为三个区间,正常、糖尿病和糖尿病前期,其中,正常即为非糖尿病患者,其目标血液成分预测值的糖化血红蛋白值正常,糖尿病对应的是糖尿病患者,其目标血液成分预测值的糖化血红蛋白值偏高,糖尿病前期对应的是有糖尿病发病倾向的个体,其目标血液成分预测值的糖化血红蛋白值有偏高的倾向。For example, a plurality of glycated hemoglobin measurements are obtained by analyzing samples of a plurality of individuals to be tested. By comparing the predicted glycated hemoglobin value of the individual to be tested with the actual glycated hemoglobin value of the tested individual, the accuracy of the predicted value of glycated hemoglobin is obtained, and the result is shown in the standard confusion matrix diagram in FIG. 12 . FIG. 12 shows the category to which the predicted value of the target blood component of the individual to be tested belongs based on the preset classification of the glycated hemoglobin range. Among them, the standard confusion matrix diagram in Figure 12 shows the results of the optimized machine classifier on the test sample, the abscissa is the predicted value of the target blood component (predicted label) of the sample, and the ordinate is the actual blood component value of the sample (true Label), and the abscissa and ordinate are divided into three intervals, normal, diabetic and pre-diabetic. Among them, normal is a non-diabetic patient, the glycated hemoglobin value of the predicted value of the target blood component is normal, and diabetes corresponds to a diabetic patient , the glycated hemoglobin value of the predicted value of the target blood component is high, and the prediabetes corresponds to an individual with a tendency to develop diabetes, and the glycated hemoglobin value of the predicted value of the target blood component has a tendency to be high.
这样,每一个坐标区间表示该区间内目标血液成分预测值的准确率。比如,横坐标区间为糖尿病,纵坐标为糖尿病,对应的区间的数值为0.97,则表明多个待测个体的糖化血红蛋白预测值与实际的糖尿病糖化血红蛋白匹配率,比如,待测个体数量为200,而糖化血红蛋白预测值与实际的血液成分值的偏差在预设范围内的待测个体的个数为194个,则表明目标血液成分预测值的准确率为0.97。其他区间的数值以此类推,本实施例中不累赘描述。In this way, each coordinate interval represents the accuracy of the predicted value of the target blood component in the interval. For example, if the horizontal axis is diabetes, the vertical axis is diabetes, and the value of the corresponding interval is 0.97, it means that the predicted value of glycated hemoglobin of multiple individuals to be tested matches the actual diabetic glycated hemoglobin. For example, the number of individuals to be tested is 200 , and the number of individuals to be tested whose deviation between the predicted value of glycated hemoglobin and the actual blood component value is within the preset range is 194, indicating that the accuracy of the predicted value of the target blood component is 0.97. Numerical values in other intervals are deduced by analogy, which is not described redundantly in this embodiment.
由图12可知,通过上述血液中糖化血红蛋白成分值预测方法,能够以较高准确率预测出个体的糖化血红蛋白值,及其临床所述类别,进而辅助对糖尿病患者的判断,有利于提高病人的疾病诊断效率,具有价格低廉,应用快捷方便的特点。It can be seen from Fig. 12 that the above-mentioned method for predicting the glycated hemoglobin composition value in blood can predict the glycated hemoglobin value of an individual and its clinical classification with a high accuracy rate, thereby assisting the judgment of diabetic patients, which is conducive to improving the patient's glycated hemoglobin value. The disease diagnosis efficiency has the characteristics of low price and quick and convenient application.
在一个实施例中,如图3所示,提供了一种血液中糖化血红蛋白成分值预测装置,包括:待测数据获取模块302和预测值获得模块304,其中:In one embodiment, as shown in FIG. 3 , a device for predicting the value of glycated hemoglobin in blood is provided, including: a
待测数据获取模块302用于获取待测个体的待测舌象图像和待测问诊数据。The
预测值获得模块304用于将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。The predicted
在一个实施例中,还包括:血液成分数据获取模块、采集模块、模型输入模块和预测模型获得模块,其中:In one embodiment, it further includes: a blood component data acquisition module, a collection module, a model input module and a prediction model acquisition module, wherein:
血液成分数据获取模块用于收集目标血液成分数据。The blood component data acquisition module is used to collect target blood component data.
采集模块用于收集与所述目标血液成分数据对应的问诊数据和预收集舌象图像。The acquisition module is used to collect the consultation data corresponding to the target blood component data and the pre-collected tongue image.
模型输入模块用于对所述目标血液成分数据、所述预收集舌象图像和所述问诊数据进行预处理。The model input module is used for preprocessing the target blood component data, the pre-collected tongue image and the interrogation data.
预测模型获得模块用于基于机器学习模型,解析所述预收集舌象图像和所述问诊数据,获取所述预收集舌象图像的舌象特征和问诊数据特征,根据所述预收集舌象图像的舌象特征、问诊数据特征和目标血液成分数据训练获得所述预测模型。The prediction model obtaining module is used to analyze the pre-collected tongue image and the interrogation data based on the machine learning model, obtain the tongue characteristics and interrogation data characteristics of the pre-collected tongue image, and according to the pre-collected tongue image The prediction model is obtained by training on the tongue image features of the image, the features of the consultation data and the target blood component data.
在一个实施例中,所述预测值获得模块包括:待测数据输入单元、特征解析获得单元和预测值获得单元,其中:In one embodiment, the predicted value obtaining module includes: a data input unit to be measured, a feature analysis obtaining unit and a predicted value obtaining unit, wherein:
待测数据输入单元用于将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的所述预测模型。The data input unit to be tested is configured to input the image of the tongue image to be tested and the data of the medical consultation to be tested of the individual to be tested into the prediction model obtained by training.
特征解析获得单元用于基于所述预测模型,解析所述待测舌象图像和所述待测问诊数据,获取所述待测舌象图像的舌象特征和所述待测问诊数据特征。The feature analysis and obtaining unit is configured to analyze the tongue image to be tested and the consultation data to be tested based on the prediction model, and obtain the tongue features of the tongue image to be tested and the features of the consultation data to be tested .
预测值获得单元用于根据所述待测舌象图像的舌象特征和所述待测问诊数据特征,获得所述待测个体的目标血液成分预测值。The predicted value obtaining unit is configured to obtain the predicted value of the target blood component of the individual to be measured according to the characteristics of the tongue image of the image to be measured and the characteristics of the data to be measured.
在一个实施例中,所述预测值获得单元还用于确定与所述待测舌象图像的舌象特征和所述待测问诊数据特征最接近的所述预收集舌象图像的舌象特征和问诊数据特征,获得所述待测个体的目标血液成分预测值。In one embodiment, the predicted value obtaining unit is further configured to determine a tongue image of the pre-collected tongue image that is closest to the tongue image feature of the tongue image image to be tested and the characteristics of the interview data to be tested. The characteristics and the characteristics of the interview data are used to obtain the predicted value of the target blood component of the individual to be tested.
在一个实施例中,所述采集模块包括:问诊数据获取单元、人脸图像获取单元和预收集舌象图像获取单元,其中:In one embodiment, the acquisition module includes: an interrogation data acquisition unit, a face image acquisition unit, and a pre-collected tongue image acquisition unit, wherein:
问诊数据获取单元用于获取与所述目标血液成分数据对应的所述问诊数据。The interrogation data acquisition unit is configured to acquire the interrogation data corresponding to the target blood component data.
人脸图像获取单元用于获取人脸图像。The face image acquisition unit is used to acquire the face image.
预收集舌象图像获取单元解析所述人脸图像,获取所述预收集舌象图像。The pre-collected tongue image acquisition unit analyzes the face image to acquire the pre-collected tongue image.
在一个实施例中,所述机器学习模块还用于基于机器学习模型,解析多个所述预收集舌象图像,获取每一所述预收集舌象图像的舌象特征,建立各所述预收集舌象图像的舌象特征与所述目标血液成分数据的对应关系。In one embodiment, the machine learning module is further configured to parse a plurality of the pre-collected tongue images based on the machine learning model, obtain tongue characteristics of each of the pre-collected tongue images, and establish each of the pre-collected tongue images. The correspondence between the tongue features of the tongue image and the target blood component data is collected.
关于血液中糖化血红蛋白成分值预测装置的具体限定可以参见上文中对于血液中糖化血红蛋白成分值预测方法的限定,在此不再赘述。上述血液中糖化血红蛋白成分值预测装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitation of the device for predicting the glycated hemoglobin composition value in blood, reference may be made to the above limitation on the method for predicting the glycated hemoglobin composition value in blood, which will not be repeated here. Each module in the above-mentioned apparatus for predicting the value of glycated hemoglobin composition in blood can be implemented in whole or in part by software, hardware and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
例如,一种基于机器学习的血液中糖化血红蛋白成分值预测装置,包括可将舌象图像和问诊数据导入计算设备的输入模块以及分别或集中将舌象图像和问诊数据保存于本地装置或云端存储的存储模块。血液中糖化血红蛋白成分值预测装置还包括预先储存的机器学习训练的模块,将与所述舌象图像和问诊数据的血液成分值相匹配,并把该血液成分值输出给所生成的对象。所述输入模块包括摄像头以及驱动该摄像头的软件。所述输出装置包括移动智能装置。For example, a device for predicting the value of glycated hemoglobin in blood based on machine learning includes an input module that can import tongue image and consultation data into a computing device, and separately or centrally save the tongue image and consultation data in a local device or Storage module for cloud storage. The device for predicting the glycated hemoglobin component value in blood also includes a pre-stored module for machine learning training, which matches the blood component value of the tongue image and the consultation data, and outputs the blood component value to the generated object. The input module includes a camera and software for driving the camera. The output device includes a mobile smart device.
例如,一种基于机器学习的血液中糖化血红蛋白成分值预测装置,包括血液成分值预测模块以及多个信息交互模块。其中一个信息交互模块与所述舌象图像获取模块连接,用于获取舌象特征,并输出舌象特征,另外一个信息交互模块与舌象特征输出模块以及问诊数据输出模块连接,用于数据输入至血液成分值模型。For example, a device for predicting the value of glycated hemoglobin in blood based on machine learning includes a blood component value prediction module and a plurality of information interaction modules. One of the information interaction modules is connected to the tongue image acquisition module for acquiring tongue characteristics and outputting the tongue characteristics. Input to the blood component value model.
例如,基于机器学习的血液中糖化血红蛋白成分值预测装置包括血液成分值预测结果输出模块,该血液成分值预测结果输出模块根据舌象图像和问诊资料,通过血液成分值预测运算模型,生成血液成分值测算结果。For example, the device for predicting the value of glycated hemoglobin in blood based on machine learning includes a blood component value prediction result output module, the blood component value prediction result output module generates a blood Component value calculation results.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图4所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储血液成分值预测数据。该计算机设备的网络接口用于与服务器通过网络连接通信。该计算机程序被处理器执行时以实现一种血液中糖化血红蛋白成分值预测方法。In one embodiment, a computer device is provided, and the computer device may be a server, and its internal structure diagram may be as shown in FIG. 4 . The computer device includes a processor, memory, a network interface, and a database connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system, a computer program, and a database. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The computer device's database is used to store blood component value prediction data. The network interface of the computer device is used to communicate with the server through the network connection. The computer program, when executed by the processor, implements a method for predicting the value of glycated hemoglobin in blood.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图5所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种血液中糖化血红蛋白成分值预测方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等,还可以是摄像头,该摄像头用于采集舌象图像。In one embodiment, a computer device is provided, and the computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 5 . The computer equipment includes a processor, memory, a network interface, a display screen, and an input device connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system and a computer program. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The network interface of the computer device is used to communicate with an external terminal through a network connection. The computer program, when executed by the processor, implements a method for predicting the value of glycated hemoglobin in blood. The display screen of the computer equipment may be a liquid crystal display screen or an electronic ink display screen, and the input device of the computer equipment may be a touch layer covered on the display screen, or a button, a trackball or a touchpad set on the shell of the computer equipment , it can also be an external keyboard, touchpad or mouse, etc., and it can also be a camera, which is used to collect tongue images.
本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 5 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行计算机程序时实现以下步骤:In one embodiment, a computer device is provided, including a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
获取待测个体的待测舌象图像和待测问诊数据。Obtain the tongue image to be tested and the medical consultation data of the individual to be tested.
将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。The image of the tongue to be tested and the consultation data to be tested of the individual to be tested are input into the prediction model obtained by training, and the predicted value of the target blood component of the individual to be tested is obtained through analysis based on the prediction model.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, the processor further implements the following steps when executing the computer program:
收集目标血液成分数据。Collect target blood component data.
收集与所述目标血液成分数据对应的问诊数据和预收集舌象图像。Inquiry data and pre-collected tongue images corresponding to the target blood component data are collected.
对所述目标血液成分数据、所述预收集舌象图像和所述问诊数据进行预处理。The target blood component data, the pre-collected tongue image and the interview data are preprocessed.
基于机器学习模型,解析所述预收集舌象图像和所述问诊数据,获取所述预收集舌象图像的舌象特征和问诊数据特征,根据所述预收集舌象图像的舌象特征、问诊数据特征和目标血液成分数据训练获得所述预测模型。Based on the machine learning model, the pre-collected tongue image and the interview data are parsed, the tongue characteristics and the interview data of the pre-collected tongue image are obtained, and the tongue characteristics of the pre-collected tongue image are obtained , the characteristics of the interview data and the target blood component data are trained to obtain the prediction model.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, the processor further implements the following steps when executing the computer program:
将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的所述预测模型。The to-be-measured tongue image and the to-be-measured consultation data of the to-be-measured individual are input into the trained prediction model.
基于所述预测模型,解析所述待测舌象图像和所述待测问诊数据,获取所述待测舌象图像的舌象特征和所述待测问诊数据特征。Based on the prediction model, the tongue image to be tested and the consultation data to be tested are parsed, and the tongue image features of the tongue image to be tested and the features of the consultation data to be tested are acquired.
根据所述待测舌象图像的舌象特征和所述待测问诊数据特征,获得所述待测个体的目标血液成分预测值。According to the characteristics of the tongue image of the tongue image to be measured and the characteristics of the consultation data to be measured, the predicted value of the target blood component of the individual to be measured is obtained.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, the processor further implements the following steps when executing the computer program:
确定与所述待测舌象图像的舌象特征和所述待测问诊数据特征最接近的所述预收集舌象图像的舌象特征和问诊数据特征,获得所述待测个体的目标血液成分预测值。Determine the tongue features and the data features of the pre-collected tongue images that are closest to the features of the tongue images to be tested and the features of the data to be tested, and obtain the target of the individual to be tested Predictive value of blood components.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, the processor further implements the following steps when executing the computer program:
获取与所述目标血液成分数据对应的所述问诊数据。The consultation data corresponding to the target blood component data is acquired.
获取人脸图像。Get face images.
解析所述人脸图像,获取所述预收集舌象图像。Parse the face image to obtain the pre-collected tongue image.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:In one embodiment, a computer-readable storage medium is provided on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
获取待测个体的待测舌象图像和待测问诊数据。Obtain the tongue image to be tested and the medical consultation data of the individual to be tested.
将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的预测模型,基于所述预测模型解析获得所述待测个体的目标血液成分预测值。The image of the tongue to be tested and the consultation data to be tested of the individual to be tested are input into the prediction model obtained by training, and the predicted value of the target blood component of the individual to be tested is obtained through analysis based on the prediction model.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, the computer program further implements the following steps when executed by the processor:
收集目标血液成分数据。Collect target blood component data.
收集与所述目标血液成分数据对应的问诊数据和预收集舌象图像。Inquiry data and pre-collected tongue images corresponding to the target blood component data are collected.
对所述目标血液成分数据、所述预收集舌象图像和所述问诊数据进行预处理。The target blood component data, the pre-collected tongue image and the interview data are preprocessed.
基于机器学习模型,解析所述预收集舌象图像和所述问诊数据,获取所述预收集舌象图像的舌象特征和问诊数据特征,根据所述预收集舌象图像的舌象特征、问诊数据特征和目标血液成分数据训练获得所述预测模型。Based on the machine learning model, the pre-collected tongue image and the interview data are parsed, the tongue characteristics and the interview data of the pre-collected tongue image are obtained, and the tongue characteristics of the pre-collected tongue image are obtained , the characteristics of the interview data and the target blood component data are trained to obtain the prediction model.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, the computer program further implements the following steps when executed by the processor:
将所述待测个体的所述待测舌象图像和所述待测问诊数据输入至已训练获得的所述预测模型。The to-be-measured tongue image and the to-be-measured consultation data of the to-be-measured individual are input into the trained prediction model.
基于所述预测模型,解析所述待测舌象图像和所述待测问诊数据,获取所述待测舌象图像的舌象特征和所述待测问诊数据特征。Based on the prediction model, the tongue image to be tested and the consultation data to be tested are parsed, and the tongue image features of the tongue image to be tested and the features of the consultation data to be tested are acquired.
根据所述待测舌象图像的舌象特征和所述待测问诊数据特征,获得所述待测个体的目标血液成分预测值。According to the characteristics of the tongue image of the tongue image to be measured and the characteristics of the consultation data to be measured, the predicted value of the target blood component of the individual to be measured is obtained.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, the computer program further implements the following steps when executed by the processor:
确定与所述待测舌象图像的舌象特征和所述待测问诊数据特征最接近的所述预收集舌象图像的舌象特征和问诊数据特征,获得所述待测个体的目标血液成分预测值。Determine the tongue features and the data features of the pre-collected tongue images that are closest to the features of the tongue images to be tested and the features of the data to be tested, and obtain the target of the individual to be tested Predictive value of blood components.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, the computer program further implements the following steps when executed by the processor:
获取与所述目标血液成分数据对应的所述问诊数据。The consultation data corresponding to the target blood component data is acquired.
获取人脸图像。Get face images.
解析所述人脸图像,获取所述预收集舌象图像。Parse the face image to obtain the pre-collected tongue image.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink) DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage In the medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other medium used in the various embodiments provided in this application may include non-volatile and/or volatile memory. Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM) and so on.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. In order to make the description simple, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features It is considered to be the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810403962.XA CN110403611B (en) | 2018-04-28 | 2018-04-28 | Method, device, computer equipment and storage medium for predicting glycated hemoglobin composition value in blood |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810403962.XA CN110403611B (en) | 2018-04-28 | 2018-04-28 | Method, device, computer equipment and storage medium for predicting glycated hemoglobin composition value in blood |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110403611A CN110403611A (en) | 2019-11-05 |
CN110403611B true CN110403611B (en) | 2022-06-07 |
Family
ID=68357172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810403962.XA Active CN110403611B (en) | 2018-04-28 | 2018-04-28 | Method, device, computer equipment and storage medium for predicting glycated hemoglobin composition value in blood |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110403611B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111084609A (en) * | 2019-12-19 | 2020-05-01 | 东莞宇龙通信科技有限公司 | Tongue-based health diagnosis method, device, storage medium and electronic device |
CN113576475B (en) * | 2021-08-02 | 2023-04-21 | 浙江师范大学 | Deep learning-based contactless blood glucose measurement method |
CN114022502A (en) * | 2021-10-29 | 2022-02-08 | 平安科技(深圳)有限公司 | Hemogram information prediction method and device, electronic device, and storage medium |
CN115956878A (en) * | 2022-09-27 | 2023-04-14 | 循证华陀有限公司 | Data processing method, device, equipment and storage medium based on tongue image |
CN117649413A (en) * | 2024-01-30 | 2024-03-05 | 数据空间研究院 | Intestinal cancer deep learning auxiliary diagnosis method based on tongue picture of traditional Chinese medicine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101933809A (en) * | 2010-08-31 | 2011-01-05 | 天津大学 | Device and method for non-invasive measurement of blood components by multi-band reflectance spectroscopy |
JP2011239926A (en) * | 2010-05-18 | 2011-12-01 | Chiba Univ | Tongue surface texture photographing system |
CN103462591A (en) * | 2013-09-23 | 2013-12-25 | 上海中医药大学附属曙光医院 | Tongue diagnosis system for screening diabetes |
CN105117611A (en) * | 2015-09-23 | 2015-12-02 | 北京科技大学 | Determining method and system for traditional Chinese medicine tongue diagnosis model based on convolution neural networks |
CN106503479A (en) * | 2016-12-06 | 2017-03-15 | 郭福生 | A kind of Constitution Identification system and discrimination method |
CN106859595A (en) * | 2016-11-22 | 2017-06-20 | 张世平 | Tongue picture acquisition method, device and system |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3643033B2 (en) * | 1998-02-06 | 2005-04-27 | ウイスコンシン アラムナイ リサーチ フオンデーシヨン | Tactile output device placed on tongue |
US20090312817A1 (en) * | 2003-11-26 | 2009-12-17 | Wicab, Inc. | Systems and methods for altering brain and body functions and for treating conditions and diseases of the same |
US20060241718A1 (en) * | 2003-11-26 | 2006-10-26 | Wicab, Inc. | Systems and methods for altering brain and body functions and for treating conditions and diseases of the same |
WO2008052166A2 (en) * | 2006-10-26 | 2008-05-02 | Wicab, Inc. | Systems and methods for altering brain and body functions an treating conditions and diseases |
US7627085B2 (en) * | 2007-04-11 | 2009-12-01 | Searete Llc | Compton scattered X-ray depth visualization, imaging, or information provider |
WO2012035538A1 (en) * | 2010-09-16 | 2012-03-22 | Mor Research Applications Ltd. | Method and system for analyzing images |
WO2015114950A1 (en) * | 2014-01-30 | 2015-08-06 | コニカミノルタ株式会社 | Organ image capturing device |
CN104873172A (en) * | 2015-05-11 | 2015-09-02 | 京东方科技集团股份有限公司 | Apparatus having physical examination function, and method, display apparatus and system thereof |
CN106446533B (en) * | 2016-09-12 | 2023-12-19 | 北京和信康科技有限公司 | Human health data processing system and method thereof |
CN107863154A (en) * | 2017-12-05 | 2018-03-30 | 新绎健康科技有限公司 | Intelligent health detecting system, intelligent health detection mirror and intelligent health detection method |
-
2018
- 2018-04-28 CN CN201810403962.XA patent/CN110403611B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011239926A (en) * | 2010-05-18 | 2011-12-01 | Chiba Univ | Tongue surface texture photographing system |
CN101933809A (en) * | 2010-08-31 | 2011-01-05 | 天津大学 | Device and method for non-invasive measurement of blood components by multi-band reflectance spectroscopy |
CN103462591A (en) * | 2013-09-23 | 2013-12-25 | 上海中医药大学附属曙光医院 | Tongue diagnosis system for screening diabetes |
CN105117611A (en) * | 2015-09-23 | 2015-12-02 | 北京科技大学 | Determining method and system for traditional Chinese medicine tongue diagnosis model based on convolution neural networks |
CN106859595A (en) * | 2016-11-22 | 2017-06-20 | 张世平 | Tongue picture acquisition method, device and system |
CN106503479A (en) * | 2016-12-06 | 2017-03-15 | 郭福生 | A kind of Constitution Identification system and discrimination method |
Non-Patent Citations (1)
Title |
---|
脑出血急性期舌象和血液流变学相关性研究;符月琴;《广州中医药大学学报》;20091231;第16-19页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110403611A (en) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110403611B (en) | Method, device, computer equipment and storage medium for predicting glycated hemoglobin composition value in blood | |
US12272060B2 (en) | Method and system for determining concentration of an analyte in a sample of a bodily fluid, and method and system for generating a software-implemented module | |
CN111667890B (en) | Artificial intelligence-based medication recommendation method, device, equipment and storage medium | |
CN110197720A (en) | Prediction technique and device, storage medium, the computer equipment of diabetes | |
CN112419321B (en) | X-ray image identification method and device, computer equipment and storage medium | |
US11361435B2 (en) | Processing fundus images using machine learning models to generate blood-related predictions | |
CN110033858A (en) | A kind of tongue picture analysis method and its storage medium | |
CN112786203A (en) | Machine learning diabetic retinopathy morbidity risk prediction method and application | |
CN117617921B (en) | Intelligent blood pressure monitoring system and method based on Internet of things | |
CN118760973A (en) | A method for predicting intensive care needs of patients with cerebral hemorrhage based on multimodal fusion | |
Matabuena et al. | Hypothesis testing for matched pairs with missing data by maximum mean discrepancy: An application to continuous glucose monitoring | |
CN118629596B (en) | Psychological state analysis system and method for patients with multiple myeloma cardiac amyloidosis | |
CN117274185A (en) | Detection methods, detection model products, electronic equipment and computer storage media | |
Kumar et al. | Exploring multi-class stress detection using deep neural networks | |
Zhu et al. | PRISM: Leveraging prototype patient representations with feature-missing-aware calibration for EHR data sparsity mitigation | |
KR20230052231A (en) | Apparatus and method for analysys of measured spectrum | |
JP2023545704A (en) | Systems and methods for exposome clinical applications | |
CN115222169A (en) | Risk identification method and device, electronic equipment and storage medium | |
Kumar et al. | Machine Learning based Cardiac Disease Prediction-A Comparative Analysis | |
Zhuang et al. | Internet of things-assisted intelligent monitoring model to analyse the physical health condition | |
Rao et al. | BMI Estimation via Facial Image Analysis | |
Santoso et al. | Advancing Non-Invasive Glucose Prediction with Ontology-Integrated Explainable Ai | |
Gowthami et al. | Personalized diabetes diagnosis using machine learning and electronic health records | |
Reddy et al. | Personalized diabetes diagnosis using machine learning and electronic health records. | |
Omankwu et al. | ARTIFICIAL INTELLIGENCE FOR EARLY DETECTION OF DIABETES COMPLICATIONS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |