[go: up one dir, main page]

CN110262256B - Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system - Google Patents

Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system Download PDF

Info

Publication number
CN110262256B
CN110262256B CN201910649003.0A CN201910649003A CN110262256B CN 110262256 B CN110262256 B CN 110262256B CN 201910649003 A CN201910649003 A CN 201910649003A CN 110262256 B CN110262256 B CN 110262256B
Authority
CN
China
Prior art keywords
slave
robot
neural network
sliding mode
multilateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910649003.0A
Other languages
Chinese (zh)
Other versions
CN110262256A (en
Inventor
陈正
黄方昊
宋伟
朱世强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910649003.0A priority Critical patent/CN110262256B/en
Publication of CN110262256A publication Critical patent/CN110262256A/en
Application granted granted Critical
Publication of CN110262256B publication Critical patent/CN110262256B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Manipulator (AREA)

Abstract

The invention discloses a multilateral self-adaptive sliding mode control method of a nonlinear teleoperation system. The method is based on a radial basis function, estimates the non-power environment parameters of the slave-end environment dynamics, and transmits the non-power environment parameters back to the main end through a communication channel to reconstruct the environment force of the main end; aiming at the problems of nonlinearity and various uncertainties of a master robot and a slave robot, the invention designs a track generator and a nonlinear adaptive sliding mode controller based on a radial basis function network at the master end and the slave end respectively, designs an adaptive rate for training a nonlinear function containing system modeling information on line, and ensures the stability and the accurate position tracking performance of the system; aiming at the problem of signal communication among multiple robots, the control force distribution of the multiple slave robots is realized by designing a cooperative force distribution algorithm, so that the cooperative operation performance of the multiple slave robots on the operation task is improved.

Description

一种非线性遥操作系统的多边自适应滑模控制方法A Multilateral Adaptive Sliding Mode Control Method for Nonlinear Teleoperating Systems

技术领域technical field

本发明属于遥操作控制领域,具体来说是一种非线性遥操作系统的多边自适应滑模控制方法,能同时保证非线性遥操作系统的稳定性、透明性和多主从机器人的协同操作。The invention belongs to the field of teleoperation control, in particular to a multilateral adaptive sliding mode control method of a nonlinear teleoperating system, which can simultaneously ensure the stability and transparency of the nonlinear teleoperating system and the cooperative operation of multiple master-slave robots. .

背景技术Background technique

随着作业任务往复杂、精细的方向发展,依靠人机交互的遥操作技术被不断用于工业环境中,特别是依靠多主从机器人协同作业的多边遥操作技术的发展,即通过多个操作者在主端操作多个主机器人实现对多个从机器人的协同控制,完成复杂或精细的作业任务,在太空探索、深海采样、远程医疗、安全检测等领域得到了广泛的应用,并作为机器人应用领域的一项重要支撑技术而被广泛研究。With the development of complex and delicate tasks, the teleoperation technology that relies on human-computer interaction has been continuously used in industrial environments, especially the development of multilateral teleoperation technology that relies on the collaborative operation of multi-master-slave robots, that is, through multiple operations. It is widely used in space exploration, deep-sea sampling, telemedicine, safety inspection and other fields, and is used as a robot. It has been widely studied as an important supporting technology in the application field.

然而,信号在通信通道的传输会不可避免地产生通信时延,从而影响从机器人接收到主机器人命令信号的准确性,恶化遥操作系统的稳定性和透明性。此外,由于复杂或精细的从端作业任务需求,往往要求多个具有多自由度的机器人进行协同作业,而这类机器人往往存在非线性和各种不确定性,且多机器人间的信号通信会使通信通道中的信号传输变得更加复杂,传统的基于无源理论和四通道结构的线性遥操作系统结构都不能很好地实现较好的控制性能。因此,针对通信时延造成的遥操作系统稳定性和透明性的权衡,以及多个具有多自由度的主从机器人存在的非线性、各种不确定性以及多机器人间的信号通信等问题。However, the transmission of the signal in the communication channel will inevitably cause communication delay, which will affect the accuracy of the command signal received from the master robot from the robot, and deteriorate the stability and transparency of the teleoperating system. In addition, due to complex or delicate slave task requirements, multiple robots with multiple degrees of freedom are often required to work together, and such robots often have nonlinearity and various uncertainties, and the signal communication between multiple robots will It makes the signal transmission in the communication channel more complicated, and the traditional linear teleoperating system structure based on passive theory and four-channel structure cannot achieve better control performance. Therefore, it is aimed at the trade-off between the stability and transparency of the teleoperating system caused by the communication delay, as well as the nonlinearity, various uncertainties and signal communication between multiple robots with multiple degrees of freedom.

发明内容SUMMARY OF THE INVENTION

本发明提出了一种非线性遥操作系统的多边自适应滑模控制方法,以解决传统多边遥操作系统存在的稳定性、透明性、非线性、各种不确定性和多机器人协同操作等技术问题。The invention proposes a multilateral adaptive sliding mode control method of a nonlinear teleoperating system, so as to solve the problems of stability, transparency, nonlinearity, various uncertainties and multi-robot cooperative operation existing in the traditional multilateral teleoperating system. question.

为实现上述目的,该发明的技术方案具体内容如下:In order to achieve the above purpose, the specific content of the technical solution of the invention is as follows:

一种非线性遥操作系统的多边自适应滑模控制方法,包括以下步骤:A multilateral adaptive sliding mode control method of a nonlinear teleoperating system, comprising the following steps:

(一)建立非线性多边遥操作系统的动力学模型。(1) Establish the dynamic model of nonlinear multilateral teleoperating system.

(二)基于径向基神经网络设计从机器人的自适应滑模控制器。(2) Design of adaptive sliding mode controller for slave robot based on radial basis neural network.

(三)基于径向基神经网络函数的作业环境估计与主端环境重构。(3) Working environment estimation and master-end environment reconstruction based on radial basis neural network function.

(四)基于径向基神经网络设计主机器人的自适应滑模控制器。(4) The adaptive sliding mode controller of the main robot is designed based on radial basis neural network.

与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

1、基于径向基神经网络函数,估计了从端环境动力学的非功率环境参数,并通过通信通道传输回主端进行主端环境力重构,不仅避免了功率信号在通信通道中的传输,而且为操作者提供准确的力反馈信息。1. Based on the radial basis neural network function, the non-power environment parameters of the environmental dynamics of the slave end are estimated, and transmitted back to the master end through the communication channel to reconstruct the environment force of the master end, which not only avoids the transmission of power signals in the communication channel , and provide accurate force feedback information for the operator.

2、基于径向基神经网络函数,通过设计自适应率在线训练包含系统建模信息的非线性函数,从而解决了多边遥操作系统主从机器人存在的各种不确定性。2. Based on the radial basis neural network function, the nonlinear function containing the system modeling information is trained online by designing the adaptive rate, so as to solve the various uncertainties of the master-slave robot of the multilateral teleoperating system.

3、通过基于径向基神经网络的非线性自适应滑模控制方法,使从机器人实时、准确地跟踪主机器人的轨迹信号,当系统存在通信时延、非线性和各种不确定性时,能够提升系统的位置追踪性能。3. Through the nonlinear adaptive sliding mode control method based on radial basis neural network, the slave robot can track the trajectory signal of the master robot in real time and accurately. When the system has communication delay, nonlinearity and various uncertainties, It can improve the location tracking performance of the system.

4、通过设计李雅普诺夫函数,保证了非线性多边遥操作系统中所有信号的有界性,从而保住了系统的稳定性。4. By designing the Lyapunov function, the boundedness of all signals in the nonlinear multilateral teleoperating system is guaranteed, thereby maintaining the stability of the system.

5、通过设计协同力分配算法,实现了多个从机器人的控制力分配,从而提升了多个从机器人对作业任务的协同操作性能。5. By designing a collaborative force distribution algorithm, the control force distribution of multiple slave robots is realized, thereby improving the collaborative operation performance of multiple slave robots for job tasks.

附图说明Description of drawings

图1是本发明提出的基于径向基神经网络的非线性遥操作系统的多边自适应滑模控制框图;Fig. 1 is the multilateral adaptive sliding mode control block diagram of the nonlinear teleoperating system based on radial basis neural network proposed by the present invention;

图2是本发明提出的径向基神经网络函数框图。Fig. 2 is a functional block diagram of the radial basis neural network proposed by the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.

现结合实施例、附图对本发明作进一步描述:The present invention will now be further described in conjunction with the embodiments and accompanying drawings:

本发明的实施技术方案为:The technical implementation scheme of the present invention is:

1)建立非线性多边遥操作系统的动力学模型,具体为:1) Establish the dynamic model of the nonlinear multilateral teleoperating system, which is as follows:

1-1)建立多主机器人、多从机器人与环境交互的动力学模型1-1) Establish the dynamic model of multi-master robot, multi-slave robot and environment interaction

Figure BDA0002134543530000021
Figure BDA0002134543530000021

Figure BDA0002134543530000022
Figure BDA0002134543530000022

其中,

Figure BDA0002134543530000023
Figure BDA0002134543530000024
表示第i个主从机器人位置、速度和加速度信号,
Figure BDA0002134543530000031
表示第i个主机器人的末端位置,
Figure BDA0002134543530000032
表示作业任务中目标物体的质心位置,Dm,i和Ds表示质量惯性矩阵,Cm,i和Cs表示科氏力/向心力矩阵,Gm,i和Gs表示重力矩阵,dm,i和ds表示外干扰和建模误差,um,i和us表示控制输入,Fh,i表示第i个操作者的操作力,Fe表示从机器人与作业任务中的环境力,i=1,2,....,n。in,
Figure BDA0002134543530000023
and
Figure BDA0002134543530000024
represents the position, velocity and acceleration signals of the i-th master-slave robot,
Figure BDA0002134543530000031
represents the end position of the i-th master robot,
Figure BDA0002134543530000032
Indicates the position of the center of mass of the target object in the task, D m, i and D s represent the mass inertia matrix, C m, i and C s represent the Coriolis force/centripetal force matrix, G m, i and G s represent the gravity matrix, d m , i and d s represent external disturbance and modeling error, um, i and u s represent the control input, F h, i represent the operating force of the ith operator, and Fe represent the environmental force from the robot and the task , i=1,2,....,n.

上述系统具有如下特性:The above system has the following characteristics:

Figure BDA0002134543530000033
Figure BDA0002134543530000034
为斜对称矩阵;①
Figure BDA0002134543530000033
and
Figure BDA0002134543530000034
is an obliquely symmetric matrix;

②公式(1)和(2)中的部分动力学方程可以写成如下线性方程的形式:②Part of the kinetic equations in equations (1) and (2) can be written in the form of the following linear equations:

Figure BDA0002134543530000035
Figure BDA0002134543530000035

Figure BDA0002134543530000036
Figure BDA0002134543530000036

其中,Wm,i和Ws表示主从机器人的不确定参数,H表示神经网络矩阵。Among them, W m,i and W s represent the uncertain parameters of the master-slave robot, and H represents the neural network matrix.

1-2)建立作业环境的动力学模型1-2) Establish a dynamic model of the working environment

Figure BDA0002134543530000037
Figure BDA0002134543530000037

其中,We表示未知的从端环境参数。Among them, We represent unknown slave environment parameters.

2)基于径向基神经网络设计从机器人的自适应滑模控制器,具体为:2) Design the adaptive sliding mode controller of the slave robot based on the radial basis neural network, specifically:

2-1)由于信号在通信通道的传输会不可避免地产生通信时延,主机器人的位置信号xm,i(t)通过通信通道传输到从端得到时延的位置信号xm,i(t-T(t)),设计从机器人的轨迹生成器如下:2-1) Since the transmission of the signal in the communication channel will inevitably generate a communication delay, the position signal x m,i (t) of the master robot is transmitted to the slave through the communication channel to obtain the delayed position signal x m,i ( tT(t)), the trajectory generator from the robot is designed as follows:

Figure BDA0002134543530000038
Figure BDA0002134543530000038

通过输入时延的平均位置信号

Figure BDA0002134543530000039
输出用于从机器人跟踪的理想轨迹信号
Figure BDA00021345435300000310
其中,lo,i表示目标物体与机器人末端位置间的关系转换,T(t)为系统的通信时延。Average position signal via input delay
Figure BDA0002134543530000039
Output ideal trajectory signal for tracking from robot
Figure BDA00021345435300000310
Among them, l o,i represents the relationship conversion between the target object and the end position of the robot, and T(t) is the communication delay of the system.

2-2)定义从机器人的滑模面ss如下:2-2) Define the sliding surface s of the slave robot as follows:

Figure BDA00021345435300000311
Figure BDA00021345435300000311

其中,es=xsd,o-xs,o表示从机器人与目标物体的跟踪误差,

Figure BDA0002134543530000041
Among them, e s =x sd,o -x s,o represents the tracking error between the slave robot and the target object,
Figure BDA0002134543530000041

2-3)将跟踪误差代入(5)中,得到

Figure BDA0002134543530000042
因此,2-3) Substitute the tracking error into (5) to get
Figure BDA0002134543530000042
therefore,

Figure BDA0002134543530000043
Figure BDA0002134543530000043

其中,

Figure BDA0002134543530000044
in,
Figure BDA0002134543530000044

2-4)根据(6)设计从控制器,保证从端子系统的稳定性,设计的控制器us为:2-4) Design the slave controller according to (6) to ensure the stability of the slave terminal system. The designed controller u s is:

us=σs+ksvss-FesNsat(ss) (7)u ss +k sv s s -F esN sat(s s ) (7)

其中,ksv>0,ksN>0。where k sv >0, k sN >0.

在从控制器(7)中,sat(ss)表示一种避免抖振的滑模饱和函数,可定义为:In the slave controller (7), sat(s s ) represents a sliding mode saturation function that avoids chattering and can be defined as:

Figure BDA0002134543530000045
Figure BDA0002134543530000045

其中,μ表示边界层;where μ represents the boundary layer;

σs表示一种用于估计非线性函数zs的径向基神经网络函数,可定义为:σ s represents a radial basis neural network function for estimating the nonlinear function z s , which can be defined as:

Figure BDA0002134543530000046
Figure BDA0002134543530000046

其中,

Figure BDA0002134543530000047
为自适应参数,
Figure BDA0002134543530000048
in,
Figure BDA0002134543530000047
is an adaptive parameter,
Figure BDA0002134543530000048

2-5)设计从端子系统的李雅普诺夫函数Vs为:2-5) Design the Lyapunov function V s from the terminal system as:

Figure BDA0002134543530000049
Figure BDA0002134543530000049

其中,

Figure BDA00021345435300000410
表示径向基神经网络函数的估计误差。in,
Figure BDA00021345435300000410
represents the estimation error of the radial basis neural network function.

基于李雅普诺夫函数Vs设计Ws的自适应率为:The adaptive rate for designing W s based on the Lyapunov function V s is:

Figure BDA00021345435300000411
Figure BDA00021345435300000411

其中,ks>0,Γs>0。where k s >0, Γ s >0.

2-6)根据从控制器(7),为得到每个从机器人的控制输入us,i,设计协同力分配算法如下:2-6) According to the slave controller (7), in order to obtain the control input u s,i of each slave robot, the synergistic force distribution algorithm is designed as follows:

Figure BDA0002134543530000051
Figure BDA0002134543530000051

其中,

Figure BDA0002134543530000052
Q表示不同作业需求的权重系数,Fs *表示各个从机器人与目标物体的内部力,且NsFs *=0。in,
Figure BDA0002134543530000052
Q represents the weight coefficient of different job requirements, F s * represents the internal force between each slave robot and the target object, and N s F s * =0.

3)基于径向基神经网络函数的作业环境估计与主端环境重构,具体为:3) Working environment estimation and master-end environment reconstruction based on radial basis neural network function, specifically:

3-1)将从端作业环境的动力学模型(3)写成径向基神经网络函数的形式,则:3-1) Write the dynamic model (3) of the slave operating environment in the form of a radial basis neural network function, then:

Figure BDA0002134543530000053
Figure BDA0002134543530000053

其中,xew

Figure BDA0002134543530000054
相关。where x ew and
Figure BDA0002134543530000054
related.

3-2)定义

Figure BDA0002134543530000055
为环境的最优估计参数,Ωe和Ωe0分别表示xew和We的有界集,通过MATLAB的神经网络工具箱能够实现从端作业环境的在线估计。3-2) Definition
Figure BDA0002134543530000055
For the optimal estimation parameters of the environment, Ω e and Ω e0 represent the bounded sets of x ew and We respectively , and the online estimation of the slave operating environment can be realized through the neural network toolbox of MATLAB.

3-3)由于通信时延T(t)的存在,为避免功率信号在通信通道内的传递而影响多边遥操作系统的稳定性,将从端的非功率环境参数估计值

Figure BDA0002134543530000056
传递到主端,从而得到主端的重构环境力为:3-3) Due to the existence of the communication delay T(t), in order to avoid the transmission of the power signal in the communication channel affecting the stability of the multilateral teleoperating system, the estimated value of the non-power environment parameters of the slave
Figure BDA0002134543530000056
Pass it to the master, so as to obtain the reconstructed environment force of the master as:

Figure BDA0002134543530000057
Figure BDA0002134543530000057

其中,xemw

Figure BDA0002134543530000058
相关。where x emw is the same as
Figure BDA0002134543530000058
related.

4)基于径向基神经网络设计主机器人的自适应滑模控制器,具体为:4) Design the adaptive sliding mode controller of the main robot based on the radial basis neural network, specifically:

4-1)定义xmd,i为主机器人的理想轨迹信号,且满足:4-1) Define x md, i as the ideal trajectory signal of the main robot, and satisfy:

Figure BDA0002134543530000059
Figure BDA0002134543530000059

Figure BDA00021345435300000510
Figure BDA00021345435300000510

其中,i=1,2,...,n,

Figure BDA00021345435300000511
Dd,Cd,Gd表示主机器人的阻抗系数。通过选取适当的阻抗系数,(15)-(16)能够生成无源的主机器人理想轨迹xmd,i。Among them, i=1,2,...,n,
Figure BDA00021345435300000511
D d , C d , and G d represent the impedance coefficients of the master robot. By choosing appropriate impedance coefficients, (15)-(16) can generate the passive master robot ideal trajectory x md,i .

4-2)定义主机器人的滑模面sm,i如下:4-2) Define the sliding surface s m,i of the main robot as follows:

Figure BDA00021345435300000512
Figure BDA00021345435300000512

其中,em,i=xmd,i-xm,i表示主机器人的跟踪误差,

Figure BDA0002134543530000061
Among them, em ,i =x md,i -x m,i represents the tracking error of the main robot,
Figure BDA0002134543530000061

4-3)将跟踪误差代入(17)中,得到

Figure BDA0002134543530000062
因此,4-3) Substitute the tracking error into (17) to get
Figure BDA0002134543530000062
therefore,

Figure BDA0002134543530000063
Figure BDA0002134543530000063

其中,

Figure BDA0002134543530000064
in,
Figure BDA0002134543530000064

4-4)根据(18)设计主控制器,保证主端子系统的稳定性,设计的控制器um,i为:4-4) Design the main controller according to (18) to ensure the stability of the main terminal system. The designed controller um,i is:

um,i=σm,i+kmv,ism,i-Fh,imN,isat(sm,i) (19)u m,im,i +k mv, is m,i -F h,imN, isat(s m,i ) (19)

其中,kmv,i>0,kmN,i>0。where k mv,i >0, and k mN,i >0.

在从控制器(19)中,sat(sm)表示一种避免抖振的滑模饱和函数,可定义为:In the slave controller (19), sat(s m ) represents a sliding mode saturation function that avoids chattering and can be defined as:

Figure BDA0002134543530000065
Figure BDA0002134543530000065

其中,μ表示边界层;where μ represents the boundary layer;

σm,i表示一种用于估计非线性函数zm,i的径向基神经网络函数,可定义为:σ m,i represents a radial basis neural network function for estimating the nonlinear function z m,i , which can be defined as:

Figure BDA0002134543530000066
Figure BDA0002134543530000066

其中,

Figure BDA0002134543530000067
为自适应参数,
Figure BDA0002134543530000068
in,
Figure BDA0002134543530000067
is an adaptive parameter,
Figure BDA0002134543530000068

4-5)设计主端子系统的李雅普诺夫函数Vm,i为:4-5) Design the Lyapunov function V m,i of the main terminal system as:

Figure BDA0002134543530000069
Figure BDA0002134543530000069

其中,

Figure BDA00021345435300000610
表示径向基神经网络函数的估计误差。in,
Figure BDA00021345435300000610
represents the estimation error of the radial basis neural network function.

基于李雅普诺夫函数Vm,i设计Wm,i的自适应率为:Based on the Lyapunov function V m,i , the adaptive rate of designing W m,i is:

Figure BDA00021345435300000611
Figure BDA00021345435300000611

其中,km,i>0,Γm,i>0。where k m,i >0, Γ m,i >0.

Claims (7)

1.一种非线性遥操作系统的多边自适应滑模控制方法,其特征在于,包括以下步骤:1. a kind of multilateral adaptive sliding mode control method of nonlinear teleoperating system, is characterized in that, comprises the following steps: 1)建立非线性多边遥操作系统的动力学模型,具体为:1) Establish the dynamic model of the nonlinear multilateral teleoperating system, which is as follows: 1-1)建立多主机器人、多从机器人与环境交互的动力学模型1-1) Establish the dynamic model of multi-master robot, multi-slave robot and environment interaction
Figure FDA0002590738560000011
Figure FDA0002590738560000011
Figure FDA0002590738560000012
Figure FDA0002590738560000012
其中,qm,i,
Figure FDA0002590738560000013
和qs,i,
Figure FDA0002590738560000014
表示第i个主从机器人位置、速度和加速度信号,xm,i,
Figure FDA0002590738560000015
表示第i个主机器人的末端位置、末端速度和末端加速度信号,xs,o,
Figure FDA0002590738560000016
表示作业任务中目标物体的质心位置、质心速度和质心加速度信号,Dm,i和Ds表示质量惯性矩阵,Cm,i和Cs表示科氏力/向心力矩阵,Gm,i和Gs表示重力矩阵,dm,i和ds表示外干扰和建模误差,um,i和us表示控制输入,Fh,i表示第i个操作者的操作力,Fe表示从机器人与作业任务中的环境力,i=1,2,....,n;
Among them, q m,i ,
Figure FDA0002590738560000013
and q s,i ,
Figure FDA0002590738560000014
Indicates the position, velocity and acceleration signals of the i-th master-slave robot, x m,i ,
Figure FDA0002590738560000015
Represents the end position, end velocity and end acceleration signal of the i-th master robot, x s,o ,
Figure FDA0002590738560000016
Indicates the centroid position, centroid velocity and centroid acceleration signal of the target object in the task, D m,i and D s indicate the mass inertia matrix, C m,i and C s indicate the Coriolis force/centripetal force matrix, G m,i and G s represents the gravity matrix, d m,i and d s represent the external disturbance and modeling error, um,i and u s represent the control input, F h,i represents the operating force of the ith operator, and Fe represents the slave robot and the environmental force in the task, i=1,2,....,n;
上述系统具有如下特性:The above system has the following characteristics:
Figure FDA0002590738560000017
Figure FDA0002590738560000018
为斜对称矩阵;
Figure FDA0002590738560000017
and
Figure FDA0002590738560000018
is an obliquely symmetric matrix;
②公式(1)和(2)中的部分动力学方程可以写成如下线性方程的形式:②Part of the kinetic equations in equations (1) and (2) can be written in the form of the following linear equations:
Figure FDA0002590738560000019
Figure FDA0002590738560000019
Figure FDA00025907385600000110
Figure FDA00025907385600000110
其中,Wm,i和Ws表示主从机器人的不确定参数,H表示神经网络矩阵;Among them, W m,i and W s represent the uncertain parameters of the master-slave robot, and H represents the neural network matrix; 1-2)建立作业环境的动力学模型1-2) Establish a dynamic model of the working environment
Figure FDA00025907385600000111
Figure FDA00025907385600000111
其中,We表示未知的从端环境参数;Among them, We represent unknown slave environment parameters; 2)基于径向基神经网络设计从机器人的自适应滑模控制器,具体为:2) Design the adaptive sliding mode controller of the slave robot based on the radial basis neural network, specifically: 2-1)设计从机器人的轨迹生成器,输出用于从机器人跟踪的理想轨迹、理想速度和加速度信号xsd,o(t),
Figure FDA00025907385600000112
2-1) Design the trajectory generator of the slave robot to output the ideal trajectory, ideal velocity and acceleration signals x sd,o (t) for tracking of the slave robot,
Figure FDA00025907385600000112
2-2)定义从机器人的滑模面ss如下:2-2) Define the sliding surface s of the slave robot as follows:
Figure FDA00025907385600000113
Figure FDA00025907385600000113
其中,es=xsd,o-xs,o表示从机器人与目标物体的跟踪误差,
Figure FDA0002590738560000021
表示滑模面调节参数;
Among them, es = x sd, o - x s , o represents the tracking error between the slave robot and the target object,
Figure FDA0002590738560000021
Indicates the sliding surface adjustment parameters;
2-3)将跟踪误差代入(5)中,得到
Figure FDA0002590738560000022
因此,
2-3) Substitute the tracking error into (5) to get
Figure FDA0002590738560000022
therefore,
Figure FDA0002590738560000023
Figure FDA0002590738560000023
其中,
Figure FDA0002590738560000024
表示从机器人的未知系统动力学参数;
in,
Figure FDA0002590738560000024
represents the unknown system dynamics parameters of the slave robot;
2-4)根据(6)设计从控制器,保证从端子系统的稳定性,设计的控制器us为:2-4) Design the slave controller according to (6) to ensure the stability of the slave terminal system. The designed controller u s is: us=σs+ksvss-FesNsat(ss) (7)u ss +k sv s s -F esN sat(s s ) (7) 其中,ksv>0和ksN>0表示从控制器性能的性能调节参数,σs表示一种用于估计非线性函数zs的径向基神经网络函数;where k sv >0 and k sN >0 represent performance tuning parameters from the controller performance, and σ s represents a radial basis neural network function used to estimate the nonlinear function z s ; 2-5)设计从端子系统的李雅普诺夫函数Vs为:2-5) Design the Lyapunov function V s from the terminal system as:
Figure FDA0002590738560000025
Figure FDA0002590738560000025
其中,
Figure FDA0002590738560000026
表示径向基神经网络函数的估计误差;
in,
Figure FDA0002590738560000026
represents the estimation error of the radial basis neural network function;
2-6)基于李雅普诺夫函数Vs设计Ws的自适应率为:2-6) Based on the Lyapunov function V s , the adaptive rate of designing W s is:
Figure FDA0002590738560000027
Figure FDA0002590738560000027
其中,ks>0和Γs>0表示自适应率的学习速度调节参数,
Figure FDA0002590738560000028
表示径向基神经网络函数σs的输入;
where k s >0 and Γ s >0 represent the learning rate adjustment parameters of the adaptation rate,
Figure FDA0002590738560000028
represents the input of the radial basis neural network function σ s ;
2-7)根据从控制器(7),为得到每个从机器人的控制输入us,i,设计协同力分配算法;2-7) According to the slave controller (7), in order to obtain the control input u s,i of each slave robot, design a synergy distribution algorithm; 3)基于径向基神经网络函数的作业环境估计与主端环境重构,具体为:3) Working environment estimation and master-end environment reconstruction based on radial basis neural network function, specifically: 3-1)将从端作业环境的动力学模型(3)写成径向基神经网络函数的形式,则:3-1) Write the dynamic model (3) of the slave operating environment in the form of a radial basis neural network function, then:
Figure FDA0002590738560000029
Figure FDA0002590738560000029
其中,xew表示神经网络函数的输入,且与xs,o,
Figure FDA00025907385600000210
相关;
Among them, x ew represents the input of the neural network function, and is the same as x s,o ,
Figure FDA00025907385600000210
related;
3-2)定义
Figure FDA00025907385600000211
为环境的最优估计参数,Ωe和Ωe0分别表示xew和We的有界集,通过MATLAB的神经网络工具箱实现从端作业环境的在线估计;
3-2) Definition
Figure FDA00025907385600000211
are the optimal estimation parameters of the environment, Ω e and Ω e0 represent the bounded sets of x ew and We respectively , and the online estimation of the slave operating environment is realized by the neural network toolbox of MATLAB;
3-3)由于通信时延T(t)的存在,为避免功率信号在通信通道内的传递而影响多边遥操作系统的稳定性,将从端的非功率环境参数估计值
Figure FDA0002590738560000031
传递到主端,从而得到主端的重构环境力为:
3-3) Due to the existence of the communication delay T(t), in order to avoid the transmission of the power signal in the communication channel affecting the stability of the multilateral teleoperating system, the estimated value of the non-power environment parameters of the slave
Figure FDA0002590738560000031
Pass it to the master, so as to obtain the reconstructed environment force of the master as:
Figure FDA0002590738560000032
Figure FDA0002590738560000032
其中,xemw表示神经网络函数的输入,且与xmd,i,
Figure FDA0002590738560000033
相关;
Among them, x emw represents the input of the neural network function, and is the same as x md,i ,
Figure FDA0002590738560000033
related;
4)基于径向基神经网络设计主机器人的自适应滑模控制器,具体为:4) Design the adaptive sliding mode controller of the main robot based on the radial basis neural network, specifically: 4-1)定义xmd,i为主机器人的理想轨迹信号,且满足:4-1) Define x md, i as the ideal trajectory signal of the main robot, and satisfy:
Figure FDA0002590738560000034
Figure FDA0002590738560000034
Figure FDA0002590738560000035
Figure FDA0002590738560000035
其中,i=1,2,...,n,
Figure FDA0002590738560000036
Dd,Cd,Gd表示主机器人的阻抗系数;通过选取阻抗系数,(15)-(16)能够生成无源的主机器人理想轨迹xmd,i
Among them, i=1,2,...,n,
Figure FDA0002590738560000036
D d , C d , G d represent the impedance coefficients of the main robot; by selecting the impedance coefficients, (15)-(16) can generate the passive ideal trajectory x md,i of the main robot;
4-2)定义主机器人的滑模面sm,i如下:4-2) Define the sliding surface s m,i of the main robot as follows:
Figure FDA0002590738560000037
Figure FDA0002590738560000037
其中,em,i=xmd,i-xm,i表示主机器人的跟踪误差,
Figure FDA0002590738560000038
表示滑模面调节参数;
Among them, em ,i =x md,i -x m,i represents the tracking error of the main robot,
Figure FDA0002590738560000038
Indicates the sliding surface adjustment parameters;
4-3)将跟踪误差代入(17)中,得到
Figure FDA0002590738560000039
因此,
4-3) Substitute the tracking error into (17) to get
Figure FDA0002590738560000039
therefore,
Figure FDA00025907385600000310
Figure FDA00025907385600000310
其中,
Figure FDA00025907385600000311
表示主机器人的未知系统动力学参数;
in,
Figure FDA00025907385600000311
represents the unknown system dynamics parameters of the main robot;
4-4)根据(18)设计主控制器,保证主端子系统的稳定性,设计的控制器um,i为:4-4) Design the main controller according to (18) to ensure the stability of the main terminal system. The designed controller um,i is: um,i=σm,i+kmv,ism,i-Fh,imN,isat(sm,i) (19)u m,im,i +k mv, is m,i -F h,imN, isat(s m,i ) (19) 其中,kmv,i>0和kmN,i>0表示主控制器性能的性能调节参数,σm,i表示一种用于估计非线性函数zm,i的径向基神经网络函数;where k mv,i >0 and k mN,i >0 represent the performance adjustment parameters of the main controller performance, and σ m,i represents a radial basis neural network function for estimating the nonlinear function z m,i ; 4-5)设计主端子系统的李雅普诺夫函数Vm,i为:4-5) Design the Lyapunov function V m,i of the main terminal system as:
Figure FDA0002590738560000041
Figure FDA0002590738560000041
其中,
Figure FDA0002590738560000042
表示径向基神经网络函数的估计误差;
in,
Figure FDA0002590738560000042
represents the estimation error of the radial basis neural network function;
4-6)基于李雅普诺夫函数Vm,i设计Wm,i的自适应率为:4-6) Based on the Lyapunov function V m,i to design the adaptive rate of W m,i :
Figure FDA0002590738560000043
Figure FDA0002590738560000043
其中,km,i>0和Γm,i>0表示自适应率的学习速度调节参数,
Figure FDA0002590738560000044
表示径向基神经网络函数σm,i的输入。
Among them, k m,i >0 and Γ m,i >0 represent the learning speed adjustment parameter of the adaptation rate,
Figure FDA0002590738560000044
represents the input of the radial basis neural network function σ m,i .
2.根据权利要求1所述的多边自适应滑模控制方法,其特征在于,所述步骤2-1)中,由于信号在通信通道的传输会不可避免地产生通信时延,主机器人的位置信号xm,i(t)通过通信通道传输到从端得到时延的位置信号xm,i(t-T(t)),设计从机器人的轨迹生成器如下:2. The multilateral adaptive sliding mode control method according to claim 1, wherein in the step 2-1), because the transmission of the signal in the communication channel will inevitably generate a communication time delay, the position of the main robot The signal x m,i (t) is transmitted to the slave through the communication channel to obtain the delayed position signal x m,i (tT(t)). The trajectory generator of the slave robot is designed as follows:
Figure FDA0002590738560000045
Figure FDA0002590738560000045
其中,tf表示时间常数;通过输入时延的平均位置信号
Figure FDA0002590738560000046
输出用于从机器人跟踪的理想轨迹、理想速度和理想加速度信号xsd,o(t),
Figure FDA0002590738560000047
其中,lo,i表示目标物体与机器人末端位置间的关系转换,T(t)为系统的通信时延。
where t f represents the time constant; the average position signal through the input delay
Figure FDA0002590738560000046
Output ideal trajectory, ideal velocity and ideal acceleration signals x sd,o (t), ideal for tracking from the robot
Figure FDA0002590738560000047
Among them, l o, i represent the relationship conversion between the target object and the end position of the robot, and T(t) is the communication delay of the system.
3.根据权利要求1所述的多边自适应滑模控制方法,其特征在于,所述步骤2-4)中,sat(ss)表示一种避免抖振的滑模饱和函数,定义为:3. Multilateral adaptive sliding mode control method according to claim 1, is characterized in that, in described step 2-4), sat (s s ) represents a kind of sliding mode saturation function that avoids chattering, is defined as:
Figure FDA0002590738560000048
Figure FDA0002590738560000048
其中,μ表示边界层,sgn(ss)表示符号函数。where μ represents the boundary layer, and sgn(s s ) represents the sign function.
4.根据权利要求1所述的多边自适应滑模控制方法,其特征在于,所述步骤2-4)中,σs定义为:4. The multilateral adaptive sliding mode control method according to claim 1, wherein in the step 2-4), σ s is defined as:
Figure FDA0002590738560000049
Figure FDA0002590738560000049
其中,
Figure FDA0002590738560000051
为自适应参数。
in,
Figure FDA0002590738560000051
is an adaptive parameter.
5.根据权利要求1所述的多边自适应滑模控制方法,其特征在于,所述步骤2-7)中,根据从控制器(7),为得到每个从机器人的控制输入us,i,设计协同力分配算法如下:5. The multi-side adaptive sliding mode control method according to claim 1, wherein, in the step 2-7), according to the slave controller (7), in order to obtain the control input u s of each slave robot, i , the design synergy distribution algorithm is as follows:
Figure FDA0002590738560000052
Figure FDA0002590738560000052
其中,
Figure FDA0002590738560000053
表示分配系数,且
Figure FDA0002590738560000054
Θ表示不同作业需求的权重系数,
Figure FDA0002590738560000055
表示各个从机器人与目标物体的内部力,且
Figure FDA0002590738560000056
in,
Figure FDA0002590738560000053
is the distribution coefficient, and
Figure FDA0002590738560000054
Θ represents the weight coefficient of different job requirements,
Figure FDA0002590738560000055
represents the internal force of each slave robot and the target object, and
Figure FDA0002590738560000056
6.根据权利要求1所述的多边自适应滑模控制方法,其特征在于,所述步骤4-4)中,sat(sm,i)表示一种避免抖振的滑模饱和函数,定义为:6. The multilateral adaptive sliding mode control method according to claim 1, wherein in the step 4-4), sat(s m,i ) represents a sliding mode saturation function that avoids chattering, and defines for:
Figure FDA0002590738560000057
Figure FDA0002590738560000057
其中,μ表示边界层,sgn(sm,i)表示符号函数。where μ represents the boundary layer, and sgn(s m,i ) represents the sign function.
7.根据权利要求1所述的多边自适应滑模控制方法,其特征在于,所述步骤4-4)中,σm,i定义为:7. The multilateral adaptive sliding mode control method according to claim 1, wherein in the step 4-4), σ m,i is defined as:
Figure FDA0002590738560000058
Figure FDA0002590738560000058
其中,
Figure FDA0002590738560000059
为自适应参数。
in,
Figure FDA0002590738560000059
is an adaptive parameter.
CN201910649003.0A 2019-07-18 2019-07-18 Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system Active CN110262256B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910649003.0A CN110262256B (en) 2019-07-18 2019-07-18 Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910649003.0A CN110262256B (en) 2019-07-18 2019-07-18 Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system

Publications (2)

Publication Number Publication Date
CN110262256A CN110262256A (en) 2019-09-20
CN110262256B true CN110262256B (en) 2020-09-11

Family

ID=67926838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910649003.0A Active CN110262256B (en) 2019-07-18 2019-07-18 Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system

Country Status (1)

Country Link
CN (1) CN110262256B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111427264B (en) * 2020-03-15 2021-12-14 中国地质大学(武汉) A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology
CN111625012B (en) * 2020-06-09 2022-12-06 西北工业大学 A distributed collaborative operation method for multi-space robots
CN112363389B (en) * 2020-11-11 2022-07-05 西北工业大学 Shared autonomous formation planning control method for single-master multi-slave teleoperation mode
CN112859596B (en) * 2021-01-07 2022-01-04 浙江大学 A Nonlinear Teleoperation Multilateral Control Method Considering Formation Obstacle Avoidance
CN113009819B (en) * 2021-02-09 2022-04-05 南京航空航天大学 Force control-based elliptical vibration cutting machining method
CN113110070B (en) * 2021-05-25 2022-10-04 南京邮电大学 A teleoperating system adaptive control method under actuator saturation
CN113485120B (en) * 2021-08-01 2022-07-05 西北工业大学 A Robot Teleoperation Trajectory Planning Method Based on Manipulation Behavior Detection
CN114488791B (en) * 2021-12-15 2023-07-21 西北工业大学 A teleoperation event-triggered fixed-time control method based on operator intention understanding
CN114516047B (en) * 2022-02-14 2024-07-09 安徽大学 Method and system for controlling mechanical arm track based on radial basis function neural network terminal sliding mode
CN114594690A (en) * 2022-03-15 2022-06-07 杭州电子科技大学 H-Infinite Fuzzy Fault Tolerant Control Method Based on Multilateral Teleoperating System

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089605A (en) * 2013-11-07 2015-05-11 学校法人立命館 Master-slave system
CN106938462A (en) * 2016-12-07 2017-07-11 北京邮电大学 A kind of remote operating bilateral control method based on self adaptation PD and fuzzy logic
CN109085749A (en) * 2018-08-07 2018-12-25 浙江大学 A kind of non-linear remote operating bilateral control method based on adaptive fuzzy inverting
CN109240086A (en) * 2018-10-16 2019-01-18 浙江大学 A kind of adaptive robust control method of non-linear bilateral teleoperation system
CN109358506A (en) * 2018-10-26 2019-02-19 南京理工大学 An Adaptive Fuzzy Teleoperation Control Method Based on Disturbance Observer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358975B1 (en) * 2015-04-10 2016-06-07 Google Inc. Virtual moving safety limits for vehicles transporting objects
CN106200685B (en) * 2015-05-04 2019-03-19 中国科学院沈阳自动化研究所 The remote operating control algolithm of non-linear placement and speed
CN108340369B (en) * 2018-01-17 2020-03-17 浙江大学 Four-channel teleoperation bilateral control method based on time delay compensation
CN108303880B (en) * 2018-01-18 2020-11-06 西北工业大学 A predictive control method for robot teleoperation based on time delay compensation
CN109839894B (en) * 2018-12-21 2021-11-23 南京理工大学 Control method of bilateral teleoperation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089605A (en) * 2013-11-07 2015-05-11 学校法人立命館 Master-slave system
CN106938462A (en) * 2016-12-07 2017-07-11 北京邮电大学 A kind of remote operating bilateral control method based on self adaptation PD and fuzzy logic
CN109085749A (en) * 2018-08-07 2018-12-25 浙江大学 A kind of non-linear remote operating bilateral control method based on adaptive fuzzy inverting
CN109240086A (en) * 2018-10-16 2019-01-18 浙江大学 A kind of adaptive robust control method of non-linear bilateral teleoperation system
CN109358506A (en) * 2018-10-26 2019-02-19 南京理工大学 An Adaptive Fuzzy Teleoperation Control Method Based on Disturbance Observer

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Adaptive Fuzzy Backstepping Control for Stable Nonlinear Bilateral Teleoperation Manipulators With Enhanced Transparency Performance;Zheng Chen 等;《IEEE Transactions on Industrial Electronic》;20190215;第67卷(第1期);746-756 *
Disturbance-Observer-Based Sliding Mode Control Design for Nonlinear Bilateral Teleoperation System With Four-Channel Architecture;JIANZHONG TANG 等;《IEEE Access》;20190531;第7卷;72672-72683 *
Integrated adaptive robust control for multilateral teleoperation system under arbitrary time delays;Zheng Chen 等;《INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL》;20151231;1-21 *
RBFNN-Based Adaptive Sliding Mode Control Design for Nonlinear Bilateral Teleoperation System Under Time-Varying Delays;FANGHAO HUANG 等;《IEEE Access》;20190111;第7卷;11905-11912 *
时延力反馈遥操作系统的跟踪性能研究;张霞;《中国优秀硕士学位论文全文数据库信息科技辑》;20180215(第02期);I140-682 *
水下机械手不确定遥操作自适应双边控制;张建军 等;《北京航空航天大学学报》;20180930;第44卷(第9期);1918-1925 *
遥操作机器人系统时延分析及滑模控制研究;郭培琴;《中国优秀硕士学位论文全文数据库信息科技辑》;20130415(第04期);I140-234 *

Also Published As

Publication number Publication date
CN110262256A (en) 2019-09-20

Similar Documents

Publication Publication Date Title
CN110262256B (en) Multilateral self-adaptive sliding mode control method of nonlinear teleoperation system
CN109240086B (en) An Adaptive Robust Control Method for a Nonlinear Bilateral Teleoperating System
CN110340894B (en) Teleoperation system self-adaptive multilateral control method based on fuzzy logic
CN109085749B (en) A Nonlinear Teleoperation Bilateral Control Method Based on Adaptive Fuzzy Inversion
CN103831831B (en) There is non-linear remote control system position and the force tracing control system of time-vary delay system
CN105629729A (en) Network mobile robot locus tracking control method based on linearity auto-disturbance rejection
CN113297798B (en) Robot external contact force estimation method based on artificial neural network
CN106227223A (en) A kind of UUV trace tracking method based on dynamic sliding mode control
CN110116409B (en) Four-channel teleoperation bilateral control method based on disturbance observer
CN108445748A (en) A kind of adaptive spacecraft attitude tracking and controlling method based on event trigger mechanism
CN110794678B (en) A four-channel teleoperated force feedback control method with limited hysteresis nonlinearity
CN103389650B (en) The bilateral unknown dead zone adaptive control system of four-way remote control system
CN108227497B (en) Control method of networked teleoperation system under condition of considering system performance limitation
CN112904726B (en) Neural network backstepping control method based on error reconstruction weight updating
CN109839894B (en) Control method of bilateral teleoperation system
CN106406098B (en) A Human-Computer Interaction Control Method of Robot System in Unknown Environment
Li et al. Model-free impedance control for safe human-robot interaction
CN103728988A (en) SCARA robot trajectory tracking control method based on internal model
CN113342010B (en) Self-triggering communication underwater glider cooperative control system
CN117506896A (en) Control method for single-connecting-rod mechanical arm embedded with direct-current motor
Zhao et al. Manipulator trajectory tracking based on adaptive sliding mode control
Hu et al. Impedance with Finite‐Time Control Scheme for Robot‐Environment Interaction
Li et al. Fixed‐time fault‐tolerant control of manipulator systems based on sliding mode observer
Zhang et al. Adaptive tracking control of uncertain robotic manipulators
CN108988710A (en) Consider the networking H ∞ model reference DC motor speed-regulating method and system of long delay

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant