CN110327976A - A kind of photochemical catalyst and its preparation method and application - Google Patents
A kind of photochemical catalyst and its preparation method and application Download PDFInfo
- Publication number
- CN110327976A CN110327976A CN201910517364.XA CN201910517364A CN110327976A CN 110327976 A CN110327976 A CN 110327976A CN 201910517364 A CN201910517364 A CN 201910517364A CN 110327976 A CN110327976 A CN 110327976A
- Authority
- CN
- China
- Prior art keywords
- photocatalyst
- preparation
- ligand
- mofs
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 239000003054 catalyst Substances 0.000 title description 2
- 239000011941 photocatalyst Substances 0.000 claims abstract description 44
- 239000003446 ligand Substances 0.000 claims abstract description 37
- 230000001699 photocatalysis Effects 0.000 claims abstract description 26
- 239000002253 acid Substances 0.000 claims abstract description 16
- 239000000243 solution Substances 0.000 claims abstract description 11
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 9
- GPNNOCMCNFXRAO-UHFFFAOYSA-N 2-aminoterephthalic acid Chemical compound NC1=CC(C(O)=O)=CC=C1C(O)=O GPNNOCMCNFXRAO-UHFFFAOYSA-N 0.000 claims abstract description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011259 mixed solution Substances 0.000 claims abstract description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 39
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 39
- 238000007146 photocatalysis Methods 0.000 claims description 6
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 claims description 6
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 6
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 2
- 239000012621 metal-organic framework Substances 0.000 abstract description 27
- 238000000034 method Methods 0.000 abstract description 12
- 230000002950 deficient Effects 0.000 abstract description 10
- 238000003756 stirring Methods 0.000 abstract description 7
- 230000003197 catalytic effect Effects 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 238000001308 synthesis method Methods 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1691—Coordination polymers, e.g. metal-organic frameworks [MOF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2226—Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
- B01J31/223—At least two oxygen atoms present in one at least bidentate or bridging ligand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/40—Complexes comprising metals of Group IV (IVA or IVB) as the central metal
- B01J2531/46—Titanium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种光催化剂及其制备方法和应用。所述制备方法包括如下步骤:将配体溶液与钛酸酯混合,搅拌,进行水热反应即得所述光催化剂;所述配体溶液为2‑氨基对苯二甲酸和3氨基间苯甲酸的混合溶液,所述配体中3氨基间苯甲酸的摩尔分数为4~6%。本发明利用混合配体法制备出新型的MOFs光催化材料,通过调节两种配体的比例可以调节光催化剂的光催化性能,提供了一种新型的光催化剂的合成方法,有效地提高了MOFs光催化剂的催化活性和对其形貌进行调控。相较于纯的MOFs光催化剂,根据本发明制备方法所得的缺陷MOFs光催化性能明显得到提高,同时制备过程工艺简单。
The invention relates to a photocatalyst and its preparation method and application. The preparation method comprises the steps of: mixing a ligand solution with a titanate, stirring, and performing a hydrothermal reaction to obtain the photocatalyst; the ligand solution is 2-aminoterephthalic acid and 3-aminoisobenzoic acid The mixed solution of the ligand, the mole fraction of 3-aminoisobenzoic acid in the ligand is 4-6%. The invention utilizes the mixed ligand method to prepare a novel MOFs photocatalytic material, and the photocatalytic performance of the photocatalyst can be adjusted by adjusting the ratio of the two ligands, providing a new synthesis method of the photocatalyst, which effectively improves the MOFs The catalytic activity of photocatalysts and the regulation of their morphology. Compared with the pure MOFs photocatalyst, the photocatalytic performance of the defective MOFs obtained according to the preparation method of the present invention is obviously improved, and the preparation process is simple at the same time.
Description
技术领域technical field
本发明涉及光催化领域,特别涉及一种光催化剂及其制备方法和应用。The invention relates to the field of photocatalysis, in particular to a photocatalyst and its preparation method and application.
背景技术Background technique
光催化是一种绿色经济的环保技术,因其能有效地利用太阳能被认为是21世纪解决能源危机的最有前景的技术之一。目前已应用于污水处理、空气净化、二氧化碳还原、水分解制氢等领域。金属有机框架(Metal-Organic Frameworks,MOFs)是由金属团簇与有机配体通过配位键形成的多孔材料。因MOFs的独特结构,可通过改变金属团簇或配体种类、改变孔隙率、比表面积和化学性质等。目前,MOFs已被广泛地应用于气体吸附,气体分离,气体储存以及催化等领域。在催化领域,MOFs主要应用于有机物催化反应,并且已取得了一定的成果。但是MOFs在光催化上的应用特别是在光催化分解水产氢的领域还处于起步阶段,对MOFs在光催化分解水产氢的应用上还需要更多深入的系统的研究。根据之前的研究结果表明,引入缺陷能有效地提高MOFs材料在气体吸附,气体分离,有机化合物催化等领域的表现。Photocatalysis is a green and economical environmental protection technology, because it can effectively use solar energy and is considered to be one of the most promising technologies to solve the energy crisis in the 21st century. At present, it has been applied in sewage treatment, air purification, carbon dioxide reduction, water splitting hydrogen production and other fields. Metal-Organic Frameworks (MOFs) are porous materials formed by metal clusters and organic ligands through coordination bonds. Due to the unique structure of MOFs, the porosity, specific surface area and chemical properties can be changed by changing the metal cluster or ligand type. At present, MOFs have been widely used in the fields of gas adsorption, gas separation, gas storage and catalysis. In the field of catalysis, MOFs are mainly used in organic catalytic reactions, and some achievements have been made. However, the application of MOFs in photocatalysis, especially in the field of photocatalytic water splitting to produce hydrogen, is still in its infancy, and more in-depth and systematic research is needed on the application of MOFs in photocatalytic splitting of water to produce hydrogen. According to previous research results, the introduction of defects can effectively improve the performance of MOFs materials in the fields of gas adsorption, gas separation, and organic compound catalysis.
因此,构筑缺陷MOFs光催化体系是提高MOFs光催化性能的一种潜在的可行方法。Therefore, constructing defect MOFs photocatalytic system is a potential feasible method to improve the photocatalytic performance of MOFs.
发明内容Contents of the invention
本发明的目的在于克服现有针对MOFs在光催化分解水产氢的应用方面的研究匮乏,提供一种光催化剂的制备方法。本发明利用混合配体法制备出新型的MOFs光催化材料,通过调节两种配体的比例可以调节光催化剂的光催化性能,提供了一种新型的光催化剂的合成方法,有效地提高了MOFs光催化剂的催化活性和对其形貌进行调控。相较于纯的MOFs光催化剂,根据本发明制备方法所得的缺陷MOFs光催化性能明显得到提高,同时制备过程工艺简单。The purpose of the present invention is to overcome the lack of existing research on the application of MOFs in the photocatalytic decomposition of water to produce hydrogen, and to provide a method for preparing a photocatalyst. The invention utilizes the mixed ligand method to prepare a novel MOFs photocatalytic material, and the photocatalytic performance of the photocatalyst can be adjusted by adjusting the ratio of the two ligands, providing a new synthesis method of the photocatalyst, which effectively improves the MOFs The catalytic activity of photocatalysts and the regulation of their morphology. Compared with the pure MOFs photocatalyst, the photocatalytic performance of the defective MOFs obtained according to the preparation method of the present invention is obviously improved, and the preparation process is simple at the same time.
本发明的另一目的在于提供一种光催化剂。Another object of the present invention is to provide a photocatalyst.
本发明的另一目的在于提供上述光催化剂在光催化领域中的应用。Another object of the present invention is to provide the application of the above photocatalyst in the field of photocatalysis.
为实现上述发明目的,本发明采用如下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention adopts following technical scheme:
一种光催化剂的制备方法,包括如下步骤:将配体溶液与钛酸酯混合,搅拌,进行水热反应即得所述光催化剂;A method for preparing a photocatalyst, comprising the steps of: mixing a ligand solution with a titanate, stirring, and performing a hydrothermal reaction to obtain the photocatalyst;
所述配体溶液为2-氨基对苯二甲酸和3氨基间苯甲酸的混合溶液,所述配体中3氨基间苯甲酸的摩尔分数为4~6%。The ligand solution is a mixed solution of 2-aminoterephthalic acid and 3-aminoisobenzoic acid, and the mole fraction of 3-aminoisobenzoic acid in the ligand is 4-6%.
本发明利用混合配体法制备出新型的MOFs光催化材料,以钛为金属团族,以2-氨基对苯二甲酸和3氨基间苯甲酸作为混合配体,通过调节两种配体的比例可以调节光催化剂的光催化性能,提供了一种新型的光催化剂的合成方法,有效地提高了MOFs光催化剂的催化活性和对其形貌进行调控。相较于纯的MOFs光催化剂,根据本发明制备方法所得的缺陷MOFs光催化性能明显得到提高,同时制备过程工艺简单。The present invention uses the mixed ligand method to prepare a novel MOFs photocatalytic material, using titanium as the metal group group, using 2-aminoterephthalic acid and 3-aminoisobenzoic acid as mixed ligands, and adjusting the ratio of the two ligands The photocatalytic performance of the photocatalyst can be adjusted, and a new synthesis method of the photocatalyst is provided, which effectively improves the catalytic activity of the MOFs photocatalyst and regulates its morphology. Compared with the pure MOFs photocatalyst, the photocatalytic performance of the defective MOFs obtained according to the preparation method of the present invention is obviously improved, and the preparation process is simple at the same time.
优选地,所述配体中3氨基间苯甲酸的摩尔分数为5%。Preferably, the mole fraction of 3-aminoisobenzoic acid in the ligand is 5%.
优选地,所述配体溶液选用的溶剂为甲醇与N,N-二甲基甲酰胺的混合溶液。Preferably, the solvent selected for the ligand solution is a mixed solution of methanol and N,N-dimethylformamide.
更为优选地,所述甲醇与N,N-二甲基甲酰胺的体积比为1:5~15。More preferably, the volume ratio of methanol to N,N-dimethylformamide is 1:5-15.
本领域常规的钛酸酯均可用于本发明中。Conventional titanates in the field can be used in the present invention.
优选地,所述钛酸酯为钛酸四丁酯、钛酸四乙酯或钛酸四异丙酯中的一种或几种。Preferably, the titanate is one or more of tetrabutyl titanate, tetraethyl titanate or tetraisopropyl titanate.
优选地,所述钛酸酯和配体的摩尔比为1:1~4。Preferably, the molar ratio of the titanate to the ligand is 1:1-4.
优选地,所述搅拌时间为0.1~0.5h。Preferably, the stirring time is 0.1-0.5 h.
优选地,所述水热反应的温度为100~180℃,时间为16~72h。Preferably, the temperature of the hydrothermal reaction is 100-180° C., and the time is 16-72 hours.
一种光催化剂,通过上述述制备方法制备得到。A photocatalyst prepared by the above-mentioned preparation method.
优选地,所述光催化剂为十面体结构。Preferably, the photocatalyst has a decahedral structure.
上述光催化剂在光催化领域中的应用也在本发明的保护范围内。The application of the above-mentioned photocatalyst in the field of photocatalysis is also within the protection scope of the present invention.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明利用混合配体法制备出新型的MOFs光催化材料,通过调节两种配体的比例可以调节光催化剂的光催化性能,提供了一种新型的光催化剂的合成方法,有效地提高了MOFs光催化剂的催化活性和对其形貌进行调控。相较于纯的MOFs光催化剂,根据本发明制备方法所得的缺陷MOFs光催化性能明显得到提高,同时制备过程工艺简单。The invention utilizes the mixed ligand method to prepare a novel MOFs photocatalytic material, and the photocatalytic performance of the photocatalyst can be adjusted by adjusting the ratio of the two ligands, providing a new synthesis method of the photocatalyst, which effectively improves the MOFs The catalytic activity of photocatalysts and the regulation of their morphology. Compared with the pure MOFs photocatalyst, the photocatalytic performance of the defective MOFs obtained according to the preparation method of the present invention is obviously improved, and the preparation process is simple at the same time.
附图说明Description of drawings
图1为系列NH2-MIL-125不同光催化剂的光催化性能图;Figure 1 is a graph of the photocatalytic performance of different photocatalysts of a series of NH 2 -MIL-125;
图2为纯NH2-MIL-125光催化剂的扫描电子显微镜图;Figure 2 is a scanning electron microscope image of pure NH 2 -MIL-125 photocatalyst;
图3为缺陷NH2-MIL-125光催化剂的扫描电子显微镜图。Fig. 3 is a scanning electron microscope image of defective NH 2 -MIL-125 photocatalyst.
具体实施方式Detailed ways
下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。下例实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。The present invention is further set forth below in conjunction with embodiment. These examples are only for illustrating the present invention and are not intended to limit the scope of the present invention. The experimental method that does not indicate specific conditions in the following example embodiment, usually according to the conventional conditions in this field or according to the conditions suggested by the manufacturer; used raw materials, reagents, etc., if no special instructions, are available from commercial channels such as conventional markets Raw materials and reagents obtained. Any insubstantial changes and substitutions made by those skilled in the art on the basis of the present invention fall within the scope of the present invention.
实施例1Example 1
本实施例提供一系列光催化剂NH2-MIL-125,其制备方法如下。This example provides a series of photocatalysts NH 2 -MIL-125, the preparation methods of which are as follows.
配置10mL N,N-二甲基甲酰胺与甲醇混合溶液(VN,N-二甲基甲酰胺:V甲醇=9:1),加入总摩尔数为3mmol的2-氨基对苯二甲酸和3-氨基间苯甲酸混合配体(配体中3-氨基间苯甲酸的摩尔比例为x),充分搅拌溶解后加入1mmol钛酸四丁酯,室温下搅拌30min后转移至50mL聚四氟乙烯水热反应釜中,150℃反应3天。水热反应完成后,将产物抽滤分离,用N,N-二甲基甲酰胺及甲醇各清洗3遍,将所得产物置于鼓风烘箱120℃干燥1天后即可得到缺陷NH2-MIL-125-x光催化剂,x为配体中3-氨基间苯甲酸的摩尔比例,具体的为0%(即纯NH2-MIL-125)、4%(NH2-MIL-125-4%)、5%(NH2-MIL-125-5%)和6%(NH2-MIL-125-6%)。Prepare 10mL N,N-dimethylformamide and methanol mixed solution (V N,N-dimethylformamide : V methanol = 9:1), add 2-aminoterephthalic acid and 3-aminoisobenzoic acid mixed ligand (the molar ratio of 3-aminoisobenzoic acid in the ligand is x), fully stirred and dissolved, then added 1mmol tetrabutyl titanate, stirred at room temperature for 30min, then transferred to 50mL polytetrafluoroethylene In a hydrothermal reactor, react at 150°C for 3 days. After the hydrothermal reaction is completed, the product is separated by suction filtration, washed three times with N,N-dimethylformamide and methanol respectively, and the obtained product is dried in a blast oven at 120°C for 1 day to obtain defective NH 2 -MIL -125-x photocatalyst, x is the molar ratio of 3-aminoisobenzoic acid in the ligand, specifically 0% (ie pure NH 2 -MIL-125), 4% (NH 2 -MIL-125-4% ), 5% (NH 2 -MIL-125-5%) and 6% (NH 2 -MIL-125-6%).
实施例2Example 2
本实施例提供一种光催化剂NH2-MIL-125-5%,其制备方法如下。This embodiment provides a photocatalyst NH 2 -MIL-125-5%, the preparation method of which is as follows.
配置10mL N,N-二甲基甲酰胺与甲醇混合溶液(VN,N-二甲基甲酰胺:V甲醇=9:1),加入总摩尔数为1mmol的2-氨基对苯二甲酸和3-氨基间苯甲酸混合配体(混合配体中3-氨基间苯甲酸的摩尔比例为5%),充分搅拌溶解后加入1mmol钛酸四乙酯,室温下搅拌30min后转移至50mL聚四氟乙烯水热反应釜中,180℃反应16h。水热反应完成后,将产物抽滤分离,用N,N-二甲基甲酰胺及甲醇各清洗3遍,将所得产物置于鼓风烘箱120℃干燥1天后即可得到缺陷NH2-MIL-125-5%光催化剂。Prepare 10mL N,N-dimethylformamide and methanol mixed solution (V N,N-dimethylformamide : V methanol = 9:1), add 2-aminoterephthalic acid and 3-aminoisobenzoic acid mixed ligand (the molar ratio of 3-aminoisobenzoic acid in the mixed ligand is 5%), after fully stirring and dissolving, add 1mmol tetraethyl titanate, stir at room temperature for 30min, then transfer to 50mL polytetrafluoroethylene In the vinyl fluoride hydrothermal reaction kettle, react at 180°C for 16h. After the hydrothermal reaction is completed, the product is separated by suction filtration, washed three times with N,N-dimethylformamide and methanol respectively, and the obtained product is dried in a blast oven at 120°C for 1 day to obtain defective NH 2 -MIL -125-5% photocatalyst.
实施例3Example 3
本实施例提供一种光催化剂NH2-MIL-125-5%,其制备方法如下。This embodiment provides a photocatalyst NH 2 -MIL-125-5%, the preparation method of which is as follows.
配置10mL N,N-二甲基甲酰胺与甲醇混合溶液(VN,N-二甲基甲酰胺:V甲醇=9:1),加入总摩尔数为4mmol的2-氨基对苯二甲酸和3-氨基间苯甲酸混合配体(混合配体中3-氨基间苯甲酸的摩尔比例为5%),充分搅拌溶解后加入1mmol钛酸四异丙酯,室温下搅拌30min后转移至50ml聚四氟乙烯水热反应釜中,100℃反应三天。水热反应完成后,将产物抽滤分离,用N,N-二甲基甲酰胺及甲醇各清洗3遍,将所得产物置于鼓风烘箱120℃干燥1天后即可得到缺陷NH2-MIL-125-5%光催化剂。Prepare 10mL N,N-dimethylformamide and methanol mixed solution (V N,N-dimethylformamide : V methanol = 9:1), add 2-aminoterephthalic acid and 3-aminoisobenzoic acid mixed ligand (the molar ratio of 3-aminoisobenzoic acid in the mixed ligand is 5%), after fully stirring and dissolving, add 1mmol tetraisopropyl titanate, stir at room temperature for 30min, then transfer to 50ml poly In a tetrafluoroethylene hydrothermal reactor, react at 100°C for three days. After the hydrothermal reaction is completed, the product is separated by suction filtration, washed three times with N,N-dimethylformamide and methanol respectively, and the obtained product is dried in a blast oven at 120°C for 1 day to obtain defective NH 2 -MIL -125-5% photocatalyst.
性能测试Performance Testing
以实施例1制备得到的系列光催化剂NH2-MIL-125为例进行光催化效果实验。Taking the photocatalyst NH 2 -MIL-125 prepared in Example 1 as an example, the photocatalytic effect experiment was carried out.
具体实验过程为:将50mg光催化剂加入至有98ml去离子水的Labsolar6A光催化反应装置中,加入2mL三乙醇胺作为牺牲剂,1mL浓度为1mg/mL的氯铂酸钾作为助催化剂(铂含量为催化剂的1w%)。将溶液搅拌均匀后抽真空30min以排走溶液中的空气。抽真空完成后往反应装置加入20mL氮气作为保护气。光源为带有A.M 1.5截止滤波片的300W氙灯,同时用4℃的冷凝循环水对反应装置进行冷却,每小时取1mL气体进行气相色谱分析测定氢气生成量。The specific experimental process is as follows: 50mg of photocatalyst is added to the Labsolar6A photocatalytic reaction device with 98ml of deionized water, 2mL of triethanolamine is added as a sacrificial agent, and 1mL of potassium chloroplatinate with a concentration of 1mg/mL is used as a cocatalyst (platinum content of 1w% of the catalyst). The solution was stirred evenly and then vacuumed for 30 min to remove the air in the solution. After vacuuming was completed, 20 mL of nitrogen was added to the reaction device as a protective gas. The light source is a 300W xenon lamp with an A.M 1.5 cut-off filter. At the same time, the reaction device is cooled with condensed circulating water at 4°C. 1 mL of gas is taken per hour for gas chromatography analysis to determine the amount of hydrogen generated.
其催化效果实验结果如图1所示。结果表明,经混合配体法合成的缺陷NH2-MIL-125比选用纯2-氨基对苯二甲酸作为配体制备的NH2-MIL-125有更好的光催化产氢性能,达到320μmol h-1g-1,约为NH2-MIL-125的1.5倍。通过扫描电镜图片可以发现,通过混合配体法制备出的缺陷NH2-MIL-125样品与NH2-MIL-125的圆片型结构(如图2)相比,具备独特的十面体结构(如图3)。The experimental results of its catalytic effect are shown in Fig. 1 . The results show that the defective NH 2 -MIL-125 synthesized by the mixed ligand method has a better photocatalytic hydrogen production performance than the NH 2 -MIL-125 prepared by using pure 2-aminoterephthalic acid as a ligand, reaching 320 μmol h -1 g -1 , about 1.5 times that of NH 2 -MIL-125. From the scanning electron microscope pictures, it can be found that the defective NH 2 -MIL -125 sample prepared by the mixed ligand method has a unique decahedral structure ( As shown in Figure 3).
上述性能测试结果表明混合配体法不仅对NH2-MIL-125的催化性能进行了调控,也能有效地对其形貌结构进行调控。The above performance test results show that the mixed ligand method not only regulates the catalytic performance of NH 2 -MIL-125, but also effectively regulates its morphology and structure.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910517364.XA CN110327976B (en) | 2019-06-14 | 2019-06-14 | Photocatalyst and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910517364.XA CN110327976B (en) | 2019-06-14 | 2019-06-14 | Photocatalyst and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110327976A true CN110327976A (en) | 2019-10-15 |
CN110327976B CN110327976B (en) | 2021-11-16 |
Family
ID=68141067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910517364.XA Active CN110327976B (en) | 2019-06-14 | 2019-06-14 | Photocatalyst and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110327976B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111848897A (en) * | 2020-07-15 | 2020-10-30 | 上海交通大学 | Preparation method of covalent organic framework material composed of two types of octopolar conjugated structural units connected by alternating carbon-carbon double bonds |
CN111921561A (en) * | 2020-08-18 | 2020-11-13 | 浙江工业大学 | Hierarchical hollow structure NH2Preparation method of-MIL-125 (Ti) desulfurization catalyst |
CN113559936A (en) * | 2021-07-30 | 2021-10-29 | 陕西科技大学 | Defective UiO-66 photocatalytic material and preparation method and application thereof |
CN114471727A (en) * | 2022-02-10 | 2022-05-13 | 重庆工商大学 | Au @ NH2-MIL-125(Cu/Ti) photocatalyst and preparation method and application thereof |
CN114950562A (en) * | 2022-04-25 | 2022-08-30 | 浙江工业大学 | Titanium-based three-dimensional nano organic complex with adjustable defect density and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105771907A (en) * | 2016-04-11 | 2016-07-20 | 华南理工大学 | MOPs bi-ligand adsorbing material Fe-btc(dobdc) and preparation method thereof |
CN105964305A (en) * | 2016-05-14 | 2016-09-28 | 上海大学 | ZnIn2S4/NH2-MIL-125(Ti) composite visible light catalyst and preparation method thereof |
US20170226040A1 (en) * | 2014-08-06 | 2017-08-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing an adsorbent from organometallic framework structures (mof) |
CN107722290A (en) * | 2017-11-02 | 2018-02-23 | 中国科学技术大学 | A kind of double organic ligand MOF and preparation method thereof, the charged type MOF of double organic ligands and preparation method thereof |
CN108906126A (en) * | 2018-07-12 | 2018-11-30 | 华东理工大学 | A kind of light combines the method for catalysis peromag degradation antibiotic with metal organic frame |
-
2019
- 2019-06-14 CN CN201910517364.XA patent/CN110327976B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170226040A1 (en) * | 2014-08-06 | 2017-08-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing an adsorbent from organometallic framework structures (mof) |
CN105771907A (en) * | 2016-04-11 | 2016-07-20 | 华南理工大学 | MOPs bi-ligand adsorbing material Fe-btc(dobdc) and preparation method thereof |
CN105964305A (en) * | 2016-05-14 | 2016-09-28 | 上海大学 | ZnIn2S4/NH2-MIL-125(Ti) composite visible light catalyst and preparation method thereof |
CN107722290A (en) * | 2017-11-02 | 2018-02-23 | 中国科学技术大学 | A kind of double organic ligand MOF and preparation method thereof, the charged type MOF of double organic ligands and preparation method thereof |
CN108906126A (en) * | 2018-07-12 | 2018-11-30 | 华东理工大学 | A kind of light combines the method for catalysis peromag degradation antibiotic with metal organic frame |
Non-Patent Citations (1)
Title |
---|
JI YOON SONG等: "UiO-66-Type Metal-Organic Framework with Free Carboxylic Acid: Versatile Adsorbents via H-bond for Both Aqueous and Nonaqueous Phases", 《ACS APPL. MATER. INTERFACES》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111848897A (en) * | 2020-07-15 | 2020-10-30 | 上海交通大学 | Preparation method of covalent organic framework material composed of two types of octopolar conjugated structural units connected by alternating carbon-carbon double bonds |
CN111921561A (en) * | 2020-08-18 | 2020-11-13 | 浙江工业大学 | Hierarchical hollow structure NH2Preparation method of-MIL-125 (Ti) desulfurization catalyst |
CN111921561B (en) * | 2020-08-18 | 2023-06-23 | 浙江工业大学 | Hierarchical hollow structure NH 2 Preparation method of MIL-125 (Ti) desulfurization catalyst |
CN113559936A (en) * | 2021-07-30 | 2021-10-29 | 陕西科技大学 | Defective UiO-66 photocatalytic material and preparation method and application thereof |
CN114471727A (en) * | 2022-02-10 | 2022-05-13 | 重庆工商大学 | Au @ NH2-MIL-125(Cu/Ti) photocatalyst and preparation method and application thereof |
CN114471727B (en) * | 2022-02-10 | 2023-11-17 | 重庆工商大学 | Au@NH 2 MIL-125 (Cu/Ti) photocatalyst, and preparation method and application thereof |
CN114950562A (en) * | 2022-04-25 | 2022-08-30 | 浙江工业大学 | Titanium-based three-dimensional nano organic complex with adjustable defect density and preparation method and application thereof |
CN114950562B (en) * | 2022-04-25 | 2023-08-08 | 浙江工业大学 | A titanium-based three-dimensional nano-organic complex with adjustable defect density, its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN110327976B (en) | 2021-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110327976A (en) | A kind of photochemical catalyst and its preparation method and application | |
CN109759110A (en) | Nitrogen-doped porous carbon-supported titanium dioxide photocatalyst, preparation method and application thereof | |
CN108620136A (en) | The preparation and application of copper porphyrin functional metal organic frame/composite titania material | |
CN111408413B (en) | Modified carbon nitride/Fe-based MOF composite material and preparation method and application thereof | |
CN108620131B (en) | In-situ preparation method of composite photocatalytic material | |
CN110681382B (en) | MOF-cobalt-based metal oxide catalyst for catalytic oxidation of toluene and preparation method thereof | |
CN111450894B (en) | A Ce-based organometallic complex catalytic material and its preparation and application | |
CN110756203A (en) | Ni2P/Mn0.3Cd0.7S photocatalytic water splitting composite catalyst and preparation method and application thereof | |
CN106362807A (en) | Visible light driven photocatalysis hydrogen production catalyst as well as preparation method and application thereof | |
CN110194730A (en) | Application of the DUT-67 (Zr) in photochemical catalytic oxidation aminomethyl phenyl thioether preparation methyl phenyl sulfoxide | |
CN114160202B (en) | A kind of in-situ modified MIL-68(Fe) photocatalyst and its preparation method and application | |
CN113398968B (en) | MOF-derived TiO 2 Porous g-C 3 N 4 Composite photocatalyst, preparation method and application thereof | |
CN111659455B (en) | Preparation method and application of Co-CDs @ NM photocatalyst | |
WO2024114551A1 (en) | Ceramic-based composite material used for low-concentration formaldehyde degradation, and preparation method therefor | |
CN113351202B (en) | Titanium dioxide/ruthenium monoatomic noble metal nano catalytic material for degrading pollutants and preparation method thereof | |
CN113634250B (en) | Composite photocatalytic material and preparation method and application thereof | |
CN112812057B (en) | Metal nickel hydroxypyridine carboxylic acid complex, synthesis method thereof and application of complex in preparing formic acid by photocatalytic reduction of carbon dioxide | |
CN116422378A (en) | Cu (copper) alloy 2 O-CuXbpy composite material CO 2 Preparation method and application of photoreduction catalyst | |
CN112246256B (en) | Piezoelectric catalytic degradation, ammonia synthesis catalyst and preparation method and application thereof | |
CN115805067A (en) | A photocatalyst for efficiently degrading toluene and its preparation method | |
CN115611915A (en) | Preparation method and application of a perylene metal compound and its composite material | |
CN109289920B (en) | A kind of suspended ion catalyst and preparation method and use | |
CN113578386A (en) | Preparation of Fe2 Co-based metal organic framework CO2 reduction photocatalyst | |
CN111793218A (en) | Preparation method and application of Schiff base dicarboxylic acid ligands Zn, Cu metal-organic framework materials | |
CN116273192B (en) | Preparation method of photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |