CN110340894A - A Fuzzy Logic-Based Adaptive Multilateral Control Method for Teleoperation System - Google Patents
A Fuzzy Logic-Based Adaptive Multilateral Control Method for Teleoperation System Download PDFInfo
- Publication number
- CN110340894A CN110340894A CN201910648989.XA CN201910648989A CN110340894A CN 110340894 A CN110340894 A CN 110340894A CN 201910648989 A CN201910648989 A CN 201910648989A CN 110340894 A CN110340894 A CN 110340894A
- Authority
- CN
- China
- Prior art keywords
- robot
- representing
- slave
- fuzzy logic
- following
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于模糊逻辑的非线性遥操作系统的自适应多边控制方法。本发明基于模糊逻辑函数,估计了非线性环境动力学的非功率参数,并通过存在时延的通信通道传输回主端,进行主端环境力的重构;针对主从机器人存在的各种不确定性问题,本发明基于模糊逻辑系统,通过设计自适应率在线更新包含未知系统模型信息的非线性函数的参数;针对系统的位置追踪性能,本发明通过基于模糊逻辑系统的非线性自适应多边控制方法,当系统存在通信时延时,使从机器人准确地跟踪主机器人的轨迹信号;针对多机器人间的协同作业时作业力分配的问题,本发明通过设计多机器人的协同控制算法,实现了多个从机器人的作业力分配。
The invention discloses an adaptive multilateral control method based on fuzzy logic nonlinear remote control system. Based on the fuzzy logic function, the present invention estimates the non-power parameters of nonlinear environmental dynamics, and transmits them back to the master end through the communication channel with time delay to reconstruct the environmental force of the master end; Deterministic problem, the present invention is based on the fuzzy logic system, by designing the adaptive rate to update the parameters of the nonlinear function containing the unknown system model information online; for the position tracking performance of the system, the present invention adopts the nonlinear adaptive multilateral function based on the fuzzy logic system The control method, when there is a communication delay in the system, enables the slave robot to accurately track the trajectory signal of the master robot; for the problem of working force distribution during the collaborative operation between multiple robots, the present invention realizes the Work force distribution of multiple slave robots.
Description
技术领域technical field
本发明属于遥操作控制领域,具体来说是一种基于模糊逻辑的遥操作系统自适应多边控制方法,同时保证非线性多边遥操作系统的稳定性、透明性和多从机器人的协同作业性能。The invention belongs to the field of teleoperation control, and specifically relates to a fuzzy-logic-based self-adaptive multilateral control method for a teleoperation system, while ensuring the stability and transparency of a non-linear multilateral teleoperation system and the collaborative operation performance of multi-slave robots.
背景技术Background technique
随着机电技术的不断发展,机器人系统的研究越来越成为现阶段的热门课题,其中依靠人机交互的遥操作机器人技术已经取得了阶段性的进展,并在军事、工业和医疗领域有着广泛的应用。With the continuous development of electromechanical technology, the research of robot system has become a hot topic at this stage. Among them, the teleoperation robot technology relying on human-computer interaction has made staged progress, and has a wide range of applications in military, industrial and medical fields. Applications.
然而,随着作业任务往复杂、精细的方向发展,需要作业环境中存在多个具有多自由度的机器人进行协同作业,这类机器人往往存在非线性和各种不确定性;此外,随着协同作业机器人数量的增多,多机器人间的信号通信会使存在时延的通信通道中的信号传输变得更加复杂,甚至恶化遥操作系统的稳定性和透明性。However, with the development of complex and fine-grained tasks, it is necessary to have multiple robots with multiple degrees of freedom in the working environment for collaborative work. Such robots often have nonlinearities and various uncertainties; in addition, with the collaborative With the increase in the number of working robots, the signal communication between multiple robots will make the signal transmission in the communication channel with time delay more complicated, and even deteriorate the stability and transparency of the teleoperation system.
发明内容Contents of the invention
本发明的目的在于提出一种基于模糊逻辑的遥操作系统自适应多边控制方法,以解决传统多边遥操作系统中的稳定性与透明性权衡,主从机器人的非线性和各种不确定性,以及多机器人的协同作业等技术问题。The purpose of the present invention is to propose a fuzzy logic-based teleoperation system adaptive multilateral control method to solve the stability and transparency trade-offs in the traditional multilateral teleoperation system, the nonlinearity and various uncertainties of the master-slave robot, And technical issues such as multi-robot collaborative operation.
为实现上述目的,本发明的技术方案具体内容如下:In order to achieve the above object, the specific content of the technical solution of the present invention is as follows:
一种基于模糊逻辑的遥操作系统自适应多边控制方法,包括以下步骤:A fuzzy logic-based adaptive multilateral control method for remote control systems, comprising the following steps:
(一)建立多边遥操作系统的非线性动力学模型。(1) Establish a nonlinear dynamic model of the multilateral teleoperation system.
(二)基于模糊逻辑系统的作业环境估计与主端环境重构。(2) Estimation of operating environment and reconstruction of master-end environment based on fuzzy logic system.
(三)基于模糊逻辑系统设计主机器人的自适应多边控制器。(3) Design the adaptive multilateral controller of the main robot based on the fuzzy logic system.
(四)基于模糊逻辑系统设计从机器人的自适应多边控制器。(4) Design the adaptive multilateral controller of the slave robot based on the fuzzy logic system.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、基于模糊逻辑系统,估计了非线性环境动力学的非功率参数,并通过存在时延的通信通道传输回主端,进行主端环境力的重构,从而避免了因功率信号在通信通道中的传输造成的遥操作系统的失稳问题,并为操作者提供准确的力反馈信息。1. Based on the fuzzy logic system, the non-power parameters of nonlinear environmental dynamics are estimated, and transmitted back to the main end through the communication channel with time delay to reconstruct the environmental force of the main end, thus avoiding the power signal in the communication channel The instability problem of the remote control system caused by the transmission in the vehicle, and provide the operator with accurate force feedback information.
2、基于模糊逻辑系统,通过设计自适应率在线更新包含未知系统模型信息的非线性函数的参数,从而解决了主从机器人存在的各种不确定性问题。2. Based on the fuzzy logic system, the parameters of the nonlinear function containing unknown system model information are updated online by designing the adaptive rate, thus solving various uncertainties existing in the master-slave robot.
3、通过基于模糊逻辑系统的非线性自适应多边控制方法,当系统存在通信时延时,使从机器人准确地跟踪主机器人的轨迹信号,从而提升系统的位置追踪性能。3. Through the non-linear adaptive multilateral control method based on the fuzzy logic system, when there is a communication delay in the system, the slave robot can accurately track the trajectory signal of the master robot, thereby improving the position tracking performance of the system.
4、通过设计多机器人的协同控制算法,实现了多个从机器人的作业力分配,从而提升了多个从机器人对作业任务的协同作业性能。4. Through the design of a multi-robot collaborative control algorithm, the distribution of the working force of multiple slave robots is realized, thereby improving the collaborative operation performance of multiple slave robots on the task.
5、通过设计李雅普诺夫函数,保证了非线性多边遥操作系统中所有信号的有界性,从而保住了系统的全局渐进稳定性;5. By designing Lyapunov functions, the boundedness of all signals in the nonlinear multilateral teleoperation system is guaranteed, thereby maintaining the global asymptotic stability of the system;
附图说明Description of drawings
图1是本发明提出的基于模糊逻辑系统的非线性遥操作系统的自适应多边控制框图。Fig. 1 is a block diagram of the self-adaptive multilateral control of the non-linear teleoperation system based on the fuzzy logic system proposed by the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
现结合实施例、附图1对本发明作进一步描述:Now in conjunction with embodiment, accompanying drawing 1 the present invention will be further described:
本发明的实施技术方案为:Implementation technical scheme of the present invention is:
1)建立多边遥操作系统的非线性动力学模型,具体为:1) Establish the nonlinear dynamic model of the multilateral teleoperation system, specifically:
1-1)建立主机器人、从机器人与作业环境的非线性动力学模型1-1) Establish the nonlinear dynamic model of master robot, slave robot and working environment
其中,qm,i,和qs,i,表示第i个主从机器人位置、速度和加速度信号,xm,i,表示第i个主机器人的末端位置,xs,o,表示作业任务中抓取目标的质心位置,Mm,i和Ms表示质量惯性矩阵,Cm,i和Cs表示科氏力/向心力矩阵,Gm,i和Gs表示重力矩阵,Dm,i和Ds表示外干扰和建模误差,um,i和us表示控制输入,Fh,i表示第i个操作者的操作力,Fe表示从机器人与作业任务中的环境力,i=1,2,....,n。Among them, q m,i , and q s,i , Indicates the i-th master-slave robot position, velocity and acceleration signals, x m,i , Indicates the end position of the i-th master robot, x s,o , Indicates the position of the center of mass of the grasping target in the task, M m, i and M s represent the mass inertia matrix, C m, i and C s represent the Coriolis force/centripetal force matrix, G m, i and G s represent the gravity matrix, D m,i and D s represent external disturbances and modeling errors, u m,i and u s represent control inputs, F h,i represent the operating force of the i-th operator, F e represent the environment from the robot and the job task Force, i=1,2,...,n.
上述系统具有如下特性:The above system has the following characteristics:
①0<Mm,i≤δm0,iI,0<Ms≤δs0I,其中,δm0,i,δs0>0表示单位矩阵I的缩放系数;①0<M m,i ≤δ m0,i I, 0<M s ≤δ s0 I, where δ m0,i ,δ s0 >0 represents the scaling factor of the identity matrix I;
②和为斜对称矩阵;② and is a skew symmetric matrix;
③公式(1)和(2)中的部分动力学方程可以写成如下线性方程的形式:③ Part of the dynamic equations in formulas (1) and (2) can be written in the form of the following linear equations:
其中,θm,i和θs表示主从机器人的模型未知参数,ζ表示模糊逻辑矩阵。Among them, θ m, i and θ s represent the model unknown parameters of the master-slave robot, and ζ represents the fuzzy logic matrix.
1-2)建立作业环境的非线性动力学模型1-2) Establish a nonlinear dynamic model of the operating environment
其中,θe表示未知的非功率环境参数。Among them, θe represents an unknown non-power environmental parameter.
2)基于模糊逻辑系统的作业环境估计与主端环境重构,具体为:2) Fuzzy logic system-based operating environment estimation and master-end environment reconstruction, specifically:
2-1)将从端作业环境的动力学模型(3)写成径向基神经网络函数的形式,则:2-1) Write the dynamic model (3) of the slave-end operation environment into the form of radial basis neural network function, then:
Fe=ζT(xew)θe (4)F e =ζ T (x ew )θ e (4)
其中,xew表示模糊逻辑函数的输入量,且与xs,o,相关。Among them, x ew represents the input quantity of the fuzzy logic function, and is related to x s,o , relevant.
2-2)定义为环境的最优估计参数,Ωe和Ωe0分别表示xew和We的有界集,通过MATLAB的模糊逻辑工具箱能够实现从端作业环境的在线估计。2-2) Definition is the optimal estimation parameter of the environment, Ω e and Ω e0 represent the bounded sets of x ew and We respectively , and the online estimation of the working environment from the end can be realized through the fuzzy logic toolbox of MATLAB.
2-3)由于通信时延T(t)的存在,为避免功率信号在通信通道间的传递影响多边遥操作系统的稳定性,将非功率环境参数估计值传递到主端,从而得到主端的重构环境力为:2-3) Due to the existence of communication delay T(t), in order to prevent the transmission of power signals between communication channels from affecting the stability of the multilateral teleoperation system, the estimated values of non-power environmental parameters Pass it to the master end, so that the reconstruction environment force of the master end is:
其中,xemw表示模糊逻辑函数的输入量,且与xmd,i,相关。Among them, x emw represents the input quantity of the fuzzy logic function, and is related to x md,i , relevant.
3)基于模糊逻辑系统设计主机器人的自适应多边控制器,具体为:3) Design the adaptive multilateral controller of the main robot based on the fuzzy logic system, specifically:
3-1)设计主机器人的理想轨迹生成器如下:3-1) Design the ideal trajectory generator for the master robot as follows:
其中,i=1,2,...,n,Md,Cd,Gd表示轨迹生成器的优化参数。通过选取适当的优化系数,(6)-(7)能够生成无源的主机器人理想轨迹信号xmd,i。where i=1,2,...,n, M d , C d , G d represent the optimized parameters of the trajectory generator. By selecting appropriate optimization coefficients, (6)-(7) can generate the passive ideal trajectory signal x md,i of the master robot.
3-2)定义xm1,i=xm,i,则第i个主机器人的非线性动力学模型(1)可改写为:3-2) Define x m1,i = x m,i , Then the nonlinear dynamic model (1) of the i-th master robot can be rewritten as:
3-3)定义第i个主机器人的跟踪误差为:3-3) Define the tracking error of the i-th master robot as:
其中,αm1,i表示主机器人的虚拟跟踪量。Among them, α m1,i represents the virtual tracking amount of the main robot.
3-4)定义(8)中的第一个子系统的李雅普诺夫函数Vm1,i如下:3-4) Define the Lyapunov function V m1,i of the first subsystem in (8) as follows:
通过选取虚拟跟踪量αm1,i为则By selecting the virtual tracking amount α m1,i is but
3-5)定义(8)中的第二个子系统的李雅普诺夫函数Vm2,i如下:3-5) Define the Lyapunov function V m2,i of the second subsystem in (8) as follows:
3-6)基于(8)和(9),可得zm2,i的导数为3-6) Based on (8) and (9), the derivative of z m2, i can be obtained as
于是,可得Vm2,i的导数为Then, the derivative of V m2,i can be obtained as
其中,表示未知主机器人系统动力学函数。in, represents the unknown master robot system dynamics function.
3-7)根据(14)设计主控制器,保证主端子系统的稳定性,设计的控制器um,i为:3-7) Design the main controller according to (14) to ensure the stability of the main terminal system. The designed controller u m,i is:
um,i=-μm2,izm2,i-zm1,i-Φm,i-Fh,i (15)u m,i =-μ m2,i z m2,i -z m1,i -Φ m,i -F h,i (15)
其中,μm2,i>0表示主控制器性能调整参数。Among them, μ m2,i >0 represents the performance adjustment parameters of the main controller.
在从控制器(15)中,Φm,i表示一种用于估计ηm,i的模糊逻辑函数,可定义为:In the slave controller (15), Φ m,i represents a fuzzy logic function for estimating η m,i , which can be defined as:
其中,θm,i表示未知的主机器人系统动力学参数,表示模糊逻辑函数的输入量,表示第j个局部模糊逻辑函数。Among them, θ m,i represents the unknown dynamic parameters of the main robot system, Indicates the input quantity of the fuzzy logic function, Denotes the jth local fuzzy logic function.
3-8)设计主端系统的李雅普诺夫函数Vm,i为:3-8) Design the Lyapunov function V m,i of the master system as:
其中,γm,i>0表示李雅普诺夫函数Vm,i的系数,表示模糊逻辑函数的估计误差,表示最优估计参数。。Among them, γ m,i >0 means the coefficient of Lyapunov function V m,i , Indicates the estimation error of the fuzzy logic function, represents the best estimated parameter. .
基于李雅普诺夫函数Vm,i设计θm,i的自适应率为:The adaptive rate of θ m,i is designed based on Lyapunov function V m,i :
其中,km,i>0和Γm,i>0表示自适应率的性能调节参数。Among them, k m,i >0 and Γ m,i >0 represent the performance adjustment parameters of the adaptive rate.
4)基于模糊逻辑系统设计从机器人的自适应多边控制器,具体为:4) Design the adaptive multilateral controller of the slave robot based on the fuzzy logic system, specifically:
4-1)由于信号在通信通道的传输会不可避免地产生通信时延,主机器人的位置信号xm,i(t)通过通信通道传输到从端得到时延的位置信号xm,i(t-T(t)),设计从机器人的理想轨迹生成器为Hf(s)=1/(ofs+1)2,其中,of表示时间常数,通过输入时延的平均位置信号能够输出理想的从机器人跟踪轨迹xsd,o(t),其中,lo,i表示抓取目标与机器人末端位置间的关系转换,T(t)为系统的通信时延。4-1) Since the transmission of signals in the communication channel will inevitably generate communication delay, the position signal x m,i (t) of the master robot is transmitted to the slave end through the communication channel to obtain the delayed position signal x m,i ( tT(t)), the ideal trajectory generator designed from the robot is H f (s)=1/(o f s+1) 2 , where, o f represents the time constant, and the average position signal through the input time delay It can output the ideal tracking trajectory from the robot x sd,o (t), Among them, l o, i represent the relationship conversion between the grasping target and the end position of the robot, and T(t) is the communication delay of the system.
4-2)定义xs1=xs,o,则非线性动力学模型(2)可改写为:4-2) Define x s1 = x s,o , Then the nonlinear dynamic model (2) can be rewritten as:
4-3)定义从机器人与抓取目标的跟踪误差为:4-3) Define the tracking error between the robot and the grasping target as:
其中,αs1表示从机器人的虚拟跟踪量。where α s1 represents the amount of virtual tracking from the robot.
4-4)定义(19)中的第一个子系统的李雅普诺夫函数Vs1如下:4-4) The Lyapunov function V s1 of the first subsystem in definition (19) is as follows:
通过选取虚拟跟踪量αs1为则By selecting the virtual tracking amount α s1 as but
4-5)定义(19)中的第二个子系统的李雅普诺夫Vs2如下:4-5) Define the Lyapunov V s2 of the second subsystem in (19) as follows:
4-6)基于(19)和(20),可得zs2的导数为4-6) Based on (19) and (20), the derivative of z s2 can be obtained as
于是,可得Vs2的导数为Then, the derivative of V s2 can be obtained as
其中,表示未知从机器人系统动力学函数。in, Represents the unknown slave robot system dynamics function.
4-7)根据(25)设计从控制器,保证从端子系统的稳定性,设计的控制器us为:4-7) Design the slave controller according to (25) to ensure the stability of the slave terminal system. The designed controller u s is:
us=-μs2zs2-zs1-Φs+Fe (26)u s =-μ s2 z s2 -z s1 -Φ s +F e (26)
其中,μs2>0表示从控制器性能调整参数。Among them, μ s2 >0 indicates that the parameter is adjusted from the performance of the controller.
在从控制器(26)中,Φs表示一种用于估计ηs的模糊逻辑函数,可定义为:In the slave controller (26), Φ s represents a fuzzy logic function for estimating η s , which can be defined as:
其中,θs表示未知的从机器人系统动力学参数,表示模糊逻辑函数的输入量,表示第j个局部模糊逻辑函数。where θ s represents the unknown slave robot system dynamic parameters, Indicates the input quantity of the fuzzy logic function, Denotes the jth local fuzzy logic function.
4-8)设计从端系统的李雅普诺夫函数Vs为:4-8) Design the Lyapunov function V s of the slave system as:
其中,γs>0表示李雅普诺夫函数Vs的系数,表示模糊逻辑函数的估计误差,表示最优估计参数。Among them, γ s > 0 means the coefficient of Lyapunov function V s , Indicates the estimation error of the fuzzy logic function, represents the best estimated parameter.
基于李雅普诺夫函数Vs设计θs的自适应率为:The adaptive rate of θ s is designed based on the Lyapunov function V s :
其中,ks>0和Γs>0表示自适应率的性能调节参数。Among them, k s >0 and Γ s >0 represent the performance adjustment parameters of the adaptive rate.
4-9)根据从控制器(26),为得到每个从机器人的控制输入us,i,设计多机器人的协同控制算法如下:4-9) According to the slave controller (26), in order to obtain the control input u s,i of each slave robot, design a multi-robot collaborative control algorithm as follows:
其中,表示分配系数,且W表示不同作业需求的权重系数,表示各个从机器人与抓取目标的内部力,且 in, represents the partition coefficient, and W represents the weight coefficient of different job requirements, represents the internal force of each slave robot and the grasping target, and
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910648989.XA CN110340894B (en) | 2019-07-18 | 2019-07-18 | Teleoperation system self-adaptive multilateral control method based on fuzzy logic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910648989.XA CN110340894B (en) | 2019-07-18 | 2019-07-18 | Teleoperation system self-adaptive multilateral control method based on fuzzy logic |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110340894A true CN110340894A (en) | 2019-10-18 |
CN110340894B CN110340894B (en) | 2020-10-16 |
Family
ID=68178689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910648989.XA Active CN110340894B (en) | 2019-07-18 | 2019-07-18 | Teleoperation system self-adaptive multilateral control method based on fuzzy logic |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110340894B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111136633A (en) * | 2020-01-13 | 2020-05-12 | 燕山大学 | Full-state control method for flexible master-slave robot system with time-varying delay |
CN111198502A (en) * | 2020-02-28 | 2020-05-26 | 浙江大学 | Unmanned ship track tracking control method based on interference observer and fuzzy system |
CN111427264A (en) * | 2020-03-15 | 2020-07-17 | 中国地质大学(武汉) | Neural self-adaptive fixed time control method of complex teleoperation technology |
CN112859596A (en) * | 2021-01-07 | 2021-05-28 | 浙江大学 | Nonlinear teleoperation multilateral control method considering formation obstacle avoidance |
CN114474051A (en) * | 2021-12-30 | 2022-05-13 | 西北工业大学 | A Personalized Gain Teleoperation Control Method Based on Operator Physiological Signals |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103324196A (en) * | 2013-06-17 | 2013-09-25 | 南京邮电大学 | Multi-robot path planning and coordination collision prevention method based on fuzzy logic |
CN103831831A (en) * | 2014-03-18 | 2014-06-04 | 西华大学 | Non-linear teleoperation system position and force tracking and controlling system with time-varying delay |
JP2015089605A (en) * | 2013-11-07 | 2015-05-11 | 学校法人立命館 | Master-slave system |
WO2016025941A1 (en) * | 2014-08-15 | 2016-02-18 | University Of Central Florida Research Foundation, Inc. | Control interface for robotic humanoid avatar system and related methods |
CN106938462A (en) * | 2016-12-07 | 2017-07-11 | 北京邮电大学 | A kind of remote operating bilateral control method based on self adaptation PD and fuzzy logic |
CN107932506A (en) * | 2017-11-15 | 2018-04-20 | 电子科技大学 | A kind of force feedback bilateral teleoperation stable control method |
CN108227497A (en) * | 2018-01-11 | 2018-06-29 | 燕山大学 | A kind of control method for considering system performance and being limited lower network remote control system |
US20180243910A1 (en) * | 2015-08-25 | 2018-08-30 | Kawasaki Jukogyo Kabushiki Kaisha | Remote control robot system and method of operating the same |
CN108469733A (en) * | 2018-03-22 | 2018-08-31 | 浙江大学 | A kind of polygon control method of four-way remote operating for improving wave variables |
CN108500983A (en) * | 2018-06-26 | 2018-09-07 | 西华大学 | A kind of non-linear remote operating bilateral control system |
CN108803344A (en) * | 2018-07-25 | 2018-11-13 | 西北工业大学 | A kind of symmetrical forecast Control Algorithm of robot bilateral teleoperation based on Mode-switch |
CN109085749A (en) * | 2018-08-07 | 2018-12-25 | 浙江大学 | A kind of non-linear remote operating bilateral control method based on adaptive fuzzy inverting |
CN109240086A (en) * | 2018-10-16 | 2019-01-18 | 浙江大学 | A kind of adaptive robust control method of non-linear bilateral teleoperation system |
CN109358506A (en) * | 2018-10-26 | 2019-02-19 | 南京理工大学 | An Adaptive Fuzzy Teleoperation Control Method Based on Disturbance Observer |
-
2019
- 2019-07-18 CN CN201910648989.XA patent/CN110340894B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103324196A (en) * | 2013-06-17 | 2013-09-25 | 南京邮电大学 | Multi-robot path planning and coordination collision prevention method based on fuzzy logic |
JP2015089605A (en) * | 2013-11-07 | 2015-05-11 | 学校法人立命館 | Master-slave system |
CN103831831A (en) * | 2014-03-18 | 2014-06-04 | 西华大学 | Non-linear teleoperation system position and force tracking and controlling system with time-varying delay |
WO2016025941A1 (en) * | 2014-08-15 | 2016-02-18 | University Of Central Florida Research Foundation, Inc. | Control interface for robotic humanoid avatar system and related methods |
US20180243910A1 (en) * | 2015-08-25 | 2018-08-30 | Kawasaki Jukogyo Kabushiki Kaisha | Remote control robot system and method of operating the same |
CN106938462A (en) * | 2016-12-07 | 2017-07-11 | 北京邮电大学 | A kind of remote operating bilateral control method based on self adaptation PD and fuzzy logic |
CN107932506A (en) * | 2017-11-15 | 2018-04-20 | 电子科技大学 | A kind of force feedback bilateral teleoperation stable control method |
CN108227497A (en) * | 2018-01-11 | 2018-06-29 | 燕山大学 | A kind of control method for considering system performance and being limited lower network remote control system |
CN108469733A (en) * | 2018-03-22 | 2018-08-31 | 浙江大学 | A kind of polygon control method of four-way remote operating for improving wave variables |
CN108500983A (en) * | 2018-06-26 | 2018-09-07 | 西华大学 | A kind of non-linear remote operating bilateral control system |
CN108803344A (en) * | 2018-07-25 | 2018-11-13 | 西北工业大学 | A kind of symmetrical forecast Control Algorithm of robot bilateral teleoperation based on Mode-switch |
CN109085749A (en) * | 2018-08-07 | 2018-12-25 | 浙江大学 | A kind of non-linear remote operating bilateral control method based on adaptive fuzzy inverting |
CN109240086A (en) * | 2018-10-16 | 2019-01-18 | 浙江大学 | A kind of adaptive robust control method of non-linear bilateral teleoperation system |
CN109358506A (en) * | 2018-10-26 | 2019-02-19 | 南京理工大学 | An Adaptive Fuzzy Teleoperation Control Method Based on Disturbance Observer |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111136633A (en) * | 2020-01-13 | 2020-05-12 | 燕山大学 | Full-state control method for flexible master-slave robot system with time-varying delay |
CN111198502A (en) * | 2020-02-28 | 2020-05-26 | 浙江大学 | Unmanned ship track tracking control method based on interference observer and fuzzy system |
CN111427264A (en) * | 2020-03-15 | 2020-07-17 | 中国地质大学(武汉) | Neural self-adaptive fixed time control method of complex teleoperation technology |
CN111427264B (en) * | 2020-03-15 | 2021-12-14 | 中国地质大学(武汉) | A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology |
CN112859596A (en) * | 2021-01-07 | 2021-05-28 | 浙江大学 | Nonlinear teleoperation multilateral control method considering formation obstacle avoidance |
CN112859596B (en) * | 2021-01-07 | 2022-01-04 | 浙江大学 | A Nonlinear Teleoperation Multilateral Control Method Considering Formation Obstacle Avoidance |
CN114474051A (en) * | 2021-12-30 | 2022-05-13 | 西北工业大学 | A Personalized Gain Teleoperation Control Method Based on Operator Physiological Signals |
CN114474051B (en) * | 2021-12-30 | 2023-05-23 | 西北工业大学 | A Personalized Gain Teleoperation Control Method Based on Operator Physiological Signals |
Also Published As
Publication number | Publication date |
---|---|
CN110340894B (en) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110340894B (en) | Teleoperation system self-adaptive multilateral control method based on fuzzy logic | |
CN110262256B (en) | Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system | |
CN109240086B (en) | An Adaptive Robust Control Method for a Nonlinear Bilateral Teleoperating System | |
Liu et al. | Adaptive neural network control of a flexible spacecraft subject to input nonlinearity and asymmetric output constraint | |
CN113721607B (en) | Optimal control method for tracking track of wheeled robot | |
CN105404304B (en) | The fault-tolerant posture collaboration tracking and controlling method of spacecraft based on normalization neutral net | |
CN108445748B (en) | An Adaptive Spacecraft Attitude Tracking Control Method Based on Event-triggered Mechanism | |
CN109085749B (en) | A Nonlinear Teleoperation Bilateral Control Method Based on Adaptive Fuzzy Inversion | |
Wang et al. | Adaptive event-triggered control for nonlinear systems with asymmetric state constraints: A prescribed-time approach | |
CN106843254B (en) | A Real-Time Active Reconfiguration Fault-Tolerant Control Method | |
CN103439975B (en) | Become Sliding Mode Attitude during a kind of distributed index and work in coordination with tracking and controlling method | |
CN111459016B (en) | Cutting machine track contour tracking control method | |
CN108227497B (en) | Control method of networked teleoperation system under condition of considering system performance limitation | |
CN110116409B (en) | Four-channel teleoperation bilateral control method based on disturbance observer | |
CN110488603B (en) | Rigid aircraft adaptive neural network tracking control method considering actuator limitation problem | |
CN105182743A (en) | Robust H-infinity-based variable-gain decoupling control method | |
CN112904726B (en) | Neural network backstepping control method based on error reconstruction weight updating | |
CN103728988B (en) | SCARA robot trajectory tracking control method based on internal model | |
CN109581868A (en) | Disperse neural method for optimally controlling based on the reconstruction robot for judging identification structure | |
Wang et al. | Adaptive asymptotic tracking control for flexible-joint robots with prescribed performance: Design and experiments | |
CN109839894B (en) | Control method of bilateral teleoperation system | |
CN117506896A (en) | Control method for single-connecting-rod mechanical arm embedded with direct-current motor | |
CN107193210A (en) | A kind of adaptive learning default capabilities control method of nonlinear system | |
Li et al. | Learning-observer-based adaptive tracking control of multiagent systems using compensation mechanism | |
CN109514559B (en) | Flexible mechanical arm time scale separation robust control method based on output redefinition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |