CN110304883A - A kind of virgin fiber cement-based composite material and preparation method thereof - Google Patents
A kind of virgin fiber cement-based composite material and preparation method thereof Download PDFInfo
- Publication number
- CN110304883A CN110304883A CN201910715746.3A CN201910715746A CN110304883A CN 110304883 A CN110304883 A CN 110304883A CN 201910715746 A CN201910715746 A CN 201910715746A CN 110304883 A CN110304883 A CN 110304883A
- Authority
- CN
- China
- Prior art keywords
- cement
- fiber
- based composite
- composite material
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 83
- 239000004568 cement Substances 0.000 title claims abstract description 71
- 239000002131 composite material Substances 0.000 title claims abstract description 52
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000004576 sand Substances 0.000 claims abstract description 28
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 17
- 239000010881 fly ash Substances 0.000 claims abstract description 17
- 239000000853 adhesive Substances 0.000 claims abstract description 6
- 230000001070 adhesive effect Effects 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims description 9
- 239000011398 Portland cement Substances 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 7
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 7
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 7
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 7
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical group OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 7
- 239000004570 mortar (masonry) Substances 0.000 claims description 7
- 229920005646 polycarboxylate Polymers 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- 240000008564 Boehmeria nivea Species 0.000 claims description 4
- 241000722949 Apocynum Species 0.000 claims description 3
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 3
- 239000008240 homogeneous mixture Substances 0.000 claims description 3
- 244000198134 Agave sisalana Species 0.000 claims description 2
- 229920000742 Cotton Polymers 0.000 claims description 2
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 claims description 2
- 240000006240 Linum usitatissimum Species 0.000 claims 1
- 238000005336 cracking Methods 0.000 abstract description 8
- 238000005482 strain hardening Methods 0.000 abstract description 5
- 239000004566 building material Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000004567 concrete Substances 0.000 description 35
- 239000000463 material Substances 0.000 description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- 238000012360 testing method Methods 0.000 description 14
- 239000011210 fiber-reinforced concrete Substances 0.000 description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000012669 compression test Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 241000208202 Linaceae Species 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009440 infrastructure construction Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 206010016807 Fluid retention Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920006253 high performance fiber Polymers 0.000 description 1
- 239000004574 high-performance concrete Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- RLQWHDODQVOVKU-UHFFFAOYSA-N tetrapotassium;silicate Chemical compound [K+].[K+].[K+].[K+].[O-][Si]([O-])([O-])[O-] RLQWHDODQVOVKU-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/50—Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
本发明公开了一种原生纤维水泥基复合材料及其制备方法,涉及建筑材料领域。该原生纤维水泥基复合材料是以水280‑300kg/m3、水泥310‑330kg/m3、细砂680‑700kg/m3、粉煤灰680‑700kg/m3、原生纤维24‑28kg/m3、减水剂10‑15kg/m3、粘合剂0.15‑0.18kg/m3制成。本发明采用原生纤维替代传统工程水泥基复合材料中的PVA纤维等,可大大降低水泥基复合材料的生产成本,且所得原生纤维水泥基复合材料抗压、抗拉强度分别达到40‑50Mpa、4‑5Mpa,并具有应变‑硬化性能和超强的韧性,及多缝开裂的特点,可满足特定工程应用的要求。
The invention discloses a virgin fiber cement-based composite material and a preparation method thereof, and relates to the field of building materials. The primary fiber cement-based composite material is composed of water 280-300kg/m 3 , cement 310-330kg/m 3 , fine sand 680-700kg/m 3 , fly ash 680-700kg/m 3 , primary fiber 24-28kg/ m 3 , water reducing agent 10-15kg/m 3 , adhesive 0.15-0.18kg/m 3 . The invention adopts the native fiber to replace the PVA fiber in the traditional engineering cement-based composite material, which can greatly reduce the production cost of the cement-based composite material, and the compressive and tensile strengths of the obtained native fiber cement-based composite material reach 40-50Mpa, 4 ‑5Mpa, and has the characteristics of strain-hardening performance, super toughness, and multi-crack cracking, which can meet the requirements of specific engineering applications.
Description
技术领域technical field
本发明属于建筑材料技术领域,具体涉及一种原生纤维水泥基复合材料及其制备方法。The invention belongs to the technical field of building materials, and in particular relates to a virgin fiber cement-based composite material and a preparation method thereof.
背景技术Background technique
混凝土是现代社会工程建设中用量最大、应用范围最广的建筑材料。尽管混凝土具有抗压强度高、取材简单、低成本、适用范围广泛等一系列优点,但其抗拉强度低、易开裂以及脆性大等缺点往往不可忽略。研究表明,混凝土的拉压比仅为1/10-1/7,而受拉时的极限延伸率仅有0.01%-0.06%,因此其破坏时呈现出明显的脆性特征。混凝土的开裂会导致外部环境中有害介质的侵入,从而产生结构承载能力下降、内部材料老化等一系列问题,最终造成构件或结构力学性能退化及耐久性失效,严重降低了混凝土结构的使用寿命。Concrete is the most widely used building material in modern social engineering construction. Although concrete has a series of advantages such as high compressive strength, simple material acquisition, low cost, and wide application range, its shortcomings such as low tensile strength, easy cracking and high brittleness cannot be ignored. Studies have shown that the tensile-compression ratio of concrete is only 1/10-1/7, and the ultimate elongation under tension is only 0.01%-0.06%, so it shows obvious brittle characteristics when it fails. The cracking of concrete will lead to the intrusion of harmful media in the external environment, resulting in a series of problems such as the decline of structural bearing capacity and the aging of internal materials, which will eventually lead to the degradation of mechanical properties of components or structures and the failure of durability, which seriously reduces the service life of concrete structures.
目前,世界各个国家经济迅速发展,每年发达国家因混凝土结构破坏和内部钢筋锈蚀而造成的经济损失已经成为政府难以承受的沉重负担,我国也不例外。据美国土木工程师学会(ASCE)报告称全美仅桥梁修复的年支出已经增至90亿美元,并且由此间接引起的经济损失则超过540亿美元。此外,英国英格兰岛上的11座钢筋混凝土高架桥,从当初建造完成到1989年的15年间,仅仅是因其维修所消耗的费用就高达4500英镑,为造价的1.6倍,未来估计仍然会消耗大量的费用进行维护。在日本和韩国,每年用于建筑物维护修补的费用也很快将超过用于新建工程的投资。以上都反映了由混凝土耐久性问题而造成的经济损失大大出乎了人们的预料。近年来,我国进行了大规模的基础设施建设,新建了大量的住宅、商场、港口、高速公路等混凝土结构。根据一些发达国家多年的工程经验,未来我国将会进入建筑物修复甚至拆除重建迅速增长的阶段,而繁重的维修和重建工作将会消耗巨大的人力和物力,这将会是我国国民经济发展所遇到的前所未有的挑战。因此,在现有的技术及经济水平下,为了控制混凝土的裂缝满足构件的功能要求及相关规范标准,保证混凝土结构具有较好的耐久性、可靠性,选用韧性好、绿色环保、耐久性好的建筑材料是十分必要的。At present, the economies of various countries in the world are developing rapidly, and the economic losses caused by the destruction of concrete structures and the corrosion of internal steel bars in developed countries every year have become an unbearable burden for the government, and my country is no exception. According to the American Society of Civil Engineers (ASCE) report, the annual expenditure on bridge repair alone in the United States has increased to 9 billion US dollars, and the indirect economic loss caused by this has exceeded 54 billion US dollars. In addition, the 11 reinforced concrete viaducts on the British island of England, from the original construction to 1989, cost up to 4,500 pounds just for their maintenance, which is 1.6 times the cost, and it is estimated that they will still consume a lot in the future. costs for maintenance. In Japan and South Korea, annual building maintenance and repair costs will soon exceed investment in new construction. The above all reflect that the economic losses caused by the durability of concrete are far beyond people's expectations. In recent years, my country has carried out large-scale infrastructure construction, and built a large number of concrete structures such as residential buildings, shopping malls, ports, and highways. According to the engineering experience of some developed countries for many years, in the future, my country will enter a stage of rapid growth in building repair and even demolition and reconstruction, and the heavy maintenance and reconstruction work will consume huge manpower and material resources, which will be my country's national economic development. unprecedented challenges. Therefore, under the existing technical and economic level, in order to control the cracks of concrete to meet the functional requirements of the components and related standards, and to ensure the concrete structure has good durability and reliability, the selection of good toughness, green environmental protection and good durability building materials are necessary.
混凝土材料的上述缺点是本质性的,不可能通过本身材质的改良来解决,因此目前主要采用“复合化”技术思路对水泥基材料的性能进行改进和提高。根据该思路,美国国家材料顾问委员会(NMAB)在1980年提出了水泥基复合材料这一概念,它是以水泥材料为基材的一系列复合材料。而当用纤维作为增强材料时,则有了纤维增强水泥基复合材料的概念,其是以水泥净浆、水泥砂浆或混凝土做基材,以非连续的短纤维或连续的长纤维作增强体组合成的复合材料。纤维加入水泥基材中可起到阻裂、增强、增韧等三大作用,目前已使用较多的纤维增强混凝土(FRC)和高性能纤维增强混凝土(HPFRC)即属于此范畴。传统的纤维混凝土(FRC)如钢纤维增强水泥基复合材料、碳纤维增强水泥基复合材料以及玻璃纤维增强水泥基复合材料等均是以混凝土做基材,纤维作增强体组合成的复合材料,其虽然能大大提高混凝土的抗拉强度、变形能力及耐动荷载性能,在拉伸(弯曲)荷载作用下亦能实现应变-硬化特性,但这些材料需要的纤维掺量高,加工成型工艺要求高,施工成本难以控制,而且在荷载作用下裂缝宽度不易控制,且在直接拉伸荷载作用下往往显示应变软化的特性,在展示高韧性的同时,常以较宽的有害裂缝为代价。这些极大地限制了FRC在工程中的推广应用。The above shortcomings of concrete materials are essential and cannot be solved by the improvement of their own materials. Therefore, the "composite" technical idea is mainly used to improve and improve the performance of cement-based materials. According to this idea, the US National Materials Advisory Board (NMAB) proposed the concept of cement-based composite materials in 1980, which is a series of composite materials based on cement materials. When fiber is used as a reinforcing material, the concept of fiber-reinforced cement-based composite material is obtained, which uses cement paste, cement mortar or concrete as the base material, and uses discontinuous short fibers or continuous long fibers as reinforcements. assembled composite material. Fibers added to cement substrates can play three major roles: crack resistance, reinforcement, and toughening. At present, fiber-reinforced concrete (FRC) and high-performance fiber-reinforced concrete (HPFRC), which have been widely used, belong to this category. Traditional fiber reinforced concrete (FRC) such as steel fiber reinforced cement-based composite materials, carbon fiber reinforced cement-based composite materials and glass fiber reinforced cement-based composite materials are all composite materials composed of concrete as base material and fiber as reinforcement. Although the tensile strength, deformation capacity and dynamic load resistance performance of concrete can be greatly improved, and the strain-hardening characteristics can also be realized under tensile (bending) load, these materials require high fiber content and high processing and molding process requirements. , the construction cost is difficult to control, and the crack width is not easy to control under the load, and it often shows the characteristics of strain softening under the direct tensile load, while showing high toughness, often at the expense of wider harmful cracks. These greatly limit the popularization and application of FRC in engineering.
为了进一步提高混凝土的韧性和阻裂能力,出现了以活性粉末混凝土(RPC)、砂浆掺浇钢纤维混凝土(SIFCON)、砂浆浇筑钢纤维网混凝土(SIMCON)等为代表的早期高性能纤维增强水泥基复合材料(HPFRCC)。与传统的FRC不同,该种材料能在张拉过程中出现肉眼能够观察到的应变-硬化特性和多条裂缝开裂现象,具有高韧性和很强的能量吸收能力。但早期HPFRCC需要纤维掺量高,高纤维掺量提高了工程造价,并且高纤维掺量导致施工难度大、生产困难等,这些因素制约了HPFRCC材料在工程中的大量应用。为此,一些学者在传统纤维混凝土(FRC)和高性能纤维增强水泥基复合材料(HPFRCC)的基础上作出改进,陕西科技大学吕生华教授提出了“一种抗裂缝抗渗透高耐久性混凝土及其制备方法”(CN109293303A),该混凝土由水泥、硅粉、氮化硼粉、砂子、聚乙烯醇纤维、碎石、粉煤灰、煤矸石粉、磷渣粉、减水剂、分散激发剂、改性氧化石墨烯分散液和水制备而成;同时,福州大学袁辉提出了“一种高性能环保混凝土及其制备方法”(CN 108675748A),该混凝土包含人工骨料、活性粉体、硫酸铝盐水泥、天然砂、造纸黑液浓缩改性液、改性木质素纤维、双环戊二烯改性不饱和聚醋、麦饭石粉、钾水玻璃、纳米复合填料、SiO2气凝胶、减水剂、改性插层剂、阻燃剂、乙酸钠和水。相比于传统水泥基复合材料,该类专利的最大裂缝有所减小,但是,因为碎石的存在,其最大裂缝宽度仍超过500mm,同时,其所采用的聚乙烯醇纤维、改性木质素纤维的价格仍较高,无法有效达到降低成本的效果,且其水泥用量也仍较高,此外,该类专利所制备的材料仍属于混凝土范畴,而混凝土是脆性材料,其韧性差、抗拉强度和黏结强度较低、弹性模量高而变形能力差。In order to further improve the toughness and crack resistance of concrete, the early high-performance fiber reinforced cement represented by reactive powder concrete (RPC), mortar mixed with steel fiber concrete (SIFCON), and mortar poured steel fiber mesh concrete (SIMCON) has appeared. Matrix Composite (HPFRCC). Different from traditional FRC, this material can show strain-hardening characteristics and multiple cracks that can be observed with the naked eye during the tensioning process, and has high toughness and strong energy absorption capacity. However, in the early stage of HPFRCC, high fiber content was required. High fiber content increased the project cost, and high fiber content led to difficult construction and production. These factors restricted the large-scale application of HPFRCC materials in engineering. To this end, some scholars have made improvements on the basis of traditional fiber reinforced concrete (FRC) and high-performance fiber-reinforced cementitious composites (HPFRCC). Preparation method" (CN109293303A), the concrete is composed of cement, silica fume, boron nitride powder, sand, polyvinyl alcohol fiber, crushed stone, fly ash, coal gangue powder, phosphorus slag powder, water reducing agent, dispersion activator, It is prepared from modified graphene oxide dispersion and water; at the same time, Yuan Hui of Fuzhou University proposed "a high-performance environmental protection concrete and its preparation method" (CN 108675748A), the concrete contains artificial aggregate, active powder, sulfuric acid Aluminum salt cement, natural sand, concentrated modified liquid of papermaking black liquor, modified lignin fiber, dicyclopentadiene modified unsaturated polyester, medical stone powder, potassium water glass, nanocomposite filler, SiO2 aerogel, Water reducing agent, modified intercalating agent, flame retardant, sodium acetate and water. Compared with traditional cement-based composite materials, the maximum crack of this type of patent has been reduced, but due to the existence of crushed stone, the maximum crack width is still more than 500mm. The price of cellulose fibers is still high, which cannot effectively reduce the cost, and the amount of cement used is still high. In addition, the materials prepared by this type of patent still belong to the category of concrete, and concrete is a brittle material with poor toughness and high resistance. The tensile strength and bond strength are low, the elastic modulus is high and the deformation ability is poor.
以上可知,未来材料必须满足高安全性、高耐久性、高环保性和良好的经济性,才能在建筑结构材料中立于不败之地。为克服混凝土材料的脆性与应变软化特点,人们开始借助微观、细观力学手段研究具有应变硬化特性的水泥基材料,其中工程水泥基复合材料(ECC)是一种具有高延性、高韧性和多缝开裂特征的纤维増强水泥基复合材料,满足可持续发展社会对基础设施建设高安全性和高耐久性要求。ECC最早由美国密歇根大学的Li教授等在20世纪90年代初根据细观力学和断裂力学基本原理提出了该材料的基本设计理念。ECC材料以水泥、矿物惨合料以及粒径不超过150μm的石英砂作为基体,不含粗骨料,以短纤维作为增强材料。在纤维体积渗量不大于2%的情况下直接拉伸试验得到的极限拉应变可达3%以上,且拉伸过程中形成许多宽度小于50μm的细裂缝。ECC与传统纤维混凝土(FRC)和高性能纤维增强水泥基复合材料(HPFRCC)主要区别之一是材料各组分构成是基于细观力学设计,ECC由于成分中不含粗骨料,是以水泥砂浆为基体,因此属于水泥范畴。目前,国内外应用于ECC的纤维主要集中在聚乙烯醇(PVA)、聚丙烯(PP)等合成纤维,添加合成纤维的ECC可克服传统混凝土材料易开裂、脆性大等缺点,提高结构的耐久性与延性,但是该合成纤维的生产会对环境造成污染且成本高,不符合绿色节能的可持续化发展要求。原生纤维作为自然界中一种可再生的有机纤维,具有资源丰富、价格低廉等优点。因此,选择原生纤维用于增强水泥基材料可显著降低能源消耗,又不会影响人类健康,是现代社会可持续发展的必然要求。It can be seen from the above that future materials must meet high safety, high durability, high environmental protection and good economy in order to be invincible in building structural materials. In order to overcome the brittleness and strain softening characteristics of concrete materials, people began to study cement-based materials with strain-hardening properties by means of micro and mesoscopic mechanics. The fiber-reinforced cement-based composite material with cracking characteristics meets the requirements of sustainable development society for high safety and high durability of infrastructure construction. ECC was first proposed by Professor Li from the University of Michigan in the early 1990s based on the basic principles of meso-mechanics and fracture mechanics. The basic design concept of this material. The ECC material uses cement, mineral aggregates and quartz sand with a particle size of not more than 150 μm as the matrix, without coarse aggregates, and uses short fibers as reinforcement materials. When the fiber volume permeability is not more than 2%, the ultimate tensile strain obtained by the direct tensile test can reach more than 3%, and many fine cracks with a width of less than 50 μm are formed during the stretching process. One of the main differences between ECC and traditional fiber reinforced concrete (FRC) and high-performance fiber-reinforced cementitious composites (HPFRCC) is that the components of the material are based on meso-mechanical design. Mortar is the matrix, so it belongs to the category of cement. At present, the fibers used in ECC at home and abroad are mainly concentrated in synthetic fibers such as polyvinyl alcohol (PVA) and polypropylene (PP). Adding synthetic fibers to ECC can overcome the shortcomings of traditional concrete materials such as easy cracking and high brittleness, and improve the durability of the structure. However, the production of this synthetic fiber will cause environmental pollution and high cost, which does not meet the sustainable development requirements of green energy saving. As a renewable organic fiber in nature, virgin fiber has the advantages of abundant resources and low price. Therefore, the selection of virgin fibers for reinforcing cement-based materials can significantly reduce energy consumption without affecting human health, which is an inevitable requirement for the sustainable development of modern society.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明提供了一种原生纤维水泥基复合材料及其制备方法,该水泥基复合材料具有高延性、高抗裂和高耐久性,适用于复杂环境条件下以普通高性能混凝土为设计要求的各种工程及建筑。In view of the above problems, the present invention provides a virgin fiber cement-based composite material and a preparation method thereof. The cement-based composite material has high ductility, high crack resistance and high durability, and is suitable for ordinary high-performance concrete under complex environmental conditions. Design requirements of all kinds of engineering and construction.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种原生纤维水泥基复合材料,其所用原料及其用量包括:水280-300kg/m3、水泥310-330kg/m3、细砂680-700kg/m3、粉煤灰680-700kg/m3、原生纤维24-28kg/m3、减水剂10-15kg/m3、粘合剂0.15-0.18kg/m3。A primary fiber cement-based composite material, the raw materials used and the amount thereof include: water 280-300kg/m 3 , cement 310-330kg/m 3 , fine sand 680-700kg/m 3 , fly ash 680-700kg/m 3. Virgin fiber 24-28kg/m 3 , water reducing agent 10-15kg/m 3 , adhesive 0.15-0.18kg/m 3 .
其中,所述水泥为强度42.5级的普通硅酸盐水泥。Wherein, the cement is ordinary Portland cement with a strength of 42.5.
所述细砂的级配为:尺寸为1.18mm的方孔筛,细砂通过率为100%;尺寸为0.6mm的方孔筛,细砂通过率为44.6%;尺寸为0.3mm的方孔筛,细砂通过率为10.8%;尺寸为0.15mm的方孔筛,细砂通过率为0%。The gradation of the fine sand is as follows: a square hole sieve with a size of 1.18mm, the pass rate of fine sand is 100%; a square hole screen with a size of 0.6mm, the pass rate of fine sand is 44.6%; the square hole size of 0.3mm sieve, the pass rate of fine sand is 10.8%; for a square hole sieve with a size of 0.15mm, the pass rate of fine sand is 0%.
所述粉煤灰采用Ⅰ级粉煤灰,其45μm筛余量不大于12%,需水量比不大于95%,主要活性化学成分是SiO2与Al2O3,与水泥水化产生的氢氧化铝可反应生成胶凝产物,起到密实填充混凝土的作用。The fly ash is Class I fly ash, the 45μm sieve balance is not more than 12%, the water demand ratio is not more than 95%, and the main active chemical components are SiO 2 and Al 2 O 3 , and the hydrogen produced by cement hydration. Alumina can react to form a cementitious product, which plays the role of densely filled concrete.
所述原生纤维的直径为30~40μm,长度为10~20mm,弹性模量为15~30GPa,延伸率为6~8%,其包括苎麻纤维、亚麻纤维、剑麻纤维、罗布麻纤维、棉纤维中的任意一种或几种。The diameter of the primary fiber is 30-40 μm, the length is 10-20 mm, the elastic modulus is 15-30 GPa, and the elongation is 6-8%, and it includes ramie fiber, flax fiber, sisal fiber, apocynum fiber, cotton Any one or more of the fibers.
所述减水剂为聚羧酸减水剂,其减水率大于20%,作用是通过表面物理化学作用使水泥颗粒分散,从而改善基质的流动性、降低用水量。The water reducing agent is a polycarboxylate water reducing agent, and its water reducing rate is more than 20%.
所述粘合剂为羟丙基甲基纤维素,其作用是提高水泥-砂的分散性,大幅度改善砂浆的可塑性和保水性,对防止裂纹有效果,可增强水泥强度。The binder is hydroxypropyl methyl cellulose, and its function is to improve the dispersibility of cement-sand, greatly improve the plasticity and water retention of mortar, and has the effect of preventing cracks and enhancing the strength of cement.
所述原生纤维水泥基复合材料的制备方法包括以下步骤:The preparation method of the virgin fiber cement-based composite material comprises the following steps:
步骤1:在搅拌机中依次投入水泥、粉煤灰和和细砂,预搅拌2min;Step 1: Put cement, fly ash and fine sand into the mixer in sequence, and pre-mix for 2 minutes;
步骤2:然后边搅拌边均匀洒入粘合剂,搅拌5min(粘合剂因在冷水中会溶胀成胶状物,为了防止基体水泥砂浆中的纤维素出现结团现象,通常采用先干拌后加水);Step 2: Then sprinkle the adhesive evenly while stirring, and stir for 5 minutes (the adhesive will swell into a gel in cold water. after adding water);
步骤3:逐渐加入水和减水剂,搅拌直至产生均匀的混合物;Step 3: Gradually add water and water reducer, stirring until a homogeneous mixture is produced;
步骤4:再逐渐加入原生纤维并继续混合3min,直至纤维均匀分散;Step 4: Gradually add virgin fibers and continue to mix for 3 minutes until the fibers are evenly dispersed;
步骤5:将步骤4制得的混合砂浆倒入模具中,进行振捣,24h后脱模并标准养护28天,得到所述原生纤维水泥基复合材料。Step 5: Pour the mixed mortar prepared in step 4 into the mold, vibrate, demould after 24 hours, and standardize for 28 days to obtain the virgin fiber cement-based composite material.
针对现有技术,本发明的优点如下:For the prior art, the advantages of the present invention are as follows:
第一,该水泥基复合材料的配比中采用原生纤维替代钢纤维、PVA纤维等起桥联作用,可大大降低水泥基复合材料的成本;First, in the proportion of the cement-based composite material, the original fiber is used to replace the steel fiber, PVA fiber, etc. to play a bridging role, which can greatly reduce the cost of the cement-based composite material;
第二,本发明原生纤维水泥基复合材料呈现出多缝开裂的特点,材料第一条裂缝开始产生后并不会像普通混凝止那样逐渐扩大直至贯穿,而是裂缝数量不断增多,裂缝的宽度却不会增长,其饱和状态的多点开裂裂缝宽度小于50μm,其优异的裂缝控制能力非常有利于混凝土工程对裂缝宽度控制的要求;Second, the virgin fiber cement-based composite material of the present invention exhibits the characteristics of multiple cracks. After the first crack of the material begins to occur, it will not gradually expand until it penetrates like ordinary concrete, but the number of cracks will continue to increase. The width does not increase, and the multi-point cracking crack width in the saturated state is less than 50 μm, and its excellent crack control ability is very beneficial to the requirements of concrete engineering for crack width control;
第三,本发明原生纤维水泥基复合材料具有独特的应变-硬化性能和超强的韧性,其拉应变值大于3%,显著改变了传统水泥混凝土的脆性特征,可克服材料脆性导致的诸多缺陷;Third, the primary fiber cement-based composite material of the present invention has unique strain-hardening performance and super toughness, and its tensile strain value is greater than 3%, which significantly changes the brittleness characteristics of traditional cement concrete and can overcome many defects caused by material brittleness. ;
第四,该水泥基复合材料的抗压强度达到40-50Mpa,抗拉强度达到4-5Mpa,其力学性质良好,满足特定工程应用的要求。Fourth, the compressive strength of the cement-based composite material reaches 40-50Mpa, and the tensile strength reaches 4-5Mpa, and its mechanical properties are good and meet the requirements of specific engineering applications.
附图说明Description of drawings
图1为本发明原生纤维水泥基复合材料呈现出的多缝开裂图。FIG. 1 is a multi-slit cracking diagram presented by the virgin fiber cement-based composite material of the present invention.
具体实施方式Detailed ways
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。In order to make the content of the present invention easier to understand, the technical solutions of the present invention will be further described below with reference to specific embodiments, but the present invention is not limited thereto.
实施例1:Example 1:
一种原生纤维水泥基复合材料,其原料配方为:水280kg/m3、42.5级普通硅酸盐水泥310kg/m3、细砂680kg/m3、粉煤灰680kg/m3、苎麻纤维24kg/m3、聚羧酸减水剂10kg/m3、粘合剂羟丙基甲基纤维素0.15kg/m3。A virgin fiber cement-based composite material, its raw material formula is: water 280kg/m 3 , 42.5 grade ordinary Portland cement 310kg/m 3 , fine sand 680kg/m 3 , fly ash 680kg/m 3 , ramie fiber 24kg /m 3 , polycarboxylate water reducing agent 10kg/m 3 , binder hydroxypropyl methylcellulose 0.15kg/m 3 .
实施例2Example 2
一种原生纤维水泥基复合材料,其原料配方为:水290kg/m3、42.5级普通硅酸盐水泥320kg/m3、细砂690kg/m3、粉煤灰690kg/m3、亚麻纤维26kg/m3、聚羧酸减水剂12kg/m3、粘合剂羟丙基甲基纤维素0.16kg/m3。A virgin fiber cement-based composite material, the raw material formula is: water 290kg/m 3 , 42.5 grade ordinary Portland cement 320kg/m 3 , fine sand 690kg/m 3 , fly ash 690kg/m 3 , flax fiber 26kg /m 3 , polycarboxylate water reducing agent 12kg/m 3 , binder hydroxypropyl methylcellulose 0.16kg/m 3 .
实施例3Example 3
一种原生纤维水泥基复合材料,其原料配方为:水280kg/m3、42.5级普通硅酸盐水泥310kg/m3、细砂680kg/m3、粉煤灰700kg/m3、罗布麻纤维28kg/m3、聚羧酸减水剂15kg/m3、粘合剂羟丙基甲基纤维素0.18kg/m3。A primary fiber cement-based composite material, the raw material formula is: water 280kg/m 3 , 42.5 grade ordinary Portland cement 310kg/m 3 , fine sand 680kg/m 3 , fly ash 700kg/m 3 , apocynum fiber 28kg/m 3 , polycarboxylate water reducer 15kg/m 3 , binder hydroxypropyl methylcellulose 0.18kg/m 3 .
上述所用细砂的级配为:尺寸为1.18mm的方孔筛,细砂通过率为100%;尺寸为0.6mm的方孔筛,细砂通过率为44.6%;尺寸为0.3mm的方孔筛,细砂通过率为10.8%;尺寸为0.15mm的方孔筛,细砂通过率为0%。The gradation of the fine sand used above is: a square hole sieve with a size of 1.18mm, the fine sand passing rate is 100%; a square hole sieve with a size of 0.6mm, the fine sand passing rate is 44.6%; the square hole size is 0.3mm. sieve, the pass rate of fine sand is 10.8%; for a square hole sieve with a size of 0.15mm, the pass rate of fine sand is 0%.
所用粉煤灰采用Ⅰ级粉煤灰,其45μm筛余量不大于12%,需水量比不大于95%,主要活性化学成分是SiO2与Al2O3。The fly ash used is grade I fly ash, the 45μm sieve balance is not more than 12%, the water demand ratio is not more than 95%, and the main active chemical components are SiO 2 and Al 2 O 3 .
所用苎麻纤维的直径为30~40μm,长度为10~20mm,弹性模量为15~30GPa,延伸率为6~8%,The diameter of the ramie fiber used is 30~40μm, the length is 10~20mm, the elastic modulus is 15~30GPa, and the elongation is 6~8%.
所用聚羧酸减水剂的减水率大于20%。The water reducing rate of the polycarboxylate water reducing agent used is greater than 20%.
所述原生纤维水泥基复合材料的制备方法为:在搅拌机中依次投入水泥、粉煤灰和和细砂,预搅拌2min;然后边搅拌边均匀洒入粘合剂羟丙基甲基纤维素粉末,搅拌5min;将水和减水剂逐渐加入干混合物中,搅拌直至产生均匀的混合物;逐渐加入原生纤维并继续混合3min,直至纤维均匀分散;将制得的混合砂浆倒入模具中,进行振捣,24h后脱模并标准养护28天,得到原生纤维水泥基复合材料。The preparation method of the virgin fiber cement-based composite material is as follows: sequentially putting cement, fly ash and fine sand into a mixer, pre-mixing for 2 minutes; then evenly adding the binder hydroxypropyl methylcellulose powder while stirring , and stir for 5 min; gradually add water and water reducing agent to the dry mixture, and stir until a homogeneous mixture is produced; gradually add virgin fibers and continue to mix for 3 min until the fibers are uniformly dispersed; pour the prepared mixed mortar into the mold, and vibrate tamping, demoulding after 24 hours, and standard curing for 28 days to obtain a virgin fiber cement-based composite material.
对比例1 ECC水泥基材料Comparative Example 1 ECC cement-based material
与实施例的制备方法相同,不同之处在于该ECC水泥基材料单元试件的原料配方为:水280kg/m3;42.5级普通硅酸盐水泥310kg/m3、细砂680kg/m3、粉煤灰680kg/m3、PVA纤维24kg/m3、聚羧酸减水剂10kg/m3、粘合剂羟丙基甲基纤维素0.15kg/m3。The same as the preparation method of the embodiment, the difference is that the raw material formula of the ECC cement-based material unit test piece is: water 280kg/m 3 ; 42.5 grade ordinary Portland cement 310kg/m 3 , fine sand 680kg/m 3 , Fly ash 680kg/m 3 , PVA fiber 24kg/m 3 , polycarboxylate water reducer 10kg/m 3 , binder hydroxypropyl methylcellulose 0.15kg/m 3 .
其中,所用PVA纤维的直径为39μm,长度为12mm,弹性模量不低于42.8GPa,延伸率不低于6%。Among them, the diameter of the PVA fiber used is 39 μm, the length is 12 mm, the elastic modulus is not less than 42.8 GPa, and the elongation is not less than 6%.
对比例2 C30混凝土单元试件Comparative example 2 C30 concrete unit specimen
与实施例的制备方法相同,不同之处在于该普通C30混凝土单元试件的原料配方为:水200kg/m3;42.5级普通硅酸盐水泥400kg/m3;砂630kg/m3;石子1280kg/m3;The same as the preparation method of the embodiment, the difference is that the raw material formula of the common C30 concrete unit test piece is: water 200kg/m 3 ; 42.5 grade ordinary Portland cement 400kg/m 3 ; sand 630kg/m 3 ; stone 1280kg /m 3 ;
为了验证本发明制备得到的原生纤维水泥基复合材料的各项性能,对本发明得到的原生纤维水泥基复合材料进行性能测试。In order to verify the properties of the virgin fiber cement-based composite material prepared by the present invention, the performance test of the virgin fiber cement-based composite material obtained by the present invention is carried out.
(1)立方体抗压试验(1) Cube compression test
立方体抗压试验采用70.7×70.7mm×70.7mm试块,试件成型24h后拆模,放入标准养护室养护28d,试验前3h拿出晾晒3h,准备试验。每组配合比准备3个试块完成抗压试验。测试指标为弹性模量和抗压强度。The cube compression test uses a 70.7 × 70.7 mm × 70.7 mm test block. The test piece is demolded after 24 hours of molding, placed in a standard curing room for 28 days, and taken out to dry for 3 hours before the test to prepare for the test. Prepare 3 test blocks for each group of mix ratios to complete the compression test. The test indicators are elastic modulus and compressive strength.
(2)单轴拉伸试验(2) Uniaxial tensile test
单轴拉伸试验采用厚度×宽度×长度=50mm×50mm×190mm试块,试件24h后拆模,放入标准养护室养护28d,实验前3h拿出晾干准备试验。每组配合比准备4个试块完成抗拉试验。测试指标为开裂强度、抗拉强度、最大拉应变、弹性模量和断裂能。The uniaxial tensile test uses a thickness × width × length = 50mm × 50mm × 190mm test block, the test piece is demolded after 24 hours , placed in a standard curing room for 28 days , and taken out to dry 3 hours before the test to prepare for the test. Four test blocks were prepared for each group of mix ratios to complete the tensile test. The test indicators are cracking strength, tensile strength, maximum tensile strain, elastic modulus and fracture energy.
将实施例和ECC与普通C30混凝土在相同条件下进行测试,结果如表1。The examples and ECC were tested under the same conditions as ordinary C30 concrete, and the results are shown in Table 1.
表1 各性能对比表Table 1 Performance comparison table
由表1可见,原生纤维水泥基复合材料的强度虽然较ECC有所下降,但是仍大于普通C30水泥混凝土的抗压强度,同时该原生纤维水泥基复合材料的最大拉伸应变达到了4%,远高于普通混凝土的最大拉伸应变,基本满足了大部分混凝土建筑对混凝土延性的需求。并且本发明采用原生纤维替代传统工程水泥基复合材料(ECC)中的PVA纤维等,可大大降低水泥基复合材料的生产成本,适合于大规模的推广应用于建筑领域。It can be seen from Table 1 that although the strength of the native fiber cement-based composite material is lower than that of ECC, it is still greater than the compressive strength of ordinary C30 cement concrete. At the same time, the maximum tensile strain of the native fiber cement-based composite material reaches 4%. It is much higher than the maximum tensile strain of ordinary concrete, which basically meets the ductility requirements of most concrete buildings. In addition, the present invention uses virgin fibers to replace PVA fibers in traditional engineering cement-based composite materials (ECC), which can greatly reduce the production cost of cement-based composite materials, and is suitable for large-scale promotion and application in the construction field.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910715746.3A CN110304883A (en) | 2019-08-05 | 2019-08-05 | A kind of virgin fiber cement-based composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910715746.3A CN110304883A (en) | 2019-08-05 | 2019-08-05 | A kind of virgin fiber cement-based composite material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110304883A true CN110304883A (en) | 2019-10-08 |
Family
ID=68083059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910715746.3A Pending CN110304883A (en) | 2019-08-05 | 2019-08-05 | A kind of virgin fiber cement-based composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110304883A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111620608A (en) * | 2020-05-25 | 2020-09-04 | 中铁大桥局集团有限公司 | Ultrahigh-toughness cement-based composite material and design method thereof |
CN114134809A (en) * | 2021-11-19 | 2022-03-04 | 中路交科科技股份有限公司 | UHPC bridge deck pavement structure and preparation method thereof |
CN116161906A (en) * | 2021-11-25 | 2023-05-26 | 香港理工大学深圳研究院 | High-strength high-toughness fiber concrete based on geopolymer artificial aggregate and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106904870A (en) * | 2017-01-17 | 2017-06-30 | 华南理工大学 | A kind of natural fiber reinforced epoxy base concrete and preparation method and application |
CN107382183A (en) * | 2017-06-29 | 2017-11-24 | 昆明理工大学 | A kind of high tenacity cement-base composite material |
CN110240454A (en) * | 2019-07-30 | 2019-09-17 | 福州大学 | A method of repairing concrete pavement using native fiber cement-based repair material |
-
2019
- 2019-08-05 CN CN201910715746.3A patent/CN110304883A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106904870A (en) * | 2017-01-17 | 2017-06-30 | 华南理工大学 | A kind of natural fiber reinforced epoxy base concrete and preparation method and application |
CN107382183A (en) * | 2017-06-29 | 2017-11-24 | 昆明理工大学 | A kind of high tenacity cement-base composite material |
CN110240454A (en) * | 2019-07-30 | 2019-09-17 | 福州大学 | A method of repairing concrete pavement using native fiber cement-based repair material |
Non-Patent Citations (3)
Title |
---|
严瑞瑄 主编: "《水溶性高分子》", 30 June 1998, 化学工业出版社 * |
益小苏 等著: "《生物质树脂、纤维及生物复合材料》", 31 August 2017, 中国建材工业出版社 * |
陈宣东 等: "剑麻纤维增强水泥基复合材料研究进展", 《硅酸盐通报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111620608A (en) * | 2020-05-25 | 2020-09-04 | 中铁大桥局集团有限公司 | Ultrahigh-toughness cement-based composite material and design method thereof |
CN111620608B (en) * | 2020-05-25 | 2021-10-19 | 中铁大桥局集团有限公司 | Design method of ultrahigh-toughness cement-based composite material |
CN114134809A (en) * | 2021-11-19 | 2022-03-04 | 中路交科科技股份有限公司 | UHPC bridge deck pavement structure and preparation method thereof |
CN114134809B (en) * | 2021-11-19 | 2023-09-12 | 中路交科科技股份有限公司 | UHPC bridge deck pavement structure and preparation method thereof |
CN116161906A (en) * | 2021-11-25 | 2023-05-26 | 香港理工大学深圳研究院 | High-strength high-toughness fiber concrete based on geopolymer artificial aggregate and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106242429B (en) | A kind of high tenacity concrete reinforced by assorted fiber and preparation method thereof | |
CN114656206B (en) | Nano-silica and basalt fiber synergistically enhanced recycled concrete and preparation method thereof | |
CN110790552B (en) | Waste brick regenerated ultrahigh-toughness mixture and preparation method and application thereof | |
CN105801017B (en) | Room temperature maintaining Reactive Powder Concrete and preparation method thereof | |
CN103553458B (en) | C180 strength-grade concrete for formed steel concrete composite structure | |
CN112250355A (en) | Alkali-activated fly ash/slag recycled concrete and preparation method thereof | |
CN101172821A (en) | Preparation method of high-strength and high-toughness lightweight aggregate concrete | |
CN110156397A (en) | A kind of high-strength and high-toughness self-leveling lightweight aggregate concrete and its preparation method | |
CN107200524B (en) | Fiber reinforced concrete with ultrahigh strength and high bonding performance and preparation method thereof | |
CN108546028A (en) | A kind of Nano-meter SiO_22With the preparation method of PVA fiber reinforcement geopolymer mortars | |
CN108558310A (en) | A kind of high performance lightweight aggregate concrete and preparation method thereof adding silicon ash and polypropylene fibre | |
CN103304206A (en) | Ultrahigh-strength self-compacting concrete and preparation method thereof | |
CN108892424A (en) | A kind of Nano-meter SiO_22With PVA fiber reinforcement geopolymer mortar | |
CN110256013A (en) | A kind of assorted fibre enhancing strain hardening cement-base composite material and preparation method thereof | |
CN103214218B (en) | Highly fracture-resistant and highly compression-resistant cement-based mortar material and preparation method thereof | |
CN110304883A (en) | A kind of virgin fiber cement-based composite material and preparation method thereof | |
CN114920504A (en) | Hybrid fiber reinforced ultra-high performance concrete | |
CN107915444A (en) | A kind of Desert Sand PVA fiber high performance concretes | |
CN111892362A (en) | A kind of building mortar and preparation method thereof | |
CN105859228A (en) | Composite reinforced alkali-activated slag mortar board and preparation method thereof | |
CN111253127A (en) | C30 carbon fiber broken brick recycled concrete and preparation method thereof | |
CN111099865B (en) | A kind of high-temperature explosion-proof C250 reactive powder concrete and its preparation and molding curing method | |
CN113636802A (en) | A kind of ultra-high performance concrete and preparation method thereof | |
CN114853411B (en) | High-damping full-recycled aggregate concrete ink material for 3D printing and preparation method | |
CN107986708A (en) | A kind of Desert Sand steel-PVA Hybrid Fibers Reinforced High Performance Concretes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191008 |
|
RJ01 | Rejection of invention patent application after publication |