CN110293325B - Thick plate laser cutting method - Google Patents
Thick plate laser cutting method Download PDFInfo
- Publication number
- CN110293325B CN110293325B CN201910688542.5A CN201910688542A CN110293325B CN 110293325 B CN110293325 B CN 110293325B CN 201910688542 A CN201910688542 A CN 201910688542A CN 110293325 B CN110293325 B CN 110293325B
- Authority
- CN
- China
- Prior art keywords
- cutting
- laser
- laser cutting
- corner
- electromagnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
- B23K26/123—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
本发明涉及一种厚板激光切割方法,其特征在于:步骤1:将电磁线圈固定在激光切割头上,可随激光切割头移动;步骤2:将待切割工件竖直放置并固定;步骤3:在激光切割轨迹中定义拐角切割引入段和引出段;步骤4:启动激光切割系统,开启切割辅助气体,启动电磁场电源,激光束垂直辐照待切割工件表面,实现厚板激光切割;步骤5:当激光束移动到拐角切割引入段起始点时,调节电磁场电源,开始拐角区域切割;步骤6:当激光束移动到拐角切割引出段终止点时,调节电磁场电源,结束拐角区域切割;步骤7:达到切割末端点时,关闭激光发生器,关闭电磁场电源,关闭切割辅助气体,完成切割过程。相对于现有技术,本发明具有良好的切割效果。
The invention relates to a thick plate laser cutting method, which is characterized by: step 1: fixing an electromagnetic coil on a laser cutting head, which can move with the laser cutting head; step 2: vertically placing and fixing the workpiece to be cut; step 3 : Define the corner cutting lead-in section and lead-out section in the laser cutting track; Step 4: Start the laser cutting system, start the cutting auxiliary gas, start the electromagnetic field power supply, and the laser beam vertically irradiates the surface of the workpiece to be cut to realize the thick plate laser cutting; Step 5 : When the laser beam moves to the starting point of the corner cutting lead-in section, adjust the power of the electromagnetic field to start cutting the corner area; Step 6: When the laser beam moves to the end point of the corner cutting lead-out section, adjust the electromagnetic field power to end the corner area cutting; Step 7 : When reaching the cutting end point, turn off the laser generator, turn off the power of the electromagnetic field, and turn off the auxiliary gas for cutting to complete the cutting process. Compared with the prior art, the present invention has a good cutting effect.
Description
技术领域technical field
本发明涉及一种激光切割方法,尤其涉及一种厚板激光切割的方法。The invention relates to a laser cutting method, in particular to a thick plate laser cutting method.
背景技术Background technique
目前,激光切割技术已大规模在钣金加工、冶金设备、工程机械、精密配件、工艺礼品、家用电器等诸多领域应用。目前传统的激光切割金属主要采用的是利用切割头内的光学系统汇聚到材料表面使其融化,并通过提供辅助气体吹除融化材料来实现切割。但在利用光纤激光切割厚不锈钢板的时候,在拐角处激光能量在密集积累,容易造成拐角处“逆喷”现象,导致切割无法进行。At present, laser cutting technology has been widely used in sheet metal processing, metallurgical equipment, construction machinery, precision accessories, craft gifts, household appliances and many other fields. At present, the traditional laser cutting of metal mainly uses the optical system in the cutting head to converge on the surface of the material to melt it, and provide auxiliary gas to blow the melted material to achieve cutting. However, when using fiber lasers to cut thick stainless steel plates, the laser energy is intensively accumulated at the corners, which is easy to cause the phenomenon of "reverse jetting" at the corners, which makes the cutting impossible.
在2014年05月07日公布的,公布号为“CN 103771694 A”,发明名称为“激光切割方法以及切割系统”的发明专利公布了一种玻璃基板的激光切割方法以及切割系统,该切割方法为通过在切割线的外部形成切割辅助线的方式,来增加激光切割形成切割线时对基板的应力破坏点,便于基板切割后的分割与分离,但该方法仍存在问题:当采用脉冲激光切割或激光切割功率较低,所形成切割线不能很好地使基板分离。Published on May 7, 2014, the publication number is "CN 103771694 A", and the invention patent titled "Laser Cutting Method and Cutting System" discloses a laser cutting method and cutting system for a glass substrate. The cutting method In order to increase the stress damage point on the substrate when laser cutting forms the cutting line by forming a cutting auxiliary line outside the cutting line, it is convenient for the division and separation of the substrate after cutting, but this method still has problems: when using pulsed laser cutting Or the laser cutting power is low, and the formed cutting lines cannot separate the substrates well.
在2016年05月25日公布的,公布号为“CN 103906597 B”,发明名称为“激光切割方法以及切割装置”的发明专利公布了激光切割方法以及切割装置,在激光切割中,使切割燃气在激光束的周围流动,通过照射到被加工材料的激光束的能量和被加工材料与切割燃气的氧化反应的能量使被加工材料熔化,熔融的金属通过切割气体的动能而被排出,但该方法仍存在问题:被加工材料过渡熔融,从而在切断终点附近难以确保所期望的工件形状的情况。Published on May 25, 2016, the publication number is "CN 103906597 B", and the invention patent titled "laser cutting method and cutting device" discloses the laser cutting method and cutting device. Flowing around the laser beam, the material to be processed is melted by the energy of the laser beam irradiated to the material to be processed and the energy of the oxidation reaction between the material to be processed and the cutting gas, and the molten metal is discharged by the kinetic energy of the cutting gas, but this The method still has a problem: the material to be processed is excessively melted, so that it is difficult to ensure the desired workpiece shape near the end point of cutting.
在2019年01月04日公开的,公开号为“CN 109128502 A”,发明名称为“一种旋转电-磁场同步辅助激光焊接的装置 ”的发明专利公开了一种旋转电-磁场同步辅助激光焊接的装置 ,本发明可实现旋转磁场及恒定电场简便、快速以及强度大小的连续调节,并保证了电、磁场随焊接激光束的同步运动,再通过设置合理的功率、焦距、离焦量、氦保护气体流量等激光工艺参数,从而提高了激光焊接焊缝成形质量。Published on January 4, 2019, the publication number is "CN 109128502 A" and the invention patent titled "A device for rotating electromagnetic-magnetic field synchronous auxiliary laser welding" discloses a rotating electromagnetic-magnetic field synchronous auxiliary laser The welding device, the present invention can realize the simple, fast and continuous adjustment of the strength of the rotating magnetic field and the constant electric field, and ensure the synchronous movement of the electric and magnetic fields with the welding laser beam. Laser process parameters such as helium shielding gas flow rate, thereby improving the quality of laser welding seam formation.
发明内容SUMMARY OF THE INVENTION
本发明的目的是解决激光切割厚板拐角处出现熔融金属向上发生“逆喷”现象,致使切割无法继续进行的问题。The purpose of the present invention is to solve the problem that the "reverse spray" phenomenon of molten metal occurs upward at the corner of the thick plate laser cutting, resulting in the inability to continue cutting.
本发明的技术方案是提供一种厚板激光切割方法,其特征在于:The technical scheme of the present invention is to provide a thick plate laser cutting method, which is characterized in that:
步骤1:将电磁线圈固定在激光切割头上,可随激光切割头移动。Step 1: Fix the electromagnetic coil on the laser cutting head, which can move with the laser cutting head.
步骤2:将待切割工件竖直放置并固定。Step 2: Place and fix the workpiece to be cut vertically.
步骤3:在激光切割轨迹中定义拐角切割引入段和引出段。Step 3: Define the corner cutting lead-in and lead-out segments in the laser cutting track.
步骤4:启动激光切割系统,开启切割辅助气体,启动电磁场电源,激光束垂直辐照待切割工件表面,实现厚板激光切割。Step 4: Start the laser cutting system, start the cutting auxiliary gas, start the electromagnetic field power supply, and the laser beam vertically irradiates the surface of the workpiece to be cut to realize the thick plate laser cutting.
步骤5:当激光束移动到拐角切割引入段起始点时,调节电磁场电源,开始拐角区域切割。Step 5: When the laser beam moves to the starting point of the corner cutting lead-in section, adjust the power of the electromagnetic field to start cutting the corner area.
步骤6:当激光束移动到拐角切割引出段终止点时,调节电磁场电源,结束拐角区域切割。Step 6: When the laser beam moves to the end point of the corner cutting lead-out section, adjust the power of the electromagnetic field to end the corner area cutting.
步骤7:达到切割末端点时,关闭激光发生器,关闭电磁场电源,关闭切割辅助气体,完成切割过程。Step 7: When the cutting end point is reached, turn off the laser generator, turn off the power of the electromagnetic field, and turn off the auxiliary gas for cutting to complete the cutting process.
进一步地,在步骤2中,待切割工件为不锈钢板。Further, in
进一步地,待切割工件厚度为15 ~30 mm。Further, the thickness of the workpiece to be cut is 15-30 mm.
进一步地,在步骤3中,待切割工件拐角形式为圆弧或直线相交拐角。Further, in
进一步地,在步骤3中,拐角切割引入段为拐角终止点开始的一段直线切割区。Further, in
进一步地,拐角切割引入段长度d1为10~30 mm。Further, the length d 1 of the corner cutting introduction section is 10-30 mm.
进一步地,在步骤3中,拐角切割引出段为距离拐角起始点的一段直线切割区。Further, in
进一步地,拐角切割引出段长度d2为10~20 mm。Further, the length d 2 of the corner cutting lead-out section is 10-20 mm.
进一步地,在步骤4中,切割辅助气体选择氮气,纯度为99.999 %。Further, in
进一步地,切割辅助气体压力为1.5~3 MPa。Further, the cutting auxiliary gas pressure is 1.5-3 MPa.
进一步地,在步骤4中,启动电磁场电源,电磁线圈产生的电磁场大小为0.1~1 T。Further, in
进一步地,在步骤5中,调节电磁场电源,使得电磁线圈产生的电磁场大小增大。Further, in
进一步地,电磁场大小为0.5~5 T。Further, the magnitude of the electromagnetic field is 0.5~5 T.
进一步地,在步骤6中,调节电磁场电源,使得电磁线圈产生的电磁场大小减小。Further, in
进一步地,电磁场大小为0.1~1 T。Further, the magnitude of the electromagnetic field is 0.1~1 T.
本发明的有益效果是:The beneficial effects of the present invention are:
1)在本发明中,通过在激光切割过程中加入电磁场,可以对激光切割熔融金属提供一个向喷出方向的外力——洛伦兹力,如此激光切割区域熔融金属向喷出方向的流动更加有序,特别地厚板拐角处切割区域熔融金属流动得到有效控制实现有序流动,从而大大改善激光切割厚板切割效果,避免了拐角处熔融金属“逆喷”现象。1) In the present invention, by adding an electromagnetic field in the laser cutting process, an external force - Lorentz force can be provided to the laser cutting molten metal in the ejection direction, so that the flow of the molten metal in the laser cutting area towards the ejection direction is more efficient. Orderly, especially the flow of molten metal in the cutting area at the corner of the thick plate is effectively controlled to achieve an orderly flow, which greatly improves the cutting effect of laser cutting thick plate and avoids the phenomenon of "reverse spray" of molten metal at the corner.
2)在本发明中,通过施加电磁场的方式为切割区域熔融金属提供了较大的外力,可以减小激光功率和保护气体消耗,减少运行成本。2) In the present invention, a large external force is provided for the molten metal in the cutting area by applying an electromagnetic field, which can reduce the consumption of laser power and shielding gas, and reduce operating costs.
3)采用本发明所述方法进行厚板拐角处切割速率大,提高了切割效率。3) Using the method of the present invention, the cutting rate at the corner of the thick plate is large, and the cutting efficiency is improved.
附图说明Description of drawings
图1是厚板拐角处切割区域示意图。Figure 1 is a schematic diagram of the cutting area at the corner of the thick plate.
图2是厚板拐角处常规激光切割过程示意图。Figure 2 is a schematic diagram of a conventional laser cutting process at the corner of a thick plate.
图3是本发明所述厚板激光切割过程示意图。FIG. 3 is a schematic diagram of the laser cutting process of the thick plate according to the present invention.
图4是具体实施方式一切割路径示意图。FIG. 4 is a schematic diagram of a cutting path according to a specific embodiment.
图5是具体实施方式二切割路径示意图。FIG. 5 is a schematic diagram of a cutting path according to the second embodiment.
其中:1、激光切割头,2、激光束,3、洛伦兹力方向,4、同轴保护气体,5、割缝,6、熔池,7、待切割工件,8、电磁线圈,9、逆喷熔融金属,10、等离子体,11、拐角切割引入段起始点,12、拐角起始点,13、拐角终止点,14、拐角切割引出段终止点,15、电磁场电源。Among them: 1. Laser cutting head, 2. Laser beam, 3. Lorentz force direction, 4. Coaxial shielding gas, 5. Slotting, 6. Weld pool, 7. Workpiece to be cut, 8. Electromagnetic coil, 9 , Reverse spray molten metal, 10, Plasma, 11, Corner cutting lead-in section starting point, 12, Corner starting point, 13, Corner ending point, 14, Corner cutting lead-out section ending point, 15, Electromagnetic field power supply.
具体实施方式1:Specific implementation 1:
以下将结合附图1-4以及具体实施例来对本发明的技术方案进行详细说明。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings 1-4 and specific embodiments.
如图1-4所示,本发明实施例中,一种厚板激光切割方法包括如下步骤。As shown in Figures 1-4, in an embodiment of the present invention, a thick plate laser cutting method includes the following steps.
步骤1:将电磁线圈8固定在激光切割头1上,可随激光切割头1移动;本实例中,电磁场大小可调节范围为0.1~5 T。Step 1: Fix the
步骤2:将待切割工件7竖直放置并固定;本实例中,待切割工件7厚度为15 ~30mm。Step 2: Place and fix the
步骤3:在激光切割轨迹中定义拐角切割引入段和引出段;本实例中,待切割工件拐角形式为圆弧,拐角切割引入段为距离拐角起始点12的一段直线切割区,其长度d1为10~30 mm,拐角切割引出段为拐角终止点13开始的一段直线切割区,其长度d2为10~20 mm。Step 3: Define the corner cutting lead-in section and lead-out section in the laser cutting track; in this example, the corner of the workpiece to be cut is an arc, and the corner cutting lead-in section is a straight
步骤4:启动激光切割系统,开启切割辅助气体,启动电磁场电源15,激光束2垂直辐照待切割工件表面;本实例中,当开始切割方向为竖直切割时调整电磁场大小为0.2~0.3T,切割辅助气体压力为1.5~3 MPa。Step 4: Start the laser cutting system, start the auxiliary gas for cutting, start the electromagnetic
步骤5:当激光束2移动到拐角切割引入段起始点12时,调节电磁场电源15,开始拐角区域切割;本实例中,调节电磁场电源15,使得电磁线圈8产生的电磁场增大,电磁场大小调节为0.5 ~1 T。Step 5: When the
步骤6:当激光束2移动到拐角切割终止点13时,即进入水平方向切割后,调节电磁场电源15,结束拐角区域切割;本实例中,调节电磁场电源15,使得电磁线圈8产生的电磁场减小,电磁场大小调节为0.3~0.8 T。Step 6: When the
步骤7:达到切割末端点时,关闭激光发生器,关闭电磁场电源15,关闭切割辅助气体,完成切割过程。Step 7: When reaching the cutting end point, turn off the laser generator, turn off the electromagnetic
在本实施例中,通过在激光切割过程中加入电磁场,可以对激光切割熔融金属提供一个向喷出方向的外力——洛伦兹力,如此激光切割区域熔融金属向喷出方向的流动更加有序,特别地厚板拐角处切割区域熔融金属流动得到有效控制实现有序流动,从而大大改善激光切割厚板切割效果,避免了拐角处熔融金属“逆喷”现象。In this embodiment, by adding an electromagnetic field during the laser cutting process, an external force—Lorentz force in the ejection direction can be provided to the laser cutting molten metal, so that the flow of the molten metal in the laser cutting area toward the ejection direction is more efficient. In particular, the flow of molten metal in the cutting area at the corner of the thick plate is effectively controlled to achieve an orderly flow, which greatly improves the cutting effect of laser cutting thick plate and avoids the phenomenon of "reverse spray" of molten metal at the corner.
具体实施方式2:Specific implementation 2:
结合附图5对本发明的另一个实施方式进行详细说明。Another embodiment of the present invention will be described in detail with reference to FIG. 5 .
该实施例中,厚板激光切割方法包括以下几个步骤:In this embodiment, the thick plate laser cutting method includes the following steps:
步骤1:将电磁线圈8固定在激光切割头1上,可随激光切割头1移动;本实例中,电磁场大小可调节范围为0.1~5 T。Step 1: Fix the
步骤2:将待切割工件7竖直放置并固定;本实例中,待切割工件7厚度为15 ~30mm。Step 2: Place and fix the
步骤3:在激光切割轨迹中定义拐角切割引入段和引出段;本实例中,待切割工件拐角形式为直线相交拐角,拐角切割引入段为距离拐角起始点11的一段直线切割区,其长度d1为10~30 mm,拐角切割引出段为拐角终止点13开始的一段直线切割区,其长度d2为10~20 mm。Step 3: Define the corner cutting lead-in section and lead-out section in the laser cutting track; in this example, the corner of the workpiece to be cut is a straight line intersecting corner, and the corner cutting lead-in section is a straight
步骤4:启动激光切割系统,开启切割辅助气体,启动电磁场电源15,激光束2垂直辐照待切割工件表面;本实例中,当开始切割方向为水平切割时调整电磁场为0.3~0.8 T,切割辅助气体压力为1.5~3 MPa。Step 4: Start the laser cutting system, start the cutting auxiliary gas, start the electromagnetic
步骤5:当激光束2移动到拐角切割引入段起始点12时,调节电磁场电源15,开始拐角区域切割;本实例中,调节电磁场电源15,使得电磁线圈8产生的电磁场大小增大,电磁场大小调节为0.8~1.2 T。Step 5: When the
步骤6:当激光束2移动到拐角切割终止点13时,即进入竖直方向切割后,调节电磁场电源15,结束拐角区域切割;本实例中,调节电磁场电源15,使得电磁线圈8产生的电磁场减小,电磁场大小调节为0.3~0.5 T。Step 6: When the
步骤7:达到切割末端点时,关闭激光发生器,关闭电磁场电源15,关闭切割辅助气体,完成切割过程。Step 7: When reaching the cutting end point, turn off the laser generator, turn off the electromagnetic
上述实施例为本发明的常见实施方式,但本发明的实施方式并不受上述实施例的限制。其它任何未背离本发明精神实质及原理所做的改变、修饰、替代、组合、简化,均应视为等效置换方式,包含在本发明保护范围之内。The above embodiments are common implementations of the present invention, but the embodiments of the present invention are not limited by the above embodiments. Any other changes, modifications, substitutions, combinations, and simplifications that do not deviate from the spirit and principle of the present invention shall be regarded as equivalent substitutions, and are included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910688542.5A CN110293325B (en) | 2019-07-29 | 2019-07-29 | Thick plate laser cutting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910688542.5A CN110293325B (en) | 2019-07-29 | 2019-07-29 | Thick plate laser cutting method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110293325A CN110293325A (en) | 2019-10-01 |
CN110293325B true CN110293325B (en) | 2020-10-30 |
Family
ID=68032087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910688542.5A Active CN110293325B (en) | 2019-07-29 | 2019-07-29 | Thick plate laser cutting method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110293325B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113118642A (en) * | 2019-12-31 | 2021-07-16 | 江苏亚威机床股份有限公司 | Laser cutting corner processing method |
CN111055029A (en) * | 2019-12-31 | 2020-04-24 | 武汉大学 | Laser cutting device and method for electromagnetic field-controlled plasma-controlled crack propagation |
CN115519259B (en) * | 2022-10-22 | 2024-05-24 | 长沙大科激光科技有限公司 | High-frequency current assisted double-beam laser cutting method |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61123493A (en) * | 1984-11-20 | 1986-06-11 | Mitsubishi Electric Corp | Laser working device |
WO1990014195A1 (en) * | 1989-05-17 | 1990-11-29 | Fanuc Ltd | Cut-machining method by laser beam |
CN1070855A (en) * | 1991-09-18 | 1993-04-14 | 英国氧气集团有限公司 | Through improved material thermal cutting equipment |
GB2264887A (en) * | 1992-03-07 | 1993-09-15 | British Aerospace | A material processing apparatus |
DE102008037345A1 (en) * | 2008-08-12 | 2010-02-25 | Andreas Trautmann | Gas nozzle for welding/cutting a workpiece for steel based fabrication process, comprises a first inner nozzle for providing a first process gas flow, second external nozzle for providing second conducting gas flow, and a gas supply unit |
CN102310276A (en) * | 2011-06-22 | 2012-01-11 | 胡忠 | Cutting machine capable of controlling fracture by electrically controlled lasers |
CN103128423A (en) * | 2013-01-31 | 2013-06-05 | 鞍山煜宸科技有限公司 | Laser tungsten inert gas (TIG) arc coaxial hybrid welding method with additional high frequency magnetic field and device |
CN103753028A (en) * | 2014-02-13 | 2014-04-30 | 温州大学 | Laser boring method and device assisted by electric field and magnetic field coupling |
CN103817430A (en) * | 2014-02-13 | 2014-05-28 | 温州大学 | Electromagnetically-assisted laser drilling method and device |
CN103878494A (en) * | 2014-03-31 | 2014-06-25 | 深圳市大族激光科技股份有限公司 | Laser perforation method and method for cutting through hole through lasers |
CN105834595A (en) * | 2016-06-07 | 2016-08-10 | 成都市松川金属材料有限公司 | Sharp corner laser cutting method |
CN205852073U (en) * | 2016-07-13 | 2017-01-04 | 雷科股份有限公司 | Electromagnetic Field Assisted Laser Drilling Mechanism |
CN106956077A (en) * | 2017-03-10 | 2017-07-18 | 南京航空航天大学 | A kind of cut deal aluminium alloy magnetic control laser welding process |
CN107252970A (en) * | 2017-07-04 | 2017-10-17 | 广东工业大学 | A kind of laser welding system and method |
-
2019
- 2019-07-29 CN CN201910688542.5A patent/CN110293325B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61123493A (en) * | 1984-11-20 | 1986-06-11 | Mitsubishi Electric Corp | Laser working device |
WO1990014195A1 (en) * | 1989-05-17 | 1990-11-29 | Fanuc Ltd | Cut-machining method by laser beam |
CN1070855A (en) * | 1991-09-18 | 1993-04-14 | 英国氧气集团有限公司 | Through improved material thermal cutting equipment |
GB2264887A (en) * | 1992-03-07 | 1993-09-15 | British Aerospace | A material processing apparatus |
DE102008037345A1 (en) * | 2008-08-12 | 2010-02-25 | Andreas Trautmann | Gas nozzle for welding/cutting a workpiece for steel based fabrication process, comprises a first inner nozzle for providing a first process gas flow, second external nozzle for providing second conducting gas flow, and a gas supply unit |
CN102310276A (en) * | 2011-06-22 | 2012-01-11 | 胡忠 | Cutting machine capable of controlling fracture by electrically controlled lasers |
CN103128423A (en) * | 2013-01-31 | 2013-06-05 | 鞍山煜宸科技有限公司 | Laser tungsten inert gas (TIG) arc coaxial hybrid welding method with additional high frequency magnetic field and device |
CN103753028A (en) * | 2014-02-13 | 2014-04-30 | 温州大学 | Laser boring method and device assisted by electric field and magnetic field coupling |
CN103817430A (en) * | 2014-02-13 | 2014-05-28 | 温州大学 | Electromagnetically-assisted laser drilling method and device |
CN103878494A (en) * | 2014-03-31 | 2014-06-25 | 深圳市大族激光科技股份有限公司 | Laser perforation method and method for cutting through hole through lasers |
CN105834595A (en) * | 2016-06-07 | 2016-08-10 | 成都市松川金属材料有限公司 | Sharp corner laser cutting method |
CN205852073U (en) * | 2016-07-13 | 2017-01-04 | 雷科股份有限公司 | Electromagnetic Field Assisted Laser Drilling Mechanism |
CN106956077A (en) * | 2017-03-10 | 2017-07-18 | 南京航空航天大学 | A kind of cut deal aluminium alloy magnetic control laser welding process |
CN107252970A (en) * | 2017-07-04 | 2017-10-17 | 广东工业大学 | A kind of laser welding system and method |
Also Published As
Publication number | Publication date |
---|---|
CN110293325A (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110293325B (en) | Thick plate laser cutting method | |
CN108213649B (en) | A magnetic field controlled arc robot additive forming method and device | |
CN103737176B (en) | A kind of laser and electromagnetic pulse complex welding method and equipment | |
CN104625412B (en) | Copper alloy laser-cold metal transition compound heat source material increase manufacturing method | |
CN110434336B (en) | Device and method for removing surface oxide skin in metal component additive manufacturing process in real time by laser | |
CN103769746B (en) | A kind of impulse magnetic field auxiliary laser welding method and equipment | |
CN106987838B (en) | Laser cladding device and method for removing air holes/inclusions of laser cladding layer | |
CN104985303B (en) | A kind of InFocus TOPTIG twin arc complex welding methods | |
CN104985327A (en) | Bifocus laser and InFocus arc hybrid welding method | |
CN105132910B (en) | A kind of method of steady magnetic field auxiliary laser melting and coating process | |
CN103286444B (en) | Laser butt welding method of silicon steel sheet | |
CN104999181B (en) | A laser-InFocus arc dual-focus compound welding method | |
CN102886612A (en) | Laser-plasma arc double-side hybrid welding method | |
CN104588846A (en) | Method and device for increasing TIG welding electric arc energy density | |
CN104785931B (en) | A kind of plasma-submerged arc composite welding system and welding method thereof | |
CN108817670B (en) | A kind of high-power laser arc hybrid welding energy modulation welding method | |
CN113941778B (en) | Thick plate ultrahigh-power laser-deep melting TIG hybrid welding method | |
CN113770522A (en) | Laser ultra-narrow gap welding method for titanium alloy thick plate pre-filled wire | |
CN110293324B (en) | A kind of electromagnetic field assisted laser cutting method | |
CN110293326B (en) | Method for cutting thick plate by double-beam laser | |
CN113941777A (en) | Thick plate ultrahigh-power laser scanning-high-frequency pulse deep melting TIG (tungsten inert gas) hybrid welding method | |
CN110695532A (en) | A low-power large-spot laser-MAG arc composite surfacing method | |
CN108515266B (en) | A method for high-frequency vibration-assisted laser welding of aluminum alloys | |
CN206768218U (en) | Remove the laser cladding apparatus of laser cladding layer stomata/field trash | |
CN113102891A (en) | A method and device for suppressing collapse of aluminum alloy laser-MIG hybrid welding by applying an external magnetic field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231225 Address after: No. 14, Houshi Group, Shuanghe Village, Xinglong Township, Xuyi County, Huai'an City, Jiangsu Province, 223000 Patentee after: Zhao Hongbo Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Dragon totem Technology (Hefei) Co.,Ltd. Effective date of registration: 20231225 Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Dragon totem Technology (Hefei) Co.,Ltd. Address before: School of automotive and mechanical engineering, Changsha University of technology, No. 960, Section 2, Wanjiali South Road, Tianxin District, Changsha City, Hunan Province, 410114 Patentee before: CHANGSHA University OF SCIENCE AND TECHNOLOGY |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240416 Address after: 214000, No. 148 Chunhui East Road, Xishan Economic and Technological Development Zone, Wuxi City, Jiangsu Province Patentee after: Wuxi Liyang Laser Technology Co.,Ltd. Country or region after: China Address before: No. 14, Houshi Group, Shuanghe Village, Xinglong Township, Xuyi County, Huai'an City, Jiangsu Province, 223000 Patentee before: Zhao Hongbo Country or region before: China |
|
TR01 | Transfer of patent right |