[go: up one dir, main page]

CN110331121A - A kind of recombinant bacterium of high yield lipopeptid and its application - Google Patents

A kind of recombinant bacterium of high yield lipopeptid and its application Download PDF

Info

Publication number
CN110331121A
CN110331121A CN201910549289.5A CN201910549289A CN110331121A CN 110331121 A CN110331121 A CN 110331121A CN 201910549289 A CN201910549289 A CN 201910549289A CN 110331121 A CN110331121 A CN 110331121A
Authority
CN
China
Prior art keywords
ala
glu
leu
val
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910549289.5A
Other languages
Chinese (zh)
Other versions
CN110331121B (en
Inventor
于慧敏
王苗苗
许春梦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201910549289.5A priority Critical patent/CN110331121B/en
Publication of CN110331121A publication Critical patent/CN110331121A/en
Application granted granted Critical
Publication of CN110331121B publication Critical patent/CN110331121B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/010853-Isopropylmalate dehydrogenase (1.1.1.85)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/030132-Isopropylmalate synthase (2.3.3.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01042Branched-chain-amino-acid transaminase (2.6.1.42)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/010333-Isopropylmalate dehydratase (4.2.1.33)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a kind of recombinant bacterium for the high yield lipopeptid for belonging to gene engineering technology field and its application, the recombinant bacterium of the high yield lipopeptid is that the 2-Isopropylmalate synthase genetic transformation in leucine route of synthesis is built-up to original strain.The recombinant bacterium of further overexpression part leucine synthesis path (2-Isopropylmalate synthase, 3-Isopropylmalate dehydrogenase, 3-Isopropylmalate dehydratase and branched-chain amino acid transaminase) of the invention is compared with starting strain, Surfactin yield highest improves 55.6%, it can be used for the production of Lipopeptide Biosurfactants, with good prospects for commercial application, lipopeptid yield average out to 13-16g/L in fermentation liquid obtained by shake flask fermentation.

Description

一种高产脂肽的重组菌及其应用A kind of recombinant bacteria with high lipopeptide production and its application

技术领域technical field

本发明属于基因工程技术领域,具体涉及一种高产脂肽的重组菌及其应用。The invention belongs to the technical field of genetic engineering, and in particular relates to a high-production lipopeptide recombinant bacterium and its application.

背景技术Background technique

脂肽(lipopeptide)类生物表面活性剂是一类由亲水的环状寡肽与疏水的脂肪酸链以内酯键连接而成的两性物质,主要由芽孢杆菌、链霉菌等微生物合成。由于组成脂肽的肽环中氨基酸组成与成环方式不同,芽孢杆菌脂肽可分为表面活性素、芬芥素、伊枯草菌素等,其中在气/液界面形成独特“马鞍”构象的表面活性素具有良好的表面活性、生物降解性及抗菌活性,在石油开采、生物防治、医药及日化等领域都有广阔的应用前景。但由于芽孢杆菌发酵生产表面活性素产率低限制了表面活性素的工业化生产和应用。Lipopeptide biosurfactants are a kind of amphoteric substances connected by hydrophilic cyclic oligopeptides and hydrophobic fatty acid chains with lactone bonds, and are mainly synthesized by microorganisms such as Bacillus and Streptomyces. Due to the difference in amino acid composition and ring formation in the peptide rings that make up lipopeptides, lipopeptides from Bacillus can be classified into surfactin, phenmusin, iturin, etc. Among them, the unique "saddle" conformation is formed at the air/liquid interface. Surfactin has good surface activity, biodegradability and antibacterial activity, and has broad application prospects in the fields of oil exploration, biological control, medicine and daily chemicals. However, the low yield of surfactin produced by Bacillus fermentation limits the industrial production and application of surfactin.

目前,提高微生物脂肽发酵水平的方法包括培养条件优化、诱变育种、强化表面活性素跨膜运输、强化表面活性素合成酶表达、强化脂肪酸前体供应等。专利文献(CN101892176A、CN 101775427A、WO 2002026961A)等通过对枯草芽孢杆菌发酵生产表面活性素发酵过程中培养基及培养条件进行优化,提高了发酵液中表面活性素的产量。诱变育种方面,CN101928677A公开了通过紫外诱变处理玫瑰孢链霉菌,US05227294公开了用亚硝基甲替尿烷处理枯草芽孢杆菌,上述文献中的微生物在诱变处理后,其表面活性素合成量都有增加。基因工程改造方面,中国专利文献CN103898038A公开了通过强化脂肽由胞内向胞外运输的跨膜蛋白YcxA,枯草芽孢杆菌发酵生产的表面活性素产量提高了97%。中国专利文献CN1554747A公开了在枯草芽孢杆菌中表达comA基因,脂肽产量提高了50%。另外,枯草芽孢杆菌中脂肪酸和氨基酸在表面活性素合成酶的作用下催化合成表面活性素,中国专利文献CN105400784A通过将脂肽合成酶基因簇启动子替换成诱导型强启动子Pg3,表面活性素产量提高了17.7倍。中国专利文献CN109097315A通过过表达支链脂肪酸合成途径中生物素羧化酶YngH,表面活性素产量提高了47%。(Qun Wu,Yan Zhi,Yan Xu,Systematicallyengineering the biosynthesis of a green biosurfactant surfactin by Bacillussubtilis 168[J].Metabolic Engineering,2019,52:87-97)公开了强化细胞内支链脂肪酸合成整条路径提高前体脂肪酸的供应,从而表面活性素产量提高了20.8倍。关于表面活性素合成的另一类主要前体氨基酸,(Coutte F,Niehren J,Dhali D,et al.Modelingleucine's metabolic pathway and knockout prediction improving the productionof surfactin,a biosurfactant from Bacillus subtilis[J].Biotechnology Journal,2015,10(8SI):1216-1234)公开了培养基中添加亮氨酸可使表面活性素产量提高3倍,说明提高亮氨酸含量是提高表面活性素产量的有效策略。但是,(Qun Wu,Yan Zhi,Yan Xu,Systematically engineering the biosynthesis of a green biosurfactantsurfactin by Bacillus subtilis 168[J].Metabolic Engineering,2019,52:87-97)在产表面活性素的宿主菌中过表达了亮氨酸合成途径中的乙酰乳酸合酶AlsS、酮醇酸还原异构酶IlvC、二羟基酸脱水酶IlvD、2-异丙基苹果酸合酶LeuA、3-异丙基苹果酸脱氢酶LeuB和3-异丙基苹果酸脱水酶LeuCD,表面活性素产量并没有提高。关于强化细胞中亮氨酸合成有效提高表面活性素产量的研究未见报道。At present, methods to improve the fermentation level of microbial lipopeptides include optimization of culture conditions, mutation breeding, enhancement of surfactin transmembrane transport, enhancement of surfactin synthase expression, and enhancement of fatty acid precursor supply, etc. Patent documents (CN101892176A, CN 101775427A, WO 2002026961A) etc. have improved the yield of surfactin in the fermentation broth by optimizing the culture medium and culture conditions during the fermentation process of Bacillus subtilis to produce surfactin. In terms of mutation breeding, CN101928677A discloses the treatment of Streptomyces roseospora by ultraviolet mutagenesis, and US05227294 discloses the treatment of Bacillus subtilis with nitrosomethylurethane. volume has increased. In terms of genetic engineering, the Chinese patent document CN103898038A discloses that by strengthening the transmembrane protein YcxA that transports lipopeptide from intracellular to extracellular, the yield of surfactin produced by Bacillus subtilis fermentation is increased by 97%. Chinese patent document CN1554747A discloses that the expression of comA gene in Bacillus subtilis increases the lipopeptide production by 50%. In addition, fatty acids and amino acids in Bacillus subtilis catalyze the synthesis of surfactin under the action of surfactin synthase. Chinese patent document CN105400784A replaces the lipopeptide synthase gene cluster promoter with an inducible strong promoter Pg3, and surfactin Yield increased by 17.7 times. Chinese patent document CN109097315A increases the yield of surfactin by 47% by overexpressing biotin carboxylase YngH in the branched-chain fatty acid synthesis pathway. (Qun Wu, Yan Zhi, Yan Xu, Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168 [J]. Metabolic Engineering, 2019, 52:87-97) disclosed that strengthening the whole pathway of intracellular branched-chain fatty acid synthesis improves The supply of fatty acids in the body, thereby increasing the production of surfactant by 20.8 times. Another major precursor amino acid for surfactin synthesis, (Coutte F, Niehren J, Dhali D, et al. Modelingleucine's metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis[J].Biotechnology Journal, 2015,10(8SI):1216-1234) disclosed that the addition of leucine in the medium can increase the yield of surfactin by 3 times, indicating that increasing the content of leucine is an effective strategy to increase the yield of surfactin. However, (Qun Wu, Yan Zhi, Yan Xu, Systematically engineering the biosynthesis of a green biosurfactantsurfactin by Bacillus subtilis 168[J]. Metabolic Engineering, 2019, 52:87-97) overexpressed in surfactin-producing host bacteria Acetolactate synthase AlsS, ketol acid reductoisomerase IlvC, dihydroxyacid dehydratase IlvD, 2-isopropylmalate synthase LeuA, 3-isopropylmalate dehydrogenase in the leucine synthesis pathway Enzymes LeuB and 3-isopropylmalate dehydratase LeuCD, Surfactin production did not increase. There is no report on the research on enhancing the synthesis of leucine in cells to effectively increase the production of surfactin.

发明内容Contents of the invention

为了克服现有技术中的缺点,本发明的目的在于提供一种高效的生产脂肽的重组菌,其可以提高脂肽的产量。In order to overcome the shortcomings in the prior art, the object of the present invention is to provide a highly efficient lipopeptide-producing recombinant bacterium, which can increase the lipopeptide production.

所述重组菌,其是将亮氨酸合成途径中的2-异丙基苹果酸合酶基因转化至原始菌株构建而成。The recombinant bacterium is constructed by transforming the 2-isopropylmalate synthase gene in the leucine synthesis pathway into the original strain.

上述重组菌中,可选择的,所述重组菌还转入了3-异丙基苹果酸脱氢酶基因、3-异丙基苹果酸脱水酶基因和支链氨基酸转氨酶基因中的一个或一个以上。In the above-mentioned recombinant bacteria, optionally, the recombinant bacteria are also transferred to one or one of the 3-isopropylmalate dehydrogenase gene, the 3-isopropylmalate dehydratase gene and the branched-chain amino acid transaminase gene above.

上述重组菌中,所述3-异丙基苹果酸脱氢酶、3-异丙基苹果酸脱水酶和支链氨基酸转氨酶生物素羧化酶分别为LeuB、LeuCD和IlvK蛋白或其具有相同功能的突变体,In the above-mentioned recombinant bacteria, the 3-isopropylmalate dehydrogenase, 3-isopropylmalate dehydratase and branched-chain amino acid transaminase biotin carboxylase are respectively LeuB, LeuCD and IlvK proteins or have the same function mutants,

上述重组菌中,优选的,所述LeuB蛋白的氨基酸序列如SEQ ID NO.2所示,所述LeuC蛋白的氨基酸序列如SEQ ID NO.3所示,所述LeuD蛋白的氨基酸序列如SEQ ID NO.4所示,所述IlvK蛋白的氨基酸序列如SEQ ID NO.5所示。In the above-mentioned recombinant bacteria, preferably, the amino acid sequence of the LeuB protein is shown in SEQ ID NO.2, the amino acid sequence of the LeuC protein is shown in SEQ ID NO.3, and the amino acid sequence of the LeuD protein is shown in SEQ ID NO. As shown in NO.4, the amino acid sequence of the IlvK protein is shown in SEQ ID NO.5.

上述重组菌中,所述2-异丙基苹果酸合酶为LeuA蛋白或其具有相同功能的突变体,优选的,所述LeuA蛋白的氨基酸序列如SEQ ID NO.1所示。In the above recombinant bacteria, the 2-isopropylmalate synthase is LeuA protein or a mutant having the same function, preferably, the amino acid sequence of the LeuA protein is shown in SEQ ID NO.1.

上述重组菌中,所述原始菌株为具有产脂肽能力的野生菌及其诱变株、突变株或基因工程改造株。In the above-mentioned recombinant bacteria, the original strains are wild bacteria capable of producing lipopeptides and their mutagenic strains, mutant strains or genetically engineered strains.

上述重组菌中,所述原始菌株为枯草芽孢杆菌、蜡状芽孢杆菌或假单胞菌。In the above recombinant bacteria, the original strain is Bacillus subtilis, Bacillus cereus or Pseudomonas.

上述重组菌中,可选择的,所述原始菌株为枯草芽孢杆菌Bacillus subtilisTHY-7。Among the above recombinant bacteria, optionally, the original strain is Bacillus subtilis THY-7.

所述枯草芽孢杆菌Bacillus subtilis THY-7,于2014年3月11日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏登记号为CGMCC No.8906,并在中国专利文献CN 105400784A中公开。The Bacillus subtilis THY-7 was deposited on March 11, 2014 in the General Microorganism Center of China Committee for the Collection of Microorganisms, with the registration number CGMCC No.8906, and disclosed in Chinese patent document CN 105400784A.

上述重组菌中,可选择的,所述原始菌株为枯草芽孢杆菌Bacillus subtilisTHY-7/Pg3-srfA。Among the above recombinant bacteria, optionally, the original strain is Bacillus subtilis THY-7/Pg3-srfA.

所述枯草芽孢杆菌Bacillus subtilis THY-7/Pg3-srfA,是指在枯草芽孢杆菌Bacillus subtilis THY-7中加入诱导型强启动子Pg3,使强启动子Pg3控制表面活性素合成酶srfA的表达。关于诱导型强启动子Pg3、枯草芽孢杆菌Bacillus subtilis THY-7/Pg3-srfA及其具体的制备方法在中国专利文献CN 105400784A中有公开。The Bacillus subtilis THY-7/Pg3-srfA refers to adding an inducible strong promoter Pg3 to the Bacillus subtilis THY-7, so that the strong promoter Pg3 controls the expression of surfactin synthase srfA. The inducible strong promoter Pg3, Bacillus subtilis THY-7/Pg3-srfA and their specific preparation methods are disclosed in Chinese patent document CN 105400784A.

上述重组菌中,所述LeuA、LeuB、LeuC和LeuD蛋白受强启动子控制,所述IlvK蛋白受原组成型启动子控制。In the above recombinant bacteria, the LeuA, LeuB, LeuC and LeuD proteins are controlled by strong promoters, and the IlvK protein is controlled by the original constitutive promoter.

本发明的目的还提供上述重组菌在生产脂肽中的应用。The object of the present invention is also to provide the application of the above-mentioned recombinant bacteria in the production of lipopeptides.

上述应用中,所述脂肽类生物表面活性剂为表面活性素。In the above application, the lipopeptide biosurfactant is surfactin.

一种上述重组菌的制备方法,包括如下步骤:A method for preparing the above-mentioned recombinant bacteria, comprising the steps of:

扩增得到2-异丙基苹果酸合酶、3-异丙基苹果酸脱氢酶、3-异丙基苹果酸脱水酶基因簇leuABCD和带有自身组成型启动子的支链氨基酸转氨酶生物素羧化酶IlvK,将LeuABCD和IlvK基因序列插入穿梭质粒,构建表达质粒;Amplified 2-isopropylmalate synthase, 3-isopropylmalate dehydrogenase, 3-isopropylmalate dehydratase gene cluster leuABCD and branched-chain amino acid transaminase organisms with their own constitutive promoters Carboxylase IlvK, LeuABCD and IlvK gene sequences were inserted into the shuttle plasmid to construct an expression plasmid;

将表达质粒导入原始菌株,构建重组菌。The expression plasmid was introduced into the original strain to construct the recombinant strain.

进一步的,具体方法为:Further, the specific method is:

1、利用上下游引物,以枯草芽孢杆菌基因组为模板进行聚合酶链式反应,扩增并获得leuABCD基因,优选的,其核酸序列如SEQ ID NO.6所示。同样的,扩增并获得ilvK基因,优选的,其核酸序列如SEQ ID NO.7所示。1. Using upstream and downstream primers, carry out polymerase chain reaction with the Bacillus subtilis genome as a template, amplify and obtain the leuABCD gene, preferably, its nucleic acid sequence is shown in SEQ ID NO.6. Similarly, the ilvK gene is amplified and obtained, preferably, its nucleic acid sequence is shown in SEQ ID NO.7.

2、将leuABCD和ilvK基因以及穿梭质粒分别进行双酶切,使用连接酶将两种酶切产物进行连接,得到连接产物。2. Carry out double digestion of the leuABCD and ilvK genes and the shuttle plasmid respectively, and use ligase to connect the two digested products to obtain the ligated product.

3、将连接产物转化大肠杆菌E.coli TOP10感受态细胞,进行抗性筛选阳性克隆,得到含有leuABCD和ilvK基因序列的表达质粒pJMP-leuABCD-ilvK。3. The ligation product was transformed into E. coli TOP10 competent cells, and the positive clones were screened for resistance to obtain the expression plasmid pJMP-leuABCD-ilvK containing the gene sequences of leuABCD and ilvK.

4、将表达质粒pJMP-leuABCD-ilvK转入出发菌株中,获得转化有pJMP-leuABCD-ilvK质粒的基因工程菌。4. Transfer the expression plasmid pJMP-leuABCD-ilvK into the starting strain to obtain genetically engineered bacteria transformed with the pJMP-leuABCD-ilvK plasmid.

上述基因工程菌的制备方法中,所述穿梭质粒pJMP的构建方法在中国专利文献CN109097315A中已经公开。In the above method for preparing genetically engineered bacteria, the method for constructing the shuttle plasmid pJMP has been disclosed in Chinese patent document CN109097315A.

一种上述重组菌的制备方法,可选的,具体方法包括如下:A method for preparing the above-mentioned recombinant bacteria, optionally, the specific method includes the following:

1、以leuABCD-F和leuABCD-R为上下游引物,以枯草芽孢杆菌基因组为模板进行聚合酶链式反应,扩增并获得leuABCD基因序列,其核酸序列如SEQ ID NO.6所示;以ilvK-F和ilvK-R为上下游引物,以枯草芽孢杆菌基因组为模板进行聚合酶链式反应,扩增并获得ilvK基因序列,其核酸序列如SEQ ID NO.7所示;1. Using leuABCD-F and leuABCD-R as upstream and downstream primers, and using the Bacillus subtilis genome as a template to carry out polymerase chain reaction, amplify and obtain the leuABCD gene sequence, its nucleic acid sequence is shown in SEQ ID NO.6; with ilvK-F and ilvK-R are the upstream and downstream primers, and the polymerase chain reaction is carried out using the Bacillus subtilis genome as a template to amplify and obtain the ilvK gene sequence, and its nucleic acid sequence is shown in SEQ ID NO.7;

2、将leuABCD基因进行Xba I和Mlu I双酶切,将ilvK基因进行Mlu I和Nco I双酶切,将穿梭质粒进行Xba I和Nco I双酶切,纯化酶切产物,使用T4 DNA连接酶将三种酶切产物进行连接,得到连接产物。2. Digest the leuABCD gene with Xba I and Mlu I, the ilvK gene with Mlu I and Nco I, and the shuttle plasmid with Xba I and Nco I, purify the digested product, and connect with T4 DNA The enzyme connects the three digestion products to obtain a connection product.

3、将连接产物转化大肠杆菌E.coli TOP10感受态细胞,涂布于卡那霉素的LB平板,倒置于37℃培养箱中过夜培养。挑取平板上长出来的抗性克隆进行培养,提取质粒进行酶切及测序验证,得到含有正确leuABCD-ilvK基因序列的表达质粒pJMP-leuABCD-ilvK。3. Transform the ligation product into E. coli TOP10 competent cells, smear it on a kanamycin LB plate, and place it upside down in a 37°C incubator for overnight culture. The resistant clones grown on the plate were picked and cultured, the plasmid was extracted for enzyme digestion and sequencing verification, and the expression plasmid pJMP-leuABCD-ilvK containing the correct leuABCD-ilvK gene sequence was obtained.

4、将表达质粒pJMP-leuABCD-ilvK使用电转化方法转入枯草芽孢杆菌B.subtilisTHY-7/Pg3-srfA(CN 105400784A)中,涂布于含有氯霉素和卡那霉素的LB平板上,挑取抗性克隆进行培养,进行PCR验证,获得转化有pJMP-leuABCD-ilvK质粒的基因工程菌B.subtilis THY-7/Pg3-srfA(leuABCD-ilvK)。4. Transfer the expression plasmid pJMP-leuABCD-ilvK into Bacillus subtilisTHY-7/Pg3-srfA (CN 105400784A) by electroporation, and spread it on the LB plate containing chloramphenicol and kanamycin , picked resistant clones for culture, and carried out PCR verification to obtain genetically engineered bacteria B. subtilis THY-7/Pg3-srfA (leuABCD-ilvK) transformed with pJMP-leuABCD-ilvK plasmid.

优选的,步骤1中所述的枯草芽孢杆菌基因组可以选择枯草芽孢杆菌1012wt(MoBiTec公司)、枯草芽孢杆菌THY-7(CN 105400784A)、THY-8(化工进展,2013,32:2952-2956)、THY-15(Journal of industrial microbiology&biotechnology.2015,42(8):1139–1147)或携带leuABCD和ilvK基因的其它芽孢杆菌菌株。Preferably, the Bacillus subtilis genome described in step 1 can be selected from Bacillus subtilis 1012wt (MoBiTec company), Bacillus subtilis THY-7 (CN 105400784A), THY-8 (Chemical Progress, 2013, 32: 2952-2956) , THY-15 (Journal of industrial microbiology & biotechnology. 2015, 42(8): 1139-1147) or other Bacillus strains carrying leuABCD and ilvK genes.

优选的,步骤2中所述穿梭质粒优选pJMP,构建方法在中国专利文献CN109097315A中已经公开。Preferably, the shuttle plasmid described in step 2 is preferably pJMP, and the construction method has been disclosed in Chinese patent document CN109097315A.

本发明的目的也在于提供上述基因工程菌在制备脂肽的中的应用。The object of the present invention is also to provide the application of the above-mentioned genetically engineered bacteria in the preparation of lipopeptides.

可选的,采用上述重组菌生产脂肽,步骤如下:Optionally, using the above-mentioned recombinant bacteria to produce lipopeptides, the steps are as follows:

将重组菌接入培养基中,进行扩大培养,得到基因工程菌菌液;Insert the recombinant bacteria into the culture medium, carry out expanded culture, and obtain the genetically engineered bacteria liquid;

按照1-20%体积百分比将步骤(1)得到的工程菌菌液接入发酵培养基中,进行发酵培养,得到含有脂肽的发酵液。The engineered bacteria liquid obtained in the step (1) is inserted into the fermentation medium according to 1-20% volume percentage, and the fermentation culture is carried out to obtain a lipopeptide-containing fermentation liquid.

上述方法中,所述扩大培养的方法为:在35-40℃、摇床转速为150-200rpm的条件下培养10-20h。In the above-mentioned method, the method for expanding the cultivation is: culturing for 10-20 hours at a temperature of 35-40° C. and a shaker rotation speed of 150-200 rpm.

上述方法中,所述发酵培养的方法为在35-40℃、摇床转速为150-200rpm的条件下培养1.5-4h时加入0.5-1.5mM IPTG诱导剂后继续培养40-60h。In the above method, the method of fermentation culture is to add 0.5-1.5mM IPTG inducer after culturing for 1.5-4h under the condition of 35-40°C and shaker rotation speed of 150-200rpm, and then continue culturing for 40-60h.

上述方法中,所述发酵培养基的组成为:糖类30-100g/L,无机氮源10-50g/L,有机氮源0.5-3g/L,KH2PO4 0.1-1g/L,Na2HPO4·12H2O 0.5-0.3g/L,CaCl2 0.002-0.01g/L,MnSO4·H2O 0.002-0.01g/L,FeSO4·7H2O 0.002-0.01g/L,pH 6.5-7.5。In the above method, the composition of the fermentation medium is: sugar 30-100g/L, inorganic nitrogen source 10-50g/L, organic nitrogen source 0.5-3g/L, KH 2 PO 4 0.1-1g/L, Na 2 HPO 4 ·12H 2 O 0.5-0.3g/L,CaCl 2 0.002-0.01g/L,MnSO 4 ·H 2 O 0.002-0.01g/L,FeSO 4 ·7H 2 O 0.002-0.01g/L,pH 6.5-7.5.

本发明的优点和有益效果:Advantages and beneficial effects of the present invention:

本发明采用基因工程技术构建重组菌,在产脂肽枯草芽孢杆菌细胞中扩增并表达了亮氨酸合成途径中2-异丙基苹果酸合酶LeuA、3-异丙基苹果酸脱氢酶LeuB、3-异丙基苹果酸脱水酶LeuCD和支链氨基酸转氨酶IlvK,强化了表面活性素分子结构中亮氨酸的合成,从而显著提高了脂肽的产量。本发明所得过表达部分亮氨酸合成路径的重组菌与出发菌株相比,表面活性素产量最高提高了55.6%,可用于脂肽类生物表面活性剂的生产,具有良好的工业应用前景,摇瓶发酵所得发酵液中脂肽产量平均为13-16g/L。The invention uses genetic engineering technology to construct recombinant bacteria, amplifies and expresses 2-isopropylmalate synthase LeuA and 3-isopropylmalate dehydrogenation in the leucine synthesis pathway in lipopeptide-producing Bacillus subtilis cells The enzymes LeuB, 3-isopropylmalate dehydratase LeuCD and branched-chain amino acid transaminase IlvK strengthen the synthesis of leucine in the molecular structure of surfactin, thereby significantly increasing the yield of lipopeptide. Compared with the original strain, the recombinant bacterium obtained by the present invention with overexpressed part of the leucine synthesis pathway has a maximum increase of 55.6% in the production of surfactin, and can be used for the production of lipopeptide biosurfactants, and has good industrial application prospects. The average yield of lipopeptides in the fermentation broth obtained from bottle fermentation is 13-16g/L.

附图说明Description of drawings

图1为用于基因过表达质粒pJMP的示意图。Figure 1 is a schematic diagram of the plasmid pJMP used for gene overexpression.

图2为含有leu ABCD-ilvK基因串的过表达质粒pJMP-leuABCD-ilvK的PCR验证图:泳道1为DNA分子量标准,泳道2为质粒使用引物ilvK-F和ilv-R进行PCR扩增的结果,可得到1.3kb的条带。Figure 2 is a PCR verification map of the overexpression plasmid pJMP-leuABCD-ilvK containing the leuABCD-ilvK gene string: Swimming lane 1 is the DNA molecular weight standard, and swimming lane 2 is the result of PCR amplification of the plasmid using primers ilvK-F and ilv-R , a 1.3kb band can be obtained.

图3为携带2-异丙基苹果酸合酶LeuA、3-异丙基苹果酸脱氢酶LeuB、3-异丙基苹果酸脱水酶LeuCD和支链氨基酸转氨酶IlvK基因的枯草芽孢杆菌-大肠杆菌穿梭质粒pJMP-leuABCD-ilvK的示意图。Fig. 3 is Bacillus subtilis-large coli carrying 2-isopropylmalate synthase LeuA, 3-isopropylmalate dehydrogenase LeuB, 3-isopropylmalate dehydratase LeuCD and branched-chain amino acid transaminase IlvK genes Schematic representation of the Bacillus shuttle plasmid pJMP-leuABCD-ilvK.

图4为过表达2-异丙基苹果酸合酶LeuA、3-异丙基苹果酸脱氢酶LeuB、3-异丙基苹果酸脱水酶LeuCD和支链氨基酸转氨酶IlvK的基因工程菌B.subtilisTHY-7/Pg3-srfA(leuABCD-ilvK)的PCR验证图:泳道1为THY-7/Pg3-srfA(pJMP-yngH)用引物ilvK-F和通用引物pJMP-R进行PCR扩增的结果,可得到1.5kb的条带。泳道2为DNA分子量标准。Figure 4 shows the genetically engineered bacteria B overexpressing 2-isopropylmalate synthase LeuA, 3-isopropylmalate dehydrogenase LeuB, 3-isopropylmalate dehydratase LeuCD and branched-chain amino acid transaminase IlvK. PCR verification diagram of subtilisTHY-7/Pg3-srfA (leuABCD-ilvK): Lane 1 is the result of PCR amplification of THY-7/Pg3-srfA (pJMP-yngH) with primer ilvK-F and universal primer pJMP-R, A 1.5kb band was obtained. Lane 2 is DNA molecular weight standard.

图5为原始菌株THY-7/Pg3-srfA与基因工程菌THY-7/Pg3-srfA(leuABCD-ilvK)的发酵产物中表面活性素的浓度。Figure 5 shows the concentration of surfactin in the fermentation product of the original strain THY-7/Pg3-srfA and the genetically engineered strain THY-7/Pg3-srfA (leuABCD-ilvK).

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明作进一步说明。如未特别指明,实施例中所用的生化试剂均为市售试剂,实施例中所用的技术手段为本领域技术人员书中的常规手段。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments. Unless otherwise specified, the biochemical reagents used in the examples are all commercially available reagents, and the technical means used in the examples are conventional means in the books of those skilled in the art.

亮氨酸合成途径中:葡萄糖经过糖酵解途径生成丙酮酸,丙酮酸是亮氨酸合成的前体。在丙酮酸生成α-酮基异戊酸的过程中,由丙酮酸合成乙酰乳酸是该过程的限速步骤。催化该步骤的酶为乙酰羟基酸合成酶,由基因ilvHB和基因alsS编码。在α-酮基异戊酸和乙酰CoA合成L-亮氨酸过程,限速步骤是由α-异丙基苹果酸合成酶催化合成α-异丙基苹果酸,编码该酶的基因为leuA。In the leucine synthesis pathway: glucose generates pyruvate through the glycolysis pathway, and pyruvate is the precursor of leucine synthesis. In the process of producing α-ketoisovaleric acid from pyruvate, the synthesis of acetolactate from pyruvate is the rate-limiting step in the process. The enzyme catalyzing this step is acetohydroxyacid synthase, encoded by the gene ilvHB and the gene alsS. In the process of synthesizing L-leucine from α-ketoisovaleric acid and acetyl CoA, the rate-limiting step is the synthesis of α-isopropylmalate catalyzed by α-isopropylmalate synthase, the gene encoding the enzyme is leuA .

发明人前期实验中分别表达这3个相关基因发现:过表达alsS和ilvHB时表面活性素的合成显著降低,过表达leuA时表面活性素产量有所提升,脂肽产量为11.58g/L,提高了13.5%,过表达leuAB时,脂肽产量没有进一步提升。The inventors expressed these three related genes in previous experiments and found that the synthesis of surfactin was significantly reduced when alsS and ilvHB were overexpressed, and the yield of surfactin was increased when leuA was overexpressed, and the lipopeptide yield was 11.58g/L. When leuAB was overexpressed, the production of lipopeptide was not further improved.

实施例1携带亮氨酸合成途径中基因leuABCD和ilvK的质粒构建Example 1 Construction of plasmids carrying genes leuABCD and ilvK in the leucine synthesis pathway

挑取枯草芽孢杆菌B.subtilis THY-7单菌落,接种于LB液体培养基中,放置于37℃、200rpm的摇床中过夜培养,在12000rpm、5min离心条件下收集菌体,使用Omega公司的细菌基因组提取试剂盒提取THY-7基因组。以得到的基因组为模板,使用上游引物leuABCD-F(序列如SEQ ID NO.8所示)和下游引物leuABCD-R(序列如SEQ ID NO.9所示)进行PCR扩增得到leuABCD片段。使用上游引物ilvK-F(序列如SEQ ID NO.10所示)和下游引物ilvK-R(序列如SEQ ID NO.11所示)进行PCR扩增得到ilvK片段引物由铂尚生物技术(上海)有限公司合成,用无菌水溶解并稀释至10μM备用。PCR扩增所用聚合酶、缓冲液和限制性内切酶购自TaKaRa公司。PCR扩增反应体系为:Pick a single colony of Bacillus subtilis B.subtilis THY-7, inoculate it in LB liquid medium, place it in a shaker at 37°C and 200rpm for overnight culture, and collect the bacteria under the condition of centrifugation at 12000rpm and 5min. Bacterial Genome Extraction Kit to extract THY-7 genome. Using the obtained genome as a template, the upstream primer leuABCD-F (sequence shown in SEQ ID NO.8) and the downstream primer leuABCD-R (sequence shown in SEQ ID NO.9) were used for PCR amplification to obtain a leuABCD fragment. Use upstream primer ilvK-F (sequence shown in SEQ ID NO.10) and downstream primer ilvK-R (sequence shown in SEQ ID NO.11) to carry out PCR amplification to obtain ilvK fragment primers provided by Boshang Biotechnology (Shanghai) Co., Ltd., dissolved in sterile water and diluted to 10 μM for use. The polymerase, buffer and restriction endonuclease used in PCR amplification were purchased from TaKaRa Company. The PCR amplification reaction system is:

热循环条件为The thermal cycling conditions are

扩增纯化得到枯草芽孢杆菌leuABCD基因片断,其序列如SEQ ID NO.6所示,扩增纯化得到枯草芽孢杆菌ilvK基因片断,其序列如SEQ ID NO.7所示。将leuABCD基因进行XbaI和Mlu I双酶切,将ilvK基因进行Mlu I和Nco I双酶切,将穿梭质粒进行Xba I和Nco I双酶切,27-33℃酶切1-3h后用Omega公司的DNA纯化试剂盒进行纯化,然后使用T4 DNA连接酶(NEB公司)在16-22℃条件下过夜连接。连接产物转化大肠杆菌E.coli TOP10感受态细胞(TianGen公司),涂布于含卡那霉素的LB平板,倒置于37℃培养箱中过夜培养。挑取平板上长出来的抗性克隆进行菌落PCR,以挑取的菌落为模板,以ilvK-F和质粒引物ilvK-R为引物,扩增出约1.3Kb条带(如图2所示)即为阳性克隆,挑取阳性克隆培养,提取质粒并测序验证,得到含有leuABCD和ilvK基因的表达质粒pJMP-leuABCD-ilvK,其中图1为质粒pJMP的示意图。The gene fragment of Bacillus subtilis leuABCD was amplified and purified, and its sequence was shown in SEQ ID NO.6. The gene fragment of Bacillus subtilis ilvK was amplified and purified, and its sequence was shown in SEQ ID NO.7. Digest the leuABCD gene with XbaI and MluI, the ilvK gene with MluI and NcoI, and the shuttle plasmid with XbaI and NcoI. Digest at 27-33°C for 1-3 hours and use Omega The company's DNA purification kit was purified, and then ligated overnight at 16-22°C using T4 DNA ligase (NEB Company). The ligation product was transformed into Escherichia coli E. coli TOP10 competent cells (TianGen Company), spread on LB plates containing kanamycin, and cultured overnight in a 37°C incubator upside down. Pick the resistant clones grown on the plate for colony PCR, use the picked colonies as templates, use ilvK-F and plasmid primer ilvK-R as primers, and amplify about 1.3Kb bands (as shown in Figure 2) The positive clones were picked and cultured, the plasmids were extracted and verified by sequencing, and the expression plasmid pJMP-leuABCD-ilvK containing the genes of leuABCD and ilvK was obtained. Figure 1 is a schematic diagram of the plasmid pJMP.

实施例2过表达亮氨酸合成途径的基因工程菌B.subtilis THY-7/Pg3-srfA(leuABCD-ilvK)的构建Example 2 Construction of the genetically engineered bacteria B.subtilis THY-7/Pg3-srfA (leuABCD-ilvK) overexpressing the leucine synthesis pathway

将实施例1中构建的携带2-异丙基苹果酸合酶LeuA、3-异丙基苹果酸脱氢酶LeuB、3-异丙基苹果酸脱水酶LeuCD和支链氨基酸转氨酶IlvK的枯草芽孢杆菌-大肠杆菌穿梭质粒pJMP-leuABCD-ilvK以电穿孔法转化枯草芽孢杆菌THY-7/Pg3-srfA的感受态细胞,可得到过表达亮氨酸合成路径部分基因的基因工程菌THY-7/Pg3-srfA(leuABCD-ilvK)。其中,枯草芽孢杆菌THY-7/Pg3-srfA感受态细胞的制备及电转化采用中国专利文献CN105400784A中的方法。The Bacillus subtilis constructed in Example 1 carrying 2-isopropylmalate synthase LeuA, 3-isopropylmalate dehydrogenase LeuB, 3-isopropylmalate dehydratase LeuCD and branched-chain amino acid transaminase IlvK The Bacillus-Escherichia coli shuttle plasmid pJMP-leuABCD-ilvK is used to transform the competent cells of Bacillus subtilis THY-7/Pg3-srfA by electroporation, and the genetically engineered bacteria THY-7/ Pg3-srfA (leuABCD-ilvK). Wherein, the preparation and electrotransformation of Bacillus subtilis THY-7/Pg3-srfA competent cells adopt the method in Chinese patent document CN105400784A.

复苏后取100uL菌液涂布于含10-30μg/mL卡那霉素的LB固体培养基上,倒置于37℃培养箱中过夜培养,挑取单菌落,使用上下游引物ilvK-F和pJMP-R进行PCR验证,可扩增出约1.5kb条带,验证结果如图4所示,即获得过表达2-异丙基苹果酸合酶LeuA、3-异丙基苹果酸脱氢酶LeuB、3-异丙基苹果酸脱水酶LeuCD和支链氨基酸转氨酶IlvK的基因工程菌THY-7/Pg3-srfA(leuABCD-ilvK)。所述质粒引物pJMP-R序列如SEQ ID NO.12所示。After resuscitation, take 100uL of bacterial liquid and spread it on LB solid medium containing 10-30μg/mL kanamycin, place it upside down in a 37°C incubator for overnight culture, pick a single colony, and use upstream and downstream primers ilvK-F and pJMP -R for PCR verification, a band of about 1.5kb can be amplified, the verification results are shown in Figure 4, that is, the overexpression of 2-isopropylmalate synthase LeuA and 3-isopropylmalate dehydrogenase LeuB , 3-isopropylmalate dehydratase LeuCD and branched-chain amino acid transaminase IlvK genetically engineered bacteria THY-7/Pg3-srfA (leuABCD-ilvK). The sequence of the plasmid primer pJMP-R is shown in SEQ ID NO.12.

实施例3使用基因工程菌THY-7/Pg3-srfA(leuABCD-ilvK)生产脂肽类表面活性剂—表面活性素Embodiment 3 uses genetically engineered bacteria THY-7/Pg3-srfA (leuABCD-ilvK) to produce lipopeptide surfactant-surfactin

将实施例2所得到的过表达2-异丙基苹果酸合酶LeuA、3-异丙基苹果酸脱氢酶LeuB、3-异丙基苹果酸脱水酶LeuCD和支链氨基酸转氨酶IlvK的基因工程菌THY-7/Pg3-srfA(leuABCD-ilvK)接种于LB液体培养基(含氯霉素和卡那霉素)中,37℃、200rpm条件下培养16h,以5%的比例接入装有100mL发酵培养基的摇瓶中,37℃、200rpm条件下培养2-6h时加入IPTG,继续培养至2-3d,即得到含脂肽的发酵液。The genes obtained in Example 2 for overexpressing 2-isopropylmalate synthase LeuA, 3-isopropylmalate dehydrogenase LeuB, 3-isopropylmalate dehydratase LeuCD and branched-chain amino acid transaminase IlvK The engineering bacteria THY-7/Pg3-srfA (leuABCD-ilvK) was inoculated in LB liquid medium (containing chloramphenicol and kanamycin), cultured at 37°C and 200rpm for 16h, and inserted into the container at a ratio of 5%. In a shake flask with 100 mL of fermentation medium, add IPTG when culturing at 37°C and 200 rpm for 2-6 hours, and continue culturing for 2-3 days to obtain a lipopeptide-containing fermentation broth.

发酵液中表面活性素检测采用于慧敏等(中国专利CN 105400784A)的方法。基因工程菌THY-7/Pg3-srfA(leuABCD-ilvK)与出发菌株THY-7/Pg3-srfA发酵液中表面活性素浓度的统计结果如图5所示:THY-7/Pg3-srfA(leuABCD-ilvK)表面活性素产量最高可达15.8g/L,比THY-7/Pg3-srfA出发菌(10.2g/L)提高了54.9%。5L发酵罐培养THY-7/Pg3-srfA(leuABCD-ilvK),表面活性素产量最高达到19g/L。The detection of surfactin in the fermentation broth adopts the method of Yu Huimin et al. (Chinese patent CN 105400784A). The statistical results of surfactin concentration in the fermentation broth of the genetically engineered bacteria THY-7/Pg3-srfA (leuABCD-ilvK) and the starting strain THY-7/Pg3-srfA are shown in Figure 5: THY-7/Pg3-srfA (leuABCD -ilvK) Surfactin production can be up to 15.8g/L, which is 54.9% higher than THY-7/Pg3-srfA starting bacteria (10.2g/L). When THY-7/Pg3-srfA(leuABCD-ilvK) was cultured in a 5L fermenter, the highest yield of surfactin was 19g/L.

以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。The above embodiments are only used to illustrate the technical solutions of the present invention, and are not intended to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be applied to the foregoing embodiments The technical solutions described in the examples are modified, or some or all of the technical features are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the embodiments of the present invention.

序列表 sequence listing

<110> 清华大学<110> Tsinghua University

<120> 一种高产脂肽的重组菌及其应用<120> A recombinant bacterium with high lipopeptide production and its application

<130> 0<130> 0

<160> 12<160> 12

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 518<211> 518

<212> PRT<212> PRT

<213> Bacillus subtilis<213> Bacillus subtilis

<400> 1<400> 1

Met Arg Lys Ile Asn Phe Phe Asp Thr Thr Leu Arg Asp Gly Glu GlnMet Arg Lys Ile Asn Phe Phe Asp Thr Thr Leu Arg Asp Gly Glu Gln

1 5 10 151 5 10 15

Ser Pro Gly Val Asn Leu Asn Thr Gln Glu Lys Leu Ala Ile Ala LysSer Pro Gly Val Asn Leu Asn Thr Gln Glu Lys Leu Ala Ile Ala Lys

20 25 30 20 25 30

Gln Leu Glu Arg Leu Gly Ala Asp Ile Ile Glu Ala Gly Phe Pro AlaGln Leu Glu Arg Leu Gly Ala Asp Ile Ile Glu Ala Gly Phe Pro Ala

35 40 45 35 40 45

Ser Ser Arg Gly Asp Phe Leu Ala Val Gln Glu Ile Ala Arg Thr IleSer Ser Arg Gly Asp Phe Leu Ala Val Gln Glu Ile Ala Arg Thr Ile

50 55 60 50 55 60

Lys Asn Cys Ser Val Thr Gly Leu Ala Arg Cys Val Lys Gly Asp IleLys Asn Cys Ser Val Thr Gly Leu Ala Arg Cys Val Lys Gly Asp Ile

65 70 75 8065 70 75 80

Asp Ala Ala Trp Glu Ala Leu Lys Glu Gly Ser His Pro Arg Ile HisAsp Ala Ala Trp Glu Ala Leu Lys Glu Gly Ser His Pro Arg Ile His

85 90 95 85 90 95

Val Phe Ile Ala Thr Ser Asp Ile His Leu Lys His Lys Leu Lys MetVal Phe Ile Ala Thr Ser Asp Ile His Leu Lys His Lys Leu Lys Met

100 105 110 100 105 110

Thr Arg Glu Gln Val Ile Glu Arg Ala Val Glu Met Val Lys Tyr AlaThr Arg Glu Gln Val Ile Glu Arg Ala Val Glu Met Val Lys Tyr Ala

115 120 125 115 120 125

Lys Glu Arg Phe Pro Ile Val Gln Trp Ser Ala Glu Asp Ala Cys ArgLys Glu Arg Phe Pro Ile Val Gln Trp Ser Ala Glu Asp Ala Cys Arg

130 135 140 130 135 140

Thr Glu Leu Pro Phe Leu Ala Glu Ile Val Glu Lys Val Ile Asp AlaThr Glu Leu Pro Phe Leu Ala Glu Ile Val Glu Lys Val Ile Asp Ala

145 150 155 160145 150 155 160

Gly Ala Ser Val Ile Asn Leu Pro Asp Thr Val Gly Tyr Leu Ala ProGly Ala Ser Val Ile Asn Leu Pro Asp Thr Val Gly Tyr Leu Ala Pro

165 170 175 165 170 175

Ala Glu Tyr Gly Asn Ile Phe Arg Tyr Met Lys Glu Asn Val Pro AsnAla Glu Tyr Gly Asn Ile Phe Arg Tyr Met Lys Glu Asn Val Pro Asn

180 185 190 180 185 190

Ile His Lys Ala Lys Leu Ser Ala His Cys His Asp Asp Leu Gly MetIle His Lys Ala Lys Leu Ser Ala His Cys His Asp Asp Leu Gly Met

195 200 205 195 200 205

Ala Val Ala Asn Ser Leu Ala Ala Ile Glu Asn Gly Ala Asp Gln IleAla Val Ala Asn Ser Leu Ala Ala Ile Glu Asn Gly Ala Asp Gln Ile

210 215 220 210 215 220

Glu Cys Ala Val Asn Gly Ile Gly Glu Arg Ala Gly Asn Ala Ala LeuGlu Cys Ala Val Asn Gly Ile Gly Glu Arg Ala Gly Asn Ala Ala Leu

225 230 235 240225 230 235 240

Glu Glu Ile Ala Val Ala Leu His Thr Arg Lys Asp Phe Tyr Gln ValGlu Glu Ile Ala Val Ala Leu His Thr Arg Lys Asp Phe Tyr Gln Val

245 250 255 245 250 255

Glu Thr Gly Ile Thr Leu Asn Glu Ile Lys Arg Thr Ser Asp Leu ValGlu Thr Gly Ile Thr Leu Asn Glu Ile Lys Arg Thr Ser Asp Leu Val

260 265 270 260 265 270

Ser Lys Leu Thr Gly Met Ala Val Pro Arg Asn Lys Ala Val Val GlySer Lys Leu Thr Gly Met Ala Val Pro Arg Asn Lys Ala Val Val Gly

275 280 285 275 280 285

Asp Asn Ala Phe Ala His Glu Ser Gly Ile His Gln Asp Gly Phe LeuAsp Asn Ala Phe Ala His Glu Ser Gly Ile His Gln Asp Gly Phe Leu

290 295 300 290 295 300

Lys Glu Lys Ser Thr Tyr Glu Ile Ile Ser Pro Glu Leu Val Gly ValLys Glu Lys Ser Thr Tyr Glu Ile Ile Ser Pro Glu Leu Val Gly Val

305 310 315 320305 310 315 320

Thr Ala Asp Ala Leu Val Leu Gly Lys His Ser Gly Arg His Ala PheThr Ala Asp Ala Leu Val Leu Gly Lys His Ser Gly Arg His Ala Phe

325 330 335 325 330 335

Lys Asp Arg Leu Thr Ala Leu Gly Phe Gln Phe Asp Ser Glu Glu IleLys Asp Arg Leu Thr Ala Leu Gly Phe Gln Phe Asp Ser Glu Glu Ile

340 345 350 340 345 350

Asn Lys Phe Phe Thr Met Phe Lys Glu Leu Thr Glu Lys Lys Lys GluAsn Lys Phe Phe Thr Met Phe Lys Glu Leu Thr Glu Lys Lys Lys Lys Glu

355 360 365 355 360 365

Ile Thr Asp Glu Asp Leu Val Ser Leu Ile Leu Glu Glu Lys Val ThrIle Thr Asp Glu Asp Leu Val Ser Leu Ile Leu Glu Glu Lys Val Thr

370 375 380 370 375 380

Asp Arg Lys Ile Gly Tyr Glu Phe Leu Ser Leu Gln Val His Tyr GlyAsp Arg Lys Ile Gly Tyr Glu Phe Leu Ser Leu Gln Val His Tyr Gly

385 390 395 400385 390 395 400

Thr Ser Gln Val Pro Thr Ala Thr Leu Ser Leu Lys Asn Gln Glu AsnThr Ser Gln Val Pro Thr Ala Thr Leu Ser Leu Lys Asn Gln Glu Asn

405 410 415 405 410 415

Ala Glu Leu Ile Gln Glu Ala Ala Thr Gly Ala Gly Ser Val Glu AlaAla Glu Leu Ile Gln Glu Ala Ala Thr Gly Ala Gly Ser Val Glu Ala

420 425 430 420 425 430

Ile Tyr Asn Thr Leu Glu Arg Cys Ile Asp Lys Asp Val Glu Leu LeuIle Tyr Asn Thr Leu Glu Arg Cys Ile Asp Lys Asp Val Glu Leu Leu

435 440 445 435 440 445

Asp Tyr Arg Ile Gln Ser Asn Arg Lys Gly Glu Asp Ala Phe Ala GlnAsp Tyr Arg Ile Gln Ser Asn Arg Lys Gly Glu Asp Ala Phe Ala Gln

450 455 460 450 455 460

Val Tyr Val Arg Val Leu Val Asn Gly Lys Glu Ser Ala Gly Arg GlyVal Tyr Val Arg Val Leu Val Asn Gly Lys Glu Ser Ala Gly Arg Gly

465 470 475 480465 470 475 480

Ile Ala Gln Asp Val Leu Glu Ala Ser Ala Lys Ala Tyr Leu Asn AlaIle Ala Gln Asp Val Leu Glu Ala Ser Ala Lys Ala Tyr Leu Asn Ala

485 490 495 485 490 495

Val Asn Arg Gln Leu Val Phe Gln Ser Asn Met Ser Gly Leu Lys AsnVal Asn Arg Gln Leu Val Phe Gln Ser Asn Met Ser Gly Leu Lys Asn

500 505 510 500 505 510

His Thr Ala Val Gly SerHis Thr Ala Val Gly Ser

515 515

<210> 2<210> 2

<211> 365<211> 365

<212> PRT<212> PRT

<213> Bacillus subtilis<213> Bacillus subtilis

<400> 2<400> 2

Leu Lys Lys Arg Ile Ala Leu Leu Pro Gly Asp Gly Ile Gly Pro GluLeu Lys Lys Arg Ile Ala Leu Leu Pro Gly Asp Gly Ile Gly Pro Glu

1 5 10 151 5 10 15

Val Leu Glu Ser Ala Thr Asp Val Leu Lys Ser Val Ala Glu Arg PheVal Leu Glu Ser Ala Thr Asp Val Leu Lys Ser Val Ala Glu Arg Phe

20 25 30 20 25 30

Asn His Glu Phe Glu Phe Glu Tyr Gly Leu Ile Gly Gly Ala Ala IleAsn His Glu Phe Glu Phe Glu Tyr Gly Leu Ile Gly Gly Ala Ala Ile

35 40 45 35 40 45

Asp Glu His His Asn Pro Leu Pro Glu Lys Thr Val Ala Ala Cys LysAsp Glu His His Asn Pro Leu Pro Glu Lys Thr Val Ala Ala Cys Lys

50 55 60 50 55 60

Asn Ala Asp Ala Ile Leu Leu Gly Ala Val Gly Gly Pro Lys Trp AspAsn Ala Asp Ala Ile Leu Leu Gly Ala Val Gly Gly Pro Lys Trp Asp

65 70 75 8065 70 75 80

Gln Asn Pro Ser Glu Leu Arg Pro Glu Lys Gly Leu Leu Ser Ile ArgGln Asn Pro Ser Glu Leu Arg Pro Glu Lys Gly Leu Leu Ser Ile Arg

85 90 95 85 90 95

Lys Gln Leu Asp Leu Phe Ala Asn Leu Arg Pro Val Lys Val Phe GluLys Gln Leu Asp Leu Phe Ala Asn Leu Arg Pro Val Lys Val Phe Glu

100 105 110 100 105 110

Ser Leu Ser Asp Ala Ser Pro Leu Lys Lys Glu Tyr Ile Asp Asn ValSer Leu Ser Asp Ala Ser Pro Leu Lys Lys Glu Tyr Ile Asp Asn Val

115 120 125 115 120 125

Asp Phe Val Ile Val Arg Glu Leu Thr Gly Gly Leu Tyr Phe Gly GlnAsp Phe Val Ile Val Arg Glu Leu Thr Gly Gly Leu Tyr Phe Gly Gln

130 135 140 130 135 140

Pro Ser Lys Arg Tyr Val Asn Thr Glu Gly Glu Gln Glu Ala Val AspPro Ser Lys Arg Tyr Val Asn Thr Glu Gly Glu Gln Glu Ala Val Asp

145 150 155 160145 150 155 160

Thr Leu Phe Tyr Lys Arg Thr Glu Ile Glu Arg Val Ile Arg Glu GlyThr Leu Phe Tyr Lys Arg Thr Glu Ile Glu Arg Val Ile Arg Glu Gly

165 170 175 165 170 175

Phe Lys Met Ala Ala Ala Arg Lys Gly Lys Val Thr Ser Val Asp LysPhe Lys Met Ala Ala Ala Arg Lys Gly Lys Val Thr Ser Val Asp Lys

180 185 190 180 185 190

Ala Asn Val Leu Glu Ser Ser Arg Leu Trp Arg Glu Val Ala Glu AspAla Asn Val Leu Glu Ser Ser Arg Leu Trp Arg Glu Val Ala Glu Asp

195 200 205 195 200 205

Val Ala Lys Glu Phe Pro Asp Val Lys Leu Glu His Met Leu Val AspVal Ala Lys Glu Phe Pro Asp Val Lys Leu Glu His Met Leu Val Asp

210 215 220 210 215 220

Asn Ala Ala Met Gln Leu Ile Tyr Ala Pro Asn Gln Phe Asp Val ValAsn Ala Ala Met Gln Leu Ile Tyr Ala Pro Asn Gln Phe Asp Val Val

225 230 235 240225 230 235 240

Val Thr Glu Asn Met Phe Gly Asp Ile Leu Ser Asp Glu Ala Ser MetVal Thr Glu Asn Met Phe Gly Asp Ile Leu Ser Asp Glu Ala Ser Met

245 250 255 245 250 255

Leu Thr Gly Ser Leu Gly Met Leu Pro Ser Ala Ser Leu Ser Ser SerLeu Thr Gly Ser Leu Gly Met Leu Pro Ser Ala Ser Leu Ser Ser Ser Ser

260 265 270 260 265 270

Gly Leu His Leu Phe Glu Pro Val His Gly Ser Ala Pro Asp Ile AlaGly Leu His Leu Phe Glu Pro Val His Gly Ser Ala Pro Asp Ile Ala

275 280 285 275 280 285

Gly Lys Gly Met Ala Asn Pro Phe Ala Ala Ile Leu Ser Ala Ala MetGly Lys Gly Met Ala Asn Pro Phe Ala Ala Ile Leu Ser Ala Ala Met

290 295 300 290 295 300

Leu Leu Arg Thr Ser Phe Gly Leu Glu Glu Glu Ala Lys Ala Val GluLeu Leu Arg Thr Ser Phe Gly Leu Glu Glu Glu Ala Lys Ala Val Glu

305 310 315 320305 310 315 320

Asp Ala Val Asn Lys Val Leu Ala Ser Gly Lys Arg Thr Lys Asp LeuAsp Ala Val Asn Lys Val Leu Ala Ser Gly Lys Arg Thr Lys Asp Leu

325 330 335 325 330 335

Ala Arg Gly Glu Glu Phe Ser Ser Thr Gln Ala Ile Thr Glu Glu ValAla Arg Gly Glu Glu Phe Ser Ser Thr Gln Ala Ile Thr Glu Glu Val

340 345 350 340 345 350

Lys Ala Ala Ile Met Ser Glu Asn Thr Met Ser Asn ValLys Ala Ala Ile Met Ser Glu Asn Thr Met Ser Asn Val

355 360 365 355 360 365

<210> 3<210> 3

<211> 472<211> 472

<212> PRT<212> PRT

<213> Bacillus subtilis<213> Bacillus subtilis

<400> 3<400> 3

Met Met Pro Arg Thr Ile Ile Glu Lys Ile Trp Asp Gln His Ile ValMet Met Pro Arg Thr Ile Ile Glu Lys Ile Trp Asp Gln His Ile Val

1 5 10 151 5 10 15

Lys His Gly Glu Gly Lys Pro Asp Leu Leu Tyr Ile Asp Leu His LeuLys His Gly Glu Gly Lys Pro Asp Leu Leu Tyr Ile Asp Leu His Leu

20 25 30 20 25 30

Ile His Glu Val Thr Ser Pro Gln Ala Phe Glu Gly Leu Arg Gln LysIle His Glu Val Thr Ser Pro Gln Ala Phe Glu Gly Leu Arg Gln Lys

35 40 45 35 40 45

Gly Arg Lys Val Arg Arg Pro Gln Asn Thr Phe Ala Thr Met Asp HisGly Arg Lys Val Arg Arg Pro Gln Asn Thr Phe Ala Thr Met Asp His

50 55 60 50 55 60

Asn Ile Pro Thr Val Asn Arg Phe Glu Ile Lys Asp Glu Val Ala LysAsn Ile Pro Thr Val Asn Arg Phe Glu Ile Lys Asp Glu Val Ala Lys

65 70 75 8065 70 75 80

Arg Gln Val Thr Ala Leu Glu Arg Asn Cys Glu Glu Phe Gly Val ArgArg Gln Val Thr Ala Leu Glu Arg Asn Cys Glu Glu Phe Gly Val Arg

85 90 95 85 90 95

Leu Ala Asp Leu His Ser Val Asp Gln Gly Ile Val His Val Val GlyLeu Ala Asp Leu His Ser Val Asp Gln Gly Ile Val His Val Val Gly

100 105 110 100 105 110

Pro Glu Leu Gly Leu Thr Leu Pro Gly Lys Thr Ile Val Cys Gly AspPro Glu Leu Gly Leu Thr Leu Pro Gly Lys Thr Ile Val Cys Gly Asp

115 120 125 115 120 125

Ser His Thr Ser Thr His Gly Ala Phe Gly Ala Leu Ala Phe Gly IleSer His Thr Ser Thr His Gly Ala Phe Gly Ala Leu Ala Phe Gly Ile

130 135 140 130 135 140

Gly Thr Ser Glu Val Glu His Val Leu Ser Thr Gln Thr Leu Trp GlnGly Thr Ser Glu Val Glu His Val Leu Ser Thr Gln Thr Leu Trp Gln

145 150 155 160145 150 155 160

Gln Arg Pro Lys Thr Leu Glu Val Arg Val Asp Gly Thr Leu Gln LysGln Arg Pro Lys Thr Leu Glu Val Arg Val Asp Gly Thr Leu Gln Lys

165 170 175 165 170 175

Gly Val Thr Ala Lys Asp Val Ile Leu Ala Val Ile Gly Lys Tyr GlyGly Val Thr Ala Lys Asp Val Ile Leu Ala Val Ile Gly Lys Tyr Gly

180 185 190 180 185 190

Val Lys Phe Gly Thr Gly Tyr Val Ile Glu Tyr Thr Gly Glu Val PheVal Lys Phe Gly Thr Gly Tyr Val Ile Glu Tyr Thr Gly Glu Val Phe

195 200 205 195 200 205

Arg Asn Met Thr Met Asp Glu Arg Met Thr Val Cys Asn Met Ser IleArg Asn Met Thr Met Asp Glu Arg Met Thr Val Cys Asn Met Ser Ile

210 215 220 210 215 220

Glu Ala Gly Ala Arg Ala Gly Leu Ile Ala Pro Asp Glu Val Thr PheGlu Ala Gly Ala Arg Ala Gly Leu Ile Ala Pro Asp Glu Val Thr Phe

225 230 235 240225 230 235 240

Glu Tyr Cys Lys Asn Arg Lys Tyr Thr Pro Lys Gly Glu Glu Phe AspGlu Tyr Cys Lys Asn Arg Lys Tyr Thr Pro Lys Gly Glu Glu Phe Asp

245 250 255 245 250 255

Lys Ala Val Glu Glu Trp Lys Ala Leu Arg Thr Asp Pro Gly Ala ValLys Ala Val Glu Glu Trp Lys Ala Leu Arg Thr Asp Pro Gly Ala Val

260 265 270 260 265 270

Tyr Asp Lys Ser Ile Val Leu Asp Gly Asn Lys Ile Ser Pro Met ValTyr Asp Lys Ser Ile Val Leu Asp Gly Asn Lys Ile Ser Pro Met Val

275 280 285 275 280 285

Thr Trp Gly Ile Asn Pro Gly Met Val Leu Pro Val Asp Ser Glu ValThr Trp Gly Ile Asn Pro Gly Met Val Leu Pro Val Asp Ser Glu Val

290 295 300 290 295 300

Pro Ala Pro Glu Ser Phe Ser Ala Glu Asp Asp Lys Lys Glu Ala IlePro Ala Pro Glu Ser Phe Ser Ala Glu Asp Asp Lys Lys Glu Ala Ile

305 310 315 320305 310 315 320

Arg Ala Tyr Glu Tyr Met Gly Leu Thr Pro His Gln Lys Ile Glu AspArg Ala Tyr Glu Tyr Met Gly Leu Thr Pro His Gln Lys Ile Glu Asp

325 330 335 325 330 335

Ile Lys Val Glu His Val Phe Ile Gly Ser Cys Thr Asn Ser Arg MetIle Lys Val Glu His Val Phe Ile Gly Ser Cys Thr Asn Ser Arg Met

340 345 350 340 345 350

Thr Asp Leu Arg Gln Ala Ala Asp Met Ile Lys Gly Lys Lys Val AlaThr Asp Leu Arg Gln Ala Ala Asp Met Ile Lys Gly Lys Lys Val Ala

355 360 365 355 360 365

Asp Ser Val Arg Ala Ile Val Val Pro Gly Ser Gln Arg Val Lys LeuAsp Ser Val Arg Ala Ile Val Val Pro Gly Ser Gln Arg Val Lys Leu

370 375 380 370 375 380

Gln Ala Glu Lys Glu Gly Leu Asp Gln Ile Phe Leu Glu Ala Gly PheGln Ala Glu Lys Glu Gly Leu Asp Gln Ile Phe Leu Glu Ala Gly Phe

385 390 395 400385 390 395 400

Glu Trp Arg Glu Ser Gly Cys Ser Met Cys Leu Ser Met Asn Asn AspGlu Trp Arg Glu Ser Gly Cys Ser Met Cys Leu Ser Met Asn Asn Asp

405 410 415 405 410 415

Val Val Pro Glu Gly Glu Arg Cys Ala Ser Thr Ser Asn Arg Asn PheVal Val Pro Glu Gly Glu Arg Cys Ala Ser Thr Ser Asn Arg Asn Phe

420 425 430 420 425 430

Glu Gly Arg Gln Gly Lys Gly Ala Arg Thr His Leu Val Ser Pro AlaGlu Gly Arg Gln Gly Lys Gly Ala Arg Thr His Leu Val Ser Pro Ala

435 440 445 435 440 445

Met Ala Ala Met Ala Ala Ile His Gly His Phe Val Asp Val Arg LysMet Ala Ala Met Ala Ala Ile His Gly His Phe Val Asp Val Arg Lys

450 455 460 450 455 460

Phe Tyr Gln Glu Lys Thr Val ValPhe Tyr Gln Glu Lys Thr Val Val

465 470465 470

<210> 4<210> 4

<211> 199<211> 199

<212> PRT<212> PRT

<213> Bacillus subtilis<213> Bacillus subtilis

<400> 4<400> 4

Met Glu Pro Leu Lys Ser His Thr Gly Lys Ala Ala Val Leu Asn ArgMet Glu Pro Leu Lys Ser His Thr Gly Lys Ala Ala Val Leu Asn Arg

1 5 10 151 5 10 15

Ile Asn Val Asp Thr Asp Gln Ile Ile Pro Lys Gln Phe Leu Lys ArgIle Asn Val Asp Thr Asp Gln Ile Ile Pro Lys Gln Phe Leu Lys Arg

20 25 30 20 25 30

Ile Glu Arg Thr Gly Tyr Gly Arg Phe Ala Phe Phe Asp Trp Arg TyrIle Glu Arg Thr Gly Tyr Gly Arg Phe Ala Phe Phe Asp Trp Arg Tyr

35 40 45 35 40 45

Asp Ala Asn Gly Glu Pro Asn Pro Glu Phe Glu Leu Asn Gln Pro ValAsp Ala Asn Gly Glu Pro Asn Pro Glu Phe Glu Leu Asn Gln Pro Val

50 55 60 50 55 60

Tyr Gln Gly Ala Ser Ile Leu Ile Ala Gly Glu Asn Phe Gly Cys GlyTyr Gln Gly Ala Ser Ile Leu Ile Ala Gly Glu Asn Phe Gly Cys Gly

65 70 75 8065 70 75 80

Ser Ser Arg Glu His Ala Pro Trp Ala Leu Asp Asp Tyr Gly Phe LysSer Ser Arg Glu His Ala Pro Trp Ala Leu Asp Asp Tyr Gly Phe Lys

85 90 95 85 90 95

Ile Ile Ile Ala Pro Ser Phe Ala Asp Ile Phe His Gln Asn Cys PheIle Ile Ile Ala Pro Ser Phe Ala Asp Ile Phe His Gln Asn Cys Phe

100 105 110 100 105 110

Lys Asn Gly Met Leu Pro Ile Arg Met Pro Tyr Asp Asn Trp Lys GlnLys Asn Gly Met Leu Pro Ile Arg Met Pro Tyr Asp Asn Trp Lys Gln

115 120 125 115 120 125

Leu Val Gly Gln Tyr Glu Asn Lys Ser Leu Gln Met Thr Val Asp LeuLeu Val Gly Gln Tyr Glu Asn Lys Ser Leu Gln Met Thr Val Asp Leu

130 135 140 130 135 140

Glu Asn Gln Leu Ile His Asp Ser Glu Gly Asn Gln Ile Ser Phe GluGlu Asn Gln Leu Ile His Asp Ser Glu Gly Asn Gln Ile Ser Phe Glu

145 150 155 160145 150 155 160

Val Asp Pro His Trp Lys Glu Met Leu Ile Asn Gly Tyr Asp Glu IleVal Asp Pro His Trp Lys Glu Met Leu Ile Asn Gly Tyr Asp Glu Ile

165 170 175 165 170 175

Ser Leu Thr Leu Leu Leu Glu Asp Glu Ile Lys His Phe Glu Ser GlnSer Leu Thr Leu Leu Leu Glu Asp Glu Ile Lys His Phe Glu Ser Gln

180 185 190 180 185 190

Arg Ser Ser Trp Leu Gln AlaArg Ser Ser Trp Leu Gln Ala

195 195

<210> 5<210> 5

<211> 363<211> 363

<212> PRT<212> PRT

<213> Bacillus subtilis<213> Bacillus subtilis

<400> 5<400> 5

Met Thr Lys Gln Thr Ile Arg Val Glu Leu Thr Ser Thr Lys Lys ProMet Thr Lys Gln Thr Ile Arg Val Glu Leu Thr Ser Thr Lys Lys Pro

1 5 10 151 5 10 15

Lys Pro Asp Pro Asn Gln Leu Ser Phe Gly Arg Val Phe Thr Asp HisLys Pro Asp Pro Asn Gln Leu Ser Phe Gly Arg Val Phe Thr Asp His

20 25 30 20 25 30

Met Phe Val Met Asp Tyr Ala Ala Asp Lys Gly Trp Tyr Asp Pro ArgMet Phe Val Met Asp Tyr Ala Ala Asp Lys Gly Trp Tyr Asp Pro Arg

35 40 45 35 40 45

Ile Ile Pro Tyr Gln Pro Leu Ser Met Asp Pro Ala Ala Met Val TyrIle Ile Pro Tyr Gln Pro Leu Ser Met Asp Pro Ala Ala Met Val Tyr

50 55 60 50 55 60

His Tyr Gly Gln Thr Val Phe Glu Gly Leu Lys Ala Tyr Val Ser GluHis Tyr Gly Gln Thr Val Phe Glu Gly Leu Lys Ala Tyr Val Ser Glu

65 70 75 8065 70 75 80

Asp Asp His Val Leu Leu Phe Arg Pro Glu Lys Asn Met Glu Arg LeuAsp Asp His Val Leu Leu Phe Arg Pro Glu Lys Asn Met Glu Arg Leu

85 90 95 85 90 95

Asn Gln Ser Asn Asp Arg Leu Cys Ile Pro Gln Ile Asp Glu Glu GlnAsn Gln Ser Asn Asp Arg Leu Cys Ile Pro Gln Ile Asp Glu Glu Gln

100 105 110 100 105 110

Val Leu Glu Gly Leu Lys Gln Leu Val Ala Ile Asp Lys Asp Trp IleVal Leu Glu Gly Leu Lys Gln Leu Val Ala Ile Asp Lys Asp Trp Ile

115 120 125 115 120 125

Pro Asn Ala Glu Gly Thr Ser Leu Tyr Ile Arg Pro Phe Ile Ile AlaPro Asn Ala Glu Gly Thr Ser Leu Tyr Ile Arg Pro Phe Ile Ile Ala

130 135 140 130 135 140

Thr Glu Pro Phe Leu Gly Val Ala Ala Ser His Thr Tyr Lys Leu LeuThr Glu Pro Phe Leu Gly Val Ala Ala Ser His Thr Tyr Lys Leu Leu

145 150 155 160145 150 155 160

Ile Ile Leu Ser Pro Val Gly Ser Tyr Tyr Lys Glu Gly Ile Lys ProIle Ile Leu Ser Pro Val Gly Ser Tyr Tyr Lys Glu Gly Ile Lys Pro

165 170 175 165 170 175

Val Lys Ile Ala Val Glu Ser Glu Phe Val Arg Ala Val Lys Gly GlyVal Lys Ile Ala Val Glu Ser Glu Phe Val Arg Ala Val Lys Gly Gly

180 185 190 180 185 190

Thr Gly Asn Ala Lys Thr Ala Gly Asn Tyr Ala Ser Ser Leu Lys AlaThr Gly Asn Ala Lys Thr Ala Gly Asn Tyr Ala Ser Ser Leu Lys Ala

195 200 205 195 200 205

Gln Gln Val Ala Glu Glu Lys Gly Phe Ser Gln Val Leu Trp Leu AspGln Gln Val Ala Glu Glu Lys Gly Phe Ser Gln Val Leu Trp Leu Asp

210 215 220 210 215 220

Gly Ile Glu Lys Lys Tyr Ile Glu Glu Val Gly Ser Met Asn Ile PheGly Ile Glu Lys Lys Tyr Ile Glu Glu Val Gly Ser Met Asn Ile Phe

225 230 235 240225 230 235 240

Phe Lys Ile Asn Gly Glu Ile Val Thr Pro Met Leu Asn Gly Ser IlePhe Lys Ile Asn Gly Glu Ile Val Thr Pro Met Leu Asn Gly Ser Ile

245 250 255 245 250 255

Leu Glu Gly Ile Thr Arg Asn Ser Val Ile Ala Leu Leu Lys His TrpLeu Glu Gly Ile Thr Arg Asn Ser Val Ile Ala Leu Leu Lys His Trp

260 265 270 260 265 270

Gly Leu Gln Val Ser Glu Arg Lys Ile Ala Ile Asp Glu Val Ile GlnGly Leu Gln Val Ser Glu Arg Lys Ile Ala Ile Asp Glu Val Ile Gln

275 280 285 275 280 285

Ala His Lys Asp Gly Ile Leu Glu Glu Ala Phe Gly Thr Gly Thr AlaAla His Lys Asp Gly Ile Leu Glu Glu Ala Phe Gly Thr Gly Thr Ala

290 295 300 290 295 300

Ala Val Ile Ser Pro Val Gly Glu Leu Ile Trp Gln Asp Glu Thr LeuAla Val Ile Ser Pro Val Gly Glu Leu Ile Trp Gln Asp Glu Thr Leu

305 310 315 320305 310 315 320

Ser Ile Asn Asn Gly Glu Thr Gly Glu Ile Ala Lys Lys Leu Tyr AspSer Ile Asn Asn Gly Glu Thr Gly Glu Ile Ala Lys Lys Leu Tyr Asp

325 330 335 325 330 335

Thr Ile Thr Gly Ile Gln Lys Gly Ala Val Ala Asp Glu Phe Gly TrpThr Ile Thr Gly Ile Gln Lys Gly Ala Val Ala Asp Glu Phe Gly Trp

340 345 350 340 345 350

Thr Thr Glu Val Ala Ala Leu Thr Glu Ser LysThr Thr Glu Val Ala Ala Leu Thr Glu Ser Lys

355 360 355 360

<210> 6<210> 6

<211> 4755<211> 4755

<212> DNA<212>DNA

<213> Bacillus subtilis<213> Bacillus subtilis

<400> 6<400> 6

atgcgcaaaa ttaatttttt cgatacgacg cttcgtgatg gtgaacagtc ccctggagtg 60atgcgcaaaa ttaatttttt cgatacgacg cttcgtgatg gtgaacagtc ccctggagtg 60

aacttgaata cacaggagaa acttgccata gctaagcagc tcgaaagact cggggcagat 120aacttgaata cacaggagaa acttgccata gctaagcagc tcgaaagact cggggcagat 120

atcattgaag cgggatttcc cgcttcgtcc cgaggtgact ttttagctgt tcaggaaatc 180atcattgaag cgggatttcc cgcttcgtcc cgaggtgact ttttagctgt tcaggaaatc 180

gcaagaacca ttaaaaattg ttcagtaact ggtctggccc gttgtgtaaa aggtgatatt 240gcaagaacca ttaaaaattg ttcagtaact ggtctggccc gttgtgtaaa aggtgatatt 240

gatgctgctt gggaagcgtt aaaagaaggt tctcacccga gaattcatgt ttttatcgcc 300gatgctgctt gggaagcgtt aaaagaaggt tctcacccga gaattcatgt ttttatcgcc 300

acatcggaca ttcatttgaa gcacaagctg aaaatgacac gtgagcaagt cattgaaaga 360acatcggaca ttcatttgaa gcacaagctg aaaatgacac gtgagcaagt cattgaaaga 360

gcggttgaaa tggtgaaata cgcaaaagaa cgttttccga ttgtgcaatg gtcagctgaa 420gcggttgaaa tggtgaaata cgcaaaagaa cgttttccga ttgtgcaatg gtcagctgaa 420

gatgcctgcc gcactgaact gccgtttcta gcagaaatcg tcgaaaaagt gattgacgca 480gatgcctgcc gcactgaact gccgtttcta gcagaaatcg tcgaaaaagt gattgacgca 480

ggcgccagtg ttatcaatct tccggacact gtcggctacc tggctccggc ggaatacgga 540ggcgccagtg ttatcaatct tccggacact gtcggctacc tggctccggc ggaatacgga 540

aatatcttta gatatatgaa ggaaaacgtt ccgaacattc acaaagcaaa gctttcagcc 600aatatcttta gatatatgaa ggaaaacgtt ccgaacattc acaaagcaaa gctttcagcc 600

cactgtcatg atgatttagg aatggcagtc gcaaactctc ttgctgcgat tgaaaatggc 660cactgtcatg atgatttagg aatggcagtc gcaaactctc ttgctgcgat tgaaaatggc 660

gctgatcaaa tcgaatgcgc tgtgaacggg atcggtgaaa gagccggaaa cgcggcatta 720gctgatcaaa tcgaatgcgc tgtgaacggg atcggtgaaa gagccggaaa cgcggcatta 720

gaggaaattg ccgtagccct ccataccaga aaagatttct accaagtcga aacaggcatt 780gaggaaattg ccgtagccct ccataccaga aaagatttct accaagtcga aacaggcatt 780

acactgaacg agattaagag aacaagtgat ttagtaagca aactgacagg catggctgtc 840acactgaacg agattaagag aacaagtgat ttagtaagca aactgacagg catggctgtc 840

ccgcgcaaca aagcggttgt tggagataat gcatttgctc atgaatcagg catccatcag 900ccgcgcaaca aagcggttgt tggagataat gcatttgctc atgaatcagg catccatcag 900

gacggctttt taaaggaaaa atcgacttat gaaattattt caccggagct tgtcggcgta 960gacggctttt taaaggaaaa atcgacttat gaaattattt caccggagct tgtcggcgta 960

accgcagatg cgcttgtcct aggtaaacat tccggacgcc acgcatttaa agaccggctg 1020accgcagatg cgcttgtcct aggtaaacat tccggacgcc acgcatttaa agaccggctg 1020

actgctttag gattccaatt tgacagtgaa gagattaata aattctttac gatgttcaaa 1080actgctttag gattccaatt tgacagtgaa gagattaata aattctttac gatgttcaaa 1080

gagttgactg agaagaaaaa agaaatcact gatgaggatc ttgtttctct tattttagaa 1140gagttgactg agaagaaaaa agaaatcact gatgaggatc ttgtttctct tattttagaa 1140

gaaaaagtaa cagatcgcaa gattgggtat gaatttcttt ctctgcaagt acattacgga 1200gaaaaagtaa cagatcgcaa gattgggtat gaatttcttt ctctgcaagt aattacgga 1200

acaagtcagg tccctacggc tactctttcg ttgaaaaatc aagaaaacgc agagcttatt 1260acaagtcagg tccctacggc tactctttcg ttgaaaaatc aagaaaacgc agagcttatt 1260

caggaagctg caactggagc tggaagtgtg gaagcaatct acaatacgct tgagcgctgc 1320caggaagctg caactggagc tggaagtgtg gaagcaatct acaatacgct tgagcgctgc 1320

atcgataagg acgtggagct cttagactac cgcattcagt ctaacagaaa aggcgaagat 1380atcgataagg acgtggagct cttagactac cgcattcagt ctaacagaaa aggcgaagat 1380

gcatttgccc aggtgtatgt aagagttttg gtgaacggaa aagaatcagc aggtcggggc 1440gcatttgccc aggtgtatgt aagagttttg gtgaacggaa aagaatcagc aggtcggggc 1440

atagcgcaag acgtattaga agcatcagcg aaagcctatt tgaacgcagt caaccgtcaa 1500atagcgcaag acgtattaga agcatcagcg aaagcctatt tgaacgcagt caaccgtcaa 1500

ttggttttcc agtcgaatat gagcggattg aaaaaccaca cagctgtcgg atcataaaag 1560ttggttttcc agtcgaatat gagcggattg aaaaaccaca cagctgtcgg atcataaaag 1560

aaaggagaac ggttaacttg aagaaacgta ttgctctatt gcccggagac gggatcggcc 1620aaaggagaac ggttaacttg aagaaacgta ttgctctatt gcccggagaac gggatcggcc 1620

ctgaagtatt agaatcagcg acagacgtac tgaaaagtgt tgccgaacgc tttaaccatg 1680ctgaagtatt agaatcagcg acagacgtac tgaaaagtgt tgccgaacgc tttaaccatg 1680

aatttgaatt tgaatatggc ctgattggag gggcggctat tgatgaacat cataaccccc 1740aatttgaatt tgaatatggc ctgattggag gggcggctat tgatgaacat cataaccccc 1740

tcccggagaa aaccgttgct gcttgtaaaa atgcagacgc gatattgctt ggcgctgtcg 1800tcccggagaa aaccgttgct gcttgtaaaa atgcagacgc gatattgctt ggcgctgtcg 1800

gcggaccgaa atgggatcaa aatccttcgg aactgagacc ggaaaaaggg ctgctcagca 1860gcggaccgaa atgggatcaa aatccttcgg aactgagacc ggaaaaaggg ctgctcagca 1860

tcagaaaaca gcttgatttg tttgcgaatt tacggcctgt gaaggtattt gaaagccttt 1920tcagaaaaca gcttgatttg tttgcgaatt tacggcctgt gaaggtattt gaaagccttt 1920

ctgacgcttc gcctttgaaa aaagaatata tagataatgt tgatttcgtt atcgttcgtg 1980ctgacgcttc gcctttgaaa aaagaatata tagataatgt tgatttcgtt atcgttcgtg 1980

aactcacagg cggcttgtat ttcggccagc cgagcaaacg ctatgtaaac actgaaggtg 2040aactcacagg cggcttgtat ttcggccagc cgagcaaacg ctatgtaaac actgaaggtg 2040

agcaggaagc agtagataca ctgttttata agcgaacgga aattgaacga gtgatcagag 2100agcaggaagc agtagataca ctgttttata agcgaacgga aattgaacga gtgatcagag 2100

agggcttcaa aatggcggca gccagaaaag gcaaagtgac ctctgtagat aaagcgaatg 2160agggcttcaa aatggcggca gccagaaaag gcaaagtgac ctctgtagat aaagcgaatg 2160

ttcttgaatc aagccggctg tggcgtgaag tggctgagga cgttgcgaaa gaatttcctg 2220ttcttgaatc aagccggctg tggcgtgaag tggctgagga cgttgcgaaa gaatttcctg 2220

atgtgaagct tgagcacatg cttgtggata acgcggccat gcagctaatc tatgcaccga 2280atgtgaagct tgagcacatg cttgtggata acgcggccat gcagctaatc tatgcaccga 2280

atcaatttga tgtcgttgtg actgaaaata tgttcggtga tattttaagc gatgaagcgt 2340atcaatttga tgtcgttgtg actgaaaata tgttcggtga tattttaagc gatgaagcgt 2340

ccatgcttac aggctcgctc ggaatgctcc cgtcagccag cctatcaagc tctggtcttc 2400ccatgcttac aggctcgctc ggaatgctcc cgtcagccag cctatcaagc tctggtcttc 2400

atctgtttga acctgttcat ggctccgcgc ctgatattgc tggtaaaggg atggcaaatc 2460atctgtttga acctgttcat ggctccgcgc ctgatattgc tggtaaaggg atggcaaatc 2460

cgttcgcagc catattgtca gcggcaatgc ttttgaggac atctttcggg cttgaagagg 2520cgttcgcagc catattgtca gcggcaatgc ttttgaggac atctttcggg cttgaagagg 2520

aagcgaaagc tgtagaagat gcggtaaaca aagtcttggc ttccggaaaa agaacaaaag 2580aagcgaaagc tgtagaagat gcggtaaaca aagtcttggc ttccggaaaa agaacaaaag 2580

acttggcacg gggtgaagag ttcagcagca ctcaggccat tacagaggaa gttaaggcag 2640acttggcacg gggtgaagag ttcagcagca ctcaggccat tacagaggaa gttaaggcag 2640

caatcatgag tgaaaataca atgtctaatg tgtgacagct tacgttaagc ggtcttagct 2700caatcatgag tgaaaataca atgtctaatg tgtgacagct tacgttaagc ggtcttagct 2700

ctaggtagag ggaggaaata aaagatgatg cctcgaacaa tcatcgaaaa gatttgggat 2760ctaggtagag ggaggaaata aaagatgatg cctcgaacaa tcatcgaaaa gatttgggat 2760

cagcatattg taaaacatgg tgagggaaag ccggatcttc tctatattga tttgcacctc 2820cagcatattg taaaacatgg tgagggaaag ccggatcttc tctatattga tttgcacctc 2820

attcatgagg tgacgtctcc tcaggcattt gaaggcttga gacaaaaggg aagaaaggtc 2880attcatgagg tgacgtctcc tcaggcattt gaaggcttga gacaaaaggg aagaaaggtc 2880

agaagacccc aaaacacatt tgcgacaatg gaccacaaca tcccgactgt caatcgtttt 2940agaagacccc aaaacacatt tgcgacaatg gaccacaaca tcccgactgt caatcgtttt 2940

gagataaagg atgaagttgc gaaacgccag gtaacggcgc ttgaaagaaa ctgtgaggaa 3000gagataaagg atgaagttgc gaaacgccag gtaacggcgc ttgaaagaaa ctgtgaggaa 3000

tttggcgtgc gccttgccga tcttcacagc gtggatcaag ggattgtcca tgtcgtcggc 3060tttggcgtgc gccttgccga tcttcacagc gtggatcaag ggattgtcca tgtcgtcggc 3060

cctgaactgg gcttaacgct tccagggaaa acgattgtgt gcggggacag tcatacatca 3120cctgaactgg gcttaacgct tccagggaaa acgattgtgt gcggggacag tcatacatca 3120

acacatggcg ctttcggcgc tcttgcattt ggaatcggga cgagtgaagt cgaacatgtt 3180acacatggcg ctttcggcgc tcttgcattt ggaatcggga cgagtgaagt cgaacatgtt 3180

ctttccacac agacactttg gcagcagcgt ccaaaaacac ttgaagtgcg cgtagatgga 3240ctttccacac agacactttg gcagcagcgt ccaaaaacac ttgaagtgcg cgtagatgga 3240

acgcttcaaa aaggggtaac ggcaaaggat gtcatccttg ctgtcatcgg caaatacggt 3300acgcttcaaa aaggggtaac ggcaaaggat gtcatccttg ctgtcatcgg caaatacggt 3300

gtgaaattcg gcacaggcta cgtcattgaa tacactgggg aagtattcag aaatatgacg 3360gtgaaattcg gcacaggcta cgtcattgaa tacactgggg aagtattcag aaatatgacg 3360

atggatgaac gaatgactgt ttgtaacatg tcaattgaag caggagcaag agcaggtttg 3420atggatgaac gaatgactgt ttgtaacatg tcaattgaag caggagcaag agcaggtttg 3420

attgcacctg acgaggtgac gtttgaatat tgcaaaaatc gcaagtacac gccaaaaggc 3480attgcacctg acgaggtgac gtttgaatat tgcaaaaatc gcaagtacac gccaaaaggc 3480

gaagaatttg acaaggccgt agaggaatgg aaggcgctgc gcacagaccc gggcgctgtt 3540gaagaatttg acaaggccgt agaggaatgg aaggcgctgc gcacagacccc gggcgctgtt 3540

tacgataaat ctatcgtcct tgacggcaac aaaatttccc ctatggtgac atggggcatt 3600tacgataaat ctatcgtcct tgacggcaac aaaatttccc ctatggtgac atggggcatt 3600

aacccgggaa tggttcttcc tgtcgattct gaagttcctg cgccggaaag cttttctgca 3660aacccgggaa tggttcttcc tgtcgattct gaagttcctg cgccggaaag cttttctgca 3660

gaagatgata aaaaagaagc gattcgcgct tatgaatata tgggactgac tcctcatcag 3720gaagatgata aaaaagaagc gattcgcgct tatgaatata tgggactgac tcctcatcag 3720

aaaattgaag acattaaagt ggagcacgta tttatcggtt cctgcacaaa ttcccgcatg 3780aaaattgaag acattaaagt ggagcacgta tttatcggtt cctgcacaaa ttcccgcatg 3780

actgaccttc gccaggctgc tgacatgatc aaggggaaga aggtagctga cagcgtaagg 3840actgaccttc gccaggctgc tgacatgatc aaggggaaga aggtagctga cagcgtaagg 3840

gccatcgtcg tgcccggatc ccaaagagtg aagcttcagg ctgaaaaaga agggcttgac 3900gccatcgtcg tgcccggatc ccaaagagtg aagcttcagg ctgaaaaaga agggcttgac 3900

caaattttct tggaagctgg atttgaatgg agagagtcag gctgcagcat gtgtttgagt 3960caaattttct tggaagctgg atttgaatgg agagagtcag gctgcagcat gtgtttgagt 3960

atgaataatg atgttgttcc tgagggagag cgctgtgcat caacctctaa ccgcaacttc 4020atgaataatg atgttgttcc tgagggagag cgctgtgcat caacctctaa ccgcaacttc 4020

gagggcagac aaggaaaagg tgcaagaaca catctcgtca gcccggcaat ggctgcgatg 4080gagggcagac aaggaaaagg tgcaagaaca catctcgtca gcccggcaat ggctgcgatg 4080

gctgccattc acggacactt cgttgatgtc agaaagtttt atcaggaaaa aacagttgtg 4140gctgccattc acggacactt cgttgatgtc agaaagtttt atcaggaaaa aacagttgtg 4140

taaggagtgc gcgagatgga acctttgaaa tcacatacgg ggaaagcagc cgtattaaat 4200taaggagtgc gcgagatgga acctttgaaa tcacatacgg ggaaagcagc cgtattaaat 4200

cggatcaatg tggatacaga ccagattatt cctaagcaat ttttgaagag gattgaaaga 4260cggatcaatg tggatacaga ccagattatt cctaagcaat ttttgaagag gattgaaaga 4260

acaggctacg ggcgttttgc attctttgac tggagatatg atgcgaatgg tgaaccgaac 4320acaggctacg ggcgttttgc attctttgac tggagatatg atgcgaatgg tgaaccgaac 4320

cctgaatttg aattaaacca gcctgtttat caaggagctt ccattttaat agcaggagaa 4380cctgaatttg aattaaacca gcctgtttat caaggagctt ccattttaat agcaggagaa 4380

aacttcggct gcgggtcatc gcgtgaacat gctccgtggg cacttgatga ttatgggttt 4440aacttcggct gcgggtcatc gcgtgaacat gctccgtggg cacttgatga ttatgggttt 4440

aaaattatca ttgcgccgtc attcgctgat attttccatc agaactgctt taaaaacggc 4500aaaattatca ttgcgccgtc attcgctgat attttccatc agaactgctt taaaaacggc 4500

atgcttccga tccgcatgcc atatgacaat tggaaacagc ttgtcggcca gtatgaaaac 4560atgcttccga tccgcatgcc atatgacaat tggaaacagc ttgtcggcca gtatgaaaac 4560

aagtcattgc aaatgactgt tgaccttgaa aatcagctga ttcatgacag tgaaggcaat 4620aagtcattgc aaatgactgt tgaccttgaa aatcagctga ttcatgacag tgaaggcaat 4620

caaatttcat ttgaagttga cccgcattgg aaagagatgc tgatcaacgg atatgatgaa 4680caaatttcat ttgaagttga cccgcattgg aaagagatgc tgatcaacgg atatgatgaa 4680

atttcattaa cgctgctgct ggaagatgaa atcaagcatt ttgaatcaca aagaagctct 4740atttcattaa cgctgctgct ggaagatgaa atcaagcatt ttgaatcaca aagaagctct 4740

tggcttcaag cctga 4755tggcttcaag cctga 4755

<210> 7<210> 7

<211> 1247<211> 1247

<212> DNA<212>DNA

<213> Bacillus subtilis<213> Bacillus subtilis

<400> 7<400> 7

agcgcttata cgcgttttct cctgcttttt tcatatgaat ttcttacaaa tttgagcaaa 60agcgcttata cgcgttttct cctgcttttt tcatatgaat ttcttacaaa tttgagcaaa 60

cctattgcga ttatttgttg aaggtataca atagaatata attattttca aataagtttg 120cctattgcga ttatttgttg aaggtataca atagaatata attattttca aataagtttg 120

ataatataaa caatttaaca gcagggagat tgaccatgac taaacaaaca attcgcgttg 180ataatataaa caatttaaca gcagggagat tgaccatgac taaacaaaca attcgcgttg 180

aattgacatc aacaaaaaaa ccgaaaccag acccaaatca gctttcgttc ggaagagtgt 240aattgacatc aacaaaaaaa ccgaaaccag acccaaatca gctttcgttc ggaagagtgt 240

ttacagacca catgtttgta atggactatg ccgcagataa aggttggtac gatccaagaa 300ttacagacca catgtttgta atggactatg ccgcagataa aggttggtac gatccaagaa 300

tcattcctta tcagccctta tcaatggatc cggccgcaat ggtctatcac tacggccaaa 360tcattcctta tcagccctta tcaatggatc cggccgcaat ggtctatcac tacggccaaa 360

ccgtgtttga agggttaaag gcttacgtgt cagaggatga ccatgttctg cttttcagac 420ccgtgtttga agggttaaag gcttacgtgt cagaggatga ccatgttctg cttttcagac 420

cggaaaaaaa tatggaacgc ctgaatcaat caaacgaccg cctctgcatc ccgcaaattg 480cggaaaaaaa tatggaacgc ctgaatcaat caaacgaccg cctctgcatc ccgcaaattg 480

atgaagaaca ggttcttgaa ggcttaaagc agcttgtcgc aattgataaa gactggattc 540atgaagaaca ggttcttgaa ggcttaaagc agcttgtcgc aattgataaa gactggattc 540

caaatgcgga gggcacgtcc ctatacatcc gtccgttcat catcgcaacc gagcctttcc 600caaatgcgga gggcacgtcc ctatacatcc gtccgttcat catcgcaacc gagcctttcc 600

ttggtgttgc ggcatctcat acgtataagc tcttgatcat tctttctccg gtcggctctt 660ttggtgttgc ggcatctcat acgtataagc tcttgatcat tctttctccg gtcggctctt 660

attacaaaga aggcattaag ccggtcaaaa tcgctgttga aagtgaattt gtccgtgcgg 720attacaaaga aggcattaag ccggtcaaaa tcgctgttga aagtgaattt gtccgtgcgg 720

taaaaggcgg aacaggaaat gccaaaaccg cagggaacta cgcttcaagc ttaaaagcgc 780taaaaggcgg aacaggaaat gccaaaaccg cagggaacta cgcttcaagc ttaaaagcgc 780

agcaggtcgc cgaagagaaa ggattttccc aagtgctttg gctggacggc attgagaaga 840agcaggtcgc cgaagagaaa ggattttccc aagtgctttg gctggacggc attgagaaga 840

aatacatcga agaagttgga agcatgaaca tcttcttcaa aatcaacggt gaaatcgtaa 900aatacatcga agaagttgga agcatgaaca tcttcttcaa aatcaacggt gaaatcgtaa 900

cgccgatgct gaacggaagc atcctggaag gcattacgcg caattcagtc atcgccttgc 960cgccgatgct gaacggaagc atcctggaag gcattacgcg caattcagtc atcgccttgc 960

ttaagcattg gggccttcaa gtttcagaac ggaaaattgc gatcgatgag gtcatccaag 1020ttaagcattg gggccttcaa gtttcagaac ggaaaattgc gatcgatgag gtcatccaag 1020

cccataaaga cggcatcctg gaagaagcct tcggaacagg tacagcagct gttatttccc 1080cccataaaga cggcatcctg gaagaagcct tcggaacagg tacagcagct gttatttccc 1080

cagtcggcga gctgatctgg caggatgaaa cactttcgat caacaacggt gaaacaggag 1140cagtcggcga gctgatctgg caggatgaaa cactttcgat caacaacggt gaaacaggag 1140

aaatcgcaaa aaaactatat gacacgatta caggcattca aaaaggcgct gtcgcagacg 1200aaatcgcaaa aaaactatat gacacgatta caggcattca aaaaggcgct gtcgcagacg 1200

aattcggatg gacgaccgaa gttgcagcgc tgactgaaag caagtaa 1247aattcggatg gacgaccgaa gttgcagcgc tgactgaaag caagtaa 1247

<210> 8<210> 8

<211> 35<211> 35

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

cactctagaa tgcgcaaaat taattttttc gatac 35cactctagaa tgcgcaaaat taattttttc gatac 35

<210> 9<210> 9

<211> 35<211> 35

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

taacgcgttc aggcttgaag ccaagagctt ctttg 35taacgcgttc aggcttgaag ccaagagctt ctttg 35

<210> 10<210> 10

<211> 34<211> 34

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

acaacgcgtt ttctcctgct tttttcatat gaat 34acaacgcgtt ttctcctgct tttttcatat gaat 34

<210> 11<210> 11

<211> 29<211> 29

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

cacccatggt tacttgcttt cagtcagcg 29cacccatggt tacttgcttt cagtcagcg 29

<210> 12<210> 12

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

cagcctttgt tggttctttt 20cagcctttgttggttctttt 20

Claims (10)

1. a kind of recombinant bacterium of high yield lipopeptid is by the 2-Isopropylmalate synthase genetic transformation in leucine route of synthesis It is built-up to original strain.
2. recombinant bacterium according to claim 1, which is characterized in that it is de- that the recombinant bacterium has also been transferred to 3- isopropylmolic acid One or more in hydrogenase gene, 3-Isopropylmalate dehydratase gene and branched-chain amino acid aminotransferase gene.
3. recombinant bacterium according to claim 2, which is characterized in that the 3-Isopropylmalate dehydrogenase, 3- isopropyl Malic acid dehydratase and branched-chain amino acid transaminase biotin carboxylase is respectively LeuB, LeuCD and IlvK albumen or it has The mutant of identical function, it is preferred that the amino acid sequence of the LeuB albumen is as shown in SEQ ID NO.2, the LeuC egg White amino acid sequence is as shown in SEQ ID NO.3, and the amino acid sequence of the LeuD albumen is as shown in SEQ ID NO.4, institute The amino acid sequence of IlvK albumen is stated as shown in SEQ ID NO.5.
4. recombinant bacterium according to claim 1, which is characterized in that the 2-Isopropylmalate synthase be LeuA albumen or Its mutant with the same function, it is preferred that the amino acid sequence of the LeuA albumen is as shown in SEQ ID NO.1.
5. recombinant bacterium according to claim 1-4, which is characterized in that the original strain is with production lipopeptid energy Strain is transformed in the wild mushroom and its mutagenic fungi of power, mutant strain or genetic engineering.
6. recombinant bacterium according to claim 5, which is characterized in that the original strain is bacillus subtilis, wax-like bud Spore bacillus or pseudomonad.
7. recombinant bacterium according to claim 6, which is characterized in that the original strain is bacillus subtilis Bacillus subtilis THY-7。
8. recombinant bacterium according to claim 7, which is characterized in that the original strain is bacillus subtilis Bacillus subtilis THY-7/Pg3-srfA。
9. recombinant bacterium according to claim 8, which is characterized in that LeuA, LeuB, LeuC and LeuD albumen is opened by force Mover control, the IlvK albumen are controlled by former constitutive promoter.
10. application of the described in any item recombinant bacteriums of claim 1-9 in production lipopeptid.
CN201910549289.5A 2019-06-24 2019-06-24 A high-yielding lipopeptide recombinant bacteria and its application Active CN110331121B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910549289.5A CN110331121B (en) 2019-06-24 2019-06-24 A high-yielding lipopeptide recombinant bacteria and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910549289.5A CN110331121B (en) 2019-06-24 2019-06-24 A high-yielding lipopeptide recombinant bacteria and its application

Publications (2)

Publication Number Publication Date
CN110331121A true CN110331121A (en) 2019-10-15
CN110331121B CN110331121B (en) 2021-01-05

Family

ID=68142709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910549289.5A Active CN110331121B (en) 2019-06-24 2019-06-24 A high-yielding lipopeptide recombinant bacteria and its application

Country Status (1)

Country Link
CN (1) CN110331121B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898038A (en) * 2014-03-28 2014-07-02 清华大学 Engineering bacterium for highly expressing lipopeptide biosurfactant and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898038A (en) * 2014-03-28 2014-07-02 清华大学 Engineering bacterium for highly expressing lipopeptide biosurfactant and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUN WU ET AL.: "Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168", 《METABOLIC ENGINEERING》 *

Also Published As

Publication number Publication date
CN110331121B (en) 2021-01-05

Similar Documents

Publication Publication Date Title
CN110241061B (en) Method for improving gamma-aminobutyric acid synthesis ability of Lactobacillus brevis and its application
CN110452845B (en) Escherichia coli for producing sucrose phosphorylase
CN110157654B (en) Bacillus natto recombinant strain and construction method and application thereof
CN107815446B (en) A kind of fermentation process in high density of recombination nitrile hydratase Recombinant organism
CN113604521B (en) A method for increasing the production of N-acetyl-5-hydroxytryptamine
CN101463358B (en) Nitrile hydratase gene cluster and use thereof
CN102392056A (en) Genetically engineered strain and method for producing dihydroxyacetone by using the same
CN107603937A (en) A kind of recombination bacillus coli and its construction method for expressing lysine aminopeptidase
CN113234610A (en) Saccharomyces cerevisiae strain for synthesizing squalene and application thereof
JP3408737B2 (en) Protein involved in nitrile hydratase activation and gene encoding the same
CN110257313B (en) A spermidine-producing Bacillus amyloliquefaciens engineered bacteria
CN114672525B (en) Biosynthesis method and application of N-acetyl-5-methoxy tryptamine
CN101613707B (en) A method for producing glutathione with metabolic engineering bacteria
RU2546239C1 (en) RECOMBINANT STRAIN Escherichia coli, HAVING CONSTITUTIVE ASPARTASE ACTIVITY AND METHOD OF SYNTHESIS OF L-ASPARTIC ACID USING THIS STRAIN AS BIOCATALYST
CN115873852A (en) Recombinant nucleic acid sequence, genetic engineering bacteria and method for producing 1,5-pentanediamine
CN109097315B (en) Genetically engineered bacterium for high-yield lipopeptide and construction method and application thereof
CN101475944A (en) Promoter replacement method for improving Bacillus amyloliquefaciens yield
CN116004489B (en) Recombinant escherichia coli for producing NMN and application thereof
CN110331121A (en) A kind of recombinant bacterium of high yield lipopeptid and its application
CN114107148B (en) Genetically engineered strain for high-yield hyaluronic acid and application thereof
CN113604413B (en) A kind of recombinant bacterial strain and preparation method and application
CN117511831A (en) Construction method of ergothioneine-producing escherichia coli
US7049097B2 (en) Antibiotics-independent vector for constant high-expression and method for gene expression using the same
CN115947819A (en) Porcine granulocyte-macrophage colony stimulating factor recombinant protein and preparation method and application thereof
CN109929853B (en) Application of heat shock protein gene derived from thermophilic bacteria

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191015

Assignee: Beijing Yanwei Technology Co.,Ltd.

Assignor: TSINGHUA University

Contract record no.: X2024980010467

Denomination of invention: A recombinant bacterium with high production of lipopeptides and its application

Granted publication date: 20210105

License type: Exclusive License

Record date: 20240723

EE01 Entry into force of recordation of patent licensing contract