CN110361445B - Multi-parameter high-selectivity CMUTs gas sensor and use and preparation method thereof - Google Patents
Multi-parameter high-selectivity CMUTs gas sensor and use and preparation method thereof Download PDFInfo
- Publication number
- CN110361445B CN110361445B CN201910696445.0A CN201910696445A CN110361445B CN 110361445 B CN110361445 B CN 110361445B CN 201910696445 A CN201910696445 A CN 201910696445A CN 110361445 B CN110361445 B CN 110361445B
- Authority
- CN
- China
- Prior art keywords
- film
- soi
- silicon
- cmuts
- sensitive film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/128—Microapparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/022—Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/036—Analysing fluids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/014—Resonance or resonant frequency
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/021—Gases
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明公开了一种多参数高选择性CMUTs气体传感器及其使用与制备方法,本发明采用SnO2、ZnO、Fe2O3、WO3等半导体金属氧化物,将其同时用作CMUTs上电极以及敏感识别材料,利用其吸附气体后同时引起薄膜质量及上电极电阻变化的特性,实现物理、化学性质相近或相似气体分子的高选择性敏感。薄膜质量的变化会引起CMUT谐振频率的变化;上电极电阻的变化会引起CMUT上下电极间交流电压幅值的变化,进而引起CMUT薄膜振动幅值的变化,通过谐振频率和薄膜振动位移幅值这两种输出参数的变化可实现气体分子的高选择性检测。此外,由于半导体氧化物敏感材料在温度调节下具有可重复使用性,因此本发明CMUT气体传感器除了具有高选择性外,还具有很好的重复性。
The invention discloses a multi-parameter high-selectivity CMUTs gas sensor and its use and preparation method. The invention adopts SnO 2 , ZnO, Fe 2 O 3 , WO 3 and other semiconductor metal oxides, which are simultaneously used as the upper electrode of CMUTs As well as the sensitive identification material, the high selectivity and sensitivity of gas molecules with similar physical and chemical properties or similar gas molecules are realized by using the characteristics of the film quality and the resistance change of the upper electrode caused by the adsorption of gas at the same time. The change of the film quality will cause the change of the resonant frequency of the CMUT; the change of the resistance of the upper electrode will cause the change of the amplitude of the AC voltage between the upper and lower electrodes of the CMUT, and then the change of the vibration amplitude of the CMUT film. The variation of the two output parameters enables highly selective detection of gas molecules. In addition, due to the reusability of the semiconductor oxide sensitive material under temperature regulation, the CMUT gas sensor of the present invention has good repeatability in addition to high selectivity.
Description
技术领域technical field
本发明涉及MEMS电容式微加工超声传感器技术及半导体氧化物敏感材料,特别涉及一种多参数高选择性CMUTs气体传感器及其使用与制备方法。The invention relates to MEMS capacitive micro-machined ultrasonic sensor technology and semiconductor oxide sensitive materials, in particular to a multi-parameter high-selectivity CMUTs gas sensor and its use and preparation method.
背景技术Background technique
谐振式MEMS气体传感器利用涂覆在其谐振元件表面的敏感材料层吸附被测气体后引起谐振元件质量进而引起的谐振频率的变化来实现气体的检测。谐振式MEMS气体传感器具有体积小、灵敏度高、质量探测极限低、功耗小以及与MEMS工艺兼容、可实现批量化制造等优势。电容式微加工超声传感器(Capacitive Micromachined UltrasonicTransducers,CMUTs)发展初衷是用于超声医学成像与治疗,由于其薄膜质量小、谐振频率高,振动薄膜单侧受到空气阻尼作用(另外一侧为真空)、品质因子高等特点,因此用于谐振器时可实现气体的高灵敏度、低检测极限测量。此外,相对于基于(Quartz CrystalMicrobalance,QCM)的气体传感器,CMUT工作温度范围宽(可达500℃),受环境温度影响小;相对于基于悬臂梁的气体传感器,CMUT谐振薄膜周边固支,结构坚固,可用于恶劣环境中气体检测。因此,CMUTs用于谐振器,实现高灵敏度、低检测极限气体检测时具有突出性能优势。目前,美国斯坦福大学B.T.Khuri-Yakub教授等采用CMUTs作为生化传感器来检测甲基膦酸二甲酯(Dimethyl methylphosphonate,DMMP),检测的质量极限是0.162×10-16g、体积灵敏度为37.38ppb/Hz。考纳斯理工大学D.Barauskas等人采用旋涂的方法将CMUT功能化后用于CO2测量,检测灵敏度分别为3.8ppm/Hz和0.25ppm/Hz。这些研究已经证明CMUTs用于气体检测的可行性以及性能优势。The resonant MEMS gas sensor realizes the gas detection by using the sensitive material layer coated on the surface of the resonant element to absorb the gas to be measured, which causes the mass of the resonant element and thus the change of the resonant frequency. The resonant MEMS gas sensor has the advantages of small size, high sensitivity, low quality detection limit, low power consumption, compatibility with MEMS process, and mass manufacturing. Capacitive Micromachined Ultrasonic Transducers (CMUTs) were originally developed for ultrasonic medical imaging and treatment. Due to their small film quality and high resonance frequency, the vibrating film is damped by air on one side (the other side is vacuum), and its quality Due to its high factor, it can achieve high sensitivity and low detection limit measurement of gases when used in resonators. In addition, compared with the gas sensor based on (Quartz Crystal Microbalance, QCM), the CMUT has a wide operating temperature range (up to 500 °C) and is less affected by the ambient temperature; Rugged for gas detection in harsh environments. Therefore, CMUTs have outstanding performance advantages when used in resonators to achieve high sensitivity and low detection limit gas detection. At present, Professor BTKhuri -Yakub of Stanford University and others used CMUTs as biochemical sensors to detect Dimethyl methylphosphonate (DMMP). . D.Barauskas et al. of Kaunas University of Technology used spin coating to functionalize CMUT for CO measurement, with detection sensitivities of 3.8ppm/Hz and 0.25ppm/Hz, respectively. These studies have demonstrated the feasibility and performance advantages of CMUTs for gas detection.
然而,现有CMUTs气体传感器的敏感材料层和上电极层采用独立设计,敏感材料仅仅用于选择性吸附被测气体,而上电极用来加载静电激励使薄膜发生振动。敏感薄膜吸附后仅仅引起薄膜质量变化,进而引起谐振频率这一单一参数产生变化,当有物理或化学性质相似或相近的气体分子存在时,则传感器无法有效区别,产生误报。因此,基于目前结构和工作原理的CMUTs气体传感器难以实现相似或相近被测气体分子的高选择性检测。However, the sensitive material layer and the upper electrode layer of the existing CMUTs gas sensors are designed independently. The sensitive material is only used to selectively adsorb the gas to be measured, while the upper electrode is used to load the electrostatic excitation to make the membrane vibrate. The adsorption of the sensitive film only causes the change of the film quality, which in turn causes the change of the single parameter of the resonant frequency. When there are gas molecules with similar or similar physical or chemical properties, the sensor cannot effectively distinguish them, resulting in false alarms. Therefore, it is difficult for CMUTs gas sensors based on the current structure and working principle to achieve highly selective detection of similar or similar gas molecules to be detected.
发明内容SUMMARY OF THE INVENTION
为解决上述技术难题,本发明提出一种多参数高选择性CMUTs气体传感器及其使用与制备方法。In order to solve the above technical problems, the present invention proposes a multi-parameter high-selectivity CMUTs gas sensor and its use and preparation method.
本发明采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
本发明一种多参数高选择性CMUTs气体传感器的整体结构从上之下依次包括敏感薄膜、电绝缘薄膜、空腔、衍射光栅和透明基底;其中敏感薄膜除了具有气体敏感性外,还具有在与气体作用后电阻发生变化的性能,敏感薄膜同时用作上电极;衍射光栅采用导电材料,同时用作下电极;透明基底具有透光特性;敏感薄膜与电绝缘薄膜共同构成振动薄膜。The overall structure of the multi-parameter high-selectivity CMUTs gas sensor of the present invention includes a sensitive film, an electrical insulating film, a cavity, a diffraction grating and a transparent substrate in sequence from top to bottom; wherein the sensitive film not only has gas sensitivity, but also has The sensitive film is used as the upper electrode at the same time; the diffraction grating is made of conductive material and is used as the lower electrode at the same time; the transparent substrate has the characteristics of light transmission; the sensitive film and the electrically insulating film together form the vibration film.
所述敏感薄膜为具有气体敏感性的半导体金属氧化物薄膜,敏感薄膜与被测气体作用后能够同时引起敏感薄膜的质量和电阻发生变化。The sensitive thin film is a semiconductor metal oxide thin film with gas sensitivity, and the sensitive thin film can simultaneously change the quality and resistance of the sensitive thin film after being acted on by the gas to be measured.
所述敏感薄膜采用SnO2薄膜、ZnO薄膜、Fe2O3薄膜或WO3薄膜这些具有气体敏感性的半导体金属氧化物薄膜,敏感薄膜具有气体敏感性,敏感薄膜与气体作用后除了引起波质量发生变化外,同时还引起电阻发生变化。The sensitive thin film adopts SnO 2 thin film, ZnO thin film, Fe 2 O 3 thin film or WO 3 thin film, which are gas-sensitive semiconductor metal oxide thin films. The sensitive thin film has gas sensitivity. In addition to the change, it also causes the resistance to change.
所述上电极与敏感薄膜为同一薄膜,敏感薄膜仅覆盖空腔正上方对应的区域,或者覆盖整个CMUTs阵列区域。还可以重点考虑将敏感薄膜设计为可减小热应力的图形化电极结构。The upper electrode and the sensitive thin film are the same thin film, and the sensitive thin film only covers the corresponding area directly above the cavity, or covers the entire CMUTs array area. It is also important to consider designing the sensitive film as a patterned electrode structure that reduces thermal stress.
所述电绝缘薄膜为SiO2薄膜、SiC薄膜或Si3N4薄膜这些绝缘材料,电绝缘薄膜用于实现上电极与下电极之间的电绝缘。The electrical insulating film is an insulating material such as a SiO 2 film, a SiC film or a Si 3 N 4 film, and the electrical insulating film is used to achieve electrical insulation between the upper electrode and the lower electrode.
所述空腔为真空腔,空腔的横截面形状为圆形、方形或正六边形,空腔的高度根据工作电压需求及工艺条件进行设计;空腔周围为支柱,支柱的厚度与空腔的高度相同。The cavity is a vacuum cavity, and the cross-sectional shape of the cavity is a circle, a square or a regular hexagon. The height of the cavity is designed according to the working voltage requirements and process conditions; the cavity is surrounded by pillars, and the thickness of the pillar is related to the cavity. of the same height.
所述衍射光栅位于空腔内部,衍射光栅的各光栅之间以及衍射光栅与周围结构之间设置电连接,衍射光栅用于将由振动薄膜反射的光进行衍射,实现振动薄膜的光学干涉位移检测,衍射光栅的材料为低阻材料,同时用作下电极。The diffraction grating is located inside the cavity, and electrical connections are provided between gratings of the diffraction grating and between the diffraction grating and surrounding structures, and the diffraction grating is used to diffract the light reflected by the vibrating film to realize the optical interference displacement detection of the vibrating film, The material of the diffraction grating is a low-resistance material and serves as a lower electrode at the same time.
所述衍射光栅的周围结构为与衍射光栅同材料、等厚度的下电极电连接,下电极电连接的形状与宽度尺寸与支柱的横截面形状与宽度尺寸分别对应相同,下电极电连接用于与外部电源实现电连接。所述透明基底采用材质为BF 33或Pyrex7740这些透明材料的透明基底,透明基底用于实现薄膜位移光学干涉测量。The surrounding structure of the diffraction grating is electrically connected to the lower electrode of the same material and thickness as the diffraction grating. The shape and width of the electrical connection of the lower electrode are the same as the cross-sectional shape and width of the pillar, respectively. The electrical connection of the lower electrode is used for An electrical connection is made with an external power source. The transparent substrate is a transparent substrate made of transparent materials such as BF 33 or Pyrex 7740, and the transparent substrate is used for realizing thin film displacement optical interferometry.
所述电绝缘薄膜、空腔周围的支柱、衍射光栅以及透明基底中任意两种所选用材料的热膨胀系数应相差不大于20%,并且热膨胀系数越接近越好,以减小在环境温度变化过程中热应力对传感器性能影响。The thermal expansion coefficients of any two selected materials in the electrical insulating film, the pillars around the cavity, the diffraction grating and the transparent substrate should differ by no more than 20%, and the closer the thermal expansion coefficients are, the better, so as to reduce the process of environmental temperature changes. Effects of moderate thermal stress on sensor performance.
多参数高选择性CMUTs气体传感器的使用方法,过程包括:The method of using multi-parameter high-selectivity CMUTs gas sensor, the process includes:
当被测气体与敏感薄膜相互作用后,敏感薄膜的质量以及电阻同时发生改变;通过对振动薄膜的谐振频率和振动位移这两种输出参数的检测能够实现被测气体的检测。When the measured gas interacts with the sensitive film, the quality and resistance of the sensitive film change simultaneously; the measured gas can be detected by detecting the two output parameters, the resonance frequency and the vibration displacement of the vibrating film.
敏感薄膜为具有气体敏感性的半导体金属氧化物薄膜,敏感薄膜与被测气体作用后能够同时引起波薄膜质量和薄膜电阻发生变化;通过调节所述多参数高选择性CMUTs气体传感器的温度,实现所述多参数高选择性CMUTs气体传感器对被测气体的多次重复性检测。由于半导体氧化物用于气体敏感时可通过温度调节获得很好的重复性,因此可通过CMUTs气体传感器的工作温度调节实现CMUTs气体传感器对被测气体的多次重复性检测,提高重复性。The sensitive film is a semiconductor metal oxide film with gas sensitivity. After the sensitive film interacts with the gas to be measured, the quality of the wave film and the resistance of the film can be changed at the same time; by adjusting the temperature of the multi-parameter high-selectivity CMUTs gas sensor, the The multi-parameter high-selectivity CMUTs gas sensor repeatedly detects the measured gas for many times. Since semiconductor oxides are used for gas sensitivity, they can achieve good repeatability through temperature adjustment. Therefore, the CMUTs gas sensor can achieve multiple repeatability detection of the measured gas by adjusting the operating temperature of the CMUTs gas sensor, thereby improving the repeatability.
一种多参数高选择性CMUTs气体传感器的制备方法,主要包括以下步骤:A preparation method of a multi-parameter high-selectivity CMUTs gas sensor mainly includes the following steps:
(1)取一SOI片作为第一SOI片,并另取一透明玻璃晶片(如BF33玻璃),对第一SOI片以及透明玻璃晶片进行标准清洗、备用;(1) take an SOI sheet as the first SOI sheet, and take another transparent glass wafer (such as BF33 glass), and carry out standard cleaning and standby to the first SOI sheet and the transparent glass wafer;
(2)采用阳极键合法在低温条件下,将第一SOI片的顶层硅与透明玻璃晶片进行阳极键合;(2) adopting anodic bonding method to carry out anodic bonding of the top silicon of the first SOI sheet and the transparent glass wafer under low temperature conditions;
(3)采用化学机械抛光法去除第一SOI片基底硅厚度的80%,再用缓冲刻蚀液去除剩余20%的基底硅,刻蚀停止于第一SOI片埋层二氧化硅表面;(3) 80% of the thickness of the base silicon of the first SOI sheet is removed by chemical mechanical polishing, then the remaining 20% of the base silicon is removed with a buffer etching solution, and the etching stops on the surface of the buried silicon dioxide of the first SOI sheet;
(4)光刻、图形化空腔形状,湿法刻蚀第一SOI片埋层二氧化硅层,去除图形窗口中的二氧化硅,刻蚀停止于第一SOI片顶层硅表面,形成空腔结构及空腔周围的支柱结构;另取一SOI片作为第二SOI片,清洗、备用;(4) Photolithography, patterning the shape of the cavity, wet etching the buried silicon dioxide layer of the first SOI sheet, removing the silicon dioxide in the pattern window, etching stops on the silicon surface of the top layer of the first SOI sheet, forming a void The cavity structure and the pillar structure around the cavity; another SOI sheet is taken as the second SOI sheet for cleaning and standby;
(5)光刻、图形化衍射光栅形状,湿法刻蚀第一SOI片顶层硅,刻蚀停止于透明玻璃晶片上表面,形成衍射光栅;同时氧化第二SOI片顶层硅,在第二SOI片顶层硅表面生成二氧化硅层;(5) Photolithography, patterning the shape of the diffraction grating, wet etching the top silicon of the first SOI wafer, and the etching stops on the upper surface of the transparent glass wafer to form a diffraction grating; at the same time, the top silicon of the second SOI wafer is oxidized, and the top silicon of the second SOI wafer is oxidized at the same time. A silicon dioxide layer is formed on the top silicon surface of the wafer;
(6)采用低温熔融键合法将第一SOI片上保留的埋层二氧化硅(保留的埋层二氧化硅作为CMUTs气体传感器的支柱)与第二SOI片顶层硅上表面的二氧化硅层进行真空键合,此时将空腔真空密封;(6) Using low temperature fusion bonding method, the remaining buried silicon dioxide on the first SOI sheet (the remaining buried silicon dioxide is used as the pillar of the CMUTs gas sensor) and the silicon dioxide layer on the upper surface of the top silicon of the second SOI sheet are bonded. Vacuum bonding, the cavity is vacuum sealed at this time;
(7)采用化学机械抛光的方法去除第二SOI片基底硅厚度的80%,再采用刻蚀液去除剩余20%的基底硅,露出第二SOI片埋层二氧化硅;采用干法或湿法刻蚀的方法去除第二SOI片埋层二氧化硅层,露出第二SOI片经氧化后剩余的顶层硅;(7) Use chemical mechanical polishing to remove 80% of the thickness of the base silicon of the second SOI sheet, and then use an etching solution to remove the remaining 20% of the base silicon to expose the buried silicon dioxide of the second SOI sheet; dry or wet The method of etching to remove the buried silicon dioxide layer of the second SOI sheet, exposing the remaining top layer silicon after the oxidation of the second SOI sheet;
(8)采用缓冲刻蚀液刻蚀第二SOI片经氧化后剩余的顶层硅,刻蚀停止于第二SOI片顶层硅表面经氧化后生成的二氧化硅层,释放位于第二SOI顶层硅表面的二氧化硅薄膜;(8) Use a buffer etching solution to etch the remaining top layer silicon of the second SOI sheet after oxidation, stop the etching at the silicon dioxide layer generated after the oxidation of the top silicon surface of the second SOI sheet, and release the silicon dioxide located on the top layer of the second SOI sheet Silica film on the surface;
(9)采用磁控溅射的方法在二氧化硅薄膜表面溅射ZnO或SnO2这些具有半导体性质的敏感材料层,形成敏感薄膜,敏感薄膜同时用作CMUTs气体传感器的上电极;(9) sputtering ZnO or SnO sensitive material layers with semiconductor properties on the surface of the silicon dioxide film by the method of magnetron sputtering to form a sensitive film, and the sensitive film is simultaneously used as the upper electrode of the CMUTs gas sensor;
(10)光刻,采用湿法刻蚀依次刻蚀敏感薄膜、电绝缘薄膜以及支柱,刻蚀停止于下电极电连接的上表面,露出下电极焊盘位置;(10) photolithography, using wet etching to etch the sensitive film, the electrical insulating film and the pillar in turn, the etching stops on the upper surface of the lower electrode electrical connection, exposing the lower electrode pad position;
(11)在敏感材料层上表面旋涂光刻胶、光刻,并溅射金属层(如金属铝、金这些常用电极材料),采用剥离法形成电极焊盘,并退火以减小敏感薄膜(即上电极)及下电极电连接分别与上、下电极焊盘之间的接触电阻,得到多参数高选择性CMUTs气体传感器。(11) Spin-coat photoresist and photolithography on the surface of the sensitive material layer, and sputter a metal layer (such as metal aluminum, gold, which are commonly used electrode materials), form electrode pads by a lift-off method, and anneal to reduce the sensitive film (namely, the upper electrode) and the lower electrode are electrically connected to the contact resistances between the upper and lower electrode pads, respectively, to obtain a multi-parameter high-selectivity CMUTs gas sensor.
为进一步提高敏感材料层对被测气体的选择性,上述工艺步骤(9)以后的工艺步骤变化为:In order to further improve the selectivity of the sensitive material layer to the measured gas, the process steps after the above-mentioned process step (9) are changed to:
(10)合成用于化学改性的溶液,将敏感薄膜浸入溶液中进行表面改性,提高敏感薄膜与被测气体之间的敏感性能;(10) Synthesize a solution for chemical modification, immerse the sensitive film in the solution for surface modification, and improve the sensitivity between the sensitive film and the gas to be measured;
(11)光刻,采用湿法刻蚀依次刻蚀敏感薄膜、电绝缘薄膜以及支柱,刻蚀停止于下电极电连接的上表面,露出下电极焊盘位置;(11) photolithography, using wet etching to etch the sensitive film, the electrical insulating film and the pillar in turn, the etching stops on the upper surface of the lower electrode electrical connection, exposing the lower electrode pad position;
(12)在敏感薄膜及暴露出的下电极电连接的上表面旋涂光刻胶、光刻,并溅射金属层(如金属铝、金这些常用电极材料),采用剥离法形成电极焊盘,并退火以减小敏感材料层(即上电极)及下电极电连接分别与上、下电极焊盘之间的接触电阻,得到多参数高选择性CMUTs气体传感器。(12) Spin-coat photoresist and photolithography on the upper surface of the sensitive film and the exposed lower electrode electrically connected, and sputter a metal layer (such as metal aluminum, gold, these common electrode materials), and use the peeling method to form electrode pads , and annealed to reduce the contact resistance between the sensitive material layer (ie, the upper electrode) and the electrical connection between the lower electrode and the upper and lower electrode pads, respectively, to obtain a multi-parameter high-selectivity CMUTs gas sensor.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
现有CMUT结构中敏感材料层与上电极层采用独立设计,敏感材料层仅用于选择性吸附被测气体,上电极用于加载静电激励;敏感材料层与被测气体作用后仅引起薄膜质量发生变化,从而引起谐振频率变化实现气体浓度测量,这种采用单输出参数的测试方法难以识别物理或化学性质相似的气体分子,易引起传感器误报。而本发明采用的敏感薄膜同时作为敏感和电极材料,被测气体分子与敏感薄膜相互作用后不仅能够引起振动薄膜质量的变化还能够引起上电极电阻的变化;振动薄膜质量的变化可引起谐振频率发生改变,同时上电极电阻的变化可引起加载在振动薄膜上的静电力发生变化,从而引起振动薄膜振幅发生变化,通过CMUTs谐振频率以及振动薄膜振动位移这两种参数即可实现物理、化学性质相似或相近的被测气体分子的识别,进而可有效提高传感器的选择性。相比于上电极和敏感材料层采用独立设计的常规CMUTs气体传感器,本发明CMUTs气体传感器的上电极和敏感材料层(即敏感薄膜)为同一薄膜层,采用一体化设计,除了具有上述优点外,还有助于减小薄膜质量,且CMUTs单元一致性好、频率噪声小,有助于提高检测灵敏度和检测极限。In the existing CMUT structure, the sensitive material layer and the upper electrode layer are designed independently. The sensitive material layer is only used to selectively adsorb the gas to be measured, and the upper electrode is used to load electrostatic excitation; the interaction between the sensitive material layer and the measured gas only causes the film quality It is difficult to identify gas molecules with similar physical or chemical properties, and it is easy to cause false alarms of the sensor. The sensitive film used in the present invention is used as both the sensitive and electrode material, and the interaction between the measured gas molecules and the sensitive film can not only cause the change of the quality of the vibrating film but also the resistance of the upper electrode; the change of the quality of the vibrating film can cause the resonant frequency. The change of the resistance of the upper electrode can cause the electrostatic force loaded on the vibrating film to change, thus causing the amplitude of the vibrating film to change. The physical and chemical properties can be realized through the two parameters of the resonance frequency of the CMUTs and the vibration displacement of the vibrating film. The identification of similar or similar measured gas molecules can effectively improve the selectivity of the sensor. Compared with the conventional CMUTs gas sensor in which the upper electrode and the sensitive material layer are independently designed, the upper electrode and the sensitive material layer (ie, the sensitive film) of the CMUTs gas sensor of the present invention are the same film layer, and the integrated design is adopted, in addition to the above advantages. , also helps to reduce the film quality, and the CMUTs have good unit consistency and low frequency noise, which help to improve the detection sensitivity and detection limit.
进一步的,现有CMUTs气体传感器的重复性或可恢复性差,敏感材料层与被测气体相互作用后,气体分子难以完全脱离敏感材料,影响再次测量结果的精确性。本发明CMUTs气体传感器的敏感薄膜(也为上电极)采用具有气体敏感性的半导体金属氧化物薄膜,敏感薄膜与被测气体作用后能够同时引起波薄膜质量和薄膜电阻发生变化,利用半导体金属氧化物薄膜在温度调控下具有很好重复性的特性可有效提高CMUTs气体传感器的重复性;Furthermore, the existing CMUTs gas sensors have poor repeatability or recoverability. After the sensitive material layer interacts with the measured gas, it is difficult for the gas molecules to completely separate from the sensitive material, which affects the accuracy of the re-measurement results. The sensitive film (also the upper electrode) of the CMUTs gas sensor of the present invention adopts a semiconductor metal oxide film with gas sensitivity. After the sensitive film interacts with the measured gas, the quality of the wave film and the resistance of the film can be changed at the same time. The good repeatability of the thin film under temperature control can effectively improve the repeatability of CMUTs gas sensors;
本发明多参数高选择性CMUTs气体传感器在使用时,当被测气体与敏感薄膜相互作用后,敏感薄膜的质量以及电阻同时发生改变;通过谐振频率和薄膜振动位移两种输出参数的检测能够实现被测气体的检测,其使用过程简单并且检测结果准确、效果好。进一步的,敏感薄膜为具有气体敏感性的半导体金属氧化物薄膜,敏感薄膜与被测气体作用后能够同时引起波薄膜质量和薄膜电阻发生变化;通过调节所述多参数高选择性CMUTs气体传感器的工作温度,实现所述多参数高选择性CMUTs气体传感器对被测气体的多次重复性检测,提高重复性。When the multi-parameter high-selectivity CMUTs gas sensor of the present invention is in use, when the measured gas interacts with the sensitive film, the quality and resistance of the sensitive film change at the same time; the detection of the two output parameters of resonance frequency and film vibration displacement can realize For the detection of the gas to be measured, the use process is simple, the detection results are accurate, and the effect is good. Further, the sensitive thin film is a semiconductor metal oxide thin film with gas sensitivity, and the sensitive thin film and the measured gas can cause changes in the quality of the wave thin film and the thin film resistance at the same time; by adjusting the multi-parameter high selectivity CMUTs gas sensor The working temperature can realize the repeated detection of the measured gas by the multi-parameter high-selectivity CMUTs gas sensor, and improve the repeatability.
本发明多参数高选择性CMUTs气体传感器的制备方法简单、易于实现,且制备出的CMUTs气体传感器具有优良的性能。The preparation method of the multi-parameter high-selectivity CMUTs gas sensor of the invention is simple and easy to realize, and the prepared CMUTs gas sensor has excellent performance.
附图说明Description of drawings
图1为本发明一种多参数高选择性CMUTs气体传感器的结构示意图,其中,图1(a)为多参数高选择性CMUTs气体传感器的纵剖图,图1(b)为图1(a)中A-A截面以下部分的俯视图;1 is a schematic structural diagram of a multi-parameter high-selectivity CMUTs gas sensor of the present invention, wherein FIG. 1(a) is a longitudinal cross-sectional view of the multi-parameter high-selectivity CMUTs gas sensor, and FIG. 1(b) is FIG. 1(a) ) in the top view of the part below the section A-A;
图2为本发明一种多参数高选择性CMUTs气体传感器衍射光栅的一变化结构示意图;2 is a schematic view of a variation structure of a multi-parameter high-selectivity CMUTs gas sensor diffraction grating of the present invention;
图3为本发明一种多参数高选择性CMUTs气体传感器敏感材料层(同时为上电极)的一变化结构示意图;FIG. 3 is a schematic structural diagram of a variation of the sensitive material layer (at the same time the upper electrode) of a multi-parameter high-selectivity CMUTs gas sensor according to the present invention;
图4为本发明一种多参数高选择性CMUTs气体传感器的工作原理示意图,其中图4(a)为多参数高选择性CMUTs气体传感器工作时加载及敏感薄膜与气体相互作用示意图;图4(b)为多参数高选择性CMUTs气体传感器工作时敏感薄膜吸附和解吸附被测气体后薄膜振动位移随时间变化示意图;图4(c)为多参数高选择性CMUTs气体传感器工作时敏感薄膜吸附和解吸附被测气体后谐振频率随时间变化示意图;Figure 4 is a schematic diagram of the working principle of a multi-parameter high-selectivity CMUTs gas sensor of the present invention, wherein Figure 4(a) is a schematic diagram of the interaction between the loading and the sensitive film and the gas when the multi-parameter high-selectivity CMUTs gas sensor is working; Figure 4 ( b) Schematic diagram of the time-dependent change of the vibration displacement of the sensitive film after adsorption and desorption of the measured gas when the multi-parameter high-selectivity CMUTs gas sensor works; Figure 4(c) is the adsorption and desorption of the sensitive film when the multi-parameter high-selectivity CMUTs gas sensor works. Schematic diagram of the change of resonance frequency with time after adsorbing the measured gas;
图5为本发明一种多参数高选择性CMUTs气体传感器的典型制备工艺流程图;Fig. 5 is a typical preparation process flow diagram of a multi-parameter high-selectivity CMUTs gas sensor of the present invention;
图6为本发明一种多参数高选择性CMUTs气体传感器制备工艺的一变化工艺流程图;6 is a process flow diagram of a variation of the preparation process of a multi-parameter high-selectivity CMUTs gas sensor according to the present invention;
图中,1-敏感薄膜,2-电绝缘薄膜,3-支柱,4-空腔,5-下电极电连接,6-衍射光栅,7-电连接,8-透明基底,9-电极焊盘。In the figure, 1-sensitive film, 2-electric insulating film, 3-pillar, 4-cavity, 5-electrical connection of lower electrode, 6-diffraction grating, 7-electrical connection, 8-transparent substrate, 9-electrode pad .
具体实施方式Detailed ways
以下,结合附图和实施例对本发明进行详细说明。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings and embodiments.
参照图1(a)、图1(b)和图2,本发明多参数高选择性CMUTs气体传感器的整体结构自上而下依次为包括敏感薄膜1、电绝缘薄膜2、空腔4、衍射光栅6以及透明基底8。其中,敏感薄膜1同时用作CMUT上电极,空腔4周围为支柱3,衍射光栅6同时用作CMUTs下电极,衍射光栅6周围的结构为下电极间电连接5,衍射光栅6的各光栅之间设置电连接7。被测气体分子与敏感薄膜相互作用后同时引起CMUTs气体传感器谐振频率以及振动位移两种参数发生变化,通过谐振频率以及振动薄膜在固定频率下的振动位移变化来实现被测气体分子的高选择性检测。Referring to Figure 1(a), Figure 1(b) and Figure 2, the overall structure of the multi-parameter high-selectivity CMUTs gas sensor of the present invention sequentially includes a
敏感薄膜1采用同时具有气体敏感性和电导率可调的半导体氧化物材料,其与被测气体作用后不但能够引起自身薄膜质量的变化,而且还能引起电阻发生改变,敏感薄膜1采用如SnO2、ZnO、Fe2O3或WO3这些半导体金属氧化物薄膜;敏感薄膜1同时用作敏感材料层和上电极;敏感薄膜1的厚度及形状设计应能够满足增大比表面积、保证导电性和减小与电绝缘薄膜2之间的热应力的要求。The
电绝缘薄膜2除了作为CMUT振动薄膜的一部分外,还用于实现上电极(本发明中的敏感薄膜1)与下电极(衍射光栅6)之间的电绝缘,电绝缘薄膜2为采用SiO2、Si3N4或SiC这些绝缘材料的薄膜,电绝缘薄膜2的厚度及半径的尺寸设计决定于CMUTs气体传感器的工作频率。电绝缘薄膜2和敏感薄膜1共同构成本发明CMUTs气体传感器的振动薄膜,振动薄膜的总厚度及半径尺寸最终决定CMUTs工作频率。In addition to being a part of the CMUT vibrating film, the electrical
空腔4为真空腔,空腔4的高度决定CMUTs气体传感器的工作电压,空腔4的形状可为圆形、方形以及正六边形等。The
支柱3位于空腔周围4,支柱3高度与空腔4高度相等,支柱3的材质可采用SiO2、SiC或Si3N4这些材料。The
衍射光栅6一方面使得从振动薄膜反射回来的光形成衍射光,另一方面用作CMUTs气体传感器的下电极;衍射光栅6采用导电材料,如低阻硅、低阻多晶硅这些材料;衍射光栅6的各光栅之间设置电连接7;衍射光栅6的光栅间距和光栅数量的设计根据入射光的波长和空腔4半径而定,同时需保证下电极间具有足够导电性;电连接7的厚度与衍射光栅6相同,电连接7的宽度尺寸应当保证各光栅间的导电连接以及电阻尽量小;衍射光栅6的形状可设计为如图1(b)所示圆环形、也可以设计为如图2所示梳齿状。On the one hand, the
下电极电连接5用于实现CMUTs气体传感器的所有下电极(即衍射光栅)之间以及下电极与外部电源之间的电连接,下电极电连接5所用材料及厚度尺寸与衍射光栅6的材料和厚度尺寸分别对应相同,下电极电连接5的形状与支柱3横截面形状相同。The lower electrode
透明基底8采用透明材料,采用的材料如BF 33玻璃或Pyrex7740玻璃这些透明材料,用于实现激光的入射与衍射光的检测。The
电绝缘薄膜2、空腔4周围的支柱3、下电极电连接5以及透明基底8所用材料应具有相近的热膨胀系数,以减少在温度变化过程中,因热膨胀系数不匹配而引起热应力,进而减小对CMUTs气体传感器检测性的影响。这是因为本发明CMUTs气体传感器主要利用半导体氧化物在高温下吸附气体、在温度降低时解吸附的性质来提高CMUTs气体传感器的可重复性,因此,CMUTs气体传感器的结构本身需具有良好的温度稳定性。The materials used for the electrical
一般情况下,电绝缘薄膜、空腔周围的支柱、衍射光栅以及透明基底中任意两种所选用材料的热膨胀系数应相差不大于20%,并且热膨胀系数越接近越好。In general, the thermal expansion coefficients of any two selected materials in the electrically insulating film, the pillars around the cavity, the diffraction grating and the transparent substrate should differ by no more than 20%, and the closer the thermal expansion coefficients are, the better.
为进一步减小敏感薄膜1与绝缘薄膜2在温度变化过程中由于热膨胀系数不匹配而引起的热应力,敏感薄膜1可采用图形化设计,即仅覆盖于空腔4正上方的电绝缘薄膜2,此时敏感薄膜1的形状如图3所示。In order to further reduce the thermal stress caused by the mismatch of thermal expansion coefficients between the
本发明多参数高选择性CMUTs气体传感器的工作原理:当被测气体与敏感材料层(即敏感薄膜1)相互作用后,敏感薄膜1的质量以及电阻同时发生改变;敏感薄膜1质量的变化会引起振动薄膜谐振频率的变化,而所加载的直流电压和交流电压幅值保持不变的条件下,敏感薄膜1电阻的变化则会引起加载CMUTs气体传感器电极两端有效电压发生变化,进而引起静电力及振动幅值的变化;通过谐振频率和振动位移两种输出参数的检测即可实现被测气体的高选择性、高灵敏度检测。The working principle of the multi-parameter high-selectivity CMUTs gas sensor of the present invention: when the measured gas interacts with the sensitive material layer (ie, the sensitive film 1), the quality and resistance of the
此外,当敏感薄膜为具有气体敏感性的半导体金属氧化物薄膜(如采用SnO2薄膜、ZnO薄膜、Fe2O3薄膜或WO3薄膜这些具有气体敏感性的半导体金属氧化物薄膜)时,由于半导体氧化物用于气体敏感时可通过温度调节获得很好的重复性,因此本发明CMUTs气体传感器用于气体检测时具有的重复检测性能。In addition, when the sensitive film is a gas-sensitive semiconductor metal oxide film (such as SnO 2 film, ZnO film, Fe 2 O 3 film or WO 3 film with gas-sensitive semiconductor metal oxide film), due to When the semiconductor oxide is used for gas sensing, good repeatability can be obtained through temperature adjustment, so the CMUTs gas sensor of the present invention has the repeatable detection performance when it is used for gas detection.
结合附图4以及本发明多参数高选择性CMUTs气体传感器的工作原理对本发明多参数高选择性CMUTs气体传感器的具体使用方进行详细介绍。参照图4(a),在本发明CMUTs气体传感器工作时,需在敏感薄膜1和下电极之间同时加载直流和交流电压激励,使得由敏感薄膜1和电绝缘薄膜2构成的振动薄膜发生振动,对CMUTs气体传感器进行加热直至敏感薄膜1与被测气体反应的最佳温度。此时,敏感薄膜1吸附被测气体,敏感薄膜1与被测气体相互作用后引起两种参数发生变化,即敏感薄膜1的质量和电阻发生变化。敏感薄膜1的电阻变化则会引起加载在CMUTs气体传感器上、下电极间的有效电压VC发生改变,在谐振频率保持不变的条件下,则会改变振动薄膜的振动幅值,通过基于光干涉的位移检测技术即可实现振动薄膜位移变化的检测;当温度降低,敏感薄膜1解吸附被测气体后,振动幅值恢复原值,其原理示意图如图4(b)所示。另外,敏感薄膜1质量发生变化会改变CMUTs气体传感器谐振频率,通过扫频或谐振电路可实现谐振频率的检测,通过谐振频移可反映被测气体浓度,当温度降低,被测气体与敏感薄膜1分离后,薄膜质量恢复到原值,此时,谐振频率恢复到与气体作用前谐振频率值,其原理示意图如4(c)所示。微型激光发射器、激光探测器可与CMUTs气体传感器集成来实现振动薄膜位移的光学检测;谐振电路可与CMUTs气体传感器集成实现谐振频率的检测;MEMS加热器可与CMUTs集成以为传感器与被测气体的相互作用提供温度条件。The specific user of the multi-parameter and high-selectivity CMUTs gas sensor of the present invention is described in detail with reference to FIG. 4 and the working principle of the multi-parameter and high-selectivity CMUTs gas sensor of the present invention. Referring to Figure 4 (a), when the CMUTs gas sensor of the present invention works, it is necessary to load DC and AC voltage excitation between the
本发明一种多参数高选择性CMUTs气体传感器的典型制备工艺流程的主要工艺步骤为:The main process steps of a typical preparation process flow of a multi-parameter high-selectivity CMUTs gas sensor of the present invention are:
(1)取第一SOI片10,并另取一透明BF 33玻璃晶片8,对第一SOI片10以及BF 33玻璃晶片8的表面进行标准清洗、备用;(1) take the
(2)采用阳极键合法将SOI片10的顶层硅11与BF 33玻璃晶片8在低温条件下进行阳极键合,BF 33玻璃晶片8形成透明基底;(2) The
(3)采用化学机械抛光法去除SOI片10基底硅厚度的80%,再用缓冲刻蚀液去除剩余20%的基底硅,刻蚀停止于SOI片10的埋层二氧化硅表面;(3) 80% of the thickness of the base silicon of the
(4)光刻、图形化空腔形状,湿法刻蚀第一SOI片10的埋层二氧化硅层,去除空腔图形窗口中的二氧化硅,刻蚀停止于第一SOI片10的顶层硅表面,形成空腔结构及支柱3;同时另取第二SOI片12清洗,备用;(4) Photolithography, patterning the shape of the cavity, wet etching the buried silicon dioxide layer of the
(5)光刻,图形化衍射光栅形状,湿法刻蚀第一SOI片10的顶层硅,刻蚀停止于BF33玻璃晶片8上表面,形成衍射光栅;同时采用氧化法在第二SOI片12的顶层硅表面生成二氧化硅层13;(5) photolithography, patterning the shape of the diffraction grating, wet etching the top layer silicon of the
(6)采用低温熔融键合法将第一SOI片10上的二氧化硅支柱3与第二SOI片12顶层硅上的二氧化硅层13进行真空键合,此时空腔被真空密封,形成空腔4;(6) The
(7)采用化学机械抛光的方法去除第二SOI片12基底硅厚度的80%,再采用刻蚀液去除剩余的20%,露出第二SOI片12的埋层二氧化硅;再采用干法或湿法刻蚀的方法去除第二SOI片12的埋层二氧化硅层,露出第二SOI片12经氧化后剩余的顶层硅;(7) 80% of the thickness of the base silicon of the
(8)采用缓冲刻蚀液刻蚀第二SOI片12经氧化后剩余的顶层硅,刻蚀停止于二氧化硅层13,此时形成电绝缘薄膜2;(8) using a buffer etching solution to etch the remaining top layer silicon of the
(9)采用磁控溅射的方法在电绝缘薄膜2的上表面溅射ZnO敏感材料层,形成敏感薄膜1;(9) adopting the method of magnetron sputtering to sputter the ZnO sensitive material layer on the upper surface of the electrical
(10)光刻,图形化,采用湿法刻蚀依次刻蚀敏感薄膜1、电绝缘薄膜2以及支柱3,刻蚀停止于下电极电连接5的上表面,露出下电极焊盘位置;(10) photolithography, patterning, using wet etching to etch the
(11)在敏感薄膜1及暴露出的下电极电连接5的上表面旋涂光刻胶、光刻,并溅射金属铝,采用剥离法形成电极焊盘9(指上电极焊盘以及下电极焊盘),并退火以减小敏感薄膜1以及下电极电连接5与电极焊盘9之间的接触电阻。(11) Spin-coating photoresist and photolithography on the upper surface of the
为进一步提高敏感材料层1对被测气体的选择性,上述工艺步骤(8)以后的工艺步骤可变化为:In order to further improve the selectivity of the
(9)采用磁控溅射的方法在电绝缘薄膜2的上表面溅射ZnO敏感薄膜14;(9) adopt the method of magnetron sputtering to sputter the ZnO
(10)合成用于表面改性的溶液,将ZnO敏感薄膜14浸入溶液中进行表面改性,进而提高ZnO敏感薄膜14与被测气体之间的敏感性能,形成最终的敏感材料层1;(10) synthesizing a solution for surface modification, immersing the ZnO
(11)光刻,采用湿法刻蚀依次刻蚀敏感薄膜1、电绝缘薄膜2以及支柱3,刻蚀停止于下电极电连接5的上表面,露出下电极焊盘位置;(11) photolithography, using wet etching to etch the
(12)在敏感薄膜1上表面旋涂光刻胶、光刻,并溅射金属铝,采用剥离技术形成电极焊盘9,并退火以减小敏感薄膜1以及下电极电连接5与电极焊盘9之间的接触电阻。(12) Spin-coating photoresist and photolithography on the upper surface of the
以上所述仅为本发明的一种实施方式,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。The above is only an embodiment of the present invention, not all or the only embodiment. Any equivalent transformation to the technical solution of the present invention by those of ordinary skill in the art by reading the description of the present invention is the right of the present invention requirements covered.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910696445.0A CN110361445B (en) | 2019-07-30 | 2019-07-30 | Multi-parameter high-selectivity CMUTs gas sensor and use and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910696445.0A CN110361445B (en) | 2019-07-30 | 2019-07-30 | Multi-parameter high-selectivity CMUTs gas sensor and use and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110361445A CN110361445A (en) | 2019-10-22 |
CN110361445B true CN110361445B (en) | 2020-10-27 |
Family
ID=68222668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910696445.0A Active CN110361445B (en) | 2019-07-30 | 2019-07-30 | Multi-parameter high-selectivity CMUTs gas sensor and use and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110361445B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110658240A (en) * | 2019-10-29 | 2020-01-07 | 贵州民族大学 | Toxic and harmful gas detection sensor and detection method |
CN113548636B (en) * | 2020-04-24 | 2024-05-17 | 绍兴中芯集成电路制造股份有限公司 | MEMS driving device and forming method thereof |
CN114791443B (en) * | 2021-01-26 | 2024-07-16 | 南京理工大学 | Carbon nanotube modified composite propellant sensing film and preparation method thereof |
CN113325041B (en) * | 2021-05-31 | 2022-10-04 | 吉林大学 | DMMP sensor based on gold-modified oxygen vacancy-rich tin dioxide and preparation method thereof |
CN117405981B (en) * | 2023-10-23 | 2024-08-23 | 北京中科飞龙传感技术有限责任公司 | A low temperature drift resonant electric field sensor and its control method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1202984C (en) * | 2002-06-07 | 2005-05-25 | 西安交通大学 | Frequency output type combined microbeam resonator with self temp ecompensation function |
AU2003287560A1 (en) * | 2002-11-06 | 2004-06-03 | Carnegie Mellon University | Mems membrane based sensor |
US20050262943A1 (en) * | 2004-05-27 | 2005-12-01 | Glenn Claydon | Apparatus, methods, and systems to detect an analyte based on changes in a resonant frequency of a spring element |
CN102620878B (en) * | 2012-03-15 | 2014-03-12 | 西安交通大学 | Capacitive micromachining ultrasonic sensor and preparation and application methods thereof |
CN103411864B (en) * | 2013-08-05 | 2015-12-30 | 深迪半导体(上海)有限公司 | The MEMS sensor of structure based resonance measuring gas suspended particles concentration |
CN204694669U (en) * | 2015-02-16 | 2015-10-07 | 郑州炜盛电子科技有限公司 | Mems gas sensor |
CN107089640B (en) * | 2017-05-02 | 2023-11-10 | 潍坊歌尔微电子有限公司 | MEMS chip and preparation method thereof |
CN107219270B (en) * | 2017-06-01 | 2020-01-17 | 大连理工大学 | A new type of ammonia gas sensor based on reduced graphene oxide-tungsten disulfide composite material and its preparation process |
CN108107081B (en) * | 2017-11-30 | 2020-07-10 | 中国科学院上海微系统与信息技术研究所 | Method for manufacturing gas sensor and gas sensor manufactured thereby |
CN109000577B (en) * | 2018-07-02 | 2019-05-10 | 西安交通大学 | A radial deformation measurement system of nuclear fuel cladding tube under high temperature iodine vapor environment |
CN109270626B (en) * | 2018-11-28 | 2020-05-26 | 南京邮电大学 | A kind of tunable grating filter based on SOI wafer and preparation method thereof |
CN109879239B (en) * | 2019-01-23 | 2021-01-19 | 西安交通大学 | double-H-shaped compression beam silicon micro-resonance pressure sensor chip and preparation method thereof |
-
2019
- 2019-07-30 CN CN201910696445.0A patent/CN110361445B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110361445A (en) | 2019-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110361445B (en) | Multi-parameter high-selectivity CMUTs gas sensor and use and preparation method thereof | |
EP0832424B1 (en) | Vapor pressure sensor and method | |
JP4801583B2 (en) | Thermal device | |
US7780343B2 (en) | Micromachined gas and liquid concentration sensor and method of making the same | |
Friedberger et al. | Micromechanical fabrication of robust low-power metal oxide gas sensors | |
JP2007527508A5 (en) | ||
JP2007512532A (en) | Compact multi-gas and vapor sensor device and manufacturing method thereof | |
KR20100070220A (en) | Humidity sensor and manufacturing method thereof | |
CN102520032B (en) | CMUT (Capacitive Micromachined Ultrasonic Transducer)-based biochemical transducer and manufacturing method thereof | |
WO2004023087A1 (en) | Method for making an infrared detector and infrared detector | |
CN108918662B (en) | CMUTs fluid density sensor and preparation method thereof | |
KR20020060692A (en) | Micro-bridge structure | |
CN104990968A (en) | Humidity sensor device based on film volume acoustic wave resonator | |
JP2002286673A (en) | Gas sensor and its manufacturing method | |
KR20120029039A (en) | Bulk acoustic wave resonator sensor | |
CN102520147B (en) | A kind of CMUT for trace biochemical substance detection and preparation method thereof | |
CN110398536B (en) | Multifunctional thin-film high-sensitivity CMUTs gas sensor and preparation method thereof | |
CN103454345B (en) | Based on the marine biochemical matter monitoring sensor of CMUT and preparation thereof and measuring method | |
CN103274351A (en) | Electrochemistry geophone electrode sensitive core based on MEMS and manufacturing method thereof | |
Hu et al. | Design, fabrication and characterization of a piezoelectric MEMS diaphragm resonator mass sensor | |
KR100620255B1 (en) | Chemical Sensor Using Piezoelectric Microcantilever and Its Manufacturing Method | |
CN104764773A (en) | Cantilever beam type metal oxide detector and manufacturing method thereof | |
KR100681782B1 (en) | Sensing element for microchemical sensor and manufacturing method using micro piezoelectric driving element | |
RU2694788C1 (en) | Magnetic field converter sensitive element | |
CN109855791A (en) | Vacuum detecting device based on more folded beam comb teeth resonators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |