CN110364561B - Semiconductor structure and forming method thereof - Google Patents
Semiconductor structure and forming method thereof Download PDFInfo
- Publication number
- CN110364561B CN110364561B CN201810322846.5A CN201810322846A CN110364561B CN 110364561 B CN110364561 B CN 110364561B CN 201810322846 A CN201810322846 A CN 201810322846A CN 110364561 B CN110364561 B CN 110364561B
- Authority
- CN
- China
- Prior art keywords
- active region
- connecting portion
- semiconductor structure
- active
- connection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D48/00—Individual devices not covered by groups H10D1/00 - H10D44/00
- H10D48/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明揭示了一种半导体结构及其形成方法,所述半导体结构包括:间隔形成在半导体衬底中的第一有源区和第二有源区;连接栅极,一个所述连接栅极形成在一个所述第一有源区和一个所述第二有源区上,且一个所述连接栅极位于一个所述第一有源区和一个所述第二有源区之间具有连接部,所述连接部的延伸方向与所述第一有源区和所述第二有源区的排列方向不一致;以及硅化物层,所述硅化物层覆盖在所述第一有源区和第二有源区上,并沿所述连接部跨过所述连接部。于是,通过硅化物层的特别设计,使得连接栅极的连接部上的硅化物得以完整,即硅化物的质量得到保证,从而有效降低有源区负载,提高器件工作时的饱和电流。
The invention discloses a semiconductor structure and a method for forming the same. The semiconductor structure includes: a first active region and a second active region formed in a semiconductor substrate at intervals; a connecting gate, one of which is formed On one of the first active regions and one of the second active regions, and one of the connection gates is located between one of the first active regions and one of the second active regions, there is a connecting portion , the extension direction of the connecting portion is inconsistent with the arrangement direction of the first active region and the second active region; and a silicide layer, the silicide layer covers the first active region and the second active region on the two active regions and across the connecting portion along the connecting portion. Therefore, through the special design of the silicide layer, the silicide on the connection portion connected to the gate is complete, that is, the quality of the silicide is guaranteed, thereby effectively reducing the load of the active region and increasing the saturation current of the device during operation.
Description
技术领域technical field
本发明涉及半导体技术领域,特别涉及一种半导体结构及其形成方法。The invention relates to the technical field of semiconductors, in particular to a semiconductor structure and a forming method thereof.
背景技术Background technique
随着CMOS工艺的不断发展,亚微米器件得到了广泛的应用。然而,由于亚微米的MOS器件中形成的栅极和源/漏极接触区域细小,导致接触电阻和方块电阻增加。这使得半导体器件的运行速度大大下降。With the continuous development of CMOS technology, submicron devices have been widely used. However, contact resistance and sheet resistance increase due to the small gate and source/drain contact areas formed in sub-micron MOS devices. This greatly reduces the operating speed of the semiconductor device.
自对准硅化物的形成工艺在栅极和源/漏区域形成硅化物可以有效的降低方块电阻和接触电阻,使得器件工作时的饱和电流得以提高。但是,如何确保硅化物的质量,仍需优化。Salicide formation process The formation of silicides in the gate and source/drain regions can effectively reduce the sheet resistance and contact resistance, so that the saturation current of the device can be improved. However, how to ensure the quality of silicide still needs to be optimized.
发明内容Contents of the invention
本发明的目的在于提供一种半导体结构及其形成方法,改善硅化物的质量。The object of the present invention is to provide a semiconductor structure and its forming method, which can improve the quality of silicide.
为解决上述技术问题,本发明提供一种半导体结构,包括:In order to solve the above technical problems, the present invention provides a semiconductor structure, comprising:
间隔形成在半导体衬底中的第一有源区和第二有源区;separating the first active region and the second active region formed in the semiconductor substrate;
连接栅极,一个所述连接栅极形成在一个所述第一有源区和一个所述第二有源区上,且一个所述连接栅极位于一个所述第一有源区和一个所述第二有源区之间具有连接部,所述连接部的延伸方向与所述第一有源区和所述第二有源区的排列方向不一致;以及A connection gate, one of the connection gates is formed on one of the first active regions and one of the second active regions, and one of the connection gates is located on one of the first active regions and one of the There is a connecting portion between the second active regions, and the extending direction of the connecting portion is not consistent with the arrangement direction of the first active region and the second active region; and
硅化物层,所述硅化物层覆盖在所述第一有源区和第二有源区上,并沿所述连接部跨过所述连接部。A silicide layer, the silicide layer covering the first active region and the second active region, and straddling the connecting portion along the connecting portion.
可选的,对于所述的半导体结构,所述连接部呈折线状,包括依次连接的第一部分、第二部分及第三部分。Optionally, for the semiconductor structure, the connecting portion is in the shape of a zigzag line, including a first part, a second part and a third part connected in sequence.
可选的,对于所述的半导体结构,所述第二部分垂直所述第一部分和所述第三部分。Optionally, for the semiconductor structure, the second portion is perpendicular to the first portion and the third portion.
可选的,对于所述的半导体结构,所述硅化物层包括依次连接的第一跟随部、跨越部及第二跟随部,所述第一跟随部与所述第一部分相对应且位于所述第一部分靠近第二部分的一侧,所述跨越部跨过所述第二部分,所述第二跟随部与所述第三部分相对应且位于所述第三部分靠近第二部分的一侧。Optionally, for the above semiconductor structure, the silicide layer includes a first following part, a spanning part and a second following part connected in sequence, the first following part corresponds to the first part and is located in the The first part is close to the side of the second part, the spanning part straddles the second part, the second following part corresponds to the third part and is located on the side of the third part close to the second part .
可选的,对于所述的半导体结构,所述第一跟随部部分重叠于所述第一部分。Optionally, for the above semiconductor structure, the first following portion partially overlaps the first portion.
可选的,对于所述的半导体结构,所述第二跟随部部分重叠于所述第三部分。Optionally, for the above semiconductor structure, the second following portion partially overlaps the third portion.
可选的,对于所述的半导体结构,重叠部分的宽度为小于等于0.1μm。Optionally, for the semiconductor structure, the width of the overlapping portion is less than or equal to 0.1 μm.
可选的,对于所述的半导体结构,所述第一跟随部恰临于所述第一部分。Optionally, for the above semiconductor structure, the first following portion is just adjacent to the first portion.
可选的,对于所述的半导体结构,所述第二跟随部恰临于所述第三部分。Optionally, for the above semiconductor structure, the second following portion is just adjacent to the third portion.
可选的,对于所述的半导体结构,所述第一跟随部分离于所述第一部分。Optionally, for the semiconductor structure, the first follower portion is separated from the first portion.
可选的,对于所述的半导体结构,所述第二跟随部分离于所述第三部分。Optionally, for the semiconductor structure, the second follower portion is separated from the third portion.
可选的,对于所述的半导体结构,分离距离小于等于0.05μm。Optionally, for the semiconductor structure, the separation distance is less than or equal to 0.05 μm.
可选的,对于所述的半导体结构,所述硅化物层的材质包括钴、钽、钛、钼、镍、钨中至少一种元素。Optionally, for the semiconductor structure, the material of the silicide layer includes at least one element among cobalt, tantalum, titanium, molybdenum, nickel, and tungsten.
本发明还提供一种半导体结构的形成方法,包括:The present invention also provides a method for forming a semiconductor structure, comprising:
在半导体衬底中间隔形成第一有源区和第二有源区;forming a first active region and a second active region at intervals in the semiconductor substrate;
在所述半导体衬底上形成连接栅极,一个所述连接栅极位于一个所述第一有源区和一个所述第二有源区上且一个所述连接栅极位于一个所述第一有源区和一个所述第二有源区之间具有连接部,所述连接部的延伸方向与所述第一有源区和所述第二有源区的排列方向不一致;A connection gate is formed on the semiconductor substrate, one of the connection gates is located on one of the first active regions and one of the second active regions and one of the connection gates is located on one of the first active regions. There is a connecting portion between the active region and one of the second active regions, and the extending direction of the connecting portion is not consistent with the arrangement direction of the first active region and the second active region;
在所述半导体衬底上形成材料层,覆盖在所述第一有源区和第二有源区上,并沿所述连接部跨过所述连接部;以及forming a material layer on the semiconductor substrate, covering the first active region and the second active region, and straddling the connecting portion along the connecting portion; and
对所述材料层进行硅化处理,形成硅化物层。A silicide treatment is performed on the material layer to form a silicide layer.
本发明提供的半导体结构及其形成方法中,所述半导体结构包括:间隔形成在半导体衬底中的第一有源区和第二有源区;连接栅极,一个所述连接栅极形成在一个所述第一有源区和一个所述第二有源区上,且一个所述连接栅极位于一个所述第一有源区和一个所述第二有源区之间具有连接部,所述连接部的延伸方向与所述第一有源区和所述第二有源区的排列方向不一致;以及硅化物层,所述硅化物层覆盖在所述第一有源区和第二有源区上,并沿所述连接部跨过所述连接部。于是,通过硅化物层沿所述连接部跨过所述连接部,使得连接栅极的连接部上的硅化物得以完整,即硅化物的质量得到保证,从而有效降低有源区负载,提高器件工作时的饱和电流。In the semiconductor structure and its forming method provided by the present invention, the semiconductor structure includes: a first active region and a second active region formed in a semiconductor substrate at intervals; a connection gate, one of the connection gates is formed on On one of the first active regions and one of the second active regions, and one of the connection gates is located between one of the first active regions and one of the second active regions and has a connection portion, The extension direction of the connecting portion is inconsistent with the arrangement direction of the first active region and the second active region; and a silicide layer covering the first active region and the second active region on the active region and across the connecting portion along the connecting portion. Therefore, by passing the silicide layer across the connection portion along the connection portion, the silicide on the connection portion connected to the gate is complete, that is, the quality of the silicide is guaranteed, thereby effectively reducing the load on the active region and improving the performance of the device. Saturation current during operation.
附图说明Description of drawings
图1为一种半导体结构的示意图;1 is a schematic diagram of a semiconductor structure;
图2为图1中沿A-A'的剖面示意图;Fig. 2 is a schematic cross-sectional view along AA' in Fig. 1;
图3为本发明一个实施例中半导体结构的示意图;3 is a schematic diagram of a semiconductor structure in an embodiment of the present invention;
图4为图3中区域S的一种示意图;Fig. 4 is a schematic diagram of area S in Fig. 3;
图5为图3中区域S的又一种示意图;Fig. 5 is another schematic diagram of area S in Fig. 3;
图6为图3中区域S的另一种示意图;Fig. 6 is another schematic diagram of area S in Fig. 3;
图7为图3中沿B-B'的剖面示意图;Fig. 7 is a schematic cross-sectional view along BB' in Fig. 3;
图8为具有图1所示半导体结构的晶圆检测后的方块电阻分布示意图;FIG. 8 is a schematic diagram of the sheet resistance distribution after detection of the wafer having the semiconductor structure shown in FIG. 1;
图9为具有图1所示半导体结构的晶圆检测后的电流电压分布图;FIG. 9 is a current and voltage distribution diagram after detection of a wafer having the semiconductor structure shown in FIG. 1;
图10为具有图3所示半导体结构的晶圆检测后的方块电阻分布示意图;FIG. 10 is a schematic diagram of the sheet resistance distribution after detection of the wafer having the semiconductor structure shown in FIG. 3;
图11为具有图3所示半导体结构的晶圆检测后的电流电压分布图。FIG. 11 is a current and voltage distribution diagram after inspection of a wafer having the semiconductor structure shown in FIG. 3 .
具体实施方式Detailed ways
下面将结合示意图对本发明的半导体结构及其形成方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。The semiconductor structure of the present invention and its formation method will be described in more detail below in conjunction with schematic diagrams, wherein a preferred embodiment of the present invention is represented, it should be understood that those skilled in the art can modify the present invention described here, and still realize the present invention beneficial effect. Therefore, the following description should be understood as the broad knowledge of those skilled in the art, but not as a limitation of the present invention.
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。In the following paragraphs the invention is described more specifically by way of example with reference to the accompanying drawings. Advantages and features of the present invention will be apparent from the following description and claims. It should be noted that all the drawings are in a very simplified form and use imprecise scales, and are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.
在下面的描述中,应该理解,当层(或膜)、区域、图案或结构被称作在衬底、层(或膜)、区域、焊盘和/或图案“上”时,它可以直接位于另一个层或衬底上,和/或还可以存在插入层。另外,应该理解,当层被称作在另一个层“下”时,它可以直接位于另一个层下,和/或还可以存在一个或多个插入层。另外,可以基于附图进行关于在各层“上”和“下”的指代。In the following description, it should be understood that when a layer (or film), region, pattern or structure is referred to as being "on" a substrate, layer (or film), region, pad and/or pattern, it may directly on another layer or substrate, and/or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being 'under' another layer, it can be directly under, and/or one or more intervening layers may also be present. In addition, designations regarding 'on' and 'under' each layer may be made based on drawings.
发明人研究了一种半导体结构,如图1所示,包括半导体衬底1,在半导体衬底1中形成有有源区3,其中有源区3包括多个,图1中示出了两个,这两个有源区3相隔离,栅极结构4形成在两个有源区3上,并且是跨越所述两个有源区3,在相邻有源区3之间所述栅极结构4具有连接部,硅化物层2形成在有源区3上,并且跨越所述连接部,具体的,硅化物层2仅在连接部中间跨过。结合图2可知,栅极结构4具有侧墙41,硅化物层2覆盖所述侧墙41。The inventor has studied a semiconductor structure, as shown in FIG. 1, including a
然而,经实际检测发现,在输入电压0.7V之前,基本检测不到电流,而在0.7V之后,则有较大变化,与预期差异较大,器件工作时的饱和电流(Idsat)降低约50%。可见器件性能受到较大影响。However, the actual detection found that before the input voltage of 0.7V, the current is basically not detected, but after 0.7V, there is a large change, which is quite different from the expected, and the saturation current (Idsat) of the device is reduced by about 50% when it is working. %. It can be seen that the device performance is greatly affected.
经过实验分析发现,如图2所示,硅化物层2与连接部的过渡存在异常,具体的,在侧墙41处,发现部分多晶硅层22未被金属化,即硅化物层2在此处是不完整的,因此,导致有源区负载增大。After experimental analysis, it is found that, as shown in FIG. 2, there is an abnormality in the transition between the
基于上述研究,本申请发明人提供了一种改善的半导体结构,包括:Based on the above research, the inventor of the present application provides an improved semiconductor structure, including:
间隔形成在半导体衬底中的第一有源区和第二有源区;separating the first active region and the second active region formed in the semiconductor substrate;
连接栅极,一个所述连接栅极形成在一个所述第一有源区和一个所述第二有源区上,且一个所述连接栅极位于一个所述第一有源区和一个所述第二有源区之间具有连接部,所述连接部的延伸方向与所述第一有源区和所述第二有源区的排列方向不一致;以及A connection gate, one of the connection gates is formed on one of the first active regions and one of the second active regions, and one of the connection gates is located on one of the first active regions and one of the There is a connecting portion between the second active regions, and the extending direction of the connecting portion is not consistent with the arrangement direction of the first active region and the second active region; and
硅化物层,所述硅化物层覆盖在所述第一有源区和第二有源区上,并沿所述连接部(的延伸方向)跨过所述连接部。A silicide layer, the silicide layer covers the first active region and the second active region, and crosses the connecting portion along (extending direction of) the connecting portion.
在一个实施例中,如图3所示,本发明的半导体结构包括:In one embodiment, as shown in Figure 3, the semiconductor structure of the present invention comprises:
半导体衬底10,所述半导体衬底10的构成材料可以采用未掺杂的单晶硅、掺杂有杂质的单晶硅、绝缘体上硅(SOI)等。作为示例,在本实施例中,半导体衬底10选用单晶硅材料构成。在所述半导体衬底10中还可以形成有埋层(图中未示出)等。此外,对于PMOS而言,所述半导体衬底10中还可以形成有N阱(图中未示出),并且可以对整个N阱进行一次或多次小剂量硼注入,用于调整PMOS的阈值电压Vth。The
间隔形成在半导体衬底10中的第一有源区31和第二有源区32;依据实际需求,所述第一有源区31和所述第二有源区32可以是掺杂有N型或P型离子,掺杂种类可以相同,也可以不同。The first
可以理解的是,在所述半导体衬底10中所述第一有源区31和所述第二有源区32周围是隔离结构,即隔离结构将每个有源区进行了隔离。It can be understood that, in the
连接栅极410,所述连接栅极410形成在所述第一有源区31和所述第二有源区32上,且所述连接栅极410位于所述第一有源区31和所述第二有源区32之间具有连接部,所述连接部的延伸方向与所述第一有源区31和所述第二有源区32的排列方向不一致。A
也就是说,所述连接栅极410包括位于有源区上的部分和位于隔离结构上的部分,所述连接部即是位于所述隔离结构上的连接栅极410。That is to say, the
可以是包括有多个第一有源区31和多个第二有源区32,相应的连接栅极410也具有多个,从而每个连接栅极410都可以对应形成在一个第一有源区31和一个第二有源区32上。It may include a plurality of first
如图3所示,所述连接部呈折线状,包括依次连接的第一部分4101、第二部分4102及第三部分4103。可以理解的是,所述连接部还可以是其他形状,例如是斜线(即方向为与第一有源区31和第二有源区32排布方向相交),弧线等,都包括在本发明的思想之内。As shown in FIG. 3 , the connecting portion is in the shape of a broken line, and includes a
所述第一部分4101一端连接位于所述第一有源区31上的连接栅极410的一部分,另一端连接所述第二部分4102的一端,所述第二部分4102的另一端连接所述第三部分4103的一端,所述第三部分4103的另一端连接位于所述有源区32上的连接栅极410的一部分。One end of the
可选的,所述第二部分4102垂直所述第一部分4101和所述第三部分4103。Optionally, the second portion 4102 is perpendicular to the
硅化物层20,所述硅化物层20覆盖在所述第一有源区31和所述第二有源区32上,并沿所述连接部跨过所述连接部。A
可选的,所述硅化物层20包括依次连接的第一跟随部201、跨越部202及第二跟随部203,所述第一跟随部201与所述第一部分4101相对应且位于所述第一部分4101靠近第二部分4102的一侧,所述跨越部202跨过所述第二部分4102,所述第二跟随部203与所述第三部分4103相对应且位于所述第三部分4103靠近第二部分4102的一侧。Optionally, the
在一个实施例中,所述第一跟随部201和所述第二跟随部203也可以是位于对应的第一部分4101和第三部分4103相背离的两侧,此时可能需要多次跨越所述连接部,因此如图3中所示结构可以为较优选择。In one embodiment, the first following
可选的,所述第一跟随部201、所述跨越部202及所述第二跟随部203的宽度可以是100nm~500nm。Optionally, the widths of the first following
其中,所述第一跟随部201、所述第二跟随部203与各种对应的所述第一部分4101、所述第三部分4103的位置关系在下文示例性的描述。Wherein, the positional relationship between the first following
如图4-图6中,以图3中区域S为例进行说明,而图3中区域S'可以是与区域S的各种情况一致,但不限于同时一致。如图4所示,所述第一跟随部201部分重叠于所述第一部分4101,可以理解的是,所述第一跟随部201的重叠是部分覆盖在所述第一部分4101上。As shown in FIGS. 4-6 , the area S in FIG. 3 is taken as an example for illustration, and the area S' in FIG. 3 may be consistent with various situations of the area S, but not limited to being consistent at the same time. As shown in FIG. 4 , the first following
可选的,重叠部分的宽度为小于等于0.1μm。Optionally, the width of the overlapping portion is less than or equal to 0.1 μm.
相应的,对于区域S',所述第二跟随部203部分重叠于所述第三部分4103,同样的,所述第二跟随部203的重叠是部分覆盖在所述第三部分4103上。Correspondingly, for the region S′, the second following portion 203 partially overlaps the
可选的,重叠部分的宽度为小于等于0.1μm。Optionally, the width of the overlapping portion is less than or equal to 0.1 μm.
如图5所示,可以是所述第一跟随部201恰临于所述第一部分4101。As shown in FIG. 5 , it may be that the first following
相应的,对于区域S',可以是所述第二跟随部203恰临于所述第三部分4103。Correspondingly, for the area S′, the second following portion 203 may be just adjacent to the
如图6所示,可以是所述第一跟随部201分离于所述第一部分4101。As shown in FIG. 6 , the first following
可选的,分离距离小于等于0.05μm。Optionally, the separation distance is less than or equal to 0.05 μm.
相应的,对于区域S',可以是所述第二跟随部203分离于所述第三部分4103。Correspondingly, for the area S′, the second following portion 203 may be separated from the
可选的,分离距离小于等于0.05μm。Optionally, the separation distance is less than or equal to 0.05 μm.
在一个实施例中,所述硅化物层20的材质包括钴、钽、钛、钼、镍、钨中至少一种元素。In one embodiment, the material of the
则本发明的半导体结构,在B-B'处的剖面图如图7所示。可见,通过硅化物层的特别设计,改善了连接栅极410处的栅极密度,使得硅化物层20完整,没有出现如图2所示的存在部分未被金属化的情况。那么,使得连接栅极410的连接部上的硅化物得以完整,即硅化物的质量得到保证,从而有效降低有源区负载,提高器件工作时的饱和电流。Then, the cross-sectional view at BB' of the semiconductor structure of the present invention is shown in FIG. 7 . It can be seen that through the special design of the silicide layer, the gate density at the
下面请参考图8-图11,其中,图8为具有图1所示半导体结构的晶圆检测后的方块电阻分布示意图;图9为具有图1所示半导体结构的晶圆检测后的电流电压分布图;图10为具有图3所示半导体结构的晶圆检测后的方块电阻分布示意图;图11为具有图3所示半导体结构的晶圆检测后的电流电压分布图。Please refer to Figures 8-11 below, wherein Figure 8 is a schematic diagram of the sheet resistance distribution of the wafer having the semiconductor structure shown in Figure 1 after detection; Figure 9 is the current and voltage of the wafer having the semiconductor structure shown in Figure 1 after detection Distribution diagram; FIG. 10 is a schematic diagram of the sheet resistance distribution of the wafer having the semiconductor structure shown in FIG. 3 after detection; FIG. 11 is a current and voltage distribution diagram of the wafer having the semiconductor structure shown in FIG. 3 after detection.
可见,图8所示中的芯片单元(shot)的方块电阻Rs≤15ohm/SQ的较少,有较多处于15ohm/SQ<Rs≤100ohm/SQ之间,还有部分Rs大于100ohm/SQ。对应在图9所示的电压-电流关系图中,其中电压-电流关系示出了两部分,包括第一关系部分L1和第二关系部分L2,第一关系部分L1展示的是一个芯片单元中非边缘部分的芯片颗粒(die)的电压-电流关系,第二关系部分L2展示的是一个芯片单元中边缘部分的芯片颗粒的电压-电流关系,一方面,在电压0.7V以下时,电流较小,可见尤其是对于第二关系部分L2,在电压0.7V以下时,电流基本为0,而电压0.7V以上时,则有较大变化,呈现二极管现象,与上文分析的有源区负载增大相吻合。另一方面,由图9中明显可见,对于相同电压的情况,电流离散,收敛性差,这意味着不同芯片颗粒的性能相差较大。It can be seen that the square resistance Rs≤15ohm/SQ of the chip unit (shot) shown in FIG. 8 is less, and more are between 15ohm/SQ<Rs≤100ohm/SQ, and some Rs are greater than 100ohm/SQ. Corresponding to the voltage-current relationship diagram shown in Figure 9, the voltage-current relationship shows two parts, including the first relationship part L1 and the second relationship part L2, and the first relationship part L1 shows that in a chip unit The voltage-current relationship of the chip particles (die) in the non-edge part, the second relationship part L2 shows the voltage-current relationship of the chip particles in the edge part in a chip unit, on the one hand, when the voltage is below 0.7V, the current is relatively low Small, it can be seen that especially for the second relationship part L2, when the voltage is below 0.7V, the current is basically 0, and when the voltage is above 0.7V, there is a large change, showing a diode phenomenon, which is different from the active area load analyzed above increase coincides. On the other hand, it can be clearly seen from Fig. 9 that for the same voltage, the current is discrete and the convergence is poor, which means that the performance of different chip particles is quite different.
而图10所示中的芯片单元(shot)的方块电阻Rs皆处于15ohm/SQ以下,可见结构较佳。对应在图11所示的电压-电流关系图中,其中电压-电流关系示出了两部分,包括第一关系部分L3和第二关系部分L4,第一关系部分L3展示的是一个芯片单元中非边缘部分的芯片颗粒(die)的电压-电流关系,第二关系部分L4展示的是一个芯片单元中边缘部分的芯片颗粒的电压-电流关系,一方面,在电压电流变化规律,基本符合线性变化,之间呈现的是电阻关系,而不是二极管现象。另一方面,由图11中明显可见,对于相同电压的情况,电流收敛性好,这意味着不同芯片颗粒的性能相差不大,可靠性高。While the sheet resistance Rs of the chip unit (shot) shown in FIG. 10 is all below 15 ohm/SQ, it can be seen that the structure is better. Corresponding to the voltage-current relationship diagram shown in Figure 11, the voltage-current relationship shows two parts, including the first relationship part L3 and the second relationship part L4, and the first relationship part L3 shows that in a chip unit The voltage-current relationship of the chip particles (die) in the non-edge part. The second relationship part L4 shows the voltage-current relationship of the chip particles in the edge part of a chip unit. On the one hand, the voltage-current variation law is basically linear Changes, showing a resistance relationship between them, not a diode phenomenon. On the other hand, it can be clearly seen from Figure 11 that for the same voltage, the current convergence is good, which means that the performance of different chip particles is not much different, and the reliability is high.
此外,本发明还提供一种半导体结构的形成方法,包括:In addition, the present invention also provides a method for forming a semiconductor structure, including:
步骤S11,在半导体衬底中间隔形成第一有源区和第二有源区;Step S11, forming a first active region and a second active region at intervals in the semiconductor substrate;
步骤S12,在所述半导体衬底上形成连接栅极,一个所述连接栅极位于一个所述第一有源区和一个所述第二有源区上且一个所述连接栅极位于一个所述第一有源区和一个所述第二有源区之间具有连接部,所述连接部的延伸方向与所述第一有源区和所述第二有源区的排列方向不一致;Step S12, forming a connection gate on the semiconductor substrate, one of the connection gates is located on one of the first active regions and one of the second active regions, and one of the connection gates is located on one of the There is a connecting portion between the first active region and one of the second active regions, and the extending direction of the connecting portion is not consistent with the arrangement direction of the first active region and the second active region;
步骤S13,在所述半导体衬底上形成材料层,覆盖在所述第一有源区和第二有源区上,并沿所述连接部跨过所述连接部;以及Step S13, forming a material layer on the semiconductor substrate, covering the first active region and the second active region, and crossing the connecting portion along the connecting portion; and
步骤S14,对所述材料层进行金属化处理,形成硅化物层。Step S14, performing metallization treatment on the material layer to form a silicide layer.
结合上述半导体结构的具体构造,本领域技术人员当能够理解并正确实施本发明的方法,此处不进行详细描述。Combining with the specific structure of the above-mentioned semiconductor structure, those skilled in the art should be able to understand and implement the method of the present invention correctly, and no detailed description is given here.
综上所述,本发明提供的半导体结构及其形成方法中,所述半导体结构包括:间隔形成在半导体衬底中的第一有源区和第二有源区;连接栅极,一个所述连接栅极形成在一个所述第一有源区和一个所述第二有源区上,且一个所述连接栅极位于一个所述第一有源区和一个所述第二有源区之间具有连接部,所述连接部的延伸方向与所述第一有源区和所述第二有源区的排列方向不一致;以及硅化物层,所述硅化物层覆盖在所述第一有源区和第二有源区上,并沿所述连接部跨过所述连接部。于是,通过硅化物层的特别设计,使得连接栅极的连接部上的硅化物得以完整,即硅化物的质量得到保证,从而有效降低有源区负载,提高器件工作时的饱和电流。To sum up, in the semiconductor structure and its forming method provided by the present invention, the semiconductor structure includes: a first active region and a second active region formed in a semiconductor substrate at intervals; a connecting gate, one of the The connection gate is formed on one of the first active regions and one of the second active regions, and one of the connection gates is located between one of the first active regions and one of the second active regions There is a connection part between them, the extension direction of the connection part is not consistent with the arrangement direction of the first active region and the second active region; and a silicide layer, the silicide layer covers the first active region On the source region and the second active region, and across the connecting portion along the connecting portion. Therefore, through the special design of the silicide layer, the silicide on the connection portion connected to the gate is complete, that is, the quality of the silicide is guaranteed, thereby effectively reducing the load of the active region and increasing the saturation current of the device during operation.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810322846.5A CN110364561B (en) | 2018-04-11 | 2018-04-11 | Semiconductor structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810322846.5A CN110364561B (en) | 2018-04-11 | 2018-04-11 | Semiconductor structure and forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110364561A CN110364561A (en) | 2019-10-22 |
CN110364561B true CN110364561B (en) | 2023-03-14 |
Family
ID=68214549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810322846.5A Active CN110364561B (en) | 2018-04-11 | 2018-04-11 | Semiconductor structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110364561B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114792727A (en) * | 2021-01-25 | 2022-07-26 | 台湾积体电路制造股份有限公司 | Semiconductor device and method of using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080093682A1 (en) * | 2006-10-18 | 2008-04-24 | Liang-Gi Yao | Polysilicon levels for silicided structures including MOSFET gate electrodes and 3D devices |
US20080239792A1 (en) * | 2007-03-29 | 2008-10-02 | International Business Machines Corporation | Metal silicide alloy local interconnect |
CN101471344A (en) * | 2007-12-28 | 2009-07-01 | 富士通微电子株式会社 | Semiconductor device |
CN102760725A (en) * | 2011-04-26 | 2012-10-31 | 中芯国际集成电路制造(上海)有限公司 | Metal silicide bridging test structure, forming method and test method |
-
2018
- 2018-04-11 CN CN201810322846.5A patent/CN110364561B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080093682A1 (en) * | 2006-10-18 | 2008-04-24 | Liang-Gi Yao | Polysilicon levels for silicided structures including MOSFET gate electrodes and 3D devices |
US20080239792A1 (en) * | 2007-03-29 | 2008-10-02 | International Business Machines Corporation | Metal silicide alloy local interconnect |
CN101471344A (en) * | 2007-12-28 | 2009-07-01 | 富士通微电子株式会社 | Semiconductor device |
CN102760725A (en) * | 2011-04-26 | 2012-10-31 | 中芯国际集成电路制造(上海)有限公司 | Metal silicide bridging test structure, forming method and test method |
Also Published As
Publication number | Publication date |
---|---|
CN110364561A (en) | 2019-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101325218B (en) | Field effect transistor, logic circuit including the same and methods of manufacturing the same | |
CN111566803B (en) | Method for controlling transistor delay of nanowire or nanoplatelet transistor devices | |
US9461114B2 (en) | Semiconductor devices with structures for suppression of parasitic bipolar effect in stacked nanosheet FETs and methods of fabricating the same | |
US7569873B2 (en) | Integrated circuit using complementary junction field effect transistor and MOS transistor in silicon and silicon alloys | |
CN101740621B (en) | Tunnel field-effect transistor with metal source | |
US7355254B2 (en) | Pinning layer for low resistivity N-type source drain ohmic contacts | |
KR100971801B1 (en) | Pin interconnects used in multigate field effect transistor circuit blocks | |
CN105990280B (en) | Improved contact for semiconductors manufacture | |
CN102668089A (en) | Techniques for forming contacts to quantum well transistors | |
TWI646654B (en) | Method of manufacturing a semiconductor substrate of high resistivity insulator | |
CN105453216A (en) | Gate with self-aligned ledge for enhancement mode gan transistors | |
TWI755541B (en) | Semiconductor device and manufaturing method thereof | |
CN107731920B (en) | Semiconductor device and method for manufacturing the same | |
CN101719500A (en) | Composite material inversion mode all-around-gate CMOS field effect transistor | |
US20170194425A1 (en) | Semiconductor devices including field effect transistors | |
KR20150016769A (en) | Tunneling Field Effect Transistor and Manufacturing Method thereof | |
DE102015121563A1 (en) | Semiconductor devices and a method of forming a semiconductor device | |
US9209286B2 (en) | Semiconductor device | |
CN103855156B (en) | Diode structure compatible with FINFET technique | |
DE102015106185B4 (en) | Semiconductor structure and method for processing a carrier | |
CN107068734A (en) | One kind is without junction field effect transistor | |
CN106409910A (en) | Semiconductor Device with a Laterally Varying Doping Profile, and Method for Manufacturing Thereof | |
CN110364561B (en) | Semiconductor structure and forming method thereof | |
CN102543723A (en) | Method for manufacturing grid controlled diode semiconductor device | |
DE112021006261B4 (en) | Complementary metal oxide semiconductor (CMOS) circuit, method for producing a complementary metal oxide semiconductor (CMOS) circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |