[go: up one dir, main page]

CN110395976B - 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法 - Google Patents

一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法 Download PDF

Info

Publication number
CN110395976B
CN110395976B CN201910779164.1A CN201910779164A CN110395976B CN 110395976 B CN110395976 B CN 110395976B CN 201910779164 A CN201910779164 A CN 201910779164A CN 110395976 B CN110395976 B CN 110395976B
Authority
CN
China
Prior art keywords
nitrate
nickel
aluminum
lithium
zinc ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910779164.1A
Other languages
English (en)
Other versions
CN110395976A (zh
Inventor
鞠林
时丽然
徐同帅
陈享铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Normal University
Original Assignee
Anyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Normal University filed Critical Anyang Normal University
Priority to CN201910779164.1A priority Critical patent/CN110395976B/zh
Publication of CN110395976A publication Critical patent/CN110395976A/zh
Application granted granted Critical
Publication of CN110395976B publication Critical patent/CN110395976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2616Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法,属于磁、电功能材料技术领域,目的在于提供一种利用溶胶‑凝胶法制备具有良好软磁和介电特性的锂铝共掺杂镍锌铁氧体陶瓷材料。以硝酸镍、硝酸锌、硝酸铁、硝酸锂和硝酸铝为原料,溶剂采用去离子水,按照化学元素摩尔比称取原料,配置成溶胶,水浴下排除有机物,得到前驱体粉末;量取镍锌铁氧体前驱体粉末,研磨,过筛、粘合造粒,制成厚度约1 mm,直径10 mm的陶瓷坯体,将坯体置于烧结炉中进行烧结、保温,获得同时具有高介电性和磁性的镍锌铁氧体陶瓷材料。本发明所用方法工艺简单,易于工业化生产,制备的陶瓷样品致密度高、颗粒均匀性好,磁、电性能优良。

Description

一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法
技术领域
本发明属于磁、电功能材料技术领域,具体涉及一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法。
背景技术
近年来,信息产业技术的快速发展促进了电子元器件朝着小型化以及多功能化的方向发展。同时,具有良好磁、电功能特性的元器件材料成为多功能材料研究热点。据此,小矫顽力、高饱和磁化强度、高电阻率材料的开发与利用成为软磁领域研究的关键。其中,镍锌铁氧体因其优越的软磁特性和介电性能越来越多的应用在发电机、变压器、电磁波吸收器等工业产业的关键领域。
目前,对于镍锌铁氧体的改性研究主要集中于制备方法的改进和材料成分的修饰与优化两方面。因此可以通过离子掺杂来实现其组分的改变,进而达到改变材料磁、电特性的目的。多数情况下,通过二价金属阳离子(如Cu2+,Mn2+,Co2+等)掺杂替代MFe2O4(尖晶石型铁氧体化学分子式,M一般为二价金属阳离子)中M所处的位置,实现磁、电性能的优化。
发明内容
本发明的目的在于提供一种利用溶胶-凝胶法制备具有良好软磁和介电特性的锂铝共掺杂镍锌铁氧体陶瓷材料。其陶瓷片致密度高、晶粒均匀生长。
本发明采用如下技术方案:
一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法,包括如下步骤:
第一步,锂铝共掺杂的镍锌铁氧体前驱体粉末的制备
(1)按照镍、锌、铁、锂、铝及柠檬酸的摩尔比为0.5-x:0.5-x:2:x:x:6的比例称取相应质量的硝酸镍、硝酸锌、硝酸铁、硝酸锂、硝酸铝及柠檬酸,其中,0.000≤x≤0.100;
(2)将硝酸镍、硝酸锌和硝酸铁依次充分溶解在去离子水中并持续搅拌形成A溶液;
(3)以去离子水为溶剂,将硝酸锂和硝酸铝充分溶于其中并持续搅拌形成B溶液;
(4)将B溶液全部缓慢加入A溶液中,搅拌混合溶液至均匀,形成C溶液;
(5)向C溶液中先后加入柠檬酸和聚乙二醇,置于80℃水浴锅中搅拌0.5h,直至形成凝胶;
(6)将形成的凝胶烘干,得到干凝胶粉,将干凝胶粉置于电炉上,初步排除有机物,得到细微粉末,研磨均匀,置于马弗炉中,600℃下保温12h,将有机物进一步排除,得到镍锌铁氧体前驱体粉末;
第二步,锂铝共掺杂的镍锌铁氧体陶瓷材料的制备
(1)将第一步得到的镍锌铁氧体前驱体粉末研磨,加入粘合剂混合均匀,研磨、过筛、造粒、压片、排胶,得到坯体;
(2)将得到的坯体置于马弗炉中1200℃下,烧结8h,得到锂铝共掺杂的镍锌铁氧体陶瓷材料。
第一步中水浴搅拌速率为200rpm。
第一步中所述聚乙二醇的加入量为5g。
第二步中所述粘合剂的添加量为:每30g粉末中添加15-20滴粘合剂,所述粘合剂为质量比1:1的聚乙烯醇和甘油的混合物。
第二步中所述研磨、过筛、造粒、压片、排胶的过程如下:
将镍锌铁氧体前驱体粉末加入粘合剂混合均匀,研磨后,在12MPa压强下制成厚度为5mm、直径25mm的圆片,置于研钵中研碎,过80-120目筛;
将过筛后的粉末在压强为4MPa下,制成厚度为1mm,直径10mm的坯体;
将坯体置于马弗炉中排胶,排胶温度为650℃,保温时间0.5h。
本发明的有益效果如下:
本发明利用Li1+的2S未配对电子的软磁和铁磁特性对镍锌铁氧体进行掺杂,同时为了平衡化合价采用Al3+进行共掺杂,使其增加材料的软磁和介电特性。
对于铁氧体软磁材料的制备而言,选择合适的制备工艺极为重要,合适的掺杂元素以及掺杂比的选取也同样关键。本发明利用溶胶-凝胶法制备Li1+和Al3+共掺杂的Ni0.5- xZn0.5-xLixAlxFe2O4样品,通过调控其水浴温度、搅拌速率、煅烧条件、坯体制备压强等中间过程参数,最终实现了样品的高致密度、均匀颗粒,经测试其具有良好的软磁和介电性能。
本发明采用上述技术方案的优点是:(1)所述样品制备的原材料价格低廉;(2)溶胶-凝胶反应过程组分可控,防止出现杂相;(3)陶瓷样品的表现出高饱和磁化强度、低矫顽力以及高介电性。
附图说明
图1为本发明实施例制备的铁氧体陶瓷样品的X射线衍射图。
图2为本发明实施例制备的铁氧体陶瓷样品的磁滞回线图;
图3为本发明实施例制备的铁氧体陶瓷样品的介电频谱图(ε’-f曲线)。
具体实施方式
实施例1
第一步:Ni0.475Zn0.475Li0.025Al0.025Fe2O4前驱体粉末的制备
(1)称取9.766 g硝酸镍、9.991 g硝酸锌及57.714g硝酸铁,采用去离子水作为溶剂,将三种原料完全溶解,得到溶液A;
(2)称取0.121 g硝酸锂和0.663g硝酸铝,并加入去离子水,搅拌至完全混合,得到溶液B;
(3)将溶液A置于超声处理中,再将B溶液缓慢加入A溶液中,直至形成均匀溶液,再加入81.096g无水柠檬酸,搅拌均匀,最后加入5.0 g聚乙二醇促进成胶;
(4)将上述步骤(3)中最终获得的混合溶液置于水浴锅中,调节温度为80℃,搅拌速率为200 rpm,直至形成干凝胶;
(5)将得到的干凝胶置于电炉上,在通风厨中进行有机物的初步排除,可得到细微粉末,然后研磨均匀,置于马弗炉中,600℃下保温2 h,将有机物进一步排除,最终可得到铁氧体前驱体粉末;
第二步:锂铝共掺杂镍锌铁氧体陶瓷样品的制备与烧结
(1)将第一步中制备的前驱体粉中加入聚乙烯醇、甘油作为粘合剂,混合均匀、充分研磨,在12 MPa压强下制成厚度约5 mm,直径25 mm的圆片,然后置于研钵中研碎,过80目-120目筛;
(2)选取步骤(1)中过筛的粉末进行陶瓷坯体的制作,压强为4 MPa,坯体厚度约1mm,直径10mm;
(3)将制作好的坯体置于马弗炉进行排胶,排胶温度为650 ℃,保温时间0.5h,将排胶后的陶瓷坯体在马弗炉中1200℃烧结8h。其中升温速率控制为5℃/min,降温速率为10℃/min。图1显示该铁氧体材料中呈现良好的物相,无杂相出现。
(4)将上述的样品陶瓷样品进行磁滞回线测试,图2显示该样品当外加磁场为4kOe时,有较高的饱和磁矩(110.95 emu/g),较低的矫顽力(62.93Oe),表现出良好的磁性能。
(5)将陶瓷样品表面打磨、抛光、被银、制作电极,进行电性能和磁性能测试。图2显示该样品在20 Hz下介电常数高达2.7×105。在可测试范围(20 Hz-2 MHz)内随频率的增加介电常数有下降的趋势。
为了研究锂铝元素掺杂比对磁性能和介电性能的影响,还设计了如下三个实施例。
实施例2
本实施例与实施例1的区别在于,Li1+和Al3+掺杂比不同 (x=0.000),分别称取相应质量的原料制备样品,经过介电性能测试发现,相比实施例1,样品的介电常数减小。经过磁性能测试发现,相比实施例1,样品的磁性也大幅度下降,下降到96.31 emu/g,矫顽力增加至83.90Oe。
实施例3
本实施例与实施例1的区别在于,Li1+和Al3+掺杂比不同 (x=0.050),分别称取相应质量的原料制备样品,经过介电性能测试发现,相比实施例1,样品的介电常数增加。经过磁性能测试发现,相比实施例1,样品的饱和磁化强度下降至102.85emu/g,矫顽力值变化不大。
实施例4
本实施例与实施例1的区别在于,Li1+和Al3+掺杂比不同 (x=0.100),分别称取相应质量的原料制备样品,经过介电性能测试发现,相比实施例1,样品的介电常数有所增加。经过磁性能测试发现,相比实施例1,样品饱和磁化强度下降至99.99emu/g,矫顽力值变化不大。

Claims (1)

1.一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法,其特征在于:包括如下步骤:
第一步,锂铝共掺杂的镍锌铁氧体前驱体粉末的制备
(1)按照镍、锌、铁、锂、铝及柠檬酸的摩尔比为0.5-x:0.5-x:2:x:x:6的比例称取相应质量的硝酸镍、硝酸锌、硝酸铁、硝酸锂、硝酸铝及柠檬酸,其中,0.025≤x≤0.100;
(2)将硝酸镍、硝酸锌和硝酸铁依次充分溶解在去离子水中并持续搅拌形成A溶液;
(3)以去离子水为溶剂,将硝酸锂和硝酸铝充分溶于其中并持续搅拌形成B溶液;
(4)将B溶液全部缓慢加入A溶液中,搅拌混合溶液至均匀,形成C溶液;
(5)向C溶液中先后加入柠檬酸和聚乙二醇,置于80℃水浴锅中搅拌0.5h,直至形成凝胶;
(6)将形成的凝胶烘干,得到干凝胶粉,将干凝胶粉置于电炉上,初步排除有机物,得到细微粉末,研磨均匀,置于马弗炉中,600℃下保温12h,将有机物进一步排除,得到镍锌铁氧体前驱体粉末;
第二步,锂铝共掺杂的镍锌铁氧体陶瓷材料的制备
(1)将第一步得到的镍锌铁氧体前驱体粉末研磨,加入粘合剂混合均匀,研磨、过筛、造粒、压片、排胶,得到坯体;
(2)将得到的坯体置于马弗炉中1200℃下,烧结8h,得到锂铝共掺杂的镍锌铁氧体陶瓷材料;第一步中水浴搅拌速率为200rpm,第一步中所述聚乙二醇的加入量为5g,第二步中所述粘合剂的添加量为:每30g粉末中添加15-20滴粘合剂,所述粘合剂为质量比1:1的聚乙烯醇和甘油的混合物,第二步中所述研磨、过筛、造粒、压片、排胶的过程如下:将镍锌铁氧体前驱体粉末加入粘合剂混合均匀,研磨后,在12MPa压强下制成厚度为5mm、直径25mm的圆片,置于研钵中研碎,过80-120目筛;将过筛后的粉末在压强为4MPa下,制成厚度为1mm,直径10mm的坯体;将坯体置于马弗炉中排胶,排胶温度为650℃,保温时间0.5h。
CN201910779164.1A 2019-08-22 2019-08-22 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法 Active CN110395976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910779164.1A CN110395976B (zh) 2019-08-22 2019-08-22 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910779164.1A CN110395976B (zh) 2019-08-22 2019-08-22 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN110395976A CN110395976A (zh) 2019-11-01
CN110395976B true CN110395976B (zh) 2022-09-23

Family

ID=68329023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910779164.1A Active CN110395976B (zh) 2019-08-22 2019-08-22 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN110395976B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403366B (zh) * 2022-08-24 2023-05-12 厦门大学 一种掺杂锂的镍锌铁氧体材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228272C (zh) * 2003-04-01 2005-11-23 上海大学 掺杂铁氧体磁性材料的制备方法
JP2005145781A (ja) * 2003-11-18 2005-06-09 Fdk Corp フェライト焼結体
CN104402427B (zh) * 2014-11-27 2016-08-17 电子科技大学 一种低矫顽力LiZnTi旋磁铁氧体材料及其制备方法

Also Published As

Publication number Publication date
CN110395976A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
KR100461622B1 (ko) 단결정페라이트미분말
Verma et al. Low temperature processing of NiZn ferrite by citrate precursor method and study of properties
CN104446421B (zh) 一种高磁导率镍锌软磁铁氧体材料及制备方法
CN113233885B (zh) 一种低温烧结yig旋磁铁氧体材料及其制备方法
JP2011529436A (ja) 低透磁損失を有するニッケル−マンガン−コバルト系スピネルフェライトの製造方法およびこれにより製造されたニッケル−マンガン−コバルト系スピネルフェライト
CN110655397B (zh) 一种宽温高磁导率低损耗NiCuZn软磁铁氧体材料及其制备方法
CN108865062A (zh) 一种电磁波吸收剂及其制备方法
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
JP2022506448A (ja) 低損失電力フェライト及び製造方法
CN106747392B (zh) 一种Ho/Co复合掺杂Ni-Zn铁氧体陶瓷的制备方法
CN116396068A (zh) K~Ka波段自偏置环行器铁氧体基板材料及制备方法
CN103011793A (zh) 一种利用微波技术制备镍锌铁氧体的方法
CN102503393B (zh) 一种微波烧结法制备高性能铁氧体材料的方法
CN105016395A (zh) 一种纳米铁氧体材料及其制备方法
CN110395976B (zh) 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法
CN113744991B (zh) 一种Co2Z型铁氧体材料及其制备方法和用途
CN118125817B (zh) 一种低温烧结高磁导率高居里温度NiCuZn材料及制备方法
KR101931635B1 (ko) 페라이트 코어 제조 방법 및 그 페라이트 코어
JPH09124322A (ja) 軟磁性六方晶フェライト粉末の製造方法、それを用いた焼結体および電波吸収体
CN113072369A (zh) 高剩磁比的u型六角铁氧体材料及制备方法
CN112851326A (zh) 一种Co2Z型铁氧体材料及其制备方法
CN112830776A (zh) 一种u型六角铁氧体材料及其制备方法
US3438900A (en) Ferrimagnetic material suitable for use at frequencies of at least 50 mc./sec. with improved properties
CN108298978A (zh) 一种溶胶-凝胶法制备钛酸铜钙/铁酸镍复合磁电陶瓷材料的方法
Huang et al. Low temperature sintering behavior of La-Co substituted M-type strontium hexaferrites for use in microwave LTCC technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant