CN110276531A - Material flow analysis method and system, storage medium, and terminal in iron and steel industry - Google Patents
Material flow analysis method and system, storage medium, and terminal in iron and steel industry Download PDFInfo
- Publication number
- CN110276531A CN110276531A CN201910474367.XA CN201910474367A CN110276531A CN 110276531 A CN110276531 A CN 110276531A CN 201910474367 A CN201910474367 A CN 201910474367A CN 110276531 A CN110276531 A CN 110276531A
- Authority
- CN
- China
- Prior art keywords
- usage
- production
- material flow
- iron
- steel industry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 145
- 239000000463 material Substances 0.000 title claims abstract description 124
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 75
- 239000010959 steel Substances 0.000 title claims abstract description 75
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 70
- 238000005206 flow analysis Methods 0.000 title claims abstract description 29
- 238000003860 storage Methods 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims abstract description 119
- 230000008569 process Effects 0.000 claims abstract description 46
- 238000005245 sintering Methods 0.000 claims abstract description 34
- 238000009628 steelmaking Methods 0.000 claims abstract description 27
- 238000005453 pelletization Methods 0.000 claims abstract description 16
- 238000004458 analytical method Methods 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 claims description 36
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 36
- 239000000571 coke Substances 0.000 claims description 24
- 230000005611 electricity Effects 0.000 claims description 18
- 239000003345 natural gas Substances 0.000 claims description 18
- 239000002893 slag Substances 0.000 claims description 18
- 239000003245 coal Substances 0.000 claims description 15
- 229910000805 Pig iron Inorganic materials 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000010802 sludge Substances 0.000 claims description 12
- 239000000428 dust Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 9
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 9
- 239000010459 dolomite Substances 0.000 claims description 9
- 229910000514 dolomite Inorganic materials 0.000 claims description 9
- 239000004571 lime Substances 0.000 claims description 9
- 239000008188 pellet Substances 0.000 claims description 9
- 239000002918 waste heat Substances 0.000 claims description 9
- 239000002351 wastewater Substances 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000004575 stone Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910001341 Crude steel Inorganic materials 0.000 claims description 6
- 235000019738 Limestone Nutrition 0.000 claims description 6
- 239000000440 bentonite Substances 0.000 claims description 6
- 229910000278 bentonite Inorganic materials 0.000 claims description 6
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 6
- 238000005266 casting Methods 0.000 claims description 6
- 239000000295 fuel oil Substances 0.000 claims description 6
- 239000006028 limestone Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000013505 freshwater Substances 0.000 claims description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000009845 electric arc furnace steelmaking Methods 0.000 claims description 4
- 239000011819 refractory material Substances 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 3
- 238000009749 continuous casting Methods 0.000 claims description 3
- 238000006477 desulfuration reaction Methods 0.000 claims description 3
- 230000023556 desulfurization Effects 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000003921 oil Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000011044 quartzite Substances 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 239000002699 waste material Substances 0.000 claims description 3
- 239000010450 olivine Substances 0.000 claims description 2
- 229910052609 olivine Inorganic materials 0.000 claims description 2
- 230000002265 prevention Effects 0.000 abstract description 6
- 238000012545 processing Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 6
- 230000036284 oxygen consumption Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- -1 scrap Substances 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000013070 direct material Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Educational Administration (AREA)
- Operations Research (AREA)
- Marketing (AREA)
- Game Theory and Decision Science (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明提供一种钢铁行业物质流分析方法及系统、存储介质及终端,包括以下步骤:获取钢铁行业各个工艺下的物质流参数和能量流参数;所述工艺包括烧结、球团、炼铁和炼钢;基于所述物质流参数和所述能量流参数获取物质流与能量流的定量关系;基于所述物质流参数获取物质流特征。本发明的钢铁行业物质流分析方法及系统、存储介质及终端能够实现钢铁行业物质流和能量流的定量关系分析,从而为建立精细化生产管理和污染防治提供重要依据。
The invention provides a material flow analysis method and system, a storage medium and a terminal in the iron and steel industry, comprising the following steps: obtaining material flow parameters and energy flow parameters under various processes in the iron and steel industry; the processes include sintering, pelletizing, ironmaking and steelmaking; obtaining the quantitative relationship between the material flow and the energy flow based on the material flow parameter and the energy flow parameter; and obtaining the material flow characteristic based on the material flow parameter. The material flow analysis method and system, the storage medium and the terminal in the iron and steel industry of the present invention can realize the quantitative relationship analysis between the material flow and energy flow in the iron and steel industry, thereby providing an important basis for establishing refined production management and pollution prevention and control.
Description
技术领域technical field
本发明涉及数据分析的技术领域,特别是涉及一种钢铁行业物质流分析方法及系统、存储介质及终端。The invention relates to the technical field of data analysis, in particular to a material flow analysis method and system in the iron and steel industry, a storage medium and a terminal.
背景技术Background technique
钢铁行业是我国经济发展的支柱产业,粗钢的产量从1996年的1.01亿吨增长到2016年的8.08亿吨。2015年我国出口钢材量约占我国生产钢材总量的10%,占世界钢铁出口量第1位。由此可知,我国钢铁份额占世界钢铁总份额的比重在不断增长。The iron and steel industry is the pillar industry of my country's economic development. The output of crude steel increased from 101 million tons in 1996 to 808 million tons in 2016. In 2015, my country's steel exports accounted for about 10% of my country's total steel production, ranking first in the world's steel exports. It can be seen that the proportion of my country's iron and steel share in the world's total iron and steel share is constantly increasing.
长流程钢铁企业的工艺主要包括烧结/球团、炼铁、炼钢。烧结工艺的主要设备为烧结机,产物为烧结块;球团工艺的主要设备为球团机,产物为球团。烧结块和球团作为炼铁的主要原料。目前,国内产能较高的炼铁设备类型为高炉,高炉炼铁的产品为生铁,进一步通过转炉炼钢,将生铁转化为粗钢。生铁和粗钢产量是衡量钢铁企业规模的主要指标。The processes of long-process iron and steel enterprises mainly include sintering/pelletizing, ironmaking, and steelmaking. The main equipment of the sintering process is a sintering machine, and the product is a sintered block; the main equipment of the pelletizing process is a pelletizing machine, and the product is a pellet. Agglomerates and pellets are used as the main raw materials for ironmaking. At present, the type of ironmaking equipment with relatively high production capacity in China is the blast furnace, and the product of blast furnace ironmaking is pig iron, which is further converted into crude steel through converter steelmaking. The output of pig iron and crude steel is the main indicator to measure the scale of iron and steel enterprises.
钢铁企业的物质流和能量流相辅相成,直接影响钢铁企业的直接产能和经济,也可以反应原辅料转化为产品的能力、物质损坏及污染物产生情况等。然而,现有技术中钢铁企业工艺直接物质流动的定量关系较少,无法为建立精细化生产管理和污染防治提供重要依据。The material flow and energy flow of iron and steel enterprises complement each other, directly affect the direct production capacity and economy of iron and steel enterprises, and can also reflect the ability of raw and auxiliary materials to be converted into products, material damage and pollutant generation. However, in the prior art, there are few quantitative relationships in the direct material flow of iron and steel enterprises, which cannot provide an important basis for the establishment of refined production management and pollution prevention and control.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种钢铁行业物质流分析方法及系统、存储介质及终端,能够实现钢铁行业物质流和能量流的定量关系分析,从而为建立精细化生产管理和污染防治提供重要依据。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a material flow analysis method and system, a storage medium and a terminal in the iron and steel industry, which can realize the quantitative relationship analysis between material flow and energy flow in the iron and steel industry, so as to establish a fine It provides an important basis for modernized production management and pollution prevention and control.
为实现上述目的及其他相关目的,本发明提供一种钢铁行业物质流分析方法,包括以下步骤:获取钢铁行业各个工艺下的物质流参数和能量流参数;所述工艺包括烧结、球团、炼铁和炼钢;基于所述物质流参数和所述能量流参数获取物质流与能量流的定量关系;基于所述物质流参数获取物质流特征。In order to achieve the above purpose and other related purposes, the present invention provides a material flow analysis method in the iron and steel industry, comprising the following steps: obtaining material flow parameters and energy flow parameters under various processes in the iron and steel industry; the processes include sintering, pelletizing, refining Iron and steelmaking; obtaining the quantitative relationship between material flow and energy flow based on the material flow parameter and the energy flow parameter; obtaining material flow characteristics based on the material flow parameter.
于本发明一实施例中,所述烧结工艺下所述物质流参数包括铁矿粉使用量、膨润土使用量、石灰使用量、除尘灰使用量、除尘污泥使用量、氧化铁皮使用量、烧结矿产生量、除尘灰产生量、烧结污泥产生量、废水产生量和余热产生量;所述能量流参数包括焦炉煤气使用量、高炉煤气使用量、天然气使用量、电使用量、焦粉使用量、水使用量和压缩空气使用量。In an embodiment of the present invention, the material flow parameters under the sintering process include the usage of iron ore powder, bentonite, lime, dust removal ash, dust removal sludge, iron oxide scale, sintering Mine production, dedusting ash production, sintering sludge production, waste water production and waste heat production; the energy flow parameters include coke oven gas consumption, blast furnace gas consumption, natural gas consumption, electricity consumption, coke powder usage, water usage and compressed air usage.
于本发明一实施例中,所述球团工艺下所述物质流参数包括铁矿石使用量、膨润土使用量、溶剂使用量、石灰使用量、废铁使用量、橄榄石使用量、白云石使用量、石英岩使用量、球团产生量、除尘灰产生量、污泥产生量、废水产生量和废热产生量;所述能量流参数包括高炉煤气使用量、转炉煤气使用量、天然气使用量、电使用量、焦屑使用量、油使用量、煤炭使用量、水使用量和压缩空气使用量。In an embodiment of the present invention, the material flow parameters in the pelletizing process include iron ore usage, bentonite usage, solvent usage, lime usage, scrap iron usage, olivine usage, dolomite usage Usage amount, quartzite usage amount, pellet production amount, dedusting ash generation amount, sludge generation amount, waste water generation amount and waste heat generation amount; the energy flow parameters include blast furnace gas usage amount, converter gas usage amount, natural gas usage amount , electricity usage, coke usage, oil usage, coal usage, water usage and compressed air usage.
于本发明一实施例中,高炉炼铁工艺下所述物质流参数包括烧结矿使用量、块矿使用量、球团使用量、焦炭使用量、退料使用量、石灰石使用量、重油使用量、煤炭使用量、焦炉煤气使用量、天然气使用量、氧气使用量、碳氢化合物使用量、高炉煤气产生量、铁水产生量、电产生量、高炉渣产生量、重力除尘灰产生量、干法除尘灰产生量、铸造车间灰产生量、耐火材料产生量、废水产生量、废热产生量和除尘灰产生量;所述能源流参数包括高炉煤气使用量、焦炉煤气使用量、天然气使用量、转炉煤气使用量、工艺蒸汽使用量、电使用量、氧气使用量、氮气使用量、压缩空气使用量和新水使用量。In an embodiment of the present invention, the material flow parameters in the blast furnace ironmaking process include the usage of sinter, lump ore, pellets, coke, scrap, limestone, and heavy oil , coal consumption, coke oven gas consumption, natural gas consumption, oxygen consumption, hydrocarbon consumption, blast furnace gas production, molten iron production, electricity production, blast furnace slag production, gravity dust collection ash production, dry The amount of ash generated by dedusting method, foundry ash, refractory material, waste water, waste heat, and dedusted ash; the energy flow parameters include blast furnace gas usage, coke oven gas usage, and natural gas usage , converter gas usage, process steam usage, electricity usage, oxygen usage, nitrogen usage, compressed air usage and fresh water usage.
于本发明一实施例中,转炉炼钢工艺中所述物质流参数包括生铁使用量、废钢使用量、粗金属炉料使用量、乙烯使用量、蒸汽使用量、铁水使用量、焦炭使用量、石灰使用量、白云石使用量、合金石使用量、污泥球使用量、铸板产生量、钢块产生量、钢胚产生量、铸块产生量、铸件产生量、转炉煤气产生量、脱硫炉渣产生量、转炉渣产生量、二次冶金炉渣产生量、灰尘产生量、散颗粒产生量、连铸氧化铁皮产生量、轧钢氧化铁皮产生量和碎石产生量;所述能量流参数包括高炉煤气使用量、焦炉煤气使用量、天然气使用量、转炉煤气使用量、工艺蒸汽使用量、电使用量、氧气使用量、氮气使用量、压缩空气使用量和新水使用量。In an embodiment of the present invention, the material flow parameters in the converter steelmaking process include pig iron usage, scrap steel usage, crude metal charge usage, ethylene usage, steam usage, molten iron usage, coke usage, lime Usage amount, dolomite usage amount, alloy stone usage amount, sludge ball usage amount, casting slab production, steel ingot production, steel billet production, ingot production, casting production, converter gas production, desulfurization slag production, converter slag production, secondary metallurgical slag production, dust production, loose particle production, continuous casting scale production, steel rolling scale production and crushed stone production; the energy flow parameters include blast furnace gas Usage, Coke Oven Gas Usage, Natural Gas Usage, Converter Gas Usage, Process Steam Usage, Electricity Usage, Oxygen Usage, Nitrogen Usage, Compressed Air Usage and Fresh Water Usage.
于本发明一实施例中,电弧炉炼钢工艺中所述物质流参数包括生铁使用量、热液态金属使用量、直接还原铁使用量、石灰石/白云石使用量、煤炭使用量、石墨电极使用量、耐火炉衬使用量、合金使用量、液态钢产生量、炉渣产生量、钢包渣产生量和废耐火材料产生量;所述能源流参数包括氧气使用量、煤炭使用量、电使用量、天然气使用量、燃料油使用量和水使用量。In an embodiment of the present invention, the material flow parameters in the electric arc furnace steelmaking process include pig iron usage, hot liquid metal usage, direct reduced iron usage, limestone/dolomite usage, coal usage, graphite electrode usage amount, refractory lining usage, alloy usage, liquid steel production, slag production, ladle slag production and waste refractory production; the energy flow parameters include oxygen consumption, coal consumption, electricity consumption, natural gas usage, fuel oil usage and water usage.
于本发明一实施例中,所述物质流特征包括烧结投入产出比、烧结原辅料比例、炼铁投入产出比、炼铁原辅料比例、炼钢投入产出比和炼钢原辅料比例;In an embodiment of the present invention, the material flow characteristics include sintering input-output ratio, sintering raw and auxiliary material ratio, ironmaking input-output ratio, ironmaking raw and auxiliary material ratio, steelmaking input-output ratio and steelmaking raw and auxiliary material ratio ;
所述烧结投入产出比ST=(1.13±0.26)*Or,其中,ST为烧结矿年产生量,Or为铁矿粉年投入量;The sintering input-output ratio ST=(1.13±0.26)*Or, wherein, ST is the annual production of sintered ore, and Or is the annual input of iron ore powder;
所述烧结原辅料比例Or:Ck:Co=50:2:1,其中,Ck为焦炭年投入量,Co为煤炭年投入量;The ratio of raw and auxiliary materials for sintering Or:Ck:Co=50:2:1, where Ck is the annual input of coke, and Co is the annual input of coal;
所述炼铁投入产出比IR=(0.75±0.23)*ST,其中,IR为生铁年产生量,ST为烧结矿年产生量;The ironmaking input-output ratio IR=(0.75±0.23)*ST, wherein, IR is the annual production of pig iron, and ST is the annual production of sinter;
所述炼铁原辅料比例ST:Lo=5.7:1,其中,Lo为块矿年投入量;The ratio of raw and auxiliary materials for ironmaking ST: Lo = 5.7: 1, where Lo is the annual input of lump ore;
所述炼钢投入产出比CS=(1.06±0.12)*IR,其中,CS为粗钢年产生量;The steelmaking input-output ratio CS=(1.06±0.12)*IR, wherein CS is the annual output of crude steel;
所述炼钢原辅料比例IR:(SS+Aly)=6.5:1,其中,SS为废钢年投入量,Aly为合金年投入量。The ratio of raw and auxiliary materials for steelmaking IR:(SS+Aly)=6.5:1, wherein SS is the annual input amount of steel scrap, and Aly is the annual input amount of alloy.
对应地,本发明提供一种钢铁行业物质流分析系统,包括获取模块、定量模块和分析模块;Correspondingly, the present invention provides a material flow analysis system in the iron and steel industry, including an acquisition module, a quantitative module and an analysis module;
所述获取模块用于获取钢铁行业各个工艺下的物质流参数和能量流参数;所述工艺包括烧结、球团、炼铁和炼钢;The acquisition module is used to acquire material flow parameters and energy flow parameters under various processes in the iron and steel industry; the processes include sintering, pelletizing, ironmaking and steelmaking;
所述定量模块用于基于所述物质流参数和所述能量流参数获取物质流与能量流的定量关系;The quantitative module is used to obtain the quantitative relationship between the material flow and the energy flow based on the material flow parameter and the energy flow parameter;
所述分析模块用于基于所述物质流参数获取物质流特征。The analysis module is used to obtain a material flow characteristic based on the material flow parameter.
本发明提供一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的钢铁行业物质流分析。The present invention provides a storage medium on which a computer program is stored, and when the program is executed by a processor, the above material flow analysis in the iron and steel industry is realized.
最后,本发明提供一种终端,包括:处理器及存储器;Finally, the present invention provides a terminal, including: a processor and a memory;
所述存储器用于存储计算机程序;The memory is used to store computer programs;
所述处理器用于执行所述存储器存储的计算机程序,以使所述终端执行上述的钢铁行业物质流分析。The processor is used to execute the computer program stored in the memory, so that the terminal performs the above-mentioned material flow analysis in the iron and steel industry.
如上所述,本发明所述的钢铁行业物质流分析方法及系统、存储介质及终端,具有以下有益效果:As mentioned above, the iron and steel industry material flow analysis method and system, storage medium and terminal according to the present invention have the following beneficial effects:
(1)能够实现钢铁行业物质流和能量流的定量关系分析;(1) It can realize the quantitative relationship analysis of material flow and energy flow in the iron and steel industry;
(2)能够进一步细化钢铁行业的原辅料及产品产量质量的关系;(2) It can further refine the relationship between raw and auxiliary materials and product output and quality in the iron and steel industry;
(3)能够为建立精细化生产管理和污染防治提供重要依据。(3) It can provide an important basis for the establishment of refined production management and pollution prevention and control.
附图说明Description of drawings
图1显示为本发明的钢铁行业物质流分析方法于一实施例中的流程图;Fig. 1 is shown as the flow chart of the material flow analysis method in iron and steel industry of the present invention in an embodiment;
图2显示为本发明的钢铁行业物质流于一实施例中的流程图;Fig. 2 shows the flow chart of material flow in an embodiment for the iron and steel industry of the present invention;
图3显示为本发明的烧结工艺物质流和能量流调查表于一实施例中的示意图;Fig. 3 shows the schematic diagram in an embodiment of the sintering process material flow and energy flow questionnaire of the present invention;
图4显示为本发明的球团工艺物质流和能量流调查表于一实施例中的示意图;Fig. 4 shows the schematic diagram in an embodiment of the pelletizing process material flow and energy flow questionnaire of the present invention;
图5显示为本发明的高炉炼铁工艺物质流和能量流调查表于一实施例中的示意图;Fig. 5 shows the schematic diagram in an embodiment of the blast furnace ironmaking process material flow and energy flow questionnaire;
图6显示为本发明的转炉炼钢工艺物质流和能量流调查表于一实施例中的示意图;Fig. 6 shows the schematic diagram in an embodiment of the converter steelmaking process material flow and energy flow questionnaire;
图7显示为本发明的电弧炉炼钢工艺物质流和能量流调查表于一实施例中的示意图;Fig. 7 shows the schematic diagram of the electric arc furnace steelmaking process material flow and energy flow questionnaire in an embodiment of the present invention;
图8显示为本发明的钢铁行业物质流分析系统于一实施例中的结构示意图;Fig. 8 is a schematic structural diagram of an embodiment of the iron and steel industry material flow analysis system of the present invention;
图9显示为本发明的终端于一实施例中的结构示意图。FIG. 9 is a schematic structural diagram of a terminal of the present invention in an embodiment.
元件标号说明Component designation description
81 获取模块81 Get module
82 定量模块82 quantitative module
83 分析模块83 analysis module
91 处理器91 processors
92 存储器92 memory
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that, in the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the diagrams provided in the following embodiments are only schematically illustrating the basic ideas of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
本发明的钢铁行业物质流分析方法及系统、存储介质及终端通过数据采集和处理,能够实现钢铁行业物质流和能量流的定量关系分析,实现钢铁行业物质流特征的获取,从而为建立精细化生产管理和污染防治提供重要依据,极具实用性。The material flow analysis method and system in the iron and steel industry, the storage medium and the terminal of the present invention can realize the quantitative relationship analysis of the material flow and energy flow in the iron and steel industry through data collection and processing, and realize the acquisition of the characteristics of the material flow in the iron and steel industry, so as to establish a refined It provides an important basis for production management and pollution prevention and control, and is extremely practical.
如图1所示,于一实施例中,本发明的钢铁行业物质流分析方法包括以下步骤:As shown in Figure 1, in one embodiment, the material flow analysis method of the iron and steel industry of the present invention comprises the following steps:
步骤S1、获取钢铁行业各个工艺下的物质流参数和能量流参数;所述工艺包括烧结、球团、炼铁和炼钢。Step S1, obtaining material flow parameters and energy flow parameters of various processes in the iron and steel industry; the processes include sintering, pelletizing, ironmaking and steelmaking.
具体地,在对钢铁行业的物质流进行分析时,首先需要获取足够量的采集数据,以便于根据采集数据进行分析处理,从而获取所需的物质流和能量流的定量关系以及物质流特征。如图2所示,钢铁行业的工艺包括烧结、球团、炼铁和炼钢。其中所述烧结工艺生成的烧结矿和所述球团工艺生成的球团提供至所述炼铁工艺,所述炼铁工艺生成生铁,所述炼钢工艺将所述生铁生成钢胚。其中,在各个工艺中还包括各种辅料和副产品以及能量供给。Specifically, when analyzing the material flow in the iron and steel industry, it is first necessary to obtain a sufficient amount of collected data, so as to facilitate analysis and processing based on the collected data, so as to obtain the required quantitative relationship between material flow and energy flow and material flow characteristics. As shown in Figure 2, the processes in the steel industry include sintering, pelletizing, ironmaking, and steelmaking. The sintered ore produced by the sintering process and the pellets produced by the pelletizing process are provided to the ironmaking process, the ironmaking process produces pig iron, and the steelmaking process produces steel billets from the pig iron. Among them, various auxiliary materials and by-products and energy supply are also included in each process.
于本发明一实施例中,如图3所示,所述烧结工艺下所述物质流参数包括铁矿粉使用量、膨润土使用量、石灰使用量、除尘灰使用量、除尘污泥使用量、氧化铁皮使用量、烧结矿产生量、除尘灰产生量、烧结污泥产生量、废水产生量和余热产生量;所述能量流参数包括焦炉煤气使用量、高炉煤气使用量、天然气使用量、电使用量、焦粉使用量、水使用量和压缩空气使用量。In one embodiment of the present invention, as shown in Figure 3, the material flow parameters under the sintering process include the usage of iron ore powder, bentonite, lime, dedusting ash, dedusting sludge, Scale consumption, sintering ore production, dedusting ash production, sintering sludge production, waste water production and waste heat production; the energy flow parameters include coke oven gas consumption, blast furnace gas consumption, natural gas consumption, Electricity usage, coke powder usage, water usage and compressed air usage.
于本发明一实施例中,如图4所示,所述球团工艺下所述物质流参数包括铁矿石使用量、膨润土使用量、溶剂使用量、石灰使用量、废铁使用量、橄榄石使用量、白云石使用量、石英岩使用量、球团产生量、除尘灰产生量、污泥产生量、废水产生量和废热产生量;所述能量流参数包括高炉煤气使用量、转炉煤气使用量、天然气使用量、电使用量、焦屑使用量、油使用量、煤炭使用量、水使用量和压缩空气使用量。In one embodiment of the present invention, as shown in Figure 4, the material flow parameters under the pelletizing process include iron ore usage, bentonite usage, solvent usage, lime usage, scrap iron usage, olive Stone usage, dolomite usage, quartzite usage, pellet production, dedusting ash production, sludge production, wastewater production and waste heat production; the energy flow parameters include blast furnace gas consumption, converter gas Usage, natural gas usage, electricity usage, coke usage, oil usage, coal usage, water usage and compressed air usage.
于本发明一实施例中,如图5所示,高炉炼铁工艺下所述物质流参数包括烧结矿使用量、块矿使用量、球团使用量、焦炭使用量、退料使用量、石灰石使用量、重油使用量、煤炭使用量、焦炉煤气使用量、天然气使用量、氧气使用量、碳氢化合物使用量、高炉煤气产生量、铁水产生量、电产生量、高炉渣产生量、重力除尘灰产生量、干法除尘灰产生量、铸造车间灰产生量、耐火材料产生量、废水产生量、废热产生量和除尘灰产生量;所述能源流参数包括高炉煤气使用量、焦炉煤气使用量、天然气使用量、转炉煤气使用量、工艺蒸汽使用量、电使用量、氧气使用量、氮气使用量、压缩空气使用量和新水使用量。In one embodiment of the present invention, as shown in Figure 5, the material flow parameters in the blast furnace ironmaking process include the usage of sinter, lump ore, pellets, coke, scrap, limestone Consumption, Heavy Oil Consumption, Coal Consumption, Coke Oven Gas Consumption, Natural Gas Consumption, Oxygen Consumption, Hydrocarbon Consumption, Blast Furnace Gas Production, Hot Metal Production, Electricity Production, Blast Furnace Slag Production, Gravity Dust removal ash generation, dry dust removal ash generation, foundry ash generation, refractory material generation, waste water generation, waste heat generation and dust removal ash generation; the energy flow parameters include blast furnace gas consumption, coke oven gas Usage, natural gas usage, converter gas usage, process steam usage, electricity usage, oxygen usage, nitrogen usage, compressed air usage and fresh water usage.
于本发明一实施例中,如图6所示,转炉炼钢工艺中所述物质流参数包括生铁使用量、废钢使用量、粗金属炉料使用量、乙烯使用量、蒸汽使用量、铁水使用量、焦炭使用量、石灰使用量、白云石使用量、合金石使用量、污泥球使用量、铸板产生量、钢块产生量、钢胚产生量、铸块产生量、铸件产生量、转炉煤气产生量、脱硫炉渣产生量、转炉渣产生量、二次冶金炉渣产生量、灰尘产生量、散颗粒产生量、连铸氧化铁皮产生量、轧钢氧化铁皮产生量和碎石产生量;所述能量流参数包括高炉煤气使用量、焦炉煤气使用量、天然气使用量、转炉煤气使用量、工艺蒸汽使用量、电使用量、氧气使用量、氮气使用量、压缩空气使用量和新水使用量。In one embodiment of the present invention, as shown in Figure 6, the material flow parameters in the converter steelmaking process include pig iron usage, scrap steel usage, crude metal charge usage, ethylene usage, steam usage, and molten iron usage , coke usage, lime usage, dolomite usage, alloy stone usage, sludge ball usage, casting slab production, steel ingot production, billet production, ingot production, casting production, converter Gas production, desulfurization slag production, converter slag production, secondary metallurgical slag production, dust production, loose particle production, continuous casting scale production, steel rolling scale production and crushed stone production; Energy flow parameters include blast furnace gas usage, coke oven gas usage, natural gas usage, converter gas usage, process steam usage, electricity usage, oxygen usage, nitrogen usage, compressed air usage and fresh water usage .
于本发明一实施例中,如图7所示,电弧炉炼钢工艺中所述物质流参数包括生铁使用量、热液态金属使用量、直接还原铁使用量、石灰石/白云石使用量、煤炭使用量、石墨电极使用量、耐火炉衬使用量、合金使用量、液态钢产生量、炉渣产生量、钢包渣产生量和废耐火材料产生量;所述能源流参数包括氧气使用量、煤炭使用量、电使用量、天然气使用量、燃料油使用量和水使用量。In one embodiment of the present invention, as shown in Figure 7, the material flow parameters in the electric arc furnace steelmaking process include pig iron usage, hot liquid metal usage, direct reduced iron usage, limestone/dolomite usage, coal Usage, graphite electrode usage, refractory lining usage, alloy usage, liquid steel production, slag production, ladle slag production and waste refractory material production; the energy flow parameters include oxygen consumption, coal consumption , electricity usage, natural gas usage, fuel oil usage and water usage.
步骤S2、基于所述物质流参数和所述能量流参数获取物质流与能量流的定量关系。Step S2, obtaining the quantitative relationship between the material flow and the energy flow based on the material flow parameter and the energy flow parameter.
具体地,在获取所述物质流参数和所述能量流参数之后,进行二者的比例运算,从而得到所述物质流和所述能量流的定量关系,便于在生产中进行精确化的管理。Specifically, after the material flow parameter and the energy flow parameter are obtained, a proportional calculation is performed to obtain the quantitative relationship between the material flow and the energy flow, which facilitates precise management in production.
步骤S3、基于所述物质流参数获取物质流特征。Step S3, acquiring material flow characteristics based on the material flow parameters.
于本发明一实施例中,所述物质流特征包括烧结投入产出比、烧结原辅料比例、炼铁投入产出比、炼铁原辅料比例、炼钢投入产出比和炼钢原辅料比例。In an embodiment of the present invention, the material flow characteristics include sintering input-output ratio, sintering raw and auxiliary material ratio, ironmaking input-output ratio, ironmaking raw and auxiliary material ratio, steelmaking input-output ratio and steelmaking raw and auxiliary material ratio .
具体地,所述烧结投入产出比ST=(1.13±0.26)*Or,其中,ST为烧结矿年产生量,Or为铁矿粉年投入量;Specifically, the sintering input-output ratio ST=(1.13±0.26)*Or, wherein ST is the annual production of sintered ore, and Or is the annual input of iron ore powder;
所述烧结原辅料比例Or:Ck:Co=50:2:1,其中,Ck为焦炭年投入量,Co为煤炭年投入量;The ratio of raw and auxiliary materials for sintering Or:Ck:Co=50:2:1, where Ck is the annual input of coke, and Co is the annual input of coal;
所述炼铁投入产出比IR=(0.75±0.23)*ST,其中,IR为生铁年产生量,ST为烧结矿年产生量;The ironmaking input-output ratio IR=(0.75±0.23)*ST, wherein, IR is the annual production of pig iron, and ST is the annual production of sinter;
所述炼铁原辅料比例ST:Lo=5.7:1,其中,Lo为块矿年投入量;The ratio of raw and auxiliary materials for ironmaking ST: Lo = 5.7: 1, where Lo is the annual input of lump ore;
所述炼钢投入产出比CS=(1.06±0.12)*IR,其中,CS为粗钢年产生量;The steelmaking input-output ratio CS=(1.06±0.12)*IR, wherein CS is the annual output of crude steel;
所述炼钢原辅料比例IR:(SS+Aly)=6.5:1,其中,SS为废钢年投入量,Aly为合金年投入量。The ratio of raw and auxiliary materials for steelmaking IR:(SS+Aly)=6.5:1, wherein SS is the annual input amount of steel scrap, and Aly is the annual input amount of alloy.
如图8所示,于一实施例中,本发明的钢铁行业物质流分析系统包括获取模块81、定量模块82和分析模块83。As shown in FIG. 8 , in an embodiment, the steel industry material flow analysis system of the present invention includes an acquisition module 81 , a quantification module 82 and an analysis module 83 .
所述获取模块81用于获取钢铁行业各个工艺下的物质流参数和能量流参数;所述工艺包括烧结、球团、炼铁和炼钢;The acquisition module 81 is used to acquire material flow parameters and energy flow parameters under various processes in the iron and steel industry; the processes include sintering, pelletizing, ironmaking and steelmaking;
所述定量模块82与所述获取模块81相连,用于基于所述物质流参数和所述能量流参数获取物质流与能量流的定量关系;The quantitative module 82 is connected to the acquisition module 81, and is used to obtain the quantitative relationship between the material flow and the energy flow based on the material flow parameter and the energy flow parameter;
所述分析模块83与所述获取模块81相连,用于基于所述物质流参数获取物质流特征。The analysis module 83 is connected to the acquisition module 81 and is used for acquiring material flow characteristics based on the material flow parameters.
其中,获取模块81、定量模块82和分析模块83的结构和原理与上述钢铁行业物质流分析方法中的步骤一一对应,故在此不再赘述。Among them, the structures and principles of the acquisition module 81 , the quantification module 82 and the analysis module 83 correspond one-to-one to the steps in the above-mentioned material flow analysis method in the iron and steel industry, so they will not be repeated here.
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现,也可以全部以硬件的形式实现,还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如:x模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现。此外,x模块也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上x模块的功能。其它模块的实现与之类似。这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),一个或多个微处理器(Digital Singnal Processor,简称DSP),一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,如中央处理器(CentralProcessing Unit,简称CPU)或其它可以调用程序代码的处理器。这些模块可以集成在一起,以片上系统(System-on-a-chip,简称SOC)的形式实现。It should be noted that it should be understood that the division of each module of the above device is only a division of logical functions, and may be fully or partially integrated into one physical entity or physically separated during actual implementation. Moreover, these modules can be implemented in the form of calling software through processing elements, or can be implemented in the form of hardware, or some modules can be implemented in the form of calling software through processing elements, and some modules can be implemented in the form of hardware. For example, the x module can be a separate processing element, and can also be integrated in a chip of the above-mentioned device. In addition, the x module can also be stored in the memory of the above-mentioned device in the form of program code, and can be invoked by a certain processing element of the above-mentioned device to execute the function of the above-mentioned x module. The implementation of other modules is similar. All or part of these modules can be integrated together, and can also be implemented independently. The processing element mentioned here may be an integrated circuit with signal processing capability. In the implementation process, each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software. The above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, referred to as ASIC), one or more microprocessors (Digital Singnal Processor, DSP for short), one or more Field Programmable Gate Arrays (Field Programmable Gate Array, FPGA for short), and the like. When one of the above modules is implemented in the form of a processing element scheduling program code, the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU for short) or other processors that can call program codes. These modules can be integrated together and implemented in the form of a System-on-a-chip (SOC for short).
本发明的存储介质上存储有计算机程序,该程序被处理器执行时实现上述的钢铁行业物质流分析。所述存储介质包括:ROM、RAM、磁碟、U盘、存储卡或者光盘等各种可以存储程序代码的介质。The computer program is stored on the storage medium of the present invention, and when the program is executed by the processor, the above-mentioned material flow analysis in the iron and steel industry is realized. The storage medium includes: various media capable of storing program codes such as ROM, RAM, magnetic disk, U disk, memory card or optical disk.
如图9所示,于一实施例中,本发明的终端包括:处理器91及存储器92。As shown in FIG. 9 , in one embodiment, the terminal of the present invention includes: a processor 91 and a memory 92 .
所述存储器92用于存储计算机程序。The memory 92 is used to store computer programs.
所述存储器92包括:ROM、RAM、磁碟、U盘、存储卡或者光盘等各种可以存储程序代码的介质。The memory 92 includes various media capable of storing program codes such as ROM, RAM, magnetic disk, U disk, memory card or optical disk.
所述处理器91与所述存储器92相连,用于执行所述存储器92存储的计算机程序,以使所述终端执行上述的钢铁行业物质流分析。The processor 91 is connected with the memory 92, and is used for executing the computer program stored in the memory 92, so that the terminal performs the above-mentioned material flow analysis in the iron and steel industry.
优选地,所述处理器91可以是通用处理器,包括中央处理器(Central ProcessingUnit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application SpecificIntegrated Circuit,简称ASIC)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。Preferably, the processor 91 can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (Digital Signal Processor, DSP for short), Application Specific Integrated Circuit (ASIC for short), Field Programmable Gate Array (Field Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
综上所述,本发明的钢铁行业物质流分析方法及系统、存储介质及终端能够实现钢铁行业物质流和能量流的定量关系分析;能够进一步细化钢铁行业的原辅料及产品产量质量的关系;能够为建立精细化生产管理和污染防治提供重要依据。因此,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the material flow analysis method and system, storage medium and terminal of the iron and steel industry of the present invention can realize quantitative relationship analysis between material flow and energy flow in the iron and steel industry; can further refine the relationship between raw and auxiliary materials and product output quality in the iron and steel industry ; It can provide an important basis for the establishment of refined production management and pollution prevention and control. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910474367.XA CN110276531A (en) | 2019-06-03 | 2019-06-03 | Material flow analysis method and system, storage medium, and terminal in iron and steel industry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910474367.XA CN110276531A (en) | 2019-06-03 | 2019-06-03 | Material flow analysis method and system, storage medium, and terminal in iron and steel industry |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110276531A true CN110276531A (en) | 2019-09-24 |
Family
ID=67961223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910474367.XA Pending CN110276531A (en) | 2019-06-03 | 2019-06-03 | Material flow analysis method and system, storage medium, and terminal in iron and steel industry |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110276531A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101748233A (en) * | 2008-12-04 | 2010-06-23 | 贾会平 | Method and device for smelting iron in arc furnace |
US20100297707A1 (en) * | 2007-08-03 | 2010-11-25 | Enigma Diagnostics Limited | Reaction vessel comprising conductive layer and inner non-metallic layer |
CN102703626A (en) * | 2012-06-16 | 2012-10-03 | 冶金自动化研究设计院 | Intelligent optimal control system for CO2 emission of blast furnace |
CN104199397A (en) * | 2014-08-13 | 2014-12-10 | 天津理工大学 | Iron region material flow and energy flow mixed control method based on Petri network |
CN107557572A (en) * | 2017-08-25 | 2018-01-09 | 包头钢铁(集团)有限责任公司 | A kind of preparation method of sintering deposit |
-
2019
- 2019-06-03 CN CN201910474367.XA patent/CN110276531A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100297707A1 (en) * | 2007-08-03 | 2010-11-25 | Enigma Diagnostics Limited | Reaction vessel comprising conductive layer and inner non-metallic layer |
CN101748233A (en) * | 2008-12-04 | 2010-06-23 | 贾会平 | Method and device for smelting iron in arc furnace |
CN102703626A (en) * | 2012-06-16 | 2012-10-03 | 冶金自动化研究设计院 | Intelligent optimal control system for CO2 emission of blast furnace |
CN104199397A (en) * | 2014-08-13 | 2014-12-10 | 天津理工大学 | Iron region material flow and energy flow mixed control method based on Petri network |
CN107557572A (en) * | 2017-08-25 | 2018-01-09 | 包头钢铁(集团)有限责任公司 | A kind of preparation method of sintering deposit |
Non-Patent Citations (1)
Title |
---|
王建军: ""钢铁企业物质流、能量流及其相互关系研究与应用"", 《中国博士学位论文全文数据库经济与管理科学辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101407858A (en) | Preparation of carbonaceous composite pellet containing manganese | |
CN109652643A (en) | High quality sinter and preparation method thereof for COREX ironmaking technique of fusion and reduction | |
CN110564903A (en) | blast furnace smelting quantitative decision support system, equipment and storage medium | |
Meng et al. | Dissection study of the deadman in a commercial blast furnace hearth | |
Hamuyuni et al. | Simulation-based life cycle assessment of ferrochrome smelting technologies to determine environmental impacts | |
JP2013525605A (en) | Molded body of small iron oxide carrier combined with bentonite | |
Feng et al. | Carbothermal reduction of red mud for iron extraction and sodium removal | |
CN115354093A (en) | A low-carbon blast furnace smelting cost control method and system | |
CN110276531A (en) | Material flow analysis method and system, storage medium, and terminal in iron and steel industry | |
Kurunov | Current State of Blast-Furnace Smelting in China, Japan, South Korea, Western Europe, and North and South America | |
CN110672458B (en) | Method for rapidly evaluating vanadium-titanium magnetite concentrate agglomeration economy | |
Gao et al. | Process and mechanism of preparing metallized blast furnace burden from metallurgical dust and sludge | |
CN107967625B (en) | Iron ore powder cost performance evaluation method | |
CN115852093A (en) | Method for consuming metallized pellets in steelmaking process | |
CN101831549B (en) | Method for producing artificial rich iron ore by using copper and cobalt smelting waste slag through sintering process | |
CN205258520U (en) | Cyclic utilization device of thick ash of converter coal gas dry process dust removal | |
CN113862467A (en) | Novel process method for blast furnace co-processing hazardous waste hw18 | |
Nikitin et al. | Employing industrial waste in sinter and hot-metal production | |
Belevitin et al. | Application of micro blast furnaces in the integrated processing of metallurgical and coal benefication wastes | |
CN1059469C (en) | Cold pressing flake iron ball cooling, slag melting agent and making method thereof | |
JP5887210B2 (en) | Binder for molding briquette containing metal oxide for use in steel reduction and melting process and method for producing the same | |
CN119506596A (en) | A method, device and storage medium for treating zinc-containing smoke | |
CN101831555A (en) | Method for producing artificial rich iron ore from nickel smelting waste slag by utilizing new sintering process | |
Majumder et al. | Raw Materials and Sinter Mix | |
CN116083675A (en) | The production process of adding sludge balls to the converter to recover iron elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190924 |