CN110364606A - A kind of epitaxial structure of ultraviolet light-emitting diode and its manufacturing method - Google Patents
A kind of epitaxial structure of ultraviolet light-emitting diode and its manufacturing method Download PDFInfo
- Publication number
- CN110364606A CN110364606A CN201910679874.7A CN201910679874A CN110364606A CN 110364606 A CN110364606 A CN 110364606A CN 201910679874 A CN201910679874 A CN 201910679874A CN 110364606 A CN110364606 A CN 110364606A
- Authority
- CN
- China
- Prior art keywords
- layer
- source
- thickness
- type
- epitaxial structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 230000004888 barrier function Effects 0.000 claims abstract description 74
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 239000011777 magnesium Substances 0.000 claims description 116
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 92
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 48
- 229910052733 gallium Inorganic materials 0.000 claims description 48
- 229910052757 nitrogen Inorganic materials 0.000 claims description 46
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 36
- 229910052749 magnesium Inorganic materials 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 19
- 230000007704 transition Effects 0.000 claims description 10
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 8
- 230000005012 migration Effects 0.000 abstract description 4
- 238000013508 migration Methods 0.000 abstract description 4
- 230000006798 recombination Effects 0.000 abstract description 3
- 238000005215 recombination Methods 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 description 38
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 38
- 239000000463 material Substances 0.000 description 13
- 239000013078 crystal Substances 0.000 description 9
- 230000006872 improvement Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000013742 energy transducer activity Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种紫外发光二极管外延结构及其制作方法,所述外延结构包括依次设于衬底上的AlN层、N型AlGaN层、有源层、P型超晶格阻挡层和P型GaN层,所述P型超晶格阻挡层由第一非掺杂层、第一Mg层、第二非掺杂层和第二Mg层交替形成,第一非掺杂层中Al的含量与第二非掺杂层中Al的含量不等。本发明在有源层和P型GaN层之间设置一层P型超晶格阻挡层,不仅起到阻挡电流,提高电流扩展的作用,还可以提高P型GaN层的空穴浓度及其迁移率,为有源层提供更多的空穴‑电子对,提高复合几率,提升亮度,从而提高外延结构的光电性能。
The invention discloses an ultraviolet light-emitting diode epitaxial structure and a manufacturing method thereof. The epitaxial structure includes an AlN layer, an N-type AlGaN layer, an active layer, a P-type superlattice barrier layer, and a P-type AlGaN layer sequentially arranged on a substrate. GaN layer, the P-type superlattice barrier layer is alternately formed by the first undoped layer, the first Mg layer, the second undoped layer and the second Mg layer, the content of Al in the first undoped layer is the same as The content of Al in the second non-doped layer varies. In the present invention, a P-type superlattice barrier layer is arranged between the active layer and the P-type GaN layer, which not only blocks the current and improves the current expansion, but also improves the hole concentration and migration of the P-type GaN layer. Efficiency, providing more hole-electron pairs for the active layer, increasing the probability of recombination, improving the brightness, thereby improving the photoelectric performance of the epitaxial structure.
Description
技术领域technical field
本发明涉及发光二极管技术领域,尤其涉及一种紫外发光二极管外延结构及其制作方法。The invention relates to the technical field of light emitting diodes, in particular to an epitaxial structure of an ultraviolet light emitting diode and a manufacturing method thereof.
背景技术Background technique
AlGaN半导体材料具有很宽的直接带隙,禁带宽度从3.4~6.2eV连续可调,使其光响应波段覆盖从近紫外(UVA)到深紫外(UVC)。相比于传统紫外光源,如汞灯和氙灯,紫外LED具有无汞污染、波长可控、体积小、耗电低、寿命长等优点,在高显色指数白光照明、防伪识别、紫外聚合物固化、杀菌消毒、医疗卫生、水与空气净化、高密度光学数据存贮等领域都有着广阔的应用前景和巨大的市场需求。AlGaN semiconductor material has a very wide direct bandgap, and the forbidden band width is continuously adjustable from 3.4 to 6.2eV, making its photoresponse band cover from near ultraviolet (UVA) to deep ultraviolet (UVC). Compared with traditional ultraviolet light sources, such as mercury lamps and xenon lamps, ultraviolet LEDs have the advantages of no mercury pollution, controllable wavelength, small size, low power consumption, and long life. Curing, sterilization, medical and sanitation, water and air purification, high-density optical data storage and other fields have broad application prospects and huge market demand.
相较于成熟的GaN基蓝光外延结构,紫外发光二极管外延结构的发光效率普遍偏低,且发光效率随波长的减小急剧下降。Compared with the mature GaN-based blue light epitaxial structure, the luminous efficiency of the ultraviolet light-emitting diode epitaxial structure is generally low, and the luminous efficiency drops sharply with the decrease of the wavelength.
现有的紫外发光二极管外延结构,由于Mg受主的激活能随着Al组分的增加而增大,在高Al组分下p层Mg掺杂浓度降低和活化效率下降,从而降低外延结构的发光效率。此外,外延结构的晶体质量差,Mg容易集簇在一起,形成杂质中心,不利于掺杂浓度的提升。如何制备结晶质量好、发光功率高的紫外发光二极管外延结构,是当前急需解决的问题。In the existing UV light-emitting diode epitaxial structure, since the activation energy of the Mg acceptor increases with the increase of the Al composition, the Mg doping concentration of the p-layer decreases and the activation efficiency decreases under the high Al composition, thereby reducing the epitaxial structure. Luminous efficiency. In addition, the crystal quality of the epitaxial structure is poor, and Mg is easy to cluster together to form impurity centers, which is not conducive to the increase of doping concentration. How to prepare a UV light-emitting diode epitaxial structure with good crystal quality and high luminous power is an urgent problem to be solved at present.
发明内容Contents of the invention
本发明所要解决的技术问题在于,提供一种紫外发光二极管外延结构,提高p层的掺杂浓度,提高外延结构的发光效率。The technical problem to be solved by the present invention is to provide an epitaxial structure of an ultraviolet light emitting diode, increase the doping concentration of the p layer, and improve the luminous efficiency of the epitaxial structure.
本发明还提供了一种紫外发光二极管外延结构的制作方法,工艺简单,成本低。The invention also provides a method for manufacturing the epitaxial structure of the ultraviolet light emitting diode, which has simple process and low cost.
为了解决上述问题,本发明提供了一种紫外发光二极管外延结构,包括依次设于衬底上的AlN层、N型AlGaN层、有源层、P型超晶格阻挡层和P型GaN层,所述P型超晶格阻挡层由第一非掺杂层、第一Mg层、第二非掺杂层和第二Mg层交替形成,第一非掺杂层中Al的含量与第二非掺杂层中Al的含量不等。In order to solve the above problems, the present invention provides an epitaxial structure of an ultraviolet light-emitting diode, comprising an AlN layer, an N-type AlGaN layer, an active layer, a P-type superlattice barrier layer and a P-type GaN layer sequentially arranged on a substrate, The P-type superlattice barrier layer is formed alternately by the first undoped layer, the first Mg layer, the second undoped layer and the second Mg layer, and the content of Al in the first undoped layer is the same as that of the second undoped layer. The content of Al in the doped layer varies.
作为上述方案的改进,所述第一非掺杂层由AluGa1-uN制成,0≤u≤1;所述第二非掺杂层由AlvGa1-vN制成,0≤v≤1,u≠v。As an improvement of the above solution, the first undoped layer is made of Al u Ga 1-u N, 0≤u≤1; the second undoped layer is made of Al v Ga 1-v N, 0≤v≤1, u≠v.
作为上述方案的改进,u>v。As an improvement of the above solution, u>v.
作为上述方案的改进,所述P型超晶格阻挡层中Mg的掺杂浓度为8~10E18atom/cm3。As an improvement of the above solution, the doping concentration of Mg in the P-type superlattice barrier layer is 8-10E18atom/cm 3 .
作为上述方案的改进,所述P型超晶格阻挡层由下述方法制得:As an improvement of the above scheme, the P-type superlattice barrier layer is made by the following method:
(1)通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第一非掺杂层;(1) feed a nitrogen source with a flow rate of 65-75 slm, an aluminum source with a flow rate of 180-210 sccm, and a gallium source with a flow rate of 28-33 sccm, and grow a first non-doped layer with a thickness of 0-20 nm;
(2)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第一Mg层;(2) Turn off the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 65 to 75 slm and a magnesium source with a flow rate of 950 to 1100 sccm, and continue for 0 to 10 minutes to form the first Mg layer;
(3)关闭镁源,通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第二非掺杂层;(3) Turn off the magnesium source, feed a nitrogen source with a flow rate of 65-75 slm, an aluminum source with a flow rate of 180-210 sccm, and a gallium source with a flow rate of 28-33 sccm, and grow a second non-doped layer with a thickness of 0-20 nm;
(4)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第二Mg层;(4) Turn off the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 65 to 75 slm and a magnesium source with a flow rate of 950 to 1100 sccm for 0 to 10 minutes to form a second Mg layer;
(5)重复步骤(1)、(2)、(3)和(4)若干次。(5) Repeat steps (1), (2), (3) and (4) several times.
作为上述方案的改进,所述AlN层和N型AlGaN层之间设有一层过渡层;所述过渡层由若干个周期的AlN/AlaGa1-aN(0.01<a<0.99)超晶格结构组成;所述AlN/AlaGa1-aN超晶格结构中AlN的厚度为1~5nm,AlaGa1-aN的厚度为1~5nm。As an improvement of the above scheme, a transition layer is provided between the AlN layer and the N-type AlGaN layer; the transition layer is composed of several periods of AlN/Al a Ga 1-a N (0.01<a<0.99) supercrystal Composition of a lattice structure; the thickness of AlN in the AlN/Al aGa 1-a N superlattice structure is 1-5 nm, and the thickness of Al a Ga 1-a N is 1-5 nm.
作为上述方案的改进,所述有源层由若干个周期的量子阱结构组成,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,y比x大20%以上;As an improvement of the above solution, the active layer is composed of several periodic quantum well structures, the quantum well structure includes Al x Ga 1-x N well layer and A y Ga 1-y N barrier layer, 0<x <0.5, y is more than 20% larger than x;
所述AlxGa1-xN阱层的厚度为3~8nm,所述AlyGa1-yN垒层的厚度为4~10nm。The thickness of the AlxGa1 - xN well layer is 3-8nm, and the thickness of the AlyGa1 -yN barrier layer is 4-10nm.
作为上述方案的改进,所述N型AlGaN层中,Si掺杂浓度为5E17~5E19atom/cm3,厚度为0.5~2μm。As an improvement of the above solution, in the N-type AlGaN layer, the Si doping concentration is 5E17˜5E19 atom/cm 3 , and the thickness is 0.5˜2 μm.
作为上述方案的改进,所述P型GaN层中,Mg掺杂浓度为1E17~1E21atom/cm3,厚度为0~200nm。As an improvement of the above solution, in the P-type GaN layer, the Mg doping concentration is 1E17˜1E21 atom/cm 3 , and the thickness is 0˜200 nm.
相应地,本发明还提供了一种紫外发光二极管外延结构的制作方法,包括以下步骤:Correspondingly, the present invention also provides a method for fabricating an epitaxial structure of an ultraviolet light-emitting diode, comprising the following steps:
一、将衬底放入MOCVD设备中,在900~1500℃条件下烘烤1~20分钟;1. Put the substrate into the MOCVD equipment and bake it at 900-1500°C for 1-20 minutes;
二、将温度调整为900~1500℃,在衬底上形成一层厚度为0.1~5μm的AlN层;2. Adjust the temperature to 900-1500°C, and form an AlN layer with a thickness of 0.1-5 μm on the substrate;
三、将温度调整为900~1500℃,在AlN层上形成一层厚度为0.5~2μm的N型AlGaN层,Si掺杂浓度为5E17~5E19atom/cm3;3. Adjust the temperature to 900-1500° C., and form an N-type AlGaN layer with a thickness of 0.5-2 μm on the AlN layer, and a Si doping concentration of 5E17-5E19 atom/cm 3 ;
四、将温度调整为900~1500℃,在N型AlGaN层上生长若干个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,0.2<y<1,每个量子阱结构中AlxGa1-xN阱层的厚度为3~8nm,AlyGa1-yN垒层的厚度为4~10nm;4. Adjust the temperature to 900-1500°C, and grow several periods of quantum well structures on the N-type AlGaN layer. The quantum well structures include Al x Ga 1-x N well layers and A y Ga 1-y N barriers layer, 0<x<0.5, 0.2<y<1, the thickness of the Al x Ga 1-x N well layer in each quantum well structure is 3-8 nm, and the thickness of the Aly Ga 1-y N barrier layer is 4-8 nm. 10nm;
五、将温度调整为900~1500℃,(1)通入氮源、铝源、镓源,生长厚度为0~20nm的第一非掺杂层;(2)关闭铝源和镓源,通入氮源和镁源,持续0~10分钟,形成第一Mg层;(3)关闭镁源,通入氮源、铝源、镓源,生长厚度为0~20nm的第二非掺杂层;(4)关闭铝源和镓源,通入氮源和镁源,持续0~10分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)若干次,形成P型超晶格阻挡层;5. Adjust the temperature to 900-1500°C, (1) feed nitrogen source, aluminum source, and gallium source to grow the first non-doped layer with a thickness of 0-20nm; (2) turn off the aluminum source and gallium source, and pass Inject nitrogen source and magnesium source for 0-10 minutes to form the first Mg layer; (3) turn off the magnesium source, feed nitrogen source, aluminum source, and gallium source, and grow a second non-doped layer with a thickness of 0-20nm ; (4) close aluminum source and gallium source, pass into nitrogen source and magnesium source, continue 0~10 minutes, form the second Mg layer; (5) repeat steps (1), (2), (3) and (4 ) several times to form a P-type superlattice barrier layer;
六、将温度调整为900~1500℃,在P型超晶格阻挡层上形成一层厚度为0~200nm的P型GaN层,Mg掺杂浓度为1E17~1E21atom/cm3。6. Adjust the temperature to 900-1500° C., and form a P-type GaN layer with a thickness of 0-200 nm on the P-type superlattice barrier layer, and a Mg doping concentration of 1E17-1E21 atom/cm 3 .
实施本发明,具有如下有益效果:Implement the present invention, have following beneficial effect:
本发明提供的一种紫外发光二极管外延结构,包括依次设于衬底上的AlN层、N型AlGaN层、有源层、P型超晶格阻挡层和P型GaN层。本发明在有源层和P型GaN层之间设置一层P型超晶格阻挡层,不仅起到阻挡电流,提高电流扩展的作用,还可以提高P型GaN层的空穴浓度及其迁移率,为有源层提供更多的空穴-电子对,提高复合几率,提升亮度,从而提高外延结构的光电性能。The epitaxial structure of an ultraviolet light-emitting diode provided by the present invention comprises an AlN layer, an N-type AlGaN layer, an active layer, a P-type superlattice barrier layer and a P-type GaN layer sequentially arranged on a substrate. In the present invention, a P-type superlattice barrier layer is arranged between the active layer and the P-type GaN layer, which not only blocks the current and improves the current expansion, but also improves the hole concentration and migration of the P-type GaN layer. The efficiency provides more hole-electron pairs for the active layer, increases the probability of recombination, improves the brightness, and thus improves the photoelectric performance of the epitaxial structure.
所述P型超晶格阻挡层由第一非掺杂层、第一Mg层、第二非掺杂层和第二Mg层交替形成,第一非掺杂层中Al的含量与第二非掺杂层中Al的含量不同。本发明的第一非掺杂层和第二非掺杂层中没有Mg杂质的引入,不会形成堆垛位错,有效改善P型GaN层的结晶质量,降低位错密度,而Mg的掺入是在第一非掺杂层和第二非掺杂层形成之后,因此Mg原子可以自由选择最佳的位置进行掺杂,从而减少自补偿效应,提高P型GaN层的空穴浓度及其迁移率。The P-type superlattice barrier layer is formed alternately by the first undoped layer, the first Mg layer, the second undoped layer and the second Mg layer, and the content of Al in the first undoped layer is the same as that of the second undoped layer. The content of Al in the doped layer is different. The first non-doped layer and the second non-doped layer of the present invention do not introduce Mg impurities, do not form stacking dislocations, effectively improve the crystal quality of the P-type GaN layer, and reduce the dislocation density, while Mg doped The injection is after the formation of the first undoped layer and the second undoped layer, so the Mg atoms can freely choose the best position for doping, thereby reducing the self-compensation effect, increasing the hole concentration of the P-type GaN layer and its mobility.
本发明P型超晶格阻挡层的Mg的掺杂浓度可达8~10E18atom/cm3。The doping concentration of Mg in the P-type superlattice barrier layer of the present invention can reach 8-10E18atom/cm 3 .
附图说明Description of drawings
图1是本发明外延结构的结构示意图;Fig. 1 is a structural schematic diagram of the epitaxial structure of the present invention;
图2是本发明外延结构另一实施例的结构示意图;Fig. 2 is a structural schematic diagram of another embodiment of the epitaxial structure of the present invention;
图3是本发明P型超晶格阻挡层的生长工艺图;Fig. 3 is the growth process figure of P-type superlattice barrier layer of the present invention;
图4是本发明现有电子阻挡层的生长工艺图;Fig. 4 is the growth process figure of existing electron blocking layer of the present invention;
图5是本发明对比例1和实施例3的Mg的掺杂浓度对比图。FIG. 5 is a comparison chart of Mg doping concentration in Comparative Example 1 and Example 3 of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings.
参见图1,本发明提供的一种紫外发光二极管外延结构,包括依次设于衬底10上的AlN层20、N型AlGaN层30、有源层40、P型超晶格阻挡层50和P型GaN层60。Referring to Fig. 1, a kind of ultraviolet light-emitting diode epitaxial structure provided by the present invention comprises AlN layer 20, N-type AlGaN layer 30, active layer 40, P-type superlattice barrier layer 50 and P type GaN layer 60.
本发明衬底10的材料可以为蓝宝石、碳化硅或硅,也可以为其他半导体材料。优选的,本发明的衬底10为蓝宝石衬底。The material of the substrate 10 of the present invention may be sapphire, silicon carbide or silicon, or other semiconductor materials. Preferably, the substrate 10 of the present invention is a sapphire substrate.
本发明AlN层20由AlN制成,作为外延结构的基材材料,其作用是为后续生长的N型AlGaN层30、有源层40和P型GaN层60做准备。由于AlN的能级在III/V族体系中是最大的,对LED的吸光是最小的,采用AlN作为基础材料有效提高外延结构的出光效率。The AlN layer 20 of the present invention is made of AlN, and as the base material of the epitaxial structure, its function is to prepare for the subsequent growth of the N-type AlGaN layer 30 , the active layer 40 and the P-type GaN layer 60 . Since the energy level of AlN is the largest in the III/V group system, and the light absorption to LED is the smallest, using AlN as the basic material can effectively improve the light extraction efficiency of the epitaxial structure.
优选的,AlN层20的厚度是2~4μm。若AlN层20的厚度小于2μm,则不能完全释放衬底与AlN材料的应力失配,影响AlN材料的晶体质量;若厚度太厚,则浪费时间和材料。Preferably, the thickness of the AlN layer 20 is 2-4 μm. If the thickness of the AlN layer 20 is less than 2 μm, the stress mismatch between the substrate and the AlN material cannot be fully released, affecting the crystal quality of the AlN material; if the thickness is too thick, time and materials will be wasted.
由于AlN层20和N型AlGaN层30之间存在较大的晶格差异,若直接在AlN层上生长N型AlGaN层,会因应力聚集在两种材料界面导致龟裂的问题。参见图2,作为本发明的另一优选方案,本发明在AlN层20和N型AlGaN层30之间形成一层过渡层21,以将晶格失配产生的应力在过渡层21逐步释放,从而避免AlN层发生龟裂问题,AlN层的质量得到提升,位错和缺陷会大幅减少,从而提升外延结构的晶体质量,进而改善发光效率。另外,更低的外延材料位错和缺陷意味着更少的光子俘获中心,有利于更多的紫外光能够穿越外延结构向外出光,提高了出光效率,同时降低了光子被俘获后产生的总热量,对紫光LED器件的性能有极大提升。Due to the large lattice difference between the AlN layer 20 and the N-type AlGaN layer 30 , if the N-type AlGaN layer is directly grown on the AlN layer, cracks will be caused due to stress accumulation at the interface between the two materials. Referring to FIG. 2, as another preferred solution of the present invention, the present invention forms a transition layer 21 between the AlN layer 20 and the N-type AlGaN layer 30, so as to gradually release the stress caused by lattice mismatch in the transition layer 21, In this way, the problem of cracks in the AlN layer is avoided, the quality of the AlN layer is improved, and dislocations and defects are greatly reduced, thereby improving the crystal quality of the epitaxial structure, thereby improving the luminous efficiency. In addition, lower dislocations and defects in epitaxial materials mean fewer photon capture centers, which is beneficial for more ultraviolet light to pass through the epitaxial structure, improving light extraction efficiency, and reducing the total amount of photons generated after being captured. The heat greatly improves the performance of the purple LED device.
优选的,所述过渡层的厚度为200~400nm。若过渡层的厚度小于200nm,则不能很好地释放应力和降低错位,若厚度太厚,则浪费时间和材料。Preferably, the transition layer has a thickness of 200-400 nm. If the thickness of the transition layer is less than 200 nm, the stress and dislocation cannot be well released, and if the thickness is too thick, time and materials will be wasted.
由于AlN/AlaGa1-aN超晶格结构能够很好地释放AlN材料与N型AlGaN之间的应力,另外AlN/AlaGa1-aN超晶格结构能弯转位错线,从而达到提高晶体质量的目的。具体的,所述过渡层21由若干个周期的AlN/AlaGa1-aN(0.01<a<0.99)超晶格结构组成。Since the AlN/Al a Ga 1-a N superlattice structure can well release the stress between the AlN material and the N-type AlGaN, and the AlN/Al a Ga 1-a N superlattice structure can bend the dislocation line , so as to achieve the purpose of improving the crystal quality. Specifically, the transition layer 21 is composed of several periodic AlN/Al aGa 1-a N (0.01<a<0.99) superlattice structures.
所述AlN/AlaGa1-aN超晶格结构中,a的值大于N型AlGaN层中Al的含量并小于0.8。若a大于0.8,则过渡层不能很好释放应力,若a小于N型AlGaN层中Al的含量,则会产生吸光效应,不利于光传出外延表面。In the AlN/Al a Ga 1-a N superlattice structure, the value of a is greater than the Al content in the N-type AlGaN layer and less than 0.8. If a is greater than 0.8, the transition layer cannot release the stress well. If a is less than the Al content in the N-type AlGaN layer, a light absorption effect will occur, which is not conducive to light transmission from the epitaxial surface.
所述AlN/AlaGa1-aN超晶格结构中AlN的厚度为1~5nm,AlaGa1-aN的厚度为1~5nm。优选的,每个AlN/AlaGa1-aN超晶格结构的厚度为2~10nm,由于其厚度是几个原子层的厚度,因此AlN/AlaGa1-aN超晶格结构对应力释放和降低位错效果最佳。The thickness of AlN in the AlN/Al a Ga 1-a N superlattice structure is 1-5 nm, and the thickness of Al a Ga 1-a N is 1-5 nm. Preferably, the thickness of each AlN/Al a Ga 1-a N superlattice structure is 2 to 10 nm. Since its thickness is several atomic layers thick, the AlN/Al a Ga 1-a N superlattice structure Best for stress relief and dislocation reduction.
为了提高有源层40的出光效率,本发明对有源层的结构做了特殊设计。所述有源层40由3~5个周期的量子阱结构组成,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,0.2<y<1。In order to improve the light extraction efficiency of the active layer 40, the present invention makes a special design for the structure of the active layer. The active layer 40 is composed of 3 to 5 periods of quantum well structure, the quantum well structure includes AlxGa1 - xN well layer and AlyGa1 -yN barrier layer, 0<x<0.5, 0.2<y<1.
需要说明的是,太少的量子阱不能完全限制电子和空穴对,影响亮度;由于空穴的迁移距离有限,太多的量子阱周期数不会提升亮度,但时间和原材料成本增加。It should be noted that too few quantum wells cannot completely confine electron and hole pairs and affect brightness; due to the limited migration distance of holes, too many quantum well cycles will not improve brightness, but time and raw material costs will increase.
由于外延结构的发光波长由量子阱结构中的x决定,目前市场紫外LED芯片的紫光波长分布在260~365nm左右,对应的Al组分为0~50%,即0<x<0.5。为了更好的限制电子空穴对在量子阱结构中的发光,y需要比x大20%以上。Since the luminescent wavelength of the epitaxial structure is determined by x in the quantum well structure, the violet wavelength of the ultraviolet LED chip in the market is distributed around 260-365nm, and the corresponding Al composition is 0-50%, that is, 0<x<0.5. In order to better limit the luminescence of electron-hole pairs in the quantum well structure, y needs to be larger than x by more than 20%.
所述AlxGa1-xN阱层的厚度为3~8nm,所述AlyGa1-yN垒层的厚度为4~10nm。若AlyGa1-yN垒层的厚度太薄不利于束缚电子空穴对,太厚不利于空穴的迁移。The thickness of the AlxGa1 - xN well layer is 3-8nm, and the thickness of the AlyGa1 -yN barrier layer is 4-10nm. If the thickness of the AlyGa 1-y N barrier layer is too thin, it is not conducive to the binding of electron-hole pairs, and if it is too thick, it is not conducive to the migration of holes.
本发明的N型AlGaN层40用于提供电子,P型AlGaN层60用于提供空穴。为了提高外延结构的出光效率,所述N型AlGaN层的厚度为0.5~2μm,Si掺杂浓度为5E17~5E19atom/cm3。所述P型GaN层中,Mg掺杂浓度为1E17~1E21atom/cm3,厚度为0~200nm。The N-type AlGaN layer 40 of the present invention is used to provide electrons, and the P-type AlGaN layer 60 is used to provide holes. In order to improve the light extraction efficiency of the epitaxial structure, the thickness of the N-type AlGaN layer is 0.5-2 μm, and the Si doping concentration is 5E17-5E19 atom/cm 3 . In the P-type GaN layer, the Mg doping concentration is 1E17˜1E21 atom/cm 3 , and the thickness is 0˜200 nm.
本发明在有源层40和P型GaN层60之间设置一层P型超晶格阻挡层50,不仅起到阻挡电流,提高电流扩展的作用,还可以提高P型GaN层的空穴浓度及其迁移率,为有源层提供更多的空穴-电子对,提高复合几率,提升亮度,从而提高外延结构的光电性能。In the present invention, a P-type superlattice barrier layer 50 is arranged between the active layer 40 and the P-type GaN layer 60, which not only blocks the current and improves the current expansion, but also increases the hole concentration of the P-type GaN layer. And its mobility, provide more hole-electron pairs for the active layer, increase the probability of recombination, increase the brightness, and thus improve the photoelectric performance of the epitaxial structure.
本发明的P型超晶格阻挡层由第一非掺杂层、第一Mg层、第二非掺杂层和第二Mg层交替形成,第一非掺杂层中Al的含量与第二非掺杂层中Al的含量不等。本发明的第一非掺杂层和第二非掺杂层中没有Mg杂质的引入,不会形成堆垛位错,有效改善P型GaN层的结晶质量,降低位错密度,而Mg的掺入是在第一非掺杂层和第二非掺杂层形成之后,因此Mg原子可以自由选择最佳的位置进行掺杂,从而减少自补偿效应,提高P型GaN层的空穴浓度及其迁移率。The P-type superlattice barrier layer of the present invention is alternately formed by the first undoped layer, the first Mg layer, the second undoped layer and the second Mg layer, and the content of Al in the first undoped layer is the same as that of the second The content of Al in the non-doped layer varies. The first non-doped layer and the second non-doped layer of the present invention do not introduce Mg impurities, do not form stacking dislocations, effectively improve the crystal quality of the P-type GaN layer, and reduce the dislocation density, while Mg doped The injection is after the formation of the first undoped layer and the second undoped layer, so the Mg atoms can freely choose the best position for doping, thereby reducing the self-compensation effect, increasing the hole concentration of the P-type GaN layer and its mobility.
所述第一非掺杂层由AluGa1-uN制成,0≤u≤1;所述第二非掺杂层由AlvGa1-vN制成,0≤v≤1,u≠v。第一非掺杂层中Al的含量与第二非掺杂层中Al的含量必须不同,这样才能产生势磊的差异,才能使P型超晶格阻挡层能带弯曲。本发明通过改变P型超晶格阻挡层的能带弯曲来提高Mg的掺杂浓度,以形成第一Mg层和第二Mg层,从而提高P型GaN层的空穴浓度及其迁移率。优选的,u>v。The first undoped layer is made of Al u Ga 1-u N, 0≤u≤1; the second undoped layer is made of Al v Ga 1-v N, 0≤v≤1, u≠v. The content of Al in the first non-doped layer must be different from the content of Al in the second non-doped layer, so as to produce a difference in potential and to bend the energy band of the P-type superlattice barrier layer. The invention increases the doping concentration of Mg by changing the energy band bending of the P-type superlattice barrier layer to form the first Mg layer and the second Mg layer, thereby increasing the hole concentration and mobility of the P-type GaN layer. Preferably, u>v.
具体的,所述第一非掺杂层由AlGaN制成,所述第二非掺杂层均AlN制成。或者,所述第一非掺杂层由AlN制成,所述第二非掺杂层均AlGaN制成。在本发明的其他实施例中,所述第一非掺杂层由AlN制成,所述第二非掺杂层均GaN制成。或者,所述第一非掺杂层由AlGaN制成,所述第二非掺杂层均GaN制成。Specifically, the first undoped layer is made of AlGaN, and the second undoped layer is made of AlN. Alternatively, the first undoped layer is made of AlN, and the second undoped layer is made of AlGaN. In other embodiments of the present invention, the first undoped layer is made of AlN, and the second undoped layer is made of GaN. Alternatively, the first undoped layer is made of AlGaN, and the second undoped layer is made of GaN.
本发明P型超晶格阻挡层的Mg的掺杂浓度可达8~10E18atom/cm3,现有的电子阻挡层的Mg的掺杂浓度只有1E18atom/cm3,Mg激活空穴的效率一般为Mg掺杂浓度的1%左右,越高的掺杂浓度越容易激发出空穴。The Mg doping concentration of the P-type superlattice barrier layer of the present invention can reach 8-10E18atom/cm 3 , while the Mg doping concentration of the existing electron blocking layer is only 1E18atom/cm 3 , and the hole activation efficiency of Mg is generally The Mg doping concentration is about 1%, and the higher the doping concentration, the easier it is to excite holes.
所述第一非掺杂层的厚度为1~20nm,所述第二非掺杂层的厚度为1~20nm。优选的,所述第一非掺杂层的厚度为2~6nm,所述第二非掺杂层的厚度为2~6nm。本发明是通过改变P型超晶格阻挡层的能带弯曲来提高掺杂浓度的,第一非掺杂层或第二非掺杂层的厚度太薄和太厚都会导致超晶格层的压电极化减弱,使能带弯曲减小,不利于Mg的掺杂。The thickness of the first non-doped layer is 1-20 nm, and the thickness of the second non-doped layer is 1-20 nm. Preferably, the thickness of the first non-doped layer is 2-6 nm, and the thickness of the second non-doped layer is 2-6 nm. The present invention improves the doping concentration by changing the energy band bending of the P-type superlattice barrier layer, and the thickness of the first non-doped layer or the second non-doped layer is too thin or too thick to cause superlattice layer The piezoelectric polarization is weakened, which reduces the energy band bending, which is not conducive to the doping of Mg.
参见图3,本发明的P型超晶格阻挡层由下述方法制得:Referring to Fig. 3, P-type superlattice barrier layer of the present invention is made by following method:
(1)通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第一非掺杂层;(1) feed a nitrogen source with a flow rate of 65-75 slm, an aluminum source with a flow rate of 180-210 sccm, and a gallium source with a flow rate of 28-33 sccm, and grow a first non-doped layer with a thickness of 0-20 nm;
(2)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第一Mg层;(2) Turn off the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 65 to 75 slm and a magnesium source with a flow rate of 950 to 1100 sccm, and continue for 0 to 10 minutes to form the first Mg layer;
(3)关闭镁源,通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第二非掺杂层;(3) Turn off the magnesium source, feed a nitrogen source with a flow rate of 65-75 slm, an aluminum source with a flow rate of 180-210 sccm, and a gallium source with a flow rate of 28-33 sccm, and grow a second non-doped layer with a thickness of 0-20 nm;
(4)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第二Mg层;(4) Turn off the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 65 to 75 slm and a magnesium source with a flow rate of 950 to 1100 sccm for 0 to 10 minutes to form a second Mg layer;
(5)重复步骤(1)、(2)、(3)和(4)若干次。(5) Repeat steps (1), (2), (3) and (4) several times.
需要说明的是,所述氮源优选为NH3,铝源为TMAl,镓源为TMGa,镁源为Cp2Mg。优选的,步骤(3)中镓源的流量小于步骤(1)中镓源的流量。It should be noted that the nitrogen source is preferably NH 3 , the aluminum source is TMAl, the gallium source is TMGa, and the magnesium source is Cp 2 Mg. Preferably, the flow rate of the gallium source in step (3) is smaller than the flow rate of the gallium source in step (1).
参见图4,现有的阻挡层是同时通入氮源、铝源、镓源和镁源,会存在Mg元素、Al元素、Ga元素同时与N元素结合的竞争关系,本发明在步骤(2)和(4)中只通入氮源和镁源,形成第一Mg层和第二Mg层,因此不存在竞争关系,Mg元素的掺杂效率会提升。Referring to Fig. 4, existing barrier layer is to pass into nitrogen source, aluminum source, gallium source and magnesium source simultaneously, there will be the competitive relationship that Mg element, Al element, Ga element combine with N element simultaneously, the present invention is in step (2 ) and (4), only the nitrogen source and the magnesium source are introduced to form the first Mg layer and the second Mg layer, so there is no competition, and the doping efficiency of the Mg element will be improved.
本发明使用间断掺杂方式生长第一非掺杂层和第二非掺杂层的过程中,由于没有Mg杂质的引入,不会形成堆垛位错,从而提高P型超晶格阻挡层的晶体质量和改善P型GaN层的结晶质量、降低位错密度,而Mg的掺入是在第一非掺杂层和第二非掺杂层形成之后,分别形成第一Mg层和第二Mg层,因此Mg原子可以自由选择最佳的位置进行掺杂,从而减少自补偿效应,提高P型GaN层的空穴浓度及其迁移率。In the process of growing the first non-doped layer and the second non-doped layer using the discontinuous doping method of the present invention, since there is no introduction of Mg impurities, stacking dislocations will not be formed, thereby improving the P-type superlattice barrier layer. Crystal quality and improve the crystal quality of the P-type GaN layer, reduce the dislocation density, and the doping of Mg is to form the first Mg layer and the second Mg layer after the formation of the first undoped layer and the second undoped layer, respectively. layer, so Mg atoms can freely choose the best position for doping, thereby reducing the self-compensation effect and increasing the hole concentration and mobility of the P-type GaN layer.
此外,本发明的间断掺杂方式利用AluGa1-uN和AlvGa1-vN不同的势磊差异促P型超晶格阻挡层能带弯曲。本发明通过改变P型超晶格阻挡层的能带弯曲来提高Mg的掺杂浓度,从而提高P型GaN层的空穴浓度及其迁移率。In addition, the discontinuous doping method of the present invention utilizes the difference in potential between AluGa1 - uN and AlvGa1 - vN to promote the energy band bending of the P-type superlattice barrier layer. The invention increases the doping concentration of Mg by changing the energy band bending of the P-type superlattice barrier layer, thereby increasing the hole concentration and mobility of the P-type GaN layer.
需要说明的是,本发明通过提高P型超晶格阻挡层的材料质量和改善其能带结构,以使大部分Mg杂质位于费米能级之下来提高掺杂浓度。It should be noted that the present invention increases the doping concentration by improving the material quality of the P-type superlattice barrier layer and improving its energy band structure so that most of the Mg impurities are located below the Fermi level.
为了得到能带弯曲的P型超晶格阻挡层,步骤(1)和步骤(3)中Al组分的含量是不能相同的。由于Mg在不同Al含量的AlGaN中的掺杂速率不同,步骤(2)和步骤(4)的持续时间设定也不同。Al组分含量越高,Mg越难掺杂,需要时间越长。若步骤(1)中Al组分的含量大于步骤(3)中Al组分的含量,则步骤(2)中的持续时间长于步骤(4)中的持续时间。In order to obtain a band-bending P-type superlattice barrier layer, the content of the Al component in step (1) and step (3) cannot be the same. Since the doping rates of Mg in AlGaN with different Al contents are different, the duration settings of step (2) and step (4) are also different. The higher the content of Al component, the harder it is for Mg to dope, and the longer it takes. If the content of the Al component in the step (1) is greater than the content of the Al component in the step (3), the duration in the step (2) is longer than that in the step (4).
相应地,本发明还提供了一种紫外发光二极管外延结构的制作方法,包括以下步骤:Correspondingly, the present invention also provides a method for fabricating an epitaxial structure of an ultraviolet light-emitting diode, comprising the following steps:
一、将衬底放入MOCVD设备中,在900~1500℃条件下烘烤1~20分钟;1. Put the substrate into the MOCVD equipment and bake it at 900-1500°C for 1-20 minutes;
二、将温度调整为900~1500℃,在衬底上形成一层厚度为0.1~5μm的AlN层;2. Adjust the temperature to 900-1500°C, and form an AlN layer with a thickness of 0.1-5 μm on the substrate;
三、将温度调整为900~1500℃,在AlN层上形成一层厚度为0.5~2μm的N型AlGaN层,Si掺杂浓度为5E17~5E19atom/cm3;3. Adjust the temperature to 900-1500° C., and form an N-type AlGaN layer with a thickness of 0.5-2 μm on the AlN layer, and a Si doping concentration of 5E17-5E19 atom/cm 3 ;
四、将温度调整为900~1500℃,在N型AlGaN层上生长若干个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,0<x<0.5,0.2<y<1,每个量子阱结构中AlxGa1-xN阱层的厚度为3~8nm,AlyGa1-yN垒层的厚度为4~10nm;4. Adjust the temperature to 900-1500°C, and grow several periods of quantum well structures on the N-type AlGaN layer. The quantum well structures include Al x Ga 1-x N well layers and A y Ga 1-y N barriers layer, 0<x<0.5, 0.2<y<1, the thickness of the Al x Ga 1-x N well layer in each quantum well structure is 3-8 nm, and the thickness of the Aly Ga 1-y N barrier layer is 4-8 nm. 10nm;
五、将温度调整为900~1500℃,(1)通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第一Mg层;(3)关闭镁源,通入流量为65~75slm的氮源、流量为180~210sccm的铝源、流量为28~33sccm的镓源,生长厚度为0~20nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为65~75slm的氮源和流量为950~1100sccm的镁源,持续0~10分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)若干次;5. Adjust the temperature to 900-1500°C, (1) Introduce a nitrogen source with a flow rate of 65-75slm, an aluminum source with a flow rate of 180-210sccm, and a gallium source with a flow rate of 28-33sccm, and grow a film with a thickness of 0-20nm The first non-doped layer; (2) close the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 65 to 75 slm and a magnesium source with a flow rate of 950 to 1100 sccm, and continue for 0 to 10 minutes to form the first Mg layer; ( 3) Turn off the magnesium source, feed a nitrogen source with a flow rate of 65-75 slm, an aluminum source with a flow rate of 180-210 sccm, and a gallium source with a flow rate of 28-33 sccm, and grow a second non-doped layer with a thickness of 0-20 nm; ( 4) Turn off the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 65 to 75 slm and a magnesium source with a flow rate of 950 to 1100 sccm for 0 to 10 minutes to form a second Mg layer; (5) repeat steps (1), (2), (3) and (4) several times;
六、将温度调整为900~1500℃,在P型超晶格阻挡层上形成一层厚度为0~200nm的P型GaN层,Mg掺杂浓度为1E17~1E21atom/cm3。6. Adjust the temperature to 900-1500° C., and form a P-type GaN layer with a thickness of 0-200 nm on the P-type superlattice barrier layer, and a Mg doping concentration of 1E17-1E21 atom/cm 3 .
下面将以具体实施例来进一步阐述本发明Below will further illustrate the present invention with specific embodiment
实施例1Example 1
一种紫外发光二极管外延结构的制作方法,包括以下步骤:A method for manufacturing an epitaxial structure of an ultraviolet light-emitting diode, comprising the following steps:
一、将衬底放入MOCVD设备中,在900℃条件下烘烤20分钟;1. Put the substrate into the MOCVD equipment and bake it at 900°C for 20 minutes;
二、将温度调整为1000℃,在衬底上形成一层厚度为1μm的AlN层;2. Adjust the temperature to 1000°C, and form an AlN layer with a thickness of 1 μm on the substrate;
三、将温度调整为900℃,在AlN层上形成一层厚度为0.5μm的N型AlGaN层,Si掺杂浓度为5E17atom/cm3;3. Adjust the temperature to 900°C, and form an N-type AlGaN layer with a thickness of 0.5 μm on the AlN layer, with a Si doping concentration of 5E17atom/cm 3 ;
四、将温度调整为1000℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;4. Adjusting the temperature to 1000° C., growing five periods of quantum well structures on the N-type AlGaN layer, the quantum well structures including Al x Ga 1-x N well layers and A y Ga 1-y N barrier layers, x=0.4, y=0.6, the thickness of the AlxGa1 - xN well layer in each quantum well structure is 3nm, and the thickness of the AlyGa1 -yN barrier layer is 5nm;
五、将温度调整为1000℃,(1)通入流量为65slm的氮源、流量为180sccm的铝源、流量为30sccm的镓源,生长厚度为1nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为65slm的氮源和流量为950sccm的镁源,持续0.5分钟,形成第一Mg层;(3)关闭镁源,通入流量为65slm的氮源、流量为180sccm的铝源、流量为28sccm的镓源,生长厚度为1nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为65slm的氮源和流量为950sccm的镁源,持续0.5分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)8次,形成P型超晶格阻挡层;5. Adjust the temperature to 1000° C., (1) feed a nitrogen source with a flow rate of 65 slm, an aluminum source with a flow rate of 180 sccm, and a gallium source with a flow rate of 30 sccm to grow a first non-doped layer with a thickness of 1 nm; (2) Turn off the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 65slm and a magnesium source with a flow rate of 950sccm for 0.5 minutes to form the first Mg layer; (3) turn off the magnesium source, and feed a nitrogen source with a flow rate of 65slm Be the aluminum source of 180sccm, the gallium source that the flow rate is 28sccm, grow the second undoped layer that thickness is 1nm; (4) turn off the aluminum source and the gallium source, feed the nitrogen source that the flow rate is 65slm and the magnesium source that the flow rate is 950sccm , continue 0.5 minute, form the second Mg layer; (5) repeat steps (1), (2), (3) and (4) 8 times, form the P-type superlattice barrier layer;
六、将温度调整为1000℃,在P型超晶格阻挡层上形成一层厚度为10nm的P型GaN层,Mg掺杂浓度为1E17atom/cm3。6. Adjust the temperature to 1000° C., and form a P-type GaN layer with a thickness of 10 nm on the P-type superlattice barrier layer, and a Mg doping concentration of 1E17 atom/cm 3 .
实施例2Example 2
一种紫外发光二极管外延结构的制作方法,包括以下步骤:A method for manufacturing an epitaxial structure of an ultraviolet light-emitting diode, comprising the following steps:
一、将衬底放入MOCVD设备中,在1000℃条件下烘烤15分钟;1. Put the substrate into the MOCVD equipment and bake it at 1000°C for 15 minutes;
二、将温度调整为1000℃,在衬底上形成一层厚度为1.5μm的AlN层;2. Adjust the temperature to 1000°C, and form an AlN layer with a thickness of 1.5 μm on the substrate;
三、将温度调整为1100℃,在AlN层上形成一层厚度为1μm的N型AlGaN层,Si掺杂浓度为9E17atom/cm3;3. Adjust the temperature to 1100° C., and form an N-type AlGaN layer with a thickness of 1 μm on the AlN layer, and the Si doping concentration is 9E17 atom/cm 3 ;
四、将温度调整为1000℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;4. Adjusting the temperature to 1000° C., growing five periods of quantum well structures on the N-type AlGaN layer, the quantum well structures including Al x Ga 1-x N well layers and A y Ga 1-y N barrier layers, x=0.4, y=0.6, the thickness of the AlxGa1 - xN well layer in each quantum well structure is 3nm, and the thickness of the AlyGa1 -yN barrier layer is 5nm;
五、将温度调整为1100℃,(1)通入流量为70slm的氮源、流量为190sccm的铝源、流量为32sccm的镓源,生长厚度为1.5nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为70slm的氮源和流量为980sccm的镁源,持续1分钟,形成第一Mg层;(3)关闭镁源,通入流量为70slm的氮源、流量为190sccm的铝源、流量为30sccm的镓源,生长厚度为1.5nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为70slm的氮源和流量为980sccm的镁源,持续1分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)10次,形成P型超晶格阻挡层;5. Adjust the temperature to 1100° C., (1) feed a nitrogen source with a flow rate of 70 slm, an aluminum source with a flow rate of 190 sccm, and a gallium source with a flow rate of 32 sccm, and grow a first non-doped layer with a thickness of 1.5 nm; (2 ) Turn off the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 70slm and a magnesium source with a flow rate of 980sccm for 1 minute to form the first Mg layer; (3) turn off the magnesium source, and feed a nitrogen source with a flow rate of 70slm, Flow rate is the aluminum source of 190sccm, the flow rate is the gallium source of 30sccm, and the growth thickness is the second undoped layer of 1.5nm; (4) shut down the aluminum source and the gallium source, feed the nitrogen source that the flow rate is 70slm and the flow rate is the 980sccm Magnesium source, continue 1 minute, form the second Mg layer; (5) repeat step (1), (2), (3) and (4) 10 times, form P-type superlattice barrier layer;
六、将温度调整为1100℃,在P型超晶格阻挡层上形成一层厚度为30nm的P型GaN层,Mg掺杂浓度为5E17atom/cm3。6. Adjust the temperature to 1100° C., and form a P-type GaN layer with a thickness of 30 nm on the P-type superlattice barrier layer, with a Mg doping concentration of 5E17atom/cm 3 .
实施例3Example 3
一种紫外发光二极管外延结构的制作方法,包括以下步骤:A method for manufacturing an epitaxial structure of an ultraviolet light-emitting diode, comprising the following steps:
一、将衬底放入MOCVD设备中,在1100℃条件下烘烤10分钟;1. Put the substrate into the MOCVD equipment and bake it at 1100°C for 10 minutes;
二、将温度调整为1300℃,在衬底上形成一层厚度为3μm的AlN层;2. Adjust the temperature to 1300°C, and form an AlN layer with a thickness of 3 μm on the substrate;
三、将温度调整为1200℃,在AlN层上形成一层厚度为2μm的N型AlGaN层,Si掺杂浓度为2E18atom/cm3;3. Adjust the temperature to 1200°C, and form an N-type AlGaN layer with a thickness of 2 μm on the AlN layer, and the Si doping concentration is 2E18atom/cm 3 ;
四、将温度调整为1100℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;4. Adjusting the temperature to 1100° C., growing five periods of quantum well structures on the N-type AlGaN layer, the quantum well structures including Al x Ga 1-x N well layers and A y Ga 1-y N barrier layers, x=0.4, y=0.6, the thickness of the AlxGa1 - xN well layer in each quantum well structure is 3nm, and the thickness of the AlyGa1 -yN barrier layer is 5nm;
五、将温度调整为1100℃,(1)通入流量为70slm的氮源、流量为200sccm的铝源、流量为32sccm的镓源,生长厚度为2.5nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为70slm的氮源和流量为1000sccm的镁源,持续1.5分钟,形成第一Mg层;(3)关闭镁源,通入流量为70slm的氮源、流量为200sccm的铝源、流量为30sccm的镓源,生长厚度为2.5nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为70slm的氮源和流量为1000sccm的镁源,持续1.5分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)10次,形成P型超晶格阻挡层;5. Adjust the temperature to 1100° C., (1) feed a nitrogen source with a flow rate of 70 slm, an aluminum source with a flow rate of 200 sccm, and a gallium source with a flow rate of 32 sccm to grow a first non-doped layer with a thickness of 2.5 nm; (2 ) Turn off the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 70slm and a magnesium source with a flow rate of 1000sccm for 1.5 minutes to form the first Mg layer; (3) turn off the magnesium source, and feed a flow rate with a nitrogen source of 70slm, The aluminum source with the flow rate of 200sccm and the gallium source with the flow rate of 30sccm grow the second non-doped layer with a thickness of 2.5nm; Magnesium source, continue 1.5 minutes, form the second Mg layer; (5) repeat step (1), (2), (3) and (4) 10 times, form P-type superlattice barrier layer;
六、将温度调整为1000℃,在P型超晶格阻挡层上形成一层厚度为50nm的P型GaN层,Mg掺杂浓度为2E18atom/cm3。Sixth, adjust the temperature to 1000° C., and form a P-type GaN layer with a thickness of 50 nm on the P-type superlattice barrier layer, and a Mg doping concentration of 2E18atom/cm 3 .
实施例4Example 4
一种紫外发光二极管外延结构的制作方法,包括以下步骤:A method for manufacturing an epitaxial structure of an ultraviolet light-emitting diode, comprising the following steps:
一、将衬底放入MOCVD设备中,在1200℃条件下烘烤8分钟;1. Put the substrate into the MOCVD equipment and bake it at 1200°C for 8 minutes;
二、将温度调整为1300℃,在衬底上形成一层厚度为4μm的AlN层;2. Adjust the temperature to 1300°C, and form an AlN layer with a thickness of 4 μm on the substrate;
三、将温度调整为1200℃,在AlN层上形成一层厚度为2μm的N型AlGaN层,Si掺杂浓度为5E18atom/cm3;3. Adjust the temperature to 1200°C, and form an N-type AlGaN layer with a thickness of 2 μm on the AlN layer, with a Si doping concentration of 5E18atom/cm 3 ;
四、将温度调整为1100℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;4. Adjusting the temperature to 1100° C., growing five periods of quantum well structures on the N-type AlGaN layer, the quantum well structures including Al x Ga 1-x N well layers and A y Ga 1-y N barrier layers, x=0.4, y=0.6, the thickness of the AlxGa1 - xN well layer in each quantum well structure is 3nm, and the thickness of the AlyGa1 -yN barrier layer is 5nm;
五、将温度调整为1100℃,(1)通入流量为72slm的氮源、流量为200sccm的铝源、流量为33sccm的镓源,生长厚度为5nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为75slm的氮源和流量为1050sccm的镁源,持续3分钟,形成第一Mg层;(3)关闭镁源,通入流量为72slm的氮源、流量为200sccm的铝源、流量为32sccm的镓源,生长厚度为5nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为75slm的氮源和流量为1050sccm的镁源,持续3分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)15次,形成P型超晶格阻挡层;5. Adjust the temperature to 1100° C., (1) feed a nitrogen source with a flow rate of 72 slm, an aluminum source with a flow rate of 200 sccm, and a gallium source with a flow rate of 33 sccm to grow a first non-doped layer with a thickness of 5 nm; (2) Turn off the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 75slm and a magnesium source with a flow rate of 1050sccm for 3 minutes to form the first Mg layer; (3) turn off the magnesium source, and feed a nitrogen source with a flow rate of 72slm Be the aluminum source of 200sccm, flow be the gallium source of 32sccm, grow the second non-doped layer that thickness is 5nm; (4) turn off aluminum source and gallium source, feed flow be the nitrogen source of 75slm and flow be the magnesium source of 1050sccm , continue 3 minutes, form the second Mg layer; (5) repeat step (1), (2), (3) and (4) 15 times, form P-type superlattice barrier layer;
六、将温度调整为1200℃,在P型超晶格阻挡层上形成一层厚度为100nm的P型GaN层,Mg掺杂浓度为5E18atom/cm3。6. Adjust the temperature to 1200° C., and form a P-type GaN layer with a thickness of 100 nm on the P-type superlattice barrier layer, with a Mg doping concentration of 5E18atom/cm 3 .
实施例5Example 5
一种紫外发光二极管外延结构的制作方法,包括以下步骤:A method for manufacturing an epitaxial structure of an ultraviolet light-emitting diode, comprising the following steps:
一、将衬底放入MOCVD设备中,在1500℃条件下烘烤5分钟;1. Put the substrate into the MOCVD equipment and bake it at 1500°C for 5 minutes;
二、将温度调整为1400℃,在衬底上形成一层厚度为5μm的AlN层;2. Adjust the temperature to 1400°C, and form an AlN layer with a thickness of 5 μm on the substrate;
三、将温度调整为1400℃,在AlN层上形成一层厚度为2μm的N型AlGaN层,Si掺杂浓度为5E19atom/cm3;3. Adjust the temperature to 1400° C., and form an N-type AlGaN layer with a thickness of 2 μm on the AlN layer, with a Si doping concentration of 5E19atom/cm 3 ;
四、将温度调整为1300℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;4. Adjusting the temperature to 1300° C., growing five periods of quantum well structures on the N-type AlGaN layer, the quantum well structures including Al x Ga 1-x N well layers and A y Ga 1-y N barrier layers, x=0.4, y=0.6, the thickness of the AlxGa1 - xN well layer in each quantum well structure is 3nm, and the thickness of the AlyGa1 -yN barrier layer is 5nm;
五、将温度调整为1300℃,(1)通入流量为75slm的氮源、流量为210sccm的铝源、流量为33sccm的镓源,生长厚度为10nm的第一非掺杂层;(2)关闭铝源和镓源,通入流量为75slm的氮源和流量为1100sccm的镁源,持续5分钟,形成第一Mg层;(3)关闭镁源,通入流量为75slm的氮源、流量为210sccm的铝源、流量为31sccm的镓源,生长厚度为10nm的第二非掺杂层;(4)关闭铝源和镓源,通入流量为75slm的氮源和流量为1100sccm的镁源,持续5分钟,形成第二Mg层;(5)重复步骤(1)、(2)、(3)和(4)10次,形成P型超晶格阻挡层;5. Adjust the temperature to 1300° C., (1) feed a nitrogen source with a flow rate of 75 slm, an aluminum source with a flow rate of 210 sccm, and a gallium source with a flow rate of 33 sccm to grow a first non-doped layer with a thickness of 10 nm; (2) Close the aluminum source and the gallium source, feed a nitrogen source with a flow rate of 75slm and a magnesium source with a flow rate of 1100sccm for 5 minutes to form the first Mg layer; Be the aluminum source of 210sccm, flow be the gallium source of 31sccm, grow the second non-doped layer that thickness is 10nm; (4) turn off aluminum source and gallium source, feed flow be the nitrogen source of 75slm and flow be the magnesium source of 1100sccm , continue 5 minutes, form the second Mg layer; (5) repeat step (1), (2), (3) and (4) 10 times, form P-type superlattice barrier layer;
六、将温度调整为1400℃,在P型超晶格阻挡层上形成一层厚度为150nm的P型GaN层,Mg掺杂浓度为5E19atom/cm3。6. Adjust the temperature to 1400° C., and form a P-type GaN layer with a thickness of 150 nm on the P-type superlattice barrier layer, with a Mg doping concentration of 5E19atom/cm 3 .
对比例1Comparative example 1
一种紫外发光二极管外延结构的制作方法,包括以下步骤:A method for manufacturing an epitaxial structure of an ultraviolet light-emitting diode, comprising the following steps:
一、将衬底放入MOCVD设备中,在1100℃条件下烘烤10分钟;1. Put the substrate into the MOCVD equipment and bake it at 1100°C for 10 minutes;
二、将温度调整为1300℃,在衬底上形成一层厚度为3μm的AlN层;2. Adjust the temperature to 1300°C, and form an AlN layer with a thickness of 3 μm on the substrate;
三、将温度调整为1200℃,在AlN层上形成一层厚度为2μm的N型AlGaN层,Si掺杂浓度为2E19atom/cm3;3. Adjust the temperature to 1200°C, and form an N-type AlGaN layer with a thickness of 2 μm on the AlN layer, and the Si doping concentration is 2E19atom/cm 3 ;
四、将温度调整为1100℃,在N型AlGaN层上生长5个周期的量子阱结构,所述量子阱结构包括AlxGa1-xN阱层和AlyGa1-yN垒层,x=0.4,y=0.6,每个量子阱结构中AlxGa1-xN阱层的厚度为3nm,AlyGa1-yN垒层的厚度为5nm;4. Adjusting the temperature to 1100° C., growing five periods of quantum well structures on the N-type AlGaN layer, the quantum well structures including Al x Ga 1-x N well layers and A y Ga 1-y N barrier layers, x=0.4, y=0.6, the thickness of the AlxGa1 - xN well layer in each quantum well structure is 3nm, and the thickness of the AlyGa1 -yN barrier layer is 5nm;
五、将温度调整为1100℃,(1)通入氮源、铝源、镓源和镁源,生长厚度为50nm阻挡层;5. Adjust the temperature to 1100°C, (1) feed nitrogen source, aluminum source, gallium source and magnesium source, and grow a barrier layer with a thickness of 50nm;
六、将温度调整为1000℃,在阻挡层上形成一层厚度为50nm的P型GaN层,Mg掺杂浓度为2E20atom/cm3。Sixth, the temperature is adjusted to 1000° C., and a P-type GaN layer with a thickness of 50 nm is formed on the barrier layer, and the Mg doping concentration is 2E20 atom/cm 3 .
采用实施例1至实施例5和对比例1的制作方法制作出相同尺寸的芯片,进行光电测试,结果如下表:Adopt the manufacturing method of embodiment 1 to embodiment 5 and comparative example 1 to make the same size chip, carry out photoelectric test, the result is as follows:
参见图5,图5是对比例1和实施例3的Mg的掺杂浓度对比图,实施例3的阻挡层的Mg掺杂浓度远远高于对比例1的阻挡层的Mg的掺杂浓度。Referring to Fig. 5, Fig. 5 is a comparative diagram of the Mg doping concentration of Comparative Example 1 and Example 3, the Mg doping concentration of the barrier layer of Example 3 is much higher than the Mg doping concentration of the barrier layer of Comparative Example 1 .
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。The above disclosure is only a preferred embodiment of the present invention, which certainly cannot limit the scope of rights of the present invention. Therefore, equivalent changes made according to the claims of the present invention still fall within the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910679874.7A CN110364606A (en) | 2019-07-26 | 2019-07-26 | A kind of epitaxial structure of ultraviolet light-emitting diode and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910679874.7A CN110364606A (en) | 2019-07-26 | 2019-07-26 | A kind of epitaxial structure of ultraviolet light-emitting diode and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110364606A true CN110364606A (en) | 2019-10-22 |
Family
ID=68221589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910679874.7A Pending CN110364606A (en) | 2019-07-26 | 2019-07-26 | A kind of epitaxial structure of ultraviolet light-emitting diode and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110364606A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111180563A (en) * | 2020-02-12 | 2020-05-19 | 江西乾照光电有限公司 | LED chip and manufacturing method thereof |
CN111403568A (en) * | 2020-03-25 | 2020-07-10 | 江西新正耀光学研究院有限公司 | Ultraviolet L ED epitaxial structure and preparation method thereof |
CN112951961A (en) * | 2021-02-08 | 2021-06-11 | 江西乾照光电有限公司 | Deep ultraviolet LED and manufacturing method thereof |
CN113013303A (en) * | 2021-02-02 | 2021-06-22 | 东莞理工学院 | Ultraviolet light-emitting diode and preparation method and application thereof |
CN113451451A (en) * | 2020-08-20 | 2021-09-28 | 重庆康佳光电技术研究院有限公司 | LED epitaxial layer, growth method of current expansion layer of LED epitaxial layer and LED chip |
CN114203872A (en) * | 2021-12-02 | 2022-03-18 | 苏州紫灿科技有限公司 | Deep ultraviolet LED with modulated doped electron blocking layer structure and preparation method thereof |
CN115274957A (en) * | 2022-07-22 | 2022-11-01 | 苏州紫灿科技有限公司 | Deep ultraviolet LED with multi-Al component electron blocking layer structure and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030178633A1 (en) * | 2002-03-25 | 2003-09-25 | Flynn Jeffrey S. | Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same |
CN101289173A (en) * | 2008-06-04 | 2008-10-22 | 厦门大学 | Method for preparing p-typed III-nitride material impured at superlattice positions |
CN102569571A (en) * | 2012-03-06 | 2012-07-11 | 华灿光电股份有限公司 | Semiconductor light emitting diode and manufacturing method thereof |
CN107808916A (en) * | 2017-10-09 | 2018-03-16 | 浙江帅康电气股份有限公司 | LED die and preparation method thereof and LED |
CN108878606A (en) * | 2018-06-22 | 2018-11-23 | 西安电子科技大学 | Based on superlattice structure and the δ efficient LED adulterated and preparation method |
CN109427938A (en) * | 2017-08-23 | 2019-03-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of deep ultraviolet semiconductor devices and preparation method thereof |
CN210156417U (en) * | 2019-07-26 | 2020-03-17 | 佛山市国星半导体技术有限公司 | Ultraviolet light emitting diode epitaxial structure |
-
2019
- 2019-07-26 CN CN201910679874.7A patent/CN110364606A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030178633A1 (en) * | 2002-03-25 | 2003-09-25 | Flynn Jeffrey S. | Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same |
CN101289173A (en) * | 2008-06-04 | 2008-10-22 | 厦门大学 | Method for preparing p-typed III-nitride material impured at superlattice positions |
CN102569571A (en) * | 2012-03-06 | 2012-07-11 | 华灿光电股份有限公司 | Semiconductor light emitting diode and manufacturing method thereof |
CN109427938A (en) * | 2017-08-23 | 2019-03-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | A kind of deep ultraviolet semiconductor devices and preparation method thereof |
CN107808916A (en) * | 2017-10-09 | 2018-03-16 | 浙江帅康电气股份有限公司 | LED die and preparation method thereof and LED |
CN108878606A (en) * | 2018-06-22 | 2018-11-23 | 西安电子科技大学 | Based on superlattice structure and the δ efficient LED adulterated and preparation method |
CN210156417U (en) * | 2019-07-26 | 2020-03-17 | 佛山市国星半导体技术有限公司 | Ultraviolet light emitting diode epitaxial structure |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111180563A (en) * | 2020-02-12 | 2020-05-19 | 江西乾照光电有限公司 | LED chip and manufacturing method thereof |
CN111403568A (en) * | 2020-03-25 | 2020-07-10 | 江西新正耀光学研究院有限公司 | Ultraviolet L ED epitaxial structure and preparation method thereof |
CN113451451A (en) * | 2020-08-20 | 2021-09-28 | 重庆康佳光电技术研究院有限公司 | LED epitaxial layer, growth method of current expansion layer of LED epitaxial layer and LED chip |
CN113451451B (en) * | 2020-08-20 | 2022-09-13 | 重庆康佳光电技术研究院有限公司 | LED epitaxial layer, growth method of current expansion layer of LED epitaxial layer and LED chip |
CN113013303A (en) * | 2021-02-02 | 2021-06-22 | 东莞理工学院 | Ultraviolet light-emitting diode and preparation method and application thereof |
CN112951961A (en) * | 2021-02-08 | 2021-06-11 | 江西乾照光电有限公司 | Deep ultraviolet LED and manufacturing method thereof |
CN114203872A (en) * | 2021-12-02 | 2022-03-18 | 苏州紫灿科技有限公司 | Deep ultraviolet LED with modulated doped electron blocking layer structure and preparation method thereof |
CN115274957A (en) * | 2022-07-22 | 2022-11-01 | 苏州紫灿科技有限公司 | Deep ultraviolet LED with multi-Al component electron blocking layer structure and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110364606A (en) | A kind of epitaxial structure of ultraviolet light-emitting diode and its manufacturing method | |
CN101488550B (en) | Manufacturing method for LED in high In ingredient multiple InGaN/GaN quantum wells structure | |
CN115458650B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode | |
CN105070805B (en) | Silicon-based nitride ultraviolet LED epitaxial structure and implementation method thereof | |
CN110364600A (en) | A kind of epitaxial structure of ultraviolet light-emitting diode and its manufacturing method | |
CN105206726A (en) | LED structure and growth method thereof | |
CN114597293A (en) | Light-emitting diode epitaxial wafer and preparation method thereof | |
CN118572003B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode | |
CN103824912A (en) | Epitaxial growth method for improving reverse electric leakage of GaN-based light-emitting diode (LED) | |
CN109860345B (en) | LED epitaxial structure growth method | |
CN109524520B (en) | High-performance green light diode multi-quantum well structure and preparation method thereof | |
CN210156417U (en) | Ultraviolet light emitting diode epitaxial structure | |
CN103824908A (en) | Epitaxial growth method for improving electrostatic endurance capacity of GaN-based light-emitting diode (LED) | |
CN116995152A (en) | UVC epitaxial wafer with p-i-n tunneling junction and preparation method thereof | |
CN117080324A (en) | LED epitaxial wafer with high internal quantum efficiency, preparation method thereof and LED chip | |
CN114649450B (en) | Double-wavelength ultraviolet light emitting diode epitaxial layer structure and preparation method thereof | |
CN209104183U (en) | A High Performance Green Light Diode Multiple Quantum Well Structure | |
CN115312643A (en) | LED epitaxial wafer with insertion layer and preparation method thereof | |
CN110649137A (en) | Ultraviolet light emitting diode epitaxial structure and manufacturing method thereof | |
CN117855355A (en) | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN106910802A (en) | A kind of epitaxial structure for realizing short wavelength UV LED | |
CN113725326B (en) | Ultraviolet LED epitaxial structure and preparation method and application thereof | |
CN107689405B (en) | Ultraviolet LED epitaxial structure and growth method thereof | |
CN116682909A (en) | A kind of LED epitaxial wafer, preparation method and LED chip | |
CN106206887B (en) | A kind of LED epitaxial slice and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191022 |