[go: up one dir, main page]

CN118572003B - Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode - Google Patents

Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode Download PDF

Info

Publication number
CN118572003B
CN118572003B CN202411035811.5A CN202411035811A CN118572003B CN 118572003 B CN118572003 B CN 118572003B CN 202411035811 A CN202411035811 A CN 202411035811A CN 118572003 B CN118572003 B CN 118572003B
Authority
CN
China
Prior art keywords
layer
quantum well
type gan
emitting diode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202411035811.5A
Other languages
Chinese (zh)
Other versions
CN118572003A (en
Inventor
胡加辉
郑文杰
程龙
高虹
刘春杨
金从龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Zhao Chi Semiconductor Co Ltd
Original Assignee
Jiangxi Zhao Chi Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Zhao Chi Semiconductor Co Ltd filed Critical Jiangxi Zhao Chi Semiconductor Co Ltd
Priority to CN202411035811.5A priority Critical patent/CN118572003B/en
Publication of CN118572003A publication Critical patent/CN118572003A/en
Application granted granted Critical
Publication of CN118572003B publication Critical patent/CN118572003B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • H10H20/01335Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Led Devices (AREA)

Abstract

The invention discloses a light-emitting diode epitaxial wafer, a preparation method thereof and a light-emitting diode, and relates to the field of semiconductor photoelectric devices. The light-emitting diode epitaxial wafer sequentially comprises a substrate, a buffer layer, an undoped GaN layer, an N-type GaN layer, a multiple quantum well layer, an electron blocking layer and a P-type GaN layer; the multi-quantum well layer sequentially comprises a first multi-quantum well layer, a last well layer and a last barrier layer, wherein the first multi-quantum well layer comprises a quantum well layer and a quantum barrier layer, the quantum well layer and the last well layer are InGaN quantum well layers, and the quantum barrier layer is a GaN quantum barrier layer; the final barrier layer comprises an Al xGa1‑x N layer, an In yGa1‑y N layer, an In zGa1‑z N layer and a GaN layer which are sequentially stacked; x is 0.05-0.3, y is 0.01-0.1, z is 0.01-0.1, and z > y; the electron blocking layer is a beta-Ta 2O5 layer; the P-type GaN layer comprises a first P-type GaN layer, a P-type In αGa1‑α N layer and a second P-type GaN layer which are sequentially stacked, and alpha is 0.08-0.15. By implementing the invention, the luminous efficiency of the light-emitting diode under each current density can be improved.

Description

发光二极管外延片及其制备方法、发光二极管Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode

技术领域Technical Field

本发明涉及半导体光电器件领域,尤其涉及一种发光二极管外延片及其制备方法、发光二极管。The invention relates to the field of semiconductor optoelectronic devices, and in particular to a light emitting diode epitaxial wafer and a preparation method thereof, and a light emitting diode.

背景技术Background Art

GaN基发光二极管一般以InGaN-GaN异质结作为量子阱区,其具备发光效率较高等优点,是目前应用最为广泛的LED。但目前仍然存在着一些限制其性能提升的现象。其中一种是随着注入电流的增大发光效率降低的现象,即一般称为Efficiency Droop的问题。研究指出,Efficiency Droop与漏电子有较强的相关关系。由于GaN基发光二极管中一般以P型AlGaN作为电子阻挡层,而势垒层(GaN)与电子阻挡层之间存在的晶格失配会形成极化电场,产生正电荷,进而降低了P型AlGaN的势垒,导致电子泄露。目前常用的方法是将最后一个势垒层替换为GaN与p型InGaN的叠层结构,但这种结构一者会导致Mg扩散进入其他量子阱层,降低其他量子阱层的晶体质量,二者若p型InGaN中In过多反而会造成势垒过低,难以将空穴、电子限制到有源区,也会使得发光效率下降。GaN-based light-emitting diodes generally use InGaN-GaN heterojunction as the quantum well region. It has advantages such as high luminous efficiency and is currently the most widely used LED. However, there are still some phenomena that limit its performance improvement. One of them is the phenomenon that the luminous efficiency decreases with the increase of the injected current, which is generally called the problem of Efficiency Droop. Studies have shown that Efficiency Droop has a strong correlation with leakage electrons. Since P-type AlGaN is generally used as the electron blocking layer in GaN-based light-emitting diodes, the lattice mismatch between the barrier layer (GaN) and the electron blocking layer will form a polarization electric field, generate positive charges, and then reduce the barrier of P-type AlGaN, resulting in electron leakage. The commonly used method is to replace the last barrier layer with a stacked structure of GaN and p-type InGaN, but this structure will cause Mg to diffuse into other quantum well layers, reducing the crystal quality of other quantum well layers. If there is too much In in p-type InGaN, it will cause the barrier to be too low, making it difficult to confine holes and electrons to the active area, which will also reduce the luminous efficiency.

发明内容Summary of the invention

本发明所要解决的技术问题在于,提供一种发光二极管外延片及其制备方法,其可提升发光二极管在不同发光电流下的发光效率。The technical problem to be solved by the present invention is to provide a light emitting diode epitaxial wafer and a preparation method thereof, which can improve the light emitting efficiency of the light emitting diode under different light emitting currents.

为了解决上述问题,本发明公开了一种发光二极管外延片,其包括衬底,依次层叠于所述衬底上的缓冲层、非掺杂GaN层、N型GaN层、多量子阱层、电子阻挡层和P型GaN层;In order to solve the above problems, the present invention discloses a light-emitting diode epitaxial wafer, which comprises a substrate, a buffer layer, a non-doped GaN layer, an N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer sequentially stacked on the substrate;

其中,所述多量子阱层包括依次层叠于所述N型GaN层上的第一多量子阱层、末阱层和末垒层,所述第一多量子阱层为量子阱层和量子垒层交替层叠形成的周期性结构,所述量子阱层、末阱层均为InGaN量子阱层,所述量子垒层为GaN量子垒层;The multi-quantum well layer comprises a first multi-quantum well layer, a final well layer and a final barrier layer sequentially stacked on the N-type GaN layer, the first multi-quantum well layer is a periodic structure formed by alternating stacking of quantum well layers and quantum barrier layers, the quantum well layer and the final well layer are both InGaN quantum well layers, and the quantum barrier layer is a GaN quantum barrier layer;

所述末垒层包括依次层叠于末阱层上的AlxGa1-xN层、InyGa1-yN层、InzGa1-zN层和GaN层;其中,x的取值范围为0.05~0.3,y的取值范围为0.01~0.1,z的取值范围为0.01~0.1,且z>y;The final barrier layer comprises an AlxGa1 -xN layer, an InyGa1 -yN layer, an InzGa1 -zN layer and a GaN layer sequentially stacked on the final well layer; wherein the value range of x is 0.05-0.3, the value range of y is 0.01-0.1, the value range of z is 0.01-0.1, and z>y;

所述电子阻挡层为β-Ta2O5层;The electron blocking layer is a β-Ta 2 O 5 layer;

所述P型GaN层包括依次层叠于所述电子阻挡层上的第一P型GaN层、P型InαGa1-αN层和第二P型GaN层,其中,α的取值范围为0.08~0.15。The P-type GaN layer includes a first P-type GaN layer, a P-type In α Ga 1-α N layer and a second P-type GaN layer which are sequentially stacked on the electron blocking layer, wherein the value range of α is 0.08-0.15.

作为上述技术方案的改进,所述AlxGa1-xN层的厚度为3nm~8nm,x的取值范围为0.1~0.2;和/或As an improvement of the above technical solution, the thickness of the AlxGa1 -xN layer is 3nm-8nm, and the value range of x is 0.1-0.2; and/or

所述InyGa1-yN层的厚度为1nm~3nm,y的取值范围为0.02~0.04;和/或The thickness of the In y Ga 1-y N layer is 1 nm to 3 nm, and the value range of y is 0.02 to 0.04; and/or

所述InzGa1-zN层的厚度为1nm~3nm,z的取值范围为0.05~0.1;和/或The thickness of the In z Ga 1-z N layer is 1 nm to 3 nm, and the value range of z is 0.05 to 0.1; and/or

所述GaN层的厚度为2nm~6nm。The thickness of the GaN layer is 2nm~6nm.

作为上述技术方案的改进,所述电子阻挡层的厚度为20nm~50nm;和/或As an improvement of the above technical solution, the thickness of the electron blocking layer is 20nm~50nm; and/or

所述第一P型GaN层的厚度为20nm~100nm,P型掺杂浓度为1×1019cm-3~1×1020cm-3;和/或The thickness of the first P-type GaN layer is 20 nm to 100 nm, and the P-type doping concentration is 1×10 19 cm -3 to 1×10 20 cm -3 ; and/or

所述P型InαGa1-αN层的厚度为10nm~30nm,P型掺杂浓度为1×1017cm-3~1×1019cm-3;和/或The thickness of the P-type In α Ga 1-α N layer is 10 nm to 30 nm, and the P-type doping concentration is 1×10 17 cm -3 to 1×10 19 cm -3 ; and/or

所述第二P型GaN层的厚度为50nm~150nm,P型掺杂浓度为1×1020cm-3~1×1021cm-3The thickness of the second P-type GaN layer is 50 nm to 150 nm, and the P-type doping concentration is 1×10 20 cm -3 to 1×10 21 cm -3 .

作为上述技术方案的改进,所述AlxGa1-xN层的厚度为所述InyGa1-yN层的厚度的1.5~3倍。As an improvement of the above technical solution, the thickness of the AlxGa1 -xN layer is 1.5 to 3 times the thickness of the InyGa1 -yN layer.

作为上述技术方案的改进,所述GaN层的厚度为所述InzGa1-zN层的厚度的1.2~2倍。As an improvement of the above technical solution, the thickness of the GaN layer is 1.2 to 2 times the thickness of the In z Ga 1-z N layer.

作为上述技术方案的改进,所述量子阱层、末阱层中In组分占比为0.1~0.2,其厚度为3nm~5nm;As an improvement of the above technical solution, the In component ratio in the quantum well layer and the final well layer is 0.1-0.2, and the thickness thereof is 3nm-5nm;

所述量子垒层的厚度为5nm~15nm。The thickness of the quantum barrier layer is 5nm-15nm.

相应的,本发明还公开了一种发光二极管外延片的制备方法,用于制备上述的发光二极管外延片,其包括:Correspondingly, the present invention also discloses a method for preparing a light-emitting diode epitaxial wafer, which is used to prepare the above-mentioned light-emitting diode epitaxial wafer, and comprises:

提供衬底,在所述衬底上依次生长缓冲层、N型GaN层、多量子阱层、电子阻挡层和P型GaN层;Providing a substrate, and sequentially growing a buffer layer, an N-type GaN layer, a multi-quantum well layer, an electron blocking layer, and a P-type GaN layer on the substrate;

其中,所述多量子阱层包括依次层叠于所述N型GaN层上的第一多量子阱层、末阱层和末垒层,所述第一多量子阱层为量子阱层和量子垒层交替层叠形成的周期性结构,所述量子阱层、末阱层均为InGaN量子阱层,所述量子垒层为GaN量子垒层;The multi-quantum well layer comprises a first multi-quantum well layer, a final well layer and a final barrier layer sequentially stacked on the N-type GaN layer, the first multi-quantum well layer is a periodic structure formed by alternating stacking of quantum well layers and quantum barrier layers, the quantum well layer and the final well layer are both InGaN quantum well layers, and the quantum barrier layer is a GaN quantum barrier layer;

所述末垒层包括依次层叠于末阱层上的AlxGa1-xN层、InyGa1-yN层、InzGa1-zN层和GaN层;其中,x的取值范围为0.05~0.3,y的取值范围为0.01~0.1,z的取值范围为0.01~0.1,且z>y;The final barrier layer comprises an AlxGa1 -xN layer, an InyGa1 -yN layer, an InzGa1 -zN layer and a GaN layer sequentially stacked on the final well layer; wherein the value range of x is 0.05-0.3, the value range of y is 0.01-0.1, the value range of z is 0.01-0.1, and z>y;

所述电子阻挡层为β-Ta2O5层;The electron blocking layer is a β-Ta 2 O 5 layer;

所述P型GaN层包括依次层叠于所述电子阻挡层上的第一P型GaN层、P型InαGa1-αN层和第二P型GaN层,其中,α的取值范围为0.08~0.15。The P-type GaN layer includes a first P-type GaN layer, a P-type In α Ga 1-α N layer and a second P-type GaN layer which are sequentially stacked on the electron blocking layer, wherein the value range of α is 0.08-0.15.

作为上述技术方案的改进,所述量子阱层、末阱层的生长温度为740℃~820℃,生长压力为100torr~300torr;和/或As an improvement of the above technical solution, the growth temperature of the quantum well layer and the final well layer is 740° C. to 820° C., and the growth pressure is 100 torr to 300 torr; and/or

所述量子垒层、末垒层的生长温度为850℃~950℃,生长压力为100torr~300torr;和/或The growth temperature of the quantum barrier layer and the final barrier layer is 850° C. to 950° C., and the growth pressure is 100 torr to 300 torr; and/or

所述电子阻挡层的生长温度为800℃~900℃,生长压力为10torr~100torr;和/或The growth temperature of the electron blocking layer is 800° C. to 900° C., and the growth pressure is 10 torr to 100 torr; and/or

所述第一P型GaN层、第二P型GaN层的生长温度为900℃~1000℃,生长压力为100torr~500torr;和/或The growth temperature of the first P-type GaN layer and the second P-type GaN layer is 900° C. to 1000° C., and the growth pressure is 100 torr to 500 torr; and/or

所述P型InαGa1-αN层的生长温度为750℃~850℃,生长压力为100torr~500torr。The growth temperature of the P-type In α Ga 1-α N layer is 750° C. to 850° C., and the growth pressure is 100 torr to 500 torr.

作为上述技术方案的改进,所述电子阻挡层生长结束后,在空气或氧气气氛中,900℃~950℃下退火10min~30min。As an improvement of the above technical solution, after the growth of the electron blocking layer is completed, annealing is performed at 900° C. to 950° C. in air or oxygen atmosphere for 10 min to 30 min.

相应的,本发明还公开了一种发光二极管,其包括上述的发光二极管外延片。Correspondingly, the present invention also discloses a light emitting diode, which includes the light emitting diode epitaxial wafer mentioned above.

实施本发明,具有如下有益效果:The implementation of the present invention has the following beneficial effects:

本发明的发光二极管外延片中,一者,以依次层叠的AlxGa1-xN层、InyGa1-yN层、InzGa1-zN层和GaN层作为末垒层,AlxGa1-xN层-InyGa1-yN层界面、InzGa1-zN层-GaN层界面均因极化效应会产生极化电场,进而在界面产生负电荷,便于消耗电子,降低了电子逃逸概率。进一步的,本发明的末垒层中不引入Mg掺杂,不破坏量子阱层结构,保障了在较低电流密度下的高发光效率。二者,在GaN层上引入了β-Ta2O5层作为电子阻挡层,GaN(0001)面内与β-Ta2O5的010晶相的晶格失配<3%,因此末垒层对电子阻挡层的影响极弱,而β-Ta2O5的带隙宽度达到4.4eV左右,两者综合使得电子阻挡层具备良好的电子阻挡作用。三者,本发明的P型GaN层包括依次层叠的第一P型GaN层、P型InαGa1-αN层和第二P型GaN层,较低势垒的P型InαGa1-αN层可起到存储空穴的作用,而第一P型GaN层、P型InαGa1-αN层和第二P型GaN层所形成的异质结会有效地加速空穴,提升空穴注入多量子阱层的效率。综合以上,本发明的发光二极管外延片可有效提升各电流密度下的发光效率。In the light-emitting diode epitaxial wafer of the present invention, first, the AlxGa1 -xN layer, InyGa1 -yN layer, InzGa1 -zN layer and GaN layer stacked in sequence are used as the last barrier layer, and the AlxGa1 -xN layer- InyGa1 -yN layer interface and the InzGa1 -zN layer-GaN layer interface will generate polarization electric fields due to the polarization effect, thereby generating negative charges at the interface, which is convenient for consuming electrons and reduces the probability of electron escape. Furthermore, Mg doping is not introduced into the last barrier layer of the present invention, and the quantum well layer structure is not destroyed, thereby ensuring high luminous efficiency at a lower current density. Secondly, a β-Ta 2 O 5 layer is introduced on the GaN layer as an electron blocking layer, and the lattice mismatch between the GaN (0001) plane and the 010 crystal phase of β-Ta 2 O 5 is less than 3%, so the last barrier layer has a very weak effect on the electron blocking layer, and the band gap width of β-Ta 2 O 5 reaches about 4.4eV. The combination of the two makes the electron blocking layer have a good electron blocking effect. Thirdly, the P-type GaN layer of the present invention includes a first P-type GaN layer, a P-type In α Ga 1-α N layer and a second P-type GaN layer stacked in sequence, and the P-type In α Ga 1-α N layer with a lower barrier can play a role in storing holes, and the heterojunction formed by the first P-type GaN layer, the P-type In α Ga 1-α N layer and the second P-type GaN layer can effectively accelerate holes and improve the efficiency of hole injection into the multi-quantum well layer. In summary, the light-emitting diode epitaxial wafer of the present invention can effectively improve the luminous efficiency under various current densities.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明一实施例中发光二极管外延片的结构示意图;FIG1 is a schematic diagram of the structure of a light emitting diode epitaxial wafer according to an embodiment of the present invention;

图2是本发明一实施例中发光二极管外延片的制备方法流程图。FIG. 2 is a flow chart of a method for preparing a light emitting diode epitaxial wafer according to an embodiment of the present invention.

具体实施方式DETAILED DESCRIPTION

为使本发明的目的、技术方案和优点更加清楚,下面对本发明作进一步地详细描述。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention is further described in detail below.

参考图1,本发明公开了一种发光二极管外延片,其包括衬底100、依次层叠于衬底100上的缓冲层200、非掺杂GaN层300、N型GaN层400、多量子阱层500、电子阻挡层600和P型GaN层700。其中,多量子阱层500包括依次层叠与N型GaN层400上的第一多量子阱层510、末阱层520和末垒层530;第一多量子阱层510为量子阱层511和量子垒层512交替层叠组成的周期性结构。末垒层530包括依次层叠于末阱层520上的AlxGa1-xN层531、InyGa1-yN层532、InzGa1-zN层533和GaN层534;基于上述的末垒层530,一者,引入了晶格失配程度更高的AlxGa1-xN层531、InyGa1-yN层532,其界面极化电荷的浓度更高,可更有效地防止电子泄露;二者,通过InzGa1-zN层533和GaN层534作为过渡,避免与后续的电子阻挡层600(β-Ta2O5层)产生较大的晶格失配。三者,通过引入更高势垒高度的AlxGa1-xN层531,也避免了载流子从末阱层520溢出,降低发光效率。Referring to FIG1 , the present invention discloses a light emitting diode epitaxial wafer, which includes a substrate 100, a buffer layer 200, a non-doped GaN layer 300, an N-type GaN layer 400, a multi-quantum well layer 500, an electron blocking layer 600, and a P-type GaN layer 700, which are sequentially stacked on the substrate 100. The multi-quantum well layer 500 includes a first multi-quantum well layer 510, a final well layer 520, and a final barrier layer 530 sequentially stacked on the N-type GaN layer 400; the first multi-quantum well layer 510 is a periodic structure composed of quantum well layers 511 and quantum barrier layers 512 alternately stacked. The final barrier layer 530 includes an AlxGa1 -xN layer 531, an InyGa1 - yN layer 532, an InzGa1 -zN layer 533 and a GaN layer 534 which are sequentially stacked on the final well layer 520. Based on the final barrier layer 530, firstly, the AlxGa1 -xN layer 531 and the InyGa1 -yN layer 532 with a higher lattice mismatch are introduced, and the concentration of the interface polarization charge is higher, which can more effectively prevent electron leakage. Secondly, the InzGa1 -zN layer 533 and the GaN layer 534 are used as transitions to avoid a large lattice mismatch with the subsequent electron blocking layer 600 (β- Ta2O5 layer). Thirdly, by introducing the AlxGa1 -xN layer 531 with a higher barrier height, it is also prevented that the carriers overflow from the final well layer 520 and reduce the luminous efficiency.

其中,AlxGa1-xN层531中Al组分的占比(即x)为0.05~0.3,示例性的为0.08、0.13、0.18、0.24、0.25或0.29,但不限于此。优选的为0.1~0.2。The ratio of Al component (ie, x) in the AlxGa1 -xN layer 531 is 0.05-0.3, exemplarily 0.08, 0.13, 0.18, 0.24, 0.25 or 0.29, but not limited thereto, and preferably 0.1-0.2.

AlxGa1-xN层531的厚度为3nm~10nm,示例性的为3.5nm、5nm、6.5nm、8nm或9.5nm,但不限于此。优选的为3nm~8nm。The thickness of the AlxGa1 -xN layer 531 is 3 nm to 10 nm, exemplarily 3.5 nm, 5 nm, 6.5 nm, 8 nm or 9.5 nm, but not limited thereto, preferably 3 nm to 8 nm.

其中,InyGa1-yN层532中In组分的占比(即y)为0.01~0.1,若其y<0.01,则极化产生负电荷较少;若y>0.1,则末垒层530整体的势垒高度过低,难以将载流子有效限定在末阱层520中进行复合。示例性的,y为0.02、0.04、0.06、或0.08,但不限于此。优选的,y为0.02~0.04。The ratio of In component (i.e., y) in the In y Ga 1-y N layer 532 is 0.01-0.1. If y<0.01, less negative charge is generated by polarization. If y>0.1, the overall barrier height of the last barrier layer 530 is too low, and it is difficult to effectively confine carriers in the last well layer 520 for recombination. Exemplarily, y is 0.02, 0.04, 0.06, or 0.08, but not limited thereto. Preferably, y is 0.02-0.04.

InyGa1-yN层532的厚度为1nm~5nm,示例性的为1.2nm、1.5nm、1.8nm、2.2nm、2.6nm、3nm、3.7nm或4.4nm,但不限于此。优选的为1nm~3nm。The thickness of the In y Ga 1-y N layer 532 is 1 nm to 5 nm, and is exemplarily 1.2 nm, 1.5 nm, 1.8 nm, 2.2 nm, 2.6 nm, 3 nm, 3.7 nm or 4.4 nm, but is not limited thereto, and is preferably 1 nm to 3 nm.

其中,InzGa1-zN层533中In组分的占比(即z)为0.01~0.1,本发明控制y<z≤0.1,以防止末垒层530的势垒高度过低。示例性的,z为0.02、0.04、0.06、或0.08,但不限于此。优选的,z为0.05~0.1。The ratio of In component (i.e., z) in the In z Ga 1-z N layer 533 is 0.01-0.1, and the present invention controls y<z≤0.1 to prevent the barrier height of the last barrier layer 530 from being too low. Exemplarily, z is 0.02, 0.04, 0.06, or 0.08, but is not limited thereto. Preferably, z is 0.05-0.1.

InzGa1-zN层533的厚度为1nm~5nm,示例性的为1.2nm、1.5nm、1.8nm、2.2nm、2.6nm、3nm、3.7nm或4.4nm,但不限于此。优选的为1nm~3nm。The thickness of the In z Ga 1-z N layer 533 is 1 nm to 5 nm, and is exemplarily 1.2 nm, 1.5 nm, 1.8 nm, 2.2 nm, 2.6 nm, 3 nm, 3.7 nm or 4.4 nm, but is not limited thereto, and is preferably 1 nm to 3 nm.

其中,GaN层534的厚度为2nm~8nm,示例性的为3nm、5nm、7nm或8nm,但不限于此。优选的为2nm~6nm。The thickness of the GaN layer 534 is 2 nm to 8 nm, exemplarily 3 nm, 5 nm, 7 nm or 8 nm, but not limited thereto, preferably 2 nm to 6 nm.

其中,电子阻挡层600为β-Ta2O5层,其势垒高,且与GaN层534之间的晶格失配很小,大幅提升了对电子的阻挡作用,提升了发光二极管在各电流密度下的发光效率。The electron blocking layer 600 is a β-Ta 2 O 5 layer, which has a high potential barrier and a small lattice mismatch with the GaN layer 534 , which greatly improves the blocking effect on electrons and improves the luminous efficiency of the light-emitting diode at various current densities.

电子阻挡层600的厚度为20nm~80nm,示例性的为22nm、28nm、34nm、40nm、50nm、60nm或75nm,但不限于此。优选的为20nm~50nm。The thickness of the electron blocking layer 600 is 20 nm to 80 nm, and is exemplarily 22 nm, 28 nm, 34 nm, 40 nm, 50 nm, 60 nm or 75 nm, but is not limited thereto, and is preferably 20 nm to 50 nm.

其中,P型GaN层700包括依次层叠于电子阻挡层600上的第一P型GaN层710、P型InαGa1-αN层720和第二P型GaN层730。基于这种P型GaN层700,一者较低势垒的P型InαGa1-αN层720可起到存储空穴的作用,二者该P型GaN层700所形成的异质结会有效地加速空穴,提升空穴注入多量子阱层的效率。The P-type GaN layer 700 includes a first P-type GaN layer 710, a P-type In α Ga 1-α N layer 720, and a second P-type GaN layer 730, which are sequentially stacked on the electron blocking layer 600. Based on the P-type GaN layer 700, the P-type In α Ga 1-α N layer 720 with a lower barrier can play a role in storing holes, and the heterojunction formed by the P-type GaN layer 700 can effectively accelerate holes and improve the efficiency of hole injection into the multi-quantum well layer.

其中,第一P型GaN层710的厚度为20nm~200nm,示例性的为30nm、50nm、70nm、90nm、120nm或180nm,但不限于此。优选的,第一P型GaN层710的厚度为20nm~100nm。The thickness of the first P-type GaN layer 710 is 20 nm to 200 nm, and is exemplarily 30 nm, 50 nm, 70 nm, 90 nm, 120 nm or 180 nm, but is not limited thereto. Preferably, the thickness of the first P-type GaN layer 710 is 20 nm to 100 nm.

第一P型GaN层710的P型掺杂浓度为1×1019cm-3~3×1020cm-3;优选的为1×1019cm-3~1×1020cm-3The P-type doping concentration of the first P-type GaN layer 710 is 1×10 19 cm −3 to 3×10 20 cm −3 , preferably 1×10 19 cm −3 to 1×10 20 cm −3 .

其中,P型InαGa1-αN层720中In组分的占比为(即α)为0.08~0.15,示例性的为0.09、0.11、0.13或0.14,但不限于此。优选的为0.1~0.15。The ratio of the In component in the P-type In α Ga 1-α N layer 720 (ie, α) is 0.08-0.15, and is 0.09, 0.11, 0.13 or 0.14, but not limited thereto, and is preferably 0.1-0.15.

P型InαGa1-αN层720的厚度为10nm~50nm,示例性的为12nm、20nm、28nm、36nm或44nm,但不限于此。优选的为10nm~30nm。The thickness of the P-type In α Ga 1-α N layer 720 is 10 nm to 50 nm, exemplarily 12 nm, 20 nm, 28 nm, 36 nm or 44 nm, but not limited thereto, preferably 10 nm to 30 nm.

P型InαGa1-αN层720中P型掺杂浓度为1×1017cm-3~5×1019cm-3,优选的为1×1017cm-3~1×1019cm-3The P-type doping concentration in the P-type In α Ga 1-α N layer 720 is 1×10 17 cm -3 to 5×10 19 cm -3 , preferably 1×10 17 cm -3 to 1×10 19 cm -3 .

其中,第二P型GaN层730的厚度为50nm~200nm,优选的为50nm~150nm。第二P型GaN层730的P型掺杂浓度为8×1019cm-3~1×1021cm-3;优选的为1×1020cm-3~1×1021cm-3The thickness of the second P-type GaN layer 730 is 50 nm to 200 nm, preferably 50 nm to 150 nm. The P-type doping concentration of the second P-type GaN layer 730 is 8×10 19 cm -3 to 1×10 21 cm -3 , preferably 1×10 20 cm -3 to 1×10 21 cm -3 .

优选的,在本发明的一个实施例之中,AlxGa1-xN层531的厚度为InyGa1-yN层532的厚度的1.5~3倍,基于该厚度比例,可更大幅度地降低电子泄露的概率。Preferably, in an embodiment of the present invention, the thickness of the AlxGa1 -xN layer 531 is 1.5 to 3 times the thickness of the InyGa1 -yN layer 532. Based on this thickness ratio, the probability of electron leakage can be further reduced.

优选的,在本发明的一个实施例之中,GaN层534的厚度为InzGa1-zN层533的厚度的1.2~2倍。基于该厚度比例,可更大幅度地降低电子泄露的概率。Preferably, in one embodiment of the present invention, the thickness of the GaN layer 534 is 1.2 to 2 times the thickness of the In z Ga 1-z N layer 533. Based on this thickness ratio, the probability of electron leakage can be further reduced.

其中,量子阱层511与末阱层520相同,均为InGaN量子阱层,其In组分占比为0.1~0.35,优选的为0.1~0.2。量子阱层511、末阱层520的厚度为3nm~5nm。The quantum well layer 511 and the final well layer 520 are the same, both are InGaN quantum well layers, and the In component ratio is 0.1-0.35, preferably 0.1-0.2. The thickness of the quantum well layer 511 and the final well layer 520 is 3nm-5nm.

其中,量子垒层512为GaN量子垒层,其厚度为5nm~15nm,优选的为8nm~15nm。The quantum barrier layer 512 is a GaN quantum barrier layer, and its thickness is 5 nm to 15 nm, preferably 8 nm to 15 nm.

第一多量子阱层510的周期数为3~15,优选的为5~15,更优选的为8~15。The period number of the first multi-quantum well layer 510 is 3-15, preferably 5-15, and more preferably 8-15.

其中,衬底100为蓝宝石衬底、硅衬底或碳化硅衬底,但不限于此。The substrate 100 is a sapphire substrate, a silicon substrate or a silicon carbide substrate, but is not limited thereto.

其中,缓冲层200为AlN层或AlGaN层,但不限于此。缓冲层200的厚度为20nm~80nm。The buffer layer 200 is an AlN layer or an AlGaN layer, but is not limited thereto. The buffer layer 200 has a thickness of 20 nm to 80 nm.

其中,非掺杂GaN层300的厚度为1μm~3μm。The thickness of the non-doped GaN layer 300 is 1 μm-3 μm.

其中,N型GaN层400中N型掺杂(Si)浓度为5×1018cm-3~5×1019cm-3,厚度为1μm~5μm。The N-type doping (Si) concentration in the N-type GaN layer 400 is 5×10 18 cm −3 to 5×10 19 cm −3 , and the thickness is 1 μm to 5 μm.

相应的,参考图2,本发明还提供了一种发光二极管外延片的制备方法,用于制备上述的发光二极管外延片,其具体包括以下步骤:Correspondingly, referring to FIG. 2 , the present invention further provides a method for preparing a light emitting diode epitaxial wafer, which is used to prepare the light emitting diode epitaxial wafer, and specifically comprises the following steps:

S1:提供衬底;S1: providing a substrate;

S2:在衬底上依次生长缓冲层、非掺杂GaN层、N型GaN层、多量子阱层、电子阻挡层和P型GaN层;S2: sequentially growing a buffer layer, a non-doped GaN layer, an N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer on the substrate;

优选的,在本发明的一些实施方式中,步骤S2包括:Preferably, in some embodiments of the present invention, step S2 comprises:

S21:在衬底上生长缓冲层;S21: growing a buffer layer on the substrate;

其中,可通过PVD、MOCVD、MBE或VPE生长缓冲层,但不限于此。The buffer layer may be grown by PVD, MOCVD, MBE or VPE, but is not limited thereto.

优选的,在本发明的一个实施例之中,通过PVD生长AlN层,作为缓冲层。Preferably, in one embodiment of the present invention, an AlN layer is grown by PVD as a buffer layer.

S22:在缓冲层上生长非掺杂GaN层;S22: growing a non-doped GaN layer on the buffer layer;

其中,可通过PVD、MOCVD、MBE或VPE生长非掺杂GaN层,但不限于此。The non-doped GaN layer may be grown by PVD, MOCVD, MBE or VPE, but is not limited thereto.

优选的,在本发明的一个实施例之中,通过MOCVD生长非掺杂GaN层。其生长温度为1100℃~1150℃,生长压力为100torr~500torr。Preferably, in one embodiment of the present invention, the non-doped GaN layer is grown by MOCVD at a growth temperature of 1100° C. to 1150° C. and a growth pressure of 100 torr to 500 torr.

S23:在非掺杂GaN层上生长N型GaN层;S23: growing an N-type GaN layer on the non-doped GaN layer;

其中,可通过MOCVD、MBE或VPE生长N型GaN层,但不限于此。The N-type GaN layer may be grown by MOCVD, MBE or VPE, but is not limited thereto.

优选的,在本发明的一个实施例之中,通过MOCVD生长N型GaN层;其生长温度为1100℃~1150℃,生长压力为100torr~500torr。Preferably, in one embodiment of the present invention, the N-type GaN layer is grown by MOCVD; the growth temperature is 1100° C. to 1150° C., and the growth pressure is 100 torr to 500 torr.

S24:在N型GaN层上生长多量子阱层;S24: growing a multi-quantum well layer on the N-type GaN layer;

具体的,步骤S24包括以下步骤:Specifically, step S24 includes the following steps:

S241:在N型GaN层上生长第一多量子阱层;S241: growing a first multi-quantum well layer on the N-type GaN layer;

其中,在本发明的一个实施例之中,通过MOCVD在N型GaN层上周期性生长量子阱层和量子垒层,直至得到多量子阱层。其中,量子阱层的生长温度为740℃~820℃,生长压力为100torr~300torr。量子垒层的生长温度为850℃~950℃,生长压力为100torr~300torr。In one embodiment of the present invention, a quantum well layer and a quantum barrier layer are periodically grown on an N-type GaN layer by MOCVD until a multi-quantum well layer is obtained. The growth temperature of the quantum well layer is 740°C to 820°C, and the growth pressure is 100 torr to 300 torr. The growth temperature of the quantum barrier layer is 850°C to 950°C, and the growth pressure is 100 torr to 300 torr.

S242:在第一多量子阱层上生长末阱层;S242: growing a final well layer on the first multi-quantum well layer;

其中,可通过MOCVD、MBE或VPE生长InGaN量子阱层,作为末阱层,但不限于此。The InGaN quantum well layer may be grown by MOCVD, MBE or VPE as the final well layer, but is not limited thereto.

优选的,在本发明的一个实施例之中,通过MOCVD生长InGaN量子阱层,作为末阱层;其生长温度为740℃~820℃,生长压力为100torr~300torr。Preferably, in one embodiment of the present invention, an InGaN quantum well layer is grown by MOCVD as the final well layer; the growth temperature is 740° C. to 820° C., and the growth pressure is 100 torr to 300 torr.

S243:在末阱层上生长末垒层,得到多量子阱层;S243: growing a final barrier layer on the final well layer to obtain a multi-quantum well layer;

具体的,在本发明的一个实施例之中,通过MOCVD在末阱层上依次生长AlxGa1-xN层、InyGa1-yN层、InzGa1-zN层和GaN层,即得末垒层;Specifically, in one embodiment of the present invention, an AlxGa1 -xN layer, an InyGa1 -yN layer, an InzGa1 -zN layer and a GaN layer are sequentially grown on the final well layer by MOCVD to obtain a final barrier layer;

其中,末垒层的生长温度为850℃~950℃,生长压力为100torr~300torr。Among them, the growth temperature of the last barrier layer is 850℃~950℃, and the growth pressure is 100torr~300torr.

S25:在多量子阱层上生长电子阻挡层;S25: growing an electron blocking layer on the multi-quantum well layer;

其中,可通过PVD、MOCVD或PLD生长β-Ta2O5层,作为电子阻挡层,但不限于此。具体的,采用MOCVD生长时,所采用的Ta源为Ta(C2H5O)5,O源为O2,并以N2作为载气。The β-Ta 2 O 5 layer can be grown by PVD, MOCVD or PLD as an electron blocking layer, but is not limited thereto. Specifically, when MOCVD is used for growth, the Ta source used is Ta(C 2 H 5 O) 5 , the O source is O 2 , and N 2 is used as a carrier gas.

优选的,在本发明的一个实施例之中,通过MOCVD生长β-Ta2O5层,作为电子阻挡层,其生长温度为800℃~900℃,生长压力为10torr~100torr。Preferably, in one embodiment of the present invention, a β-Ta 2 O 5 layer is grown by MOCVD as the electron blocking layer, and the growth temperature is 800° C. to 900° C. and the growth pressure is 10 torr to 100 torr.

优选的,在一个实施例之中,电子阻挡层生长结束后,在空气或氧气气氛中,900℃~950℃下退火10min~30min。基于退火处理,可进一步提升β-Ta2O5层的晶体质量,提升其对电子的阻挡作用。Preferably, in one embodiment, after the electron blocking layer is grown, annealing is performed at 900° C. to 950° C. for 10 min to 30 min in air or oxygen atmosphere. Based on the annealing treatment, the crystal quality of the β-Ta 2 O 5 layer can be further improved, and its blocking effect on electrons can be enhanced.

S26:在电子阻挡层上生长P型GaN层;S26: growing a P-type GaN layer on the electron blocking layer;

具体的,在本发明的一个实施例之中,在电子阻挡层上依次生长第一P型GaN层、P型InαGa1-αN层和第二P型GaN层,即得到P型GaN层。Specifically, in one embodiment of the present invention, a first P-type GaN layer, a P-type In α Ga 1-α N layer and a second P-type GaN layer are sequentially grown on the electron blocking layer to obtain a P-type GaN layer.

其中,第一P型GaN层、第二P型GaN层的生长温度为900℃~1000℃,生长压力为100torr~500torr;P型InαGa1-αN层的生长温度为750℃~850℃,生长压力为100torr~500torr。The growth temperature of the first P-type GaN layer and the second P-type GaN layer is 900° C. to 1000° C., and the growth pressure is 100 torr to 500 torr; the growth temperature of the P-type In α Ga 1-α N layer is 750° C. to 850° C., and the growth pressure is 100 torr to 500 torr.

下面以具体实施例对本发明进行进一步说明:The present invention will be further described below with specific embodiments:

实施例1Example 1

本实施例提供一种发光二极管外延片,其包括衬底,依次层叠于衬底上的缓冲层、非掺杂GaN层、N型GaN层、多量子阱层、电子阻挡层和P型GaN层。The present embodiment provides a light emitting diode epitaxial wafer, which includes a substrate, a buffer layer, an undoped GaN layer, an N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer sequentially stacked on the substrate.

其中,衬底为蓝宝石衬底,缓冲层为AlN层,其厚度为45nm。非掺杂GaN层的厚度为1.5μm。N型GaN层的掺杂元素为Si,掺杂浓度为8×1018cm-3,其厚度为2.5μm。The substrate is a sapphire substrate, the buffer layer is an AlN layer with a thickness of 45 nm, the thickness of the non-doped GaN layer is 1.5 μm, the doping element of the N-type GaN layer is Si with a doping concentration of 8×10 18 cm -3 , and the thickness is 2.5 μm.

其中,多量子阱层包括依次层叠于N型GaN层上的第一多量子阱层、末阱层和末垒层。第一多量子阱层为周期性结构,周期数为9,每个周期均包括依次层叠的量子阱层和量子垒层,量子阱层为In0.2Ga0.8N层,其厚度为3nm;量子垒层为GaN层,其厚度为10nm。末阱层为In0.2Ga0.8N层,其厚度为3nm;末垒层包括依次层叠于末阱层上的AlxGa1-xN层(x=0.15)、InyGa1-yN层(y=0.03)、InzGa1-zN层(z=0.06)和GaN层;其中,AlxGa1-xN层的厚度为7nm,InyGa1-yN层的厚度为1.5nm、InzGa1-zN层的厚度为2nm,GaN层的厚度为6nm。电子阻挡层为β-Ta2O5层,其厚度为50nm。The multi-quantum well layer includes a first multi-quantum well layer, a final well layer and a final barrier layer stacked sequentially on the N-type GaN layer. The first multi-quantum well layer is a periodic structure with 9 periods, and each period includes a quantum well layer and a quantum barrier layer stacked sequentially. The quantum well layer is an In 0.2 Ga 0.8 N layer with a thickness of 3 nm; the quantum barrier layer is a GaN layer with a thickness of 10 nm. The final well layer is an In 0.2 Ga 0.8 N layer with a thickness of 3nm; the final barrier layer includes an Al x Ga 1-x N layer (x=0.15), an In y Ga 1-y N layer (y=0.03), an In z Ga 1-z N layer (z=0.06) and a GaN layer stacked on the final well layer in sequence; among them, the thickness of the Al x Ga 1-x N layer is 7nm, the thickness of the In y Ga 1-y N layer is 1.5nm, the thickness of the In z Ga 1-z N layer is 2nm, and the thickness of the GaN layer is 6nm. The electron blocking layer is a β-Ta 2 O 5 layer with a thickness of 50nm.

其中,P型GaN层包括依次层叠于所述电子阻挡层上的第一P型GaN层、P型InαGa1-αN层(α=0.1)和第二P型GaN层,第一P型GaN层中Mg掺杂浓度为5×1019cm-3,其厚度为80nm;P型InαGa1-αN层中Mg掺杂浓度为3×1018cm-3,其厚度为20nm;第二P型GaN层中Mg掺杂浓度为5×1020cm-3,其厚度为80nm。The P-type GaN layer includes a first P-type GaN layer, a P-type In α Ga 1-α N layer (α=0.1) and a second P-type GaN layer which are sequentially stacked on the electron blocking layer, the Mg doping concentration in the first P-type GaN layer is 5×10 19 cm -3 and the thickness thereof is 80 nm; the Mg doping concentration in the P-type In α Ga 1-α N layer is 3×10 18 cm -3 and the thickness thereof is 20 nm; the Mg doping concentration in the second P-type GaN layer is 5×10 20 cm -3 and the thickness thereof is 80 nm.

本实施例中发光二极管外延片的制备方法包括以下步骤:The method for preparing the light emitting diode epitaxial wafer in this embodiment comprises the following steps:

(1)提供衬底。(1) Providing a substrate.

(2)在衬底上生长缓冲层;(2) growing a buffer layer on the substrate;

其中,通过PVD生长AlN层,作为缓冲层;Among them, an AlN layer is grown by PVD as a buffer layer;

(3)在缓冲层上生长非掺杂GaN层;(3) growing a non-doped GaN layer on the buffer layer;

其中,通过MOCVD生长非掺杂GaN层。其生长温度为1120℃,生长压力为200torr。The non-doped GaN layer is grown by MOCVD at a growth temperature of 1120° C. and a growth pressure of 200 torr.

(4)在非掺杂GaN层上生长N型GaN层;(4) growing an N-type GaN layer on the undoped GaN layer;

其中,通过MOCVD生长N型GaN层,其生长温度为1140℃,生长压力为300torr。The N-type GaN layer is grown by MOCVD at a growth temperature of 1140° C. and a growth pressure of 300 torr.

(5)在N型GaN层上生长第一多量子阱层;(5) growing a first multi-quantum well layer on the N-type GaN layer;

具体的,通过MOCVD在N型GaN层上周期性生长量子阱层和量子垒层,直至得到第一多量子阱层。其中,量子阱层的生长温度为750℃,生长压力为200torr;量子垒层的生长温度为890℃,生长压力为200torr。Specifically, quantum well layers and quantum barrier layers are periodically grown on the N-type GaN layer by MOCVD until a first multi-quantum well layer is obtained, wherein the growth temperature of the quantum well layer is 750°C and the growth pressure is 200 torr; the growth temperature of the quantum barrier layer is 890°C and the growth pressure is 200 torr.

(6)在第一多量子阱层上生长末阱层;(6) growing a final well layer on the first multi-quantum well layer;

具体的,通过MOCVD在In0.2Ga0.8N层,作为末阱层;其生长温度为750℃,生长压力为200torr。Specifically, the In 0.2 Ga 0.8 N layer is grown as the end well layer by MOCVD; the growth temperature is 750° C. and the growth pressure is 200 torr.

(7)在末阱层上生长末垒层;(7) growing a final barrier layer on the final well layer;

具体的,通过MOCVD依次生长AlxGa1-xN层、InyGa1-yN层、InzGa1-zN层和GaN层;其生长温度均为890℃,生长压力均为200torr。Specifically, an AlxGa1 -xN layer, an InyGa1 -yN layer, an InzGa1 -zN layer and a GaN layer are grown in sequence by MOCVD; the growth temperature is 890°C and the growth pressure is 200 torr.

(8)在末垒层上生长电子阻挡层;(8) growing an electron blocking layer on the final barrier layer;

具体的,通过MOCVD生长β-Ta2O5层,作为电子阻挡层,其生长温度为840℃,生长压力为20torr。Specifically, a β-Ta 2 O 5 layer is grown by MOCVD as an electron blocking layer, and the growth temperature is 840° C. and the growth pressure is 20 torr.

(9)在电子阻挡层上生长P型GaN层;(9) Growing a P-type GaN layer on the electron blocking layer;

具体的,在本发明的一个实施例之中,在电子阻挡层上依次生长第一P型GaN层、P型InαGa1-αN层和第二P型GaN层,即得到P型GaN层;其中,第一P型GaN层、第二P型GaN层的生长温度为920℃,生长压力为200torr。P型InαGa1-αN层的生长温度为750℃,生长压力为200torr。Specifically, in one embodiment of the present invention, a first P-type GaN layer, a P-type In α Ga 1-α N layer and a second P-type GaN layer are sequentially grown on the electron blocking layer to obtain a P-type GaN layer; wherein the growth temperature of the first P-type GaN layer and the second P-type GaN layer is 920° C., and the growth pressure is 200 torr. The growth temperature of the P-type In α Ga 1-α N layer is 750° C., and the growth pressure is 200 torr.

实施例2Example 2

本实施例提供一种发光二极管外延片,其与实施例1的区别在于:AlxGa1-xN层的厚度为6nm,InyGa1-yN层的厚度为2.5nm。This embodiment provides a light emitting diode epitaxial wafer, which is different from the first embodiment in that the thickness of the AlxGa1 -xN layer is 6 nm, and the thickness of the InyGa1 -yN layer is 2.5 nm.

其余均与实施例1相同。The rest are the same as in Example 1.

实施例3Example 3

本实施例提供一种发光二极管外延片,其与实施例2的区别在于:This embodiment provides a light emitting diode epitaxial wafer, which is different from the embodiment 2 in that:

InzGa1-zN层的厚度为2.5nm,GaN层的厚度为4.5nm。The thickness of the InzGa1 - zN layer is 2.5 nm, and the thickness of the GaN layer is 4.5 nm.

其余均与实施例2相同。The rest is the same as Example 2.

实施例4Example 4

本实施例提供一种发光二极管外延片,其与实施例3的区别在于:This embodiment provides a light emitting diode epitaxial wafer, which is different from the embodiment 3 in that:

电子阻挡层生长结束后,在氧气气氛,930℃下退火20min。After the electron blocking layer is grown, annealing is performed at 930°C in an oxygen atmosphere for 20 min.

其余均与实施例1相同。The rest are the same as in Example 1.

对比例1Comparative Example 1

本对比例提供一种发光二极管外延片,其与实施例1的区别在于:This comparative example provides a light emitting diode epitaxial wafer, which differs from Example 1 in that:

末垒层为GaN层,其厚度为10nm;电子阻挡层为Al0.4Ga0.6N层,厚度为30nm;P型GaN层仅由P型GaN组成,其Mg掺杂浓度为5×1020cm-3,厚度为200nm。The last barrier layer is a GaN layer with a thickness of 10 nm; the electron blocking layer is an Al 0.4 Ga 0.6 N layer with a thickness of 30 nm; the P-type GaN layer is composed only of P-type GaN with a Mg doping concentration of 5×10 20 cm -3 and a thickness of 200 nm.

在该对比例中,末垒层的生长条件与实施例1中量子垒层的生长条件相同。In this comparative example, the growth conditions of the final barrier layer are the same as the growth conditions of the quantum barrier layer in Example 1.

电子阻挡层的生长温度为1120℃,生长压力为300torr。P型GaN层的生长条件与实施例1中第一P型GaN层的生长条件相同。The growth temperature of the electron blocking layer is 1120° C. and the growth pressure is 300 torr. The growth conditions of the P-type GaN layer are the same as those of the first P-type GaN layer in Example 1.

其余均与实施例1相同。The rest are the same as in Example 1.

对比例2Comparative Example 2

本对比例提供一种发光二极管外延片,其与实施例1的区别在于:This comparative example provides a light-emitting diode epitaxial wafer, which differs from Example 1 in that:

末垒层为GaN层,其厚度为10nm,其生长条件与实施例1中量子垒层的生长条件相同。The final barrier layer is a GaN layer with a thickness of 10 nm. Its growth conditions are the same as those of the quantum barrier layer in Example 1.

其余均与实施例1相同。The rest are the same as in Example 1.

对比例3Comparative Example 3

本对比例提供一种发光二极管外延片,其与实施例1的区别在于:This comparative example provides a light emitting diode epitaxial wafer, which differs from Example 1 in that:

电子阻挡层为Al0.4Ga0.6N层,厚度为30nm;其生长温度为1120℃,生长压力为300torr。The electron blocking layer is an Al 0.4 Ga 0.6 N layer with a thickness of 30 nm; its growth temperature is 1120° C. and the growth pressure is 300 torr.

其余均与实施例1相同。The rest are the same as in Example 1.

对比例4Comparative Example 4

本对比例提供一种发光二极管外延片,其与实施例1的区别在于:This comparative example provides a light emitting diode epitaxial wafer, which differs from Example 1 in that:

电子阻挡层为δ-Ta2O5层;其生长温度为750℃,生长压力为20torr。The electron blocking layer is a δ-Ta 2 O 5 layer; its growth temperature is 750° C. and the growth pressure is 20 torr.

其余均与实施例1相同。The rest are the same as in Example 1.

对比例5Comparative Example 5

本对比例提供一种发光二极管外延片,其与实施例1的区别在于:This comparative example provides a light emitting diode epitaxial wafer, which differs from Example 1 in that:

P型GaN层仅由P型GaN组成,其Mg掺杂浓度为5×1020cm-3,厚度为200nm。P型GaN层的生长条件与实施例1中第一P型GaN层的生长条件相同。The P-type GaN layer consists only of P-type GaN, has a Mg doping concentration of 5×10 20 cm −3 , and a thickness of 200 nm. The growth conditions of the P-type GaN layer are the same as those of the first P-type GaN layer in Example 1.

其余均与实施例1相同。The rest are the same as in Example 1.

将实施例1~实施例4,对比例1~对比例5得到的发光二极管外延片进行测试,具体方法如下:The light emitting diode epitaxial wafers obtained in Examples 1 to 4 and Comparative Examples 1 to 5 were tested, and the specific method is as follows:

(1)将外延片制作成10mil×24mil的芯片,分别测试其在60mA、120mA、1A下的发光功率,并以对比例1的数据为基准,计算发光功率提升率。(1) The epitaxial wafer was made into a 10 mil × 24 mil chip, and its luminous power was tested at 60 mA, 120 mA, and 1 A respectively. The luminous power improvement rate was calculated based on the data of comparative example 1.

具体的,发光功率提升率=(各实施例/对比例的发光功率-对比例1的发光功率)/对比例1的发光功率;计算时,采用的测试电流相同。Specifically, the luminous power improvement rate = (luminous power of each embodiment/comparative example-luminous power of comparative example 1)/luminous power of comparative example 1; when calculating, the test current used is the same.

(2)采用PL测试仪测定各外延片在60mA、120mA的内量子效率,并计算衰减率。具体的,衰减率=(60mA下的内量子效率-120mA下的内量子效率)/60mA下的内量子效率。(2) The internal quantum efficiency of each epitaxial wafer at 60 mA and 120 mA was measured using a PL tester, and the attenuation rate was calculated. Specifically, the attenuation rate = (internal quantum efficiency at 60 mA - internal quantum efficiency at 120 mA) / internal quantum efficiency at 60 mA.

具体结果如下表所示:The specific results are shown in the following table:

以上所述是发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above is a preferred embodiment of the invention. It should be pointed out that a person skilled in the art can make several improvements and modifications without departing from the principle of the invention. These improvements and modifications are also considered to be within the scope of protection of the invention.

Claims (10)

1. The light-emitting diode epitaxial wafer is characterized by comprising a substrate, and a buffer layer, an undoped GaN layer, an N-type GaN layer, a multiple quantum well layer, an electron blocking layer and a P-type GaN layer which are sequentially laminated on the substrate;
The multi-quantum well layer comprises a first multi-quantum well layer, a last well layer and a last barrier layer which are sequentially laminated on the N-type GaN layer, wherein the first multi-quantum well layer is a periodic structure formed by alternately laminating a quantum well layer and a quantum barrier layer, the quantum well layer and the last well layer are InGaN quantum well layers, and the quantum barrier layer is a GaN quantum barrier layer;
the final barrier layer comprises an Al xGa1-x N layer, an In yGa1-y N layer, an In zGa1-z N layer and a GaN layer which are sequentially laminated on the final well layer; wherein, the value range of x is 0.05-0.3, the value range of y is 0.01-0.1, the value range of z is 0.01-0.1, and z > y;
The electron blocking layer is a beta-Ta 2O5 layer;
The P-type GaN layer comprises a first P-type GaN layer, a P-type In αGa1-α N layer and a second P-type GaN layer which are sequentially laminated on the electron blocking layer, wherein the value range of alpha is 0.08-0.15.
2. The light-emitting diode epitaxial wafer of claim 1, wherein the thickness of the Al xGa1-x N layer is 3 nm-8 nm, and the value range of x is 0.1-0.2; and/or
The thickness of the In yGa1-y N layer is 1 nm-3 nm, and the value range of y is 0.02-0.04; and/or
The thickness of the In zGa1-z N layer is 1 nm-3 nm, and the value range of z is 0.05-0.1; and/or
The thickness of the GaN layer is 2 nm-6 nm.
3. The light-emitting diode epitaxial wafer of claim 1, wherein the electron blocking layer has a thickness of 20nm to 50nm; and/or
The thickness of the first P-type GaN layer is 20 nm-100 nm, and the P-type doping concentration is 1 multiplied by 10 19cm-3~1×1020cm-3; and/or
The thickness of the P-type In αGa1-α N layer is 10 nm-30 nm, and the P-type doping concentration is 1 multiplied by 10 17cm-3~1×1019cm-3; and/or
The thickness of the second P-type GaN layer is 50-150 nm, and the P-type doping concentration is 1 multiplied by 10 20cm-3~1×1021cm-3.
4. A light emitting diode epitaxial wafer according to any one of claims 1 to 3, wherein the thickness of the Al xGa1-x N layer is 1.5 to 3 times the thickness of the In yGa1-y N layer.
5. A light emitting diode epitaxial wafer according to any one of claims 1 to 3, wherein the thickness of the GaN layer is 1.2 to 2 times the thickness of the In zGa1-z N layer.
6. The light-emitting diode epitaxial wafer according to claim 1, wherein the In component In the quantum well layer and the final well layer accounts for 0.1-0.2, and the thickness of the quantum well layer and the final well layer is 3-5 nm;
The thickness of the quantum barrier layer is 5 nm-15 nm.
7. A method for preparing a light-emitting diode epitaxial wafer, which is used for preparing the light-emitting diode epitaxial wafer according to any one of claims 1 to 6, and is characterized by comprising the following steps:
Providing a substrate, and sequentially growing a buffer layer, an N-type GaN layer, a multiple quantum well layer, an electron blocking layer and a P-type GaN layer on the substrate;
The multi-quantum well layer comprises a first multi-quantum well layer, a last well layer and a last barrier layer which are sequentially laminated on the N-type GaN layer, wherein the first multi-quantum well layer is a periodic structure formed by alternately laminating a quantum well layer and a quantum barrier layer, the quantum well layer and the last well layer are InGaN quantum well layers, and the quantum barrier layer is a GaN quantum barrier layer;
the final barrier layer comprises an Al xGa1-x N layer, an In yGa1-y N layer, an In zGa1-z N layer and a GaN layer which are sequentially laminated on the final well layer; wherein, the value range of x is 0.05-0.3, the value range of y is 0.01-0.1, the value range of z is 0.01-0.1, and z > y;
The electron blocking layer is a beta-Ta 2O5 layer;
The P-type GaN layer comprises a first P-type GaN layer, a P-type In αGa1-α N layer and a second P-type GaN layer which are sequentially laminated on the electron blocking layer, wherein the value range of alpha is 0.08-0.15.
8. The method for preparing a light-emitting diode epitaxial wafer according to claim 7, wherein the growth temperature of the quantum well layer and the final well layer is 740-820 ℃ and the growth pressure is 100-300 torr; and/or
The growth temperature of the quantum barrier layer and the final barrier layer is 850-950 ℃ and the growth pressure is 100-300 torr; and/or
The growth temperature of the electron blocking layer is 800-900 ℃, and the growth pressure is 10-100 torr; and/or
The growth temperature of the first P type GaN layer and the second P type GaN layer is 900-1000 ℃, and the growth pressure is 100-500 torr; and/or
The growth temperature of the P-type In αGa1-α N layer is 750-850 ℃, and the growth pressure is 100-500 torr.
9. The method for preparing a light-emitting diode epitaxial wafer according to claim 8, wherein after the electron blocking layer is grown, annealing is performed in an air or oxygen atmosphere at 900-950 ℃ for 10-30 min.
10. A light emitting diode comprising the light emitting diode epitaxial wafer according to any one of claims 1 to 6.
CN202411035811.5A 2024-07-31 2024-07-31 Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode Active CN118572003B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411035811.5A CN118572003B (en) 2024-07-31 2024-07-31 Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411035811.5A CN118572003B (en) 2024-07-31 2024-07-31 Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode

Publications (2)

Publication Number Publication Date
CN118572003A CN118572003A (en) 2024-08-30
CN118572003B true CN118572003B (en) 2024-10-01

Family

ID=92478567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411035811.5A Active CN118572003B (en) 2024-07-31 2024-07-31 Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode

Country Status (1)

Country Link
CN (1) CN118572003B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118888657B (en) * 2024-09-29 2024-12-17 江西兆驰半导体有限公司 Epitaxial structure for Micro-LED, preparation method of epitaxial structure and Micro-LED
CN118888661B (en) * 2024-09-30 2024-12-17 江西兆驰半导体有限公司 Micro-LED epitaxial wafer and preparation method thereof, and Micro-LED
CN119403312B (en) * 2024-12-31 2025-03-18 江西兆驰半导体有限公司 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN119744049B (en) * 2025-03-04 2025-06-10 江西兆驰半导体有限公司 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319326A (en) * 2014-10-21 2015-01-28 厦门市三安光电科技有限公司 Light-emitting diode manufacturing method
CN106571416A (en) * 2016-11-04 2017-04-19 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909533B2 (en) * 2004-06-21 2012-04-04 パナソニック株式会社 Semiconductor laser device and manufacturing method thereof
CN109273563A (en) * 2018-09-20 2019-01-25 华灿光电(苏州)有限公司 Light-emitting diode epitaxial wafer and preparation method thereof
CN109560171B (en) * 2018-10-17 2020-07-24 华灿光电(苏州)有限公司 Light emitting diode epitaxial wafer and preparation method thereof
CN116666512A (en) * 2023-08-02 2023-08-29 江西兆驰半导体有限公司 Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode
CN117410406B (en) * 2023-12-14 2024-02-20 江西兆驰半导体有限公司 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319326A (en) * 2014-10-21 2015-01-28 厦门市三安光电科技有限公司 Light-emitting diode manufacturing method
CN106571416A (en) * 2016-11-04 2017-04-19 华灿光电(浙江)有限公司 Light emitting diode epitaxial wafer and manufacturing method thereof

Also Published As

Publication number Publication date
CN118572003A (en) 2024-08-30

Similar Documents

Publication Publication Date Title
CN118572003B (en) Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode
CN115377259B (en) Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode
CN114649454B (en) Epitaxial wafer structure of a light-emitting diode and preparation method thereof
CN116825918B (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN117410406B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN115832131A (en) Deep ultraviolet light emitting diode epitaxial wafer and preparation method thereof, deep ultraviolet light emitting diode
CN116581219B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN116093223B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN116914046B (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN118099307A (en) High-light-efficiency LED epitaxial wafer, preparation method thereof and high-light-efficiency LED
CN117810324B (en) Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode
CN115954422A (en) Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode
CN116093220A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN117613167A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN116581216A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN116387420A (en) Deep ultraviolet light-emitting diode epitaxial wafer and its preparation method, light-emitting diode
CN118676277B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN117393671B (en) Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode
CN116705937B (en) Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode
CN116364819B (en) LED epitaxial wafer, preparation method thereof and LED
CN116914042A (en) GaN-based light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN116435422A (en) LED epitaxial wafer, preparation method thereof and LED
CN116504901B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN118888657B (en) Epitaxial structure for Micro-LED, preparation method of epitaxial structure and Micro-LED
CN118888661B (en) Micro-LED epitaxial wafer and preparation method thereof, and Micro-LED

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant