CN110244469A - 一种定向散射器位置和扩散角度的确定方法及系统 - Google Patents
一种定向散射器位置和扩散角度的确定方法及系统 Download PDFInfo
- Publication number
- CN110244469A CN110244469A CN201910530503.2A CN201910530503A CN110244469A CN 110244469 A CN110244469 A CN 110244469A CN 201910530503 A CN201910530503 A CN 201910530503A CN 110244469 A CN110244469 A CN 110244469A
- Authority
- CN
- China
- Prior art keywords
- lens array
- scattering device
- directional scattering
- distance
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
- G02B27/0961—Lens arrays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
本发明提供一种定向散射器位置和扩散角度的确定方法及系统,所述确定方法包括如下步骤:获取基于集成成像的光场显示系统的透镜阵列的参数,及显示器与透镜阵列的距离;根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置;根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度。本发明实现了定向散射器扩散角度的定量确定,定向散射器位置与深度中心平面的解耦,基于显示物体空间位置对定向散射器位置动态确定,进而实现了大深度范围场景的清晰显示。
Description
技术领域
本发明涉及集成成像技术领域,特别是涉及一种定向散射器位置和扩散角度的确定方法及系统。
背景技术
传统的集成成像技术使用密集排布的微透镜阵列进行光线调控,其显示的视场角十分有限,影响人的观看体验。基于集成成像的光场显示采用尺寸相对较大的透镜(通常≥2mm)组成的透镜阵列,进行光线调控,恢复出空间稀疏的出离散的光场,再利用定向散射器的角谱扩散特性,将离散光场二次调控,恢复连续光场。可以带来较好的三维显示体验。基于集成成像的光场显示系统的定向散射器扩散角度的选取和定向散射器放置位置的确定十分重要,如果确定不当会造成图像模糊,影响观看体验,但是当前尚无定量确定扩散角度的方法,且目前定向散射器的放置均假设在深度中心平面,与实际的应放置的位置有一定的误差,也影响了视觉体验。
发明内容
本发明的目的是提供一种定向散射器位置和扩散角度的确定方法及系统,以实现定向散射器位置和扩散角度的确定,实现大深度范围场景的清晰显示,提高基于集成成像的光场显示系统的视觉体验。
为实现上述目的,本发明提供了如下方案:
一种定向散射器位置和扩散角度的确定方法,所述确定方法包括如下步骤:
获取基于集成成像的光场显示系统的透镜阵列的参数,及显示器与透镜阵列的距离;
根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置;
根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度。
可选的,所述透镜阵列的参数包括透镜阵列的相邻两个透镜之间的距离p,透镜阵列的透镜的直径a。
可选的,所述根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置,具体包括:
根据所述透镜阵列的参数和所述显示器与透镜阵列的距离g,利用公式计算定向散射器与透镜阵列之间的距离d,得到定向散射器的位置;
其中,l表示同名点在两个单元图像之间的间隔。
可选的,所述根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度,具体包括:
根据定向散射器与透镜阵列之间的距离d和透镜阵列的透镜的直径a,利用公式计算入射光线的角谱宽度θin;
根据定向散射器与透镜阵列之间的距离d和透镜阵列的相邻两个透镜之间的距离p,利用公式计算出射光线的角谱宽度θout;
根据所述入射光线的角谱宽度θin和所述出射光线的角谱宽度θout,求解方程得到定向散射器的扩散角θd。
一种定向散射器位置和扩散角度的确定系统,所述确定系统包括:
参数获取模块,用于获取基于集成成像的光场显示系统的透镜阵列的参数,及显示器与透镜阵列的距离;
定向散射器的位置确定模块,用于根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置;
定向散射器的扩散角度确定模块,用于根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度。
可选的,所述透镜阵列的参数包括透镜阵列的相邻两个透镜之间的距离p,透镜阵列的透镜的直径a。
可选的,所述定向散射器的位置确定模块,具体包括:
定向散射器的位置确定子模块,用于根据所述透镜阵列的参数和所述显示器与透镜阵列的距离g,利用公式计算定向散射器与透镜阵列之间的距离d,得到定向散射器的位置;
其中,l表示同名点在两个单元图像之间的间隔。
可选的,所述定向散射器的扩散角度确定模块,具体包括:
入射光线的角谱宽度计算子模块,用于根据定向散射器与透镜阵列之间的距离d和透镜阵列的透镜的直径a,利用公式计算入射光线的角谱宽度θin;
出射光线的角谱宽度计算子模块,用于根据定向散射器与透镜阵列之间的距离d和透镜阵列的相邻两个透镜之间的距离p,利用公式计算出射光线的角谱宽度θout;
定向散射器的扩散角计算子模块,用于根据所述入射光线的角谱宽度θin和所述出射光线的角谱宽度θout,求解方程得到定向散射器的扩散角θd。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供一种定向散射器位置和扩散角度的确定方法及系统,所述确定方法包括如下步骤:获取基于集成成像的光场显示系统的透镜阵列的参数,及显示器与透镜阵列的距离;根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置;根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度。本发明实现了定向散射器扩散角度的定量确定,定向散射器位置与深度中心平面的解耦,基于显示物体空间位置对定向散射器位置动态确定,进而实现了大深度范围场景的清晰显示。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据本发明提供的附图获得其他的附图。
图1为本发明提供的一种定向散射器位置和扩散角度的确定方法的流程图;
图2为本发明提供的定向散射器在不同位置的成像效果示意图;其中,图(a)为定向散射器在3D像O1位置的成像效果示意图,图(b)为定向散射器在3D像O1与透镜阵列之间位置的成像效果示意图,图(c)为定向散射器在3D像O1与观察者之间位置的成像效果示意图;
图3为本发明提供的确定定向散射器的位置的原理图;
图4为本发明提供的根据光散射原理确定定向散射器的扩散角度的原理图;
图5为本发明提供的一种定向散射器位置和扩散角度的确定系统的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种定向散射器位置和扩散角度的确定方法及系统,以实现定向散射器位置和扩散角度的确定,实现大深度范围场景的清晰显示,提高基于集成成像的光场显示系统的视觉体验。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本发明提供一种定向散射器位置和扩散角度的确定方法,所述确定方法包括如下步骤:
步骤101,获取基于集成成像的光场显示系统的透镜阵列的参数,及显示器与透镜阵列的距离。
所述透镜阵列的参数包括透镜阵列的相邻两个透镜之间的距离p,透镜阵列的透镜的直径a。
所述基于集成成像的光场显示系统包括平面显示器、透镜阵列和定向散射器。平面显示器上加载根据欲显示的三维场景生成的单元图像阵列。加载单元图像阵列后的显示器发出的光经过透镜阵列进行第一次调制,恢复出离散的光场,经过定向散射器的二次调制恢复出连续光场。最终生成三维场景的像。
步骤102,根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置;
在基于集成成像的光场显示系统中,透镜阵列中的透镜一般尺寸较大(≥2mm),且一般存在稀疏排列或存在光阑等情况,即有p≥a。
根据透镜成像的特点,系统中存在一个深度中心平面(central depth plane:CDP),其位置可根据高斯定理得到:其中,d1表示深度中心平面与透镜阵列的距离。
目前的研究均表示,定向散射器应放置在深度中心平面,经研究未发现定向散射器位置与深度中心平面之间存在必然的耦合关系。相反,定向散射器的位置应处在欲显示物体的适当位置。
如图2所示,只有在当定向散射器位于三维像点位置时才能实现清晰成像。当定向散射器恰好位于3D像O1的位置时,光线得到准确扩散,既无缝隙又无重叠,如图3(a)。当定向散射器位于3D像O1与透镜阵列之间时,扩散后的光线存在较大重叠。如图3(b)。当定向扩散器位于3D像O1与观察者之间时,扩散后的光线存在较大缝隙。综上,应恰好位于3D像O1所在位置。由于实际的3D场景存在一定的深度范围,故在实际操作中,定向散射器应位于3D场景所处深度范围的中心。
而3D像点的位置可以通过不同单元图像中的同名像点的视差来确定。即如图3所示,且l=(p-y1)+y2,其中,p是透镜阵列的相邻两个透镜之间的距离,l是同名点在两个单元图像之间的间隔。
故像点的位置,即定向散射器的位置为:
步骤103,根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度。
如图4所示,步骤103所述根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度,具体包括:根据定向散射器与透镜阵列之间的距离d和透镜阵列的透镜的直径a,利用公式计算入射光线的角谱宽度θin;根据定向散射器与透镜阵列之间的距离d和透镜阵列的相邻两个透镜之间的距离p,利用公式计算出射光线的角谱宽度θout;根据所述入射光线的角谱宽度θin和所述出射光线的角谱宽度θout,求解方程得到定向散射器的扩散角θd。
如图5所示,本发明还提供一种定向散射器位置和扩散角度的确定系统,所述确定系统包括:
参数获取模块501,用于获取基于集成成像的光场显示系统的透镜阵列的参数,及显示器与透镜阵列的距离。
所述透镜阵列的参数包括透镜阵列的相邻两个透镜之间的距离p,透镜阵列的透镜的直径a。
定向散射器的位置确定模块502,用于根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置。
所述定向散射器的位置确定模块502,具体包括:定向散射器的位置确定子模块,用于根据所述透镜阵列的参数和所述显示器与透镜阵列的距离g,利用公式计算定向散射器与透镜阵列之间的距离d,得到定向散射器的位置;其中,l表示同名点在两个单元图像之间的间隔。
定向散射器的扩散角度确定模块503,用于根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度。
所述定向散射器的扩散角度确定模块503,具体包括:入射光线的角谱宽度计算子模块,用于根据定向散射器与透镜阵列之间的距离d和透镜阵列的透镜的直径a,利用公式计算入射光线的角谱宽度θin;出射光线的角谱宽度计算子模块,用于根据定向散射器与透镜阵列之间的距离d和透镜阵列的相邻两个透镜之间的距离p,利用公式计算出射光线的角谱宽度θout;定向散射器的扩散角计算子模块,用于根据所述入射光线的角谱宽度θin和所述出射光线的角谱宽度θout,求解方程得到定向散射器的扩散角θd。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供一种定向散射器位置和扩散角度的确定方法及系统,所述确定方法包括如下步骤:获取基于集成成像的光场显示系统的透镜阵列的参数,及显示器与透镜阵列的距离;根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置;根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度。本发明实现了定向散射器扩散角度的定量确定,定向散射器位置与深度中心平面的解耦,基于显示物体空间位置对定向散射器位置动态确定,进而实现了大深度范围场景的清晰显示。
以上所述仅为本发明较佳的具体实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应该涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的装置及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
Claims (8)
1.一种定向散射器位置和扩散角度的确定方法,其特征在于,所述确定方法包括如下步骤:
获取基于集成成像的光场显示系统的透镜阵列的参数,及显示器与透镜阵列的距离;
根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置;
根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理确定定向散射器的扩散角度。
2.根据权利要求1所述的定向散射器位置和扩散角度的确定方法,其特征在于,所述透镜阵列的参数包括透镜阵列的相邻两个透镜之间的距离p,透镜阵列的透镜的直径a。
3.根据权利要求2所述的定向散射器位置和扩散角度的确定方法,其特征在于,所述根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置,具体包括:
根据所述透镜阵列的参数和所述显示器与透镜阵列的距离g,利用公式计算定向散射器与透镜阵列之间的距离d,得到定向散射器的位置;
其中,l表示同名点在两个单元图像之间的间隔。
4.根据权利要求3所述的定向散射器位置和扩散角度的确定方法,其特征在于,所述根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理确定定向散射器的扩散角度,具体包括:
根据定向散射器与透镜阵列之间的距离d和透镜阵列的透镜的直径a,利用公式计算入射光线的角谱宽度θin;
根据定向散射器与透镜阵列之间的距离d和透镜阵列的相邻两个透镜之间的距离p,利用公式计算出射光线的角谱宽度θout;
根据所述入射光线的角谱宽度θin和所述出射光线的角谱宽度θout,求解方程得到定向散射器的扩散角θd。
5.一种定向散射器位置和扩散角度的确定系统,其特征在于,所述确定系统包括:
参数获取模块,用于获取基于集成成像的光场显示系统的透镜阵列的参数,及显示器与透镜阵列的距离;
定向散射器的位置确定模块,用于根据所述透镜阵列的参数和所述显示器与透镜阵列的距离,通过确定不同单元图像中的同名像点的视差来确定定向散射器的位置;
定向散射器的扩散角度确定模块,用于根据所述定向散射器的位置和所述透镜阵列的参数,根据光散射原理,确定定向散射器的扩散角度。
6.根据权利要求5所述的定向散射器位置和扩散角度的确定系统,其特征在于,所述透镜阵列的参数包括透镜阵列的相邻两个透镜之间的距离p,透镜阵列的透镜的直径a。
7.根据权利要求6所述的定向散射器位置和扩散角度的确定系统,其特征在于,所述定向散射器的位置确定模块,具体包括:
定向散射器的位置确定子模块,用于根据所述透镜阵列的参数和所述显示器与透镜阵列的距离g,利用公式计算定向散射器与透镜阵列之间的距离d,得到定向散射器的位置;
其中,l表示同名点在两个单元图像之间的间隔。
8.根据权利要求7所述的定向散射器位置和扩散角度的确定系统,其特征在于,所述定向散射器的扩散角度确定模块,具体包括:
入射光线的角谱宽度计算子模块,用于根据定向散射器与透镜阵列之间的距离d和透镜阵列的透镜的直径a,利用公式计算入射光线的角谱宽度θin;
出射光线的角谱宽度计算子模块,用于根据定向散射器与透镜阵列之间的距离d和透镜阵列的相邻两个透镜之间的距离p,利用公式计算出射光线的角谱宽度θout;
定向散射器的扩散角计算子模块,用于根据所述入射光线的角谱宽度θin和所述出射光线的角谱宽度θout,求解方程得到定向散射器的扩散角θd。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910530503.2A CN110244469B (zh) | 2019-06-19 | 2019-06-19 | 一种定向散射器位置和扩散角度的确定方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910530503.2A CN110244469B (zh) | 2019-06-19 | 2019-06-19 | 一种定向散射器位置和扩散角度的确定方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110244469A true CN110244469A (zh) | 2019-09-17 |
CN110244469B CN110244469B (zh) | 2021-03-23 |
Family
ID=67887937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910530503.2A Active CN110244469B (zh) | 2019-06-19 | 2019-06-19 | 一种定向散射器位置和扩散角度的确定方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110244469B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111193921A (zh) * | 2020-01-10 | 2020-05-22 | 吉林大学 | 一种基于组合离散光栅的led屏一维集成成像显示方法 |
CN111736362A (zh) * | 2020-07-29 | 2020-10-02 | 中国人民解放军陆军装甲兵学院 | 一种集成成像三维显示系统 |
CN112255787A (zh) * | 2020-10-23 | 2021-01-22 | 中国人民解放军陆军装甲兵学院 | 一种集成成像显示系统的景深扩展方法及系统 |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11109286A (ja) * | 1997-10-02 | 1999-04-23 | Sanyo Electric Co Ltd | 立体映像表示装置 |
CN1218978A (zh) * | 1997-11-27 | 1999-06-09 | 株式会社岛津制作所 | 扫描探测显微镜的立体显示方法 |
CN1485646A (zh) * | 2002-08-09 | 2004-03-31 | 奥林巴斯株式会社 | 投影观察装置 |
US20070242237A1 (en) * | 2006-04-17 | 2007-10-18 | Thomas Clarence E | System and Methods for Angular Slice True 3-D Display |
CN102520558A (zh) * | 2012-01-08 | 2012-06-27 | 四川大学 | 一种基于蓝相液晶微透镜阵列的集成成像显示装置 |
CN102572483A (zh) * | 2011-12-02 | 2012-07-11 | 深圳超多维光电子有限公司 | 跟踪式裸眼立体显示控制方法、装置及显示设备、系统 |
CN102981280A (zh) * | 2011-09-07 | 2013-03-20 | 财团法人工业技术研究院 | 立体显示系统及屏幕模块 |
CN203405633U (zh) * | 2013-05-24 | 2014-01-22 | 浙江农林大学 | 限制发光角度可调节的360°三维显示装置 |
US20140104317A1 (en) * | 2012-10-11 | 2014-04-17 | Young Optics Inc. | Image displaying device and method |
CN104064123A (zh) * | 2014-07-05 | 2014-09-24 | 福州大学 | 一种无莫尔条纹的3d-led显示系统 |
US20140300869A1 (en) * | 2013-04-09 | 2014-10-09 | Massachusetts Institute Of Technology | Methods and Apparatus for Light Field Projection |
CN104238127A (zh) * | 2014-09-12 | 2014-12-24 | 京东方科技集团股份有限公司 | 一种裸眼立体显示装置 |
CN104460017A (zh) * | 2014-12-30 | 2015-03-25 | 深圳市华星光电技术有限公司 | 3d显示装置 |
CN104503096A (zh) * | 2014-12-30 | 2015-04-08 | 深圳市华星光电技术有限公司 | 一种透镜切换3d显示器 |
CN104834202A (zh) * | 2008-06-26 | 2015-08-12 | 视瑞尔技术公司 | 具有切趾装置的全息直视显示器 |
CN104954779A (zh) * | 2015-06-23 | 2015-09-30 | 四川大学 | 一种集成成像三维显示中心深度平面的调节方法 |
JP2015232634A (ja) * | 2014-06-10 | 2015-12-24 | セイコーエプソン株式会社 | 表示装置 |
CN105611279A (zh) * | 2015-12-23 | 2016-05-25 | 四川大学 | 增强现实集成成像3d显示图像畸变的消除方法 |
CN105739094A (zh) * | 2014-12-11 | 2016-07-06 | 北京邮电大学 | 一种基于透镜阵列的近眼显示方法 |
CN106125378A (zh) * | 2016-07-15 | 2016-11-16 | 北京邮电大学 | 一种3d光场显示的系统和方法 |
CN106501938A (zh) * | 2016-11-21 | 2017-03-15 | 苏州苏大维格光电科技股份有限公司 | 一种头戴式增强现实三维显示装置 |
CN107092096A (zh) * | 2016-11-09 | 2017-08-25 | 北京邮电大学 | 一种裸眼3d地面沙盘显示系统及方法 |
CN107402453A (zh) * | 2017-09-22 | 2017-11-28 | 京东方科技集团股份有限公司 | 一种3d显示装置 |
CN107909578A (zh) * | 2017-10-30 | 2018-04-13 | 上海理工大学 | 基于六边形拼接算法的光场图像重聚焦方法 |
CN108037651A (zh) * | 2017-12-26 | 2018-05-15 | 中国人民解放军陆军装甲兵学院 | 会聚透镜与全息散射膜结合使用的全息体视图打印系统 |
CN108051927A (zh) * | 2018-02-07 | 2018-05-18 | 成都工业学院 | 一种3d显示器 |
CN108319031A (zh) * | 2018-02-07 | 2018-07-24 | 成都工业学院 | 一种3d显示器 |
CN108513123A (zh) * | 2017-12-06 | 2018-09-07 | 中国人民解放军陆军装甲兵学院 | 一种集成成像光场显示的图像阵列生成方法 |
CN108828894A (zh) * | 2018-06-07 | 2018-11-16 | 北京邮电大学 | 一种3d光场显示系统和方法 |
CN108828893A (zh) * | 2018-06-06 | 2018-11-16 | 北京邮电大学 | 基于柱透镜光栅的三维显示系统 |
US20180341219A1 (en) * | 2017-05-23 | 2018-11-29 | Samsung Electronics Co., Ltd. | Hologram reproducing apparatus and method thereof |
CN108919502A (zh) * | 2018-08-03 | 2018-11-30 | 北京航空航天大学 | 一种基于光学扩散屏的集成成像双视3d显示装置 |
CN109283693A (zh) * | 2018-12-06 | 2019-01-29 | 成都工业学院 | 一种基于发光二极管封装单元的光场立体显示装置 |
CN109283694A (zh) * | 2018-12-06 | 2019-01-29 | 成都工业学院 | 一种基于双光栅的立体投影装置 |
CN109283823A (zh) * | 2018-11-22 | 2019-01-29 | 中国人民解放军陆军装甲兵学院 | 一种全息体视图获取方法及系统 |
CN208818950U (zh) * | 2018-05-25 | 2019-05-03 | 苏州苏大维格光电科技股份有限公司 | 大视场角三维显示装置 |
CN109803097A (zh) * | 2019-01-18 | 2019-05-24 | 中国人民解放军陆军装甲兵学院 | 一种基于中心相机的有效视角图像切片嵌合方法及系统 |
CN109884868A (zh) * | 2019-01-18 | 2019-06-14 | 中国人民解放军陆军装甲兵学院 | 一种全视差全息立体图的打印方法及系统 |
-
2019
- 2019-06-19 CN CN201910530503.2A patent/CN110244469B/zh active Active
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11109286A (ja) * | 1997-10-02 | 1999-04-23 | Sanyo Electric Co Ltd | 立体映像表示装置 |
CN1218978A (zh) * | 1997-11-27 | 1999-06-09 | 株式会社岛津制作所 | 扫描探测显微镜的立体显示方法 |
CN1485646A (zh) * | 2002-08-09 | 2004-03-31 | 奥林巴斯株式会社 | 投影观察装置 |
US20070242237A1 (en) * | 2006-04-17 | 2007-10-18 | Thomas Clarence E | System and Methods for Angular Slice True 3-D Display |
CN104834202A (zh) * | 2008-06-26 | 2015-08-12 | 视瑞尔技术公司 | 具有切趾装置的全息直视显示器 |
CN102981280A (zh) * | 2011-09-07 | 2013-03-20 | 财团法人工业技术研究院 | 立体显示系统及屏幕模块 |
CN102572483A (zh) * | 2011-12-02 | 2012-07-11 | 深圳超多维光电子有限公司 | 跟踪式裸眼立体显示控制方法、装置及显示设备、系统 |
CN102520558A (zh) * | 2012-01-08 | 2012-06-27 | 四川大学 | 一种基于蓝相液晶微透镜阵列的集成成像显示装置 |
US20140104317A1 (en) * | 2012-10-11 | 2014-04-17 | Young Optics Inc. | Image displaying device and method |
US20140300869A1 (en) * | 2013-04-09 | 2014-10-09 | Massachusetts Institute Of Technology | Methods and Apparatus for Light Field Projection |
CN203405633U (zh) * | 2013-05-24 | 2014-01-22 | 浙江农林大学 | 限制发光角度可调节的360°三维显示装置 |
JP2015232634A (ja) * | 2014-06-10 | 2015-12-24 | セイコーエプソン株式会社 | 表示装置 |
CN104064123A (zh) * | 2014-07-05 | 2014-09-24 | 福州大学 | 一种无莫尔条纹的3d-led显示系统 |
CN104238127A (zh) * | 2014-09-12 | 2014-12-24 | 京东方科技集团股份有限公司 | 一种裸眼立体显示装置 |
CN105739094A (zh) * | 2014-12-11 | 2016-07-06 | 北京邮电大学 | 一种基于透镜阵列的近眼显示方法 |
CN104503096A (zh) * | 2014-12-30 | 2015-04-08 | 深圳市华星光电技术有限公司 | 一种透镜切换3d显示器 |
CN104460017A (zh) * | 2014-12-30 | 2015-03-25 | 深圳市华星光电技术有限公司 | 3d显示装置 |
CN104954779A (zh) * | 2015-06-23 | 2015-09-30 | 四川大学 | 一种集成成像三维显示中心深度平面的调节方法 |
CN105611279A (zh) * | 2015-12-23 | 2016-05-25 | 四川大学 | 增强现实集成成像3d显示图像畸变的消除方法 |
CN106125378A (zh) * | 2016-07-15 | 2016-11-16 | 北京邮电大学 | 一种3d光场显示的系统和方法 |
CN107092096A (zh) * | 2016-11-09 | 2017-08-25 | 北京邮电大学 | 一种裸眼3d地面沙盘显示系统及方法 |
CN106501938A (zh) * | 2016-11-21 | 2017-03-15 | 苏州苏大维格光电科技股份有限公司 | 一种头戴式增强现实三维显示装置 |
US20180341219A1 (en) * | 2017-05-23 | 2018-11-29 | Samsung Electronics Co., Ltd. | Hologram reproducing apparatus and method thereof |
CN107402453A (zh) * | 2017-09-22 | 2017-11-28 | 京东方科技集团股份有限公司 | 一种3d显示装置 |
CN107909578A (zh) * | 2017-10-30 | 2018-04-13 | 上海理工大学 | 基于六边形拼接算法的光场图像重聚焦方法 |
CN108513123A (zh) * | 2017-12-06 | 2018-09-07 | 中国人民解放军陆军装甲兵学院 | 一种集成成像光场显示的图像阵列生成方法 |
CN108037651A (zh) * | 2017-12-26 | 2018-05-15 | 中国人民解放军陆军装甲兵学院 | 会聚透镜与全息散射膜结合使用的全息体视图打印系统 |
CN108051927A (zh) * | 2018-02-07 | 2018-05-18 | 成都工业学院 | 一种3d显示器 |
CN108319031A (zh) * | 2018-02-07 | 2018-07-24 | 成都工业学院 | 一种3d显示器 |
CN208818950U (zh) * | 2018-05-25 | 2019-05-03 | 苏州苏大维格光电科技股份有限公司 | 大视场角三维显示装置 |
CN108828893A (zh) * | 2018-06-06 | 2018-11-16 | 北京邮电大学 | 基于柱透镜光栅的三维显示系统 |
CN108828894A (zh) * | 2018-06-07 | 2018-11-16 | 北京邮电大学 | 一种3d光场显示系统和方法 |
CN108919502A (zh) * | 2018-08-03 | 2018-11-30 | 北京航空航天大学 | 一种基于光学扩散屏的集成成像双视3d显示装置 |
CN109283823A (zh) * | 2018-11-22 | 2019-01-29 | 中国人民解放军陆军装甲兵学院 | 一种全息体视图获取方法及系统 |
CN109283693A (zh) * | 2018-12-06 | 2019-01-29 | 成都工业学院 | 一种基于发光二极管封装单元的光场立体显示装置 |
CN109283694A (zh) * | 2018-12-06 | 2019-01-29 | 成都工业学院 | 一种基于双光栅的立体投影装置 |
CN109803097A (zh) * | 2019-01-18 | 2019-05-24 | 中国人民解放军陆军装甲兵学院 | 一种基于中心相机的有效视角图像切片嵌合方法及系统 |
CN109884868A (zh) * | 2019-01-18 | 2019-06-14 | 中国人民解放军陆军装甲兵学院 | 一种全视差全息立体图的打印方法及系统 |
Non-Patent Citations (15)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111193921A (zh) * | 2020-01-10 | 2020-05-22 | 吉林大学 | 一种基于组合离散光栅的led屏一维集成成像显示方法 |
CN111736362A (zh) * | 2020-07-29 | 2020-10-02 | 中国人民解放军陆军装甲兵学院 | 一种集成成像三维显示系统 |
CN112255787A (zh) * | 2020-10-23 | 2021-01-22 | 中国人民解放军陆军装甲兵学院 | 一种集成成像显示系统的景深扩展方法及系统 |
CN112255787B (zh) * | 2020-10-23 | 2022-06-07 | 中国人民解放军陆军装甲兵学院 | 一种集成成像显示系统的景深扩展方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110244469B (zh) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12141935B2 (en) | Foveated rendering using eye motion | |
CN110244469A (zh) | 一种定向散射器位置和扩散角度的确定方法及系统 | |
CN110827391B (zh) | 图像渲染方法、装置、设备及存储介质 | |
WO2012057923A1 (en) | 2d to 3d image and video conversion using gps and dsm | |
Jones et al. | Interpolating vertical parallax for an autostereoscopic three-dimensional projector array | |
GB2591857A (en) | Photographing-based 3D modeling system and method, and automatic 3D modeling apparatus and method | |
KR102478989B1 (ko) | 명시야 데이터와 연관된 보케를 표현하는 데이터를 생성하기 위한 방법 및 장치 | |
US20240037856A1 (en) | Walkthrough view generation method, apparatus and device, and storage medium | |
CN103942820A (zh) | 一种多角度仿真三维地图的方法及装置 | |
CN114187366A (zh) | 一种相机安装校正方法、装置、电子设备及存储介质 | |
CN108803054A (zh) | 一种3d光场显示系统 | |
CN101794184A (zh) | 一种坐标检测装置的定位方法及一种坐标检测装置 | |
CN103364961A (zh) | 基于多投影阵列和多层液晶复合调制的三维显示装置和方法 | |
Li et al. | Full-parallax three-dimensional display using new directional diffuser | |
CN103077266B (zh) | 一种用于投影式三维显示的仿真方法 | |
Chen et al. | Automatic geometrical calibration for multiprojector-type light field three-dimensional display | |
CN103969937B (zh) | 基于光瞳复合使用的多投影三维显示装置和方法 | |
JP2016045120A (ja) | 3次元計測システム及び3次元計測方法 | |
CN114157853B (zh) | 一种用于生成像素光束的数据表示的装置和方法 | |
CN104735437A (zh) | 一种用于多视点三维成像系统的显示屏 | |
Watanabe et al. | Wide viewing angle projection-type integral 3D display system with multiple UHD projectors | |
Li et al. | An seamless stitching method for large field equivalent center projection image based on rotating camera | |
CN110519774A (zh) | 基于vr技术的基站勘察方法、系统和设备 | |
CN110297333B (zh) | 一种光场显示系统调节方法及系统 | |
CN114815286A (zh) | 全视差三维光场显示系统的参数确定方法、装置及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |