[go: up one dir, main page]

CN110241121A - Application of soybean E3 ubiquitin ligase GmNLA1 coding gene - Google Patents

Application of soybean E3 ubiquitin ligase GmNLA1 coding gene Download PDF

Info

Publication number
CN110241121A
CN110241121A CN201910424824.4A CN201910424824A CN110241121A CN 110241121 A CN110241121 A CN 110241121A CN 201910424824 A CN201910424824 A CN 201910424824A CN 110241121 A CN110241121 A CN 110241121A
Authority
CN
China
Prior art keywords
gmnla1
soybean
hairy roots
gene
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910424824.4A
Other languages
Chinese (zh)
Other versions
CN110241121B (en
Inventor
程浩
杜文凯
杨宇明
刘永顺
张诗溪
王晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201910424824.4A priority Critical patent/CN110241121B/en
Publication of CN110241121A publication Critical patent/CN110241121A/en
Application granted granted Critical
Publication of CN110241121B publication Critical patent/CN110241121B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了大豆E3泛素连接酶GmNLA1的应用。大豆GmNLA1蛋白编码基因GmNLA1,其核苷酸序列为:SEQ ID NO.1。将构建的植物过量表达载体pMDC83‑GmNLA1和GmNLA1‑RNAi转化到大豆毛状根中,用1/2 Hoagland处理15d后发现,在GmNLA1‑OE转基因毛状根中,GmNLA1‑OE转基因毛状根中的P浓度显著降低。在GmNLA1‑RNAi转基因毛状根中的P浓度显著增加。总的来说,GmNLA1可能通过负调节大豆转基因毛状根中的P浓度来负调控大豆磷效率。

The invention discloses the application of soybean E3 ubiquitin ligase GmNLA1. Soybean GmNLA1 protein coding gene GmNLA1, its nucleotide sequence is: SEQ ID NO.1. The constructed plant overexpression vectors pMDC83‑GmNLA1 and GmNLA1‑RNAi were transformed into soybean hairy roots, and after treatment with 1/2 Hoagland for 15 days, it was found that in GmNLA1‑OE transgenic hairy roots, GmNLA1‑OE transgenic hairy roots The P concentration was significantly reduced. P concentrations were significantly increased in GmNLA1‑RNAi transgenic hairy roots. Collectively, GmNLA1 may negatively regulate soybean P efficiency by negatively regulating P concentration in soybean transgenic hairy roots.

Description

大豆E3泛素连接酶GmNLA1编码基因的应用Application of soybean E3 ubiquitin ligase GmNLA1 coding gene

技术领域technical field

本发明涉及大豆E3泛素连接酶GmNLA1编码基因的应用,属于基因工程领域,具体地讲大豆E3泛素连接酶GmNLA1基因影响大豆毛状根中磷浓度,进而改变磷利用效率。The invention relates to the application of soybean E3 ubiquitin ligase GmNLA1 coding gene and belongs to the field of genetic engineering. Specifically, the soybean E3 ubiquitin ligase GmNLA1 gene affects the phosphorus concentration in soybean hairy roots, thereby changing the phosphorus utilization efficiency.

背景技术Background technique

磷(P)是植物生长和繁殖中必不可少的矿物元素之一(López-Arredondo etal.2014),它参与许多代谢过程,如能量和细胞膜形成,核酸合成,光合作用和呼吸作用。此外,P含量为植物干重的0.05%-0.5%(Vance et al.2003)。从1961年到2013年,世界上使用的农肥总量为每年1750万吨。单位面积磷肥的使用量在同一时期增加了约3倍(Lu&Tian2017)。施用磷肥可提高作物产量,但施用于土壤的P肥80%-90%被微生物吸附,或与金属离子形成难溶性螯合物(Holford 1997)。只有正磷酸盐离子(H2PO4 -和HPO4 2-)可被植物直接吸收和利用(Hinsinger 2001),导致土壤中的高磷肥,但植物磷利用效率低。固定在土壤中的难溶性磷肥被雨水冲洗进入河流,导致水体富营养化。因此,提高磷效率是解决粮食生产和水体富营养化的有效和可持续发展方法之一。Phosphorus (P) is one of the essential mineral elements in plant growth and reproduction (López-Arredondo et al. 2014), which is involved in many metabolic processes such as energy and cell membrane formation, nucleic acid synthesis, photosynthesis and respiration. Furthermore, the P content is 0.05%-0.5% of the dry weight of the plant (Vance et al. 2003). From 1961 to 2013, the total amount of agricultural fertilizer used in the world was 17.5 million tons per year. The use of phosphate fertilizer per unit area increased by about 3 times during the same period (Lu & Tian 2017). The application of phosphorus fertilizer can increase crop yield, but 80%-90% of the P fertilizer applied to the soil is absorbed by microorganisms or forms insoluble chelates with metal ions (Holford 1997). Only orthophosphate ions (H 2 PO 4 - and HPO 4 2- ) can be directly taken up and utilized by plants (Hinsinger 2001), resulting in high P fertilizer in soil but low efficiency of P use by plants. The insoluble phosphorus fertilizer fixed in the soil is washed into the river by rainwater, resulting in eutrophication of the water body. Therefore, improving phosphorus efficiency is one of the effective and sustainable approaches to address food production and water eutrophication.

大豆GmNLA1是E3泛素连接酶。迄今为止,在拟南芥和水稻突变体中仅鉴定了属于SPX-RING家族的一个E3泛素连接酶基因,即氮限制适应(NLA)。发现拟南芥nla突变体在低氮条件下表现出过早衰老,是由于P中毒(Kant et al.2011)。在正常P条件下,nla突变体的地上部和根中的P含量是WT的两倍(Lin et al.2013;Park et al.2014)。并且在水稻中还鉴定到同源基因OsNLA1,水稻osnla1突变体中叶片P含量显著增加,并且不依赖于氮(Yueet al.2017)。而在大豆中没有GmNLA1基因功能的相关报道。利用基因工程技术,分别构建了过表达和RNA干扰载体,转化大豆毛状根后发现GmNLA1会负调控大豆毛状根中磷浓度。这些结果将有助于理解大豆磷效率的分子机制,同时可以加快大豆磷高效品种的育种进程。Soybean GmNLA1 is an E3 ubiquitin ligase. To date, only one E3 ubiquitin ligase gene belonging to the SPX-RING family, Nitrogen Limitation Adaptation (NLA), has been identified in Arabidopsis and rice mutants. Arabidopsis nla mutants were found to exhibit premature senescence under low nitrogen conditions due to P intoxication (Kant et al. 2011). Under normal P conditions, the P content in shoots and roots of nla mutants was twice that of WT (Lin et al. 2013; Park et al. 2014). And the homologous gene OsNLA1 was also identified in rice, and the leaf P content in the rice osnla1 mutant was significantly increased and was independent of nitrogen (Yue et al. 2017). However, there is no report on the function of GmNLA1 gene in soybean. Using genetic engineering technology, overexpression and RNA interference vectors were constructed respectively, and GmNLA1 was found to negatively regulate the phosphorus concentration in soybean hairy roots after transformation of soybean hairy roots. These results will help to understand the molecular mechanism of soybean phosphorus efficiency, and can accelerate the breeding process of soybean phosphorus efficient varieties.

发明内容Contents of the invention

本发明的目的在于公开大豆GmNLA1是E3泛素连接酶的抗逆性基因工程应用,该基因可作为目的基因导入大豆毛状根中,通过影响大豆毛状根中磷浓度来调控大豆的磷利用效率。The purpose of the present invention is to disclose the stress resistance genetic engineering application of soybean GmNLA1 as an E3 ubiquitin ligase. This gene can be introduced into soybean hairy roots as a target gene, and regulate the phosphorus utilization of soybean by affecting the phosphorus concentration in soybean hairy roots. efficiency.

本发明的目的可通过以下技术方案实现:The purpose of the present invention can be achieved through the following technical solutions:

大豆E3泛素连接酶GmNLA1,其核苷酸序列为:SEQ ID NO.1。Soybean E3 ubiquitin ligase GmNLA1, its nucleotide sequence is: SEQ ID NO.1.

大豆E3泛素连接酶GmNLA1,其氨基酸序列为:SEQ ID NO.2。Soybean E3 ubiquitin ligase GmNLA1, its amino acid sequence is: SEQ ID NO.2.

大豆E3泛素连接酶基因GmNLA1在调节大豆的磷利用效率中的应用,所述的大豆E3泛素连接酶基因GmNLA1,其核苷酸序列为:SEQ ID NO.1。The application of the soybean E3 ubiquitin ligase gene GmNLA1 in regulating the phosphorus utilization efficiency of soybean, the nucleotide sequence of the soybean E3 ubiquitin ligase gene GmNLA1 is: SEQ ID NO.1.

所述的应用优选,在大豆毛状根中过表达GmNLA1降低过表达毛状根中磷浓度;或者在大豆毛状根中利用RNA干扰技术沉默GmNLA1,提高干扰毛状根中磷浓度。The preferred application is to overexpress GmNLA1 in soybean hairy roots to reduce the phosphorus concentration in overexpressed hairy roots; or use RNA interference technology to silence GmNLA1 in soybean hairy roots to increase the phosphorus concentration in disturbed hairy roots.

使用GmNLA1构建植物过表达载体或干扰载体时,可在其转录起始核苷酸前加上任何一种增强型启动子或诱导型启动子。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如在植物中加入选择性标记基因(GUS基因、荧光素酶基因等)。从转基因植物的安全性角度考虑,可不加任何选择性标记基因,而通过逆境筛选转化植株。When GmNLA1 is used to construct plant overexpression vectors or interference vectors, any enhanced promoter or inducible promoter can be added before the transcription initiation nucleotide. In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vector used can be processed, such as adding a selectable marker gene (GUS gene, luciferase gene, etc.) in the plant. Considering the safety of the transgenic plants, the transformed plants can be screened through stress without adding any selectable marker gene.

本发明所述的大豆GmNLA1蛋白编码基因GmNLA1在通过基因工程转化大豆毛状根后,过表达该基因,降低毛状根中磷浓度;RNA介导的基因干扰抑制基因表达后,增加毛状根中磷浓度。After the soybean GmNLA1 protein coding gene GmNLA1 of the present invention is transformed into soybean hairy roots by genetic engineering, the gene is overexpressed to reduce the phosphorus concentration in the hairy roots; after RNA-mediated gene interference suppresses gene expression, the hairy roots are increased. Phosphorus concentration.

携带有本发明GmNLA1的植物过表达载体和干扰载体可通过使用Ti质粒、Ri质粒、植物病毒载体、DNA直接转化、显微注射、电导、农杆菌介导等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。被转化的植物宿主既可以是高粱、水稻、小麦、玉米等单子叶植物,也可以是花生、大豆、油菜、番茄、杨树、草坪草、苜蓿等双子叶植物。Plant overexpression vectors and interference vectors carrying the GmNLA1 of the present invention can transform plant cells or tissues by conventional biological methods such as Ti plasmids, Ri plasmids, plant virus vectors, DNA direct transformation, microinjection, electrical conduction, and Agrobacterium-mediated , and growing transformed plant tissues into plants. The transformed plant host can be monocotyledonous plants such as sorghum, rice, wheat, and corn, and dicotyledonous plants such as peanut, soybean, rapeseed, tomato, poplar, lawn grass, and alfalfa.

有益效果Beneficial effect

大豆GmNLA1是一个编码E3泛素连接酶的基因,包含SPX和RING domain,属于SPX-RING家族基因。SPX-RING家族在拟南芥和水稻等模式作物中仅有NLA和PHO2被报道参与植物磷稳态。在大豆中我们发现GmNLA1的表达量与大豆毛状根中磷浓度呈负相关。GmNLA1在磷高效和磷敏感材料中表达量存在显著差异。同时通过对GmNLA1基因过表达和RNA干扰发现GmNLA1通过影响大豆毛状根中的磷浓度来影响大豆中磷利用效率。因此,GmNLA1可以用于大豆磷高效品种选育。Soybean GmNLA1 is a gene encoding E3 ubiquitin ligase, including SPX and RING domains, belonging to the SPX-RING family genes. Only NLA and PHO2 of the SPX-RING family have been reported to participate in plant phosphorus homeostasis in model crops such as Arabidopsis and rice. In soybean, we found that the expression level of GmNLA1 was negatively correlated with phosphorus concentration in soybean hairy roots. There was a significant difference in the expression level of GmNLA1 between phosphorus-efficient and phosphorus-sensitive materials. At the same time, through the overexpression of GmNLA1 gene and RNA interference, it was found that GmNLA1 affected the phosphorus use efficiency in soybean by affecting the phosphorus concentration in soybean hairy roots. Therefore, GmNLA1 can be used in the breeding of soybean phosphorus-efficient varieties.

附图说明Description of drawings

图1GmNLA1基因的PCR扩增。Marker:DL5000Figure 1G PCR amplification of the mNLA1 gene. Marker: DL5000

图2GmNLA1在科丰1号和南农1138-2中的相对表达量。Fig. 2 Relative expression of GmNLA1 in Kefeng 1 and Nannong 1138-2.

图3GmNLA1的亚细胞定位。Figure 3 Subcellular localization of GmNLA1.

(a):GFP;(d):GmNLA1-GFP;(b):GFP明场图;(e):GmNLA1-GFP明场图;(c):GFP融合图;(f):GmNLA1-GFP融合图。Bars=70μm.(a): GFP; (d): GmNLA1-GFP; (b): GFP bright field image; (e): GmNLA1-GFP bright field image; (c): GFP fusion image; (f): GmNLA1-GFP fusion picture. Bars = 70 μm.

图4.GmNLA1的毛状根表型及鲜重。Figure 4. Hairy root phenotype and fresh weight of GmNLA1.

(a)GmNLA1-OE转基因毛状根的表型及其空载对照Control 1在0.5mM KH2PO4营养液中生长15d。(b)GmNLA1-RNAi转基因毛状根的表型及其空载对照Control 2在0.5mMKH2PO4营养液中生长15d。(c)GmNLA1-OE和GmNLA1-RNAi转基因毛状根的鲜重和其对照(Control 1/Control 2)在0.5mM KH2PO4营养液中生长15天。(a) Phenotype of GmNLA1-OE transgenic hairy root and its control 1 grown in 0.5mM KH 2 PO 4 nutrient solution for 15 days. (b) Phenotype of GmNLA1-RNAi transgenic hairy roots and its control 2 grown in 0.5mM KH 2 PO 4 nutrient solution for 15 days. (c) Fresh weight of GmNLA1-OE and GmNLA1-RNAi transgenic hairy roots and their control (Control 1/Control 2) grown in 0.5mM KH 2 PO 4 nutrient solution for 15 days.

图5.GmNLA1的相对表达量及大豆毛状根中磷浓度。Figure 5. Relative expression level of GmNLA1 and phosphorus concentration in soybean hairy roots.

(a)GmNLA1-OE和GmNLA1-RNAi转基因毛状根中GmNLA1的相对表达量。(b)GmNLA1-OE和GmNLA1-RNAi转基因毛状根及其非转基因地上部中的P浓度。GmNLA1-OE:具有pMDC83-GmNLA1的大豆毛状根,Control 1:具有pMDC83空载的大豆毛状根;GmNLA1-RNAi:具有pB7GWIWG2(II)-GmNLA1RNAi的大豆毛状根,Control 2:具有pB7GWIWG2(II)空载的大豆毛状根。GmNLA1-OE和GmNLA1-RNAi毛状根及其对照在0.5mM KH2PO4中生长15天。三个生物学平均值±标准误差(SE)。*和**分别在0.05和0.01概率水平上显著。(a) Relative expression of GmNLA1 in hairy roots of GmNLA1-OE and GmNLA1-RNAi transgenics. (b) P concentrations in GmNLA1-OE and GmNLA1-RNAi transgenic hairy roots and their non-transgenic shoots. GmNLA1-OE: soybean hairy root with pMDC83-GmNLA1, Control 1: soybean hairy root with pMDC83 empty load; GmNLA1-RNAi: soybean hairy root with pB7GWIWG2(II)-GmNLA1RNAi, Control 2: soybean hairy root with pB7GWIWG2( II) Unloaded soybean hairy roots. GmNLA1-OE and GmNLA1-RNAi hairy roots and their controls were grown in 0.5 mM KH2PO4 for 15 days. Three biological means ± standard error (SE). * and ** are significant at the 0.05 and 0.01 probability levels, respectively.

图6.过表达毛状根(GmNLA1-OE)PCR检测。M:Marker DL2000,P:阳性质粒,H:ddH2O,C:阴性毛状根。Figure 6. PCR detection of overexpressed hairy root (GmNLA1-OE). M: Marker DL2000, P: positive plasmid, H: ddH 2 O, C: negative hairy root.

图7.RNA干扰毛状根(GmNLA1-RNAi)PCR检测。M:Marker DL1000,P:阳性质粒,H:ddH2O,C:阴性毛状根。Figure 7. PCR detection of RNA interference hairy root (GmNLA1-RNAi). M: Marker DL1000, P: positive plasmid, H: ddH2O, C: negative hairy root.

具体实施方式Detailed ways

下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

下述实施例中所用方法如无特别说明,均为常规方法。The methods used in the following examples are conventional methods unless otherwise specified.

1)大豆E3泛素连接酶GmNLA1基因的克隆1) Cloning of soybean E3 ubiquitin ligase GmNLA1 gene

以大豆栽培品种南农1138-2为取材对象,取其根,用研钵研碎,加入盛有裂解液的1.5mL EP管,充分振荡后,移至1.5mL EP管中,抽提总RNA(Total RNA Kit(天根,北京,中国)。用甲醛变性胶电泳鉴定总RNA质量,分光光度计测定RNA含量。以获得的总RNA为模板,按照日本TaKaRa公司提供的反转录试剂盒(TaKaRa Primer ScriptTM RT reagent kit,日本)的说明书进行反转录,得到cDNA第一链后,进行PCR扩增,PCR程序如下:95℃预变性3min,95℃变性15sec,60℃退火15sec,72℃延伸1min,共35个循环,最后72℃保温5min,随后12℃恒温。随后进行PCR产物割胶纯化、连接及转化工作,挑取阳性单克隆测序。测序后获得具有完整编码区的长度为948bp的大豆GmNLA1基因的CDS序列,其中编码区序列见SEQ IDNO.1,命名为GmNLA1,由948bp组成(图Take soybean cultivar Nannong 1138-2 as the sample object, take its root, grind it with a mortar, add it to a 1.5mL EP tube filled with lysate, shake it fully, transfer it to a 1.5mL EP tube, and extract total RNA (Total RNA Kit (Tiangen, Beijing, China). The total RNA quality was identified by formaldehyde denaturing gel electrophoresis, and the RNA content was measured by a spectrophotometer. The total RNA obtained was used as a template, and the reverse transcription kit ( TaKaRa Primer Script TM RT reagent kit, Japan) was used for reverse transcription to obtain the first strand of cDNA, followed by PCR amplification. The PCR program was as follows: pre-denaturation at 95°C for 3 min, denaturation at 95°C for 15 sec, annealing at 60°C for 15 sec, 72 Extended at ℃ for 1 min, a total of 35 cycles, and finally incubated at 72 °C for 5 min, followed by constant temperature at 12 °C. Then the PCR product was tapped and purified, ligated and transformed, and positive single clones were picked for sequencing. After sequencing, the length of the complete coding region was 948 bp The CDS sequence of the soybean GmNLA1 gene, wherein the sequence of the coding region is shown in SEQ ID NO.1, named GmNLA1, consisting of 948bp (Fig.

1)。1).

2)GmNLA1的亚细胞定位研究2) Subcellular localization of GmNLA1

设计包含GmNLA1基因完整ORF的引物(不包含终止密码子),引物序列见SEQ IDNO.9和SEQ ID NO.10,具体的PCR过程与步骤1)相同。然后利用XbaI和KpnI双酶切将不包含终止密码子的GmNLA1基因完整的ORF同源重组到表达载体pSuper1300中,这样就把GmNLA1基因完整的ORF与表达载体pSuper1300上的报告基因GFP的3’端融合,形成一个35S-GmNLA1-GFP的嵌合基因,构建了亚细胞定位载体pSuper1300-GmNLA1。将其和空载体分别利用农杆菌转化方法将目的基因GmNLA1转入烟草叶片细胞,结果表明GmNLA1蛋白定位在细胞膜上(图3)。Design primers containing the complete ORF of the GmNLA1 gene (excluding stop codons). The primer sequences are shown in SEQ ID NO.9 and SEQ ID NO.10. The specific PCR process is the same as step 1). Then use XbaI and KpnI double enzyme digestion to homologously recombine the complete ORF of the GmNLA1 gene that does not contain the stop codon into the expression vector pSuper1300, so that the complete ORF of the GmNLA1 gene is combined with the 3' end of the reporter gene GFP on the expression vector pSuper1300 Fusion formed a chimeric gene of 35S-GmNLA1-GFP, and the subcellular localization vector pSuper1300-GmNLA1 was constructed. The target gene GmNLA1 was transformed into tobacco leaf cells using the Agrobacterium transformation method with the empty vector, and the results showed that the GmNLA1 protein was localized on the cell membrane (Fig. 3).

3)GmNLA1在科丰1号和南农1138-2中的相对表达量3) Relative expression of GmNLA1 in Kefeng 1 and Nannong 1138-2

将大豆磷敏感品种(南农1138-2)和耐低磷品种(科丰1号)两种材料幼苗在含有0.5mM KH2PO4的1/2Hoagland营养液中处理3d,7d和12d取样,液氮速冻后于-80℃保存。总RNA的提取同步骤1)。以大豆组成型表达的Tubulin作为内部参照,引物序列见SEQ ID NO.7和SEQ ID NO.8,以来自栽培大豆磷敏感品种(南农1138-2)和耐低磷品种(科丰1号)两种材料不同处理条件下的地下部总RNA为模板,反转为cDNA之后进行实时荧光定量PCR反应(Real-time RT-PCR),引物序列见SEQ ID NO.5和SEQ ID NO.6,检测GmNLA1基因在不同品种中表达量变化。Soybean phosphorus-sensitive variety (Nannong 1138-2) and low-phosphorus-tolerant variety (Kefeng 1) were treated with 1/2 Hoagland nutrient solution containing 0.5mM KH 2 PO 4 for 3d, 7d and 12d, and samples were taken. Stored at -80°C after quick freezing in liquid nitrogen. The extraction of total RNA is the same as step 1). Using soybean constitutively expressed Tubulin as an internal reference, the primer sequences are shown in SEQ ID NO.7 and SEQ ID NO.8, and were derived from cultivated soybean phosphorus-sensitive varieties (Nannong 1138-2) and low-phosphorus-tolerant varieties (Kefeng 1 ) Under the different treatment conditions of the two materials, the total RNA in the subterranean part was used as a template, and after inversion into cDNA, a real-time fluorescent quantitative PCR reaction (Real-time RT-PCR) was carried out. See SEQ ID NO.5 and SEQ ID NO.6 for the primer sequences , to detect the expression level changes of GmNLA1 gene in different varieties.

当转移到1/2Hoagland营养液中3d,7d和12d时,GmNLA1的相对表达量在不同P效率的南农1138-2和科丰1号中具有显著差异(图2)。在科丰1号中GmNLA1的相对表达量显著低于南农1138-2。这表明GmNLA1的表达量与不同品种磷效率相关。When transferred to 1/2 Hoagland nutrient solution for 3d, 7d and 12d, the relative expression of GmNLA1 was significantly different in Nannong 1138-2 and Kefeng 1 with different P efficiency (Fig. 2). The relative expression level of GmNLA1 in Kefeng 1 was significantly lower than that in Nannong 1138-2. This indicated that the expression level of GmNLA1 was related to the phosphorus efficiency of different varieties.

实施例2基因GmNLA1的基因工程应用Genetic engineering application of embodiment 2 gene GmNLA1

1)大豆E3泛素连接酶GmNLA1的克隆1) Cloning of soybean E3 ubiquitin ligase GmNLA1

以大豆(Glycine max)磷敏感品种南农1138-2的根总RNA为模板,经反转录合成cDNA第一链后,进行PCR扩增,引物序列见SEQ ID NO.3和SEQ ID NO.4,PCR程序如下:95℃预变性3分钟,95℃变性15秒,60℃退火15秒,72℃延伸1分钟,共35个循环,最后72℃保温5分钟,随后12℃恒温,将PCR产物克隆至PUC19-T Vector,测序后获得具有完整编码区的长度为948bp的大豆GmNLA1基因的CDS序列,其中编码区序列见SEQ ID NO.1。The root total RNA of soybean (Glycine max) phosphorus-sensitive variety Nannong 1138-2 was used as a template, and the first strand of cDNA was synthesized by reverse transcription, followed by PCR amplification. The primer sequences are shown in SEQ ID NO.3 and SEQ ID NO. 4. The PCR program is as follows: pre-denaturation at 95°C for 3 minutes, denaturation at 95°C for 15 seconds, annealing at 60°C for 15 seconds, extension at 72°C for 1 minute, a total of 35 cycles, and a final incubation at 72°C for 5 minutes, followed by constant temperature at 12°C. The product was cloned into PUC19-T Vector, and after sequencing, the CDS sequence of the 948bp soybean GmNLA1 gene with a complete coding region was obtained, wherein the sequence of the coding region is shown in SEQ ID NO.1.

2)植物表达载体的构建2) Construction of plant expression vectors

将GmNLA1基因序列与Invitrogen公司的Technology with ClonaseTMII试剂盒中的pDONR221载体进行BP反应,并进行菌液PCR测序验证,引物序列见SEQ IDNO.11和SEQ ID NO.12,具体的PCR过程与步骤1)相同,获得入门克隆;将得到的入门克隆与Invitrogen公司开发的目的表达载体pMDC83进行重组交换,得到pMDC83-GmNLA1植物过表达载体,植物转化载体pMDC83含有2x 35S强启动子,可强烈诱导目的基因GmNLA1在受体中表达。然后通过冻融法将载体转入发根农杆菌菌株K599中,同时将空载pMDC83也转化到K599中去,作为空载对照。The GmNLA1 gene sequence and Invitrogen's The pDONR221 vector in the Technology with Clonase TM II kit was subjected to BP reaction, and PCR sequencing of the bacterial liquid was performed for verification. The primer sequences are shown in SEQ ID NO.11 and SEQ ID NO.12. The specific PCR process was the same as step 1), and the entry clone was obtained ; The obtained entry clone was recombined and exchanged with the target expression vector pMDC83 developed by Invitrogen to obtain the pMDC83-GmNLA1 plant overexpression vector. The plant transformation vector pMDC83 contains a 2x 35S strong promoter, which can strongly induce the expression of the target gene GmNLA1 in the recipient . Then, the vector was transformed into Agrobacterium rhizogenes strain K599 by freeze-thaw method, and the empty pMDC83 was also transformed into K599 at the same time as the empty control.

构建RNA干扰载体时,首先利用特异引物来扩增一段干扰片段,引物序列见SEQ IDNO.13和SEQ ID NO.14,PCR产物序列见SEQ ID NO.15,接下来的步骤与构建过表达载体一样,只是将pMDC83载体换成pB7GWIWG2(II)载体,将构建好的载体GmNLA1-RNAi同样转化到K599中。同时将空载pB7GWIWG2(II)也转化到K599中去,作为空载对照。When constructing an RNA interference vector, first use specific primers to amplify an interference fragment. The primer sequences are shown in SEQ ID NO.13 and SEQ ID NO.14, and the PCR product sequence is shown in SEQ ID NO.15. The next steps are the same as constructing an overexpression vector In the same way, the pMDC83 vector was replaced with the pB7GWIWG2(II) vector, and the constructed vector GmNLA1-RNAi was also transformed into K599. At the same time, the empty pB7GWIWG2(II) was transformed into K599 as an empty control.

3)转基因根毛的获得3) Obtaining of transgenic root hairs

利用Kereszt等人(2007)提出的大豆毛状根转化方法,将步骤2)获得的分别含pMDC83-GmNLA1和GmNLA1-RNAi载体以及相应空载对照的发根农杆菌菌株K599菌液注射到7天大豆幼苗的子叶节下方,置于恒温光照培养箱中,12h光照,12h黑暗培养,并保持高湿度,2-3周后毛状根会从注射部位长出,当有5-10cm时,减掉幼苗主根,并置于1/2Hoagland营养液中培养15天,获得大豆幼苗嵌合体,包括非转基因地上部和转基因毛状根。将具有过表达毛状根的嵌合体称之为GmNLA1-OE,其空载对照为Control 1;将具有干扰毛状根的嵌合体称之为GmNLA1-RNAi,其空载对照为Control 2。为检测是否为阳性毛状根,利用特异性引物对提取的DNA片段进行PCR检测。过表达毛状根检测引物序列见SEQ ID NO.16和SEQ IDNO.17,PCR阳性毛状根检测胶图见图6。RNA干扰毛状根检测bar引物,是SEQ ID NO.18和SEQID NO.19,PCR阳性毛状根检测见图7。实时荧光定量qPCR发现在过表达毛状根(GmNLA1-OE)中GmNLA1基因表达量要显著高于Control 1的(图5a)。而在RNA干扰的毛状根中(GmNLA1-RNAi)中GmNLA1基因表达量要显著低于Control 2的(图5a)。Using the soybean hairy root transformation method proposed by Kereszt et al. (2007), the Agrobacterium rhizogenes strain K599 bacteria solution containing pMDC83-GmNLA1 and GmNLA1-RNAi vectors and corresponding empty controls obtained in step 2) was injected for 7 days Below the cotyledon nodes of soybean seedlings, place them in a constant temperature light incubator, cultivate them in light for 12 hours and dark for 12 hours, and keep high humidity. After 2-3 weeks, hairy roots will grow from the injection site. The main roots of the seedlings were removed and cultured in 1/2 Hoagland nutrient solution for 15 days to obtain chimeras of soybean seedlings, including non-transgenic shoots and transgenic hairy roots. The chimera with hairy root overexpression is called GmNLA1-OE, and its empty control is Control 1; the chimera with hairy root interference is called GmNLA1-RNAi, and its empty control is Control 2. In order to detect whether it is a positive hairy root, specific primers are used to carry out PCR detection on the extracted DNA fragments. See SEQ ID NO.16 and SEQ ID NO.17 for the primer sequences for overexpression hairy root detection, and see Figure 6 for the gel map of PCR positive hairy root detection. RNA interference hairy root detection bar primers are SEQ ID NO.18 and SEQ ID NO.19, and PCR positive hairy root detection is shown in Figure 7. Real-time fluorescence quantitative qPCR found that the expression level of GmNLA1 gene in overexpressed hairy roots (GmNLA1-OE) was significantly higher than that of Control 1 (Fig. 5a). However, the expression level of GmNLA1 gene in RNA interference hairy roots (GmNLA1-RNAi) was significantly lower than that of Control 2 (Fig. 5a).

在大豆毛状根长到合适大小时,用1/2Hoagland处理15d后测量GmNLA1-OE和GmNLA1-RNAi转基因毛状根中的P浓度。结果表明,在GmNLA1-OE转基因毛状根中,GmNLA1-OE中P浓度是Control 1的0.77倍,表明GmNLA1-OE转基因毛状根中的P浓度在+P条件下显著降低。但是GmNLA1-OE非转基因地上部没有显著差异(图5b)。相反,GmNLA1-RNAi中的P浓度是转基因根Control 2的1.66倍,表明在+P条件下GmNLA1-RNAi转基因毛状根中的P浓度显著增加。与GmNLA1-OE转基因毛状一样,GmNLA1-RNAi非转基因地上部也没有显著差异(图5b)。这些结果表明GmNLA1在+P条件下负调节大豆转基因毛状根中的P浓度。When the soybean hairy roots grew to a suitable size, the P concentration in the hairy roots of GmNLA1-OE and GmNLA1-RNAi transgenics was measured after being treated with 1/2 Hoagland for 15 days. The results showed that in GmNLA1-OE transgenic hairy roots, the P concentration in GmNLA1-OE was 0.77 times that of Control 1, indicating that the P concentration in GmNLA1-OE transgenic hairy roots was significantly reduced under the +P condition. But GmNLA1-OE non-transgenic shoots were not significantly different (Fig. 5b). In contrast, the P concentration in GmNLA1-RNAi was 1.66 times that of the transgenic root Control 2, indicating that the P concentration in the GmNLA1-RNAi transgenic hairy root was significantly increased under the +P condition. As with GmNLA1-OE transgenic hairs, GmNLA1-RNAi non-transgenic shoots were not significantly different (Fig. 5b). These results suggest that GmNLA1 negatively regulates P concentration in soybean transgenic hairy roots under +P conditions.

序列表sequence listing

<110> 南京农业大学<110> Nanjing Agricultural University

<120> 大豆E3泛素连接酶GmNLA1编码基因的应用<120> Application of soybean E3 ubiquitin ligase GmNLA1 coding gene

<160> 19<160> 19

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 948<211> 948

<212> DNA<212>DNA

<213> 大豆(Glycine max)<213> Soybean (Glycine max)

<400> 1<400> 1

atgaagttct gcaagaccta ccagcagtac atgcaaggac atggccacaa caagctccct 60atgaagttct gcaagaccta ccagcagtac atgcaaggac atggccacaa caagctccct 60

tctgttggct tcaagaacct aaaaaagatc attaaaagct gcaggagagc ctccactcaa 120tctgttggct tcaagaacct aaaaaagatc attaaaagct gcaggagagc ctccactcaa 120

cctacctgcc ctgatcattg cccagtgtgc gatgggacct ttttcccttc ccttctcaat 180cctacctgcc ctgatcattg cccagtgtgc gatgggacct ttttcccttc ccttctcaat 180

gaaatgtcag atatagtagg gtgctttaat cagcgcgcgc agcaattgct ggaactacat 240gaaatgtcag atatagtagg gtgctttaat cagcgcgcgc agcaattgct ggaactacat 240

cttgcttctg gcttcagaaa gtactttctc atgttgaaag gaaaattaca caagaatcat 300cttgcttctg gcttcagaaa gtactttctc atgttgaaag gaaaattaca caagaatcat 300

actgctctaa tcgaagaagg aaaagatcta gtcatatatg cactcataaa ttccatcgca 360actgctctaa tcgaagaagg aaaagatcta gtcatatatg cactcataaa ttccatcgca 360

attcgaaaaa tcttgaagaa atatgataag attcattatt ccaagcaagg ccaattattc 420attcgaaaaa tcttgaagaa atatgataag attcattatt ccaagcaagg ccaattattc 420

aagtcgaaag tccagaccat gcacaaggaa attcttcaaa gtccctggct ttgtgagctt 480aagtcgaaag tccagaccat gcacaaggaa attcttcaaa gtccctggct ttgtgagctt 480

attgccttac acattaactt aagggaaaca aaatccaagc caagggaggc atccgcactg 540attgccttac acattaactt aagggaaaca aaatccaagc caagggaggc atccgcactg 540

tttgatggat gttatctcac attcacggat ggaaaaccat cacttacttg tgagctcttt 600tttgatggat gttatctcac attcacggat ggaaaaccat cacttacttg tgagctcttt 600

gattccgtca aaattgatat tgacttgacc tgctctatat gcttggatac agtgtttgat 660gattccgtca aaattgatat tgacttgacc tgctctatat gcttggatac agtgtttgat 660

tcagtttctc tgacatgcgg ccacatattc tgctacacct gtgcttgctc aactgcatca 720tcagtttctc tgacatgcgg ccacatattc tgctacacct gtgcttgctc aactgcatca 720

gttaccattg tcgatggact taaggcagca aatcctaaag aaaaatgtcc tctatgccga 780gttaccatg tcgatggact taaggcagca aatcctaaag aaaaatgtcc tctatgccga 780

gagggaagag tttacgaaga tgctgtgcat ttggaagaat taaatattct gctaggccga 840gagggaagag tttacgaaga tgctgtgcat ttggaagaat taaatattct gctaggccga 840

agctgcaggg agtactggga gcaaaggctt cagatggaga gggtagagag ggttaagcaa 900agctgcaggg agtactggga gcaaaggctt cagatggaga gggtagagag ggttaagcaa 900

gttaaggagc actgggaaac gcagtgtagg gcgttcatgg gcatctaa 948gttaaggagc actgggaaac gcagtgtagg gcgttcatgg gcatctaa 948

<210> 2<210> 2

<211> 315<211> 315

<212> PRT<212> PRT

<213> 大豆(Glycine max)<213> Soybean (Glycine max)

<400> 2<400> 2

Met Lys Phe Cys Lys Thr Tyr Gln Gln Tyr Met Gln Gly His Gly HisMet Lys Phe Cys Lys Thr Tyr Gln Gln Tyr Met Gln Gly His Gly His

1 5 10 151 5 10 15

Asn Lys Leu Pro Ser Val Gly Phe Lys Asn Leu Lys Lys Ile Ile LysAsn Lys Leu Pro Ser Val Gly Phe Lys Asn Leu Lys Lys Ile Ile Lys

20 25 30 20 25 30

Ser Cys Arg Arg Ala Ser Thr Gln Pro Thr Cys Pro Asp His Cys ProSer Cys Arg Arg Ala Ser Thr Gln Pro Thr Cys Pro Asp His Cys Pro

35 40 45 35 40 45

Val Cys Asp Gly Thr Phe Phe Pro Ser Leu Leu Asn Glu Met Ser AspVal Cys Asp Gly Thr Phe Phe Pro Ser Leu Leu Asn Glu Met Ser Asp

50 55 60 50 55 60

Ile Val Gly Cys Phe Asn Gln Arg Ala Gln Gln Leu Leu Glu Leu HisIle Val Gly Cys Phe Asn Gln Arg Ala Gln Gln Leu Leu Glu Leu His

65 70 75 8065 70 75 80

Leu Ala Ser Gly Phe Arg Lys Tyr Phe Leu Met Leu Lys Gly Lys LeuLeu Ala Ser Gly Phe Arg Lys Tyr Phe Leu Met Leu Lys Gly Lys Leu

85 90 95 85 90 95

His Lys Asn His Thr Ala Leu Ile Glu Glu Gly Lys Asp Leu Val IleHis Lys Asn His Thr Ala Leu Ile Glu Glu Gly Lys Asp Leu Val Ile

100 105 110 100 105 110

Tyr Ala Leu Ile Asn Ser Ile Ala Ile Arg Lys Ile Leu Lys Lys TyrTyr Ala Leu Ile Asn Ser Ile Ala Ile Arg Lys Ile Leu Lys Lys Tyr

115 120 125 115 120 125

Asp Lys Ile His Tyr Ser Lys Gln Gly Gln Leu Phe Lys Ser Lys ValAsp Lys Ile His Tyr Ser Lys Gln Gly Gln Leu Phe Lys Ser Lys Val

130 135 140 130 135 140

Gln Thr Met His Lys Glu Ile Leu Gln Ser Pro Trp Leu Cys Glu LeuGln Thr Met His Lys Glu Ile Leu Gln Ser Pro Trp Leu Cys Glu Leu

145 150 155 160145 150 155 160

Ile Ala Leu His Ile Asn Leu Arg Glu Thr Lys Ser Lys Pro Arg GluIle Ala Leu His Ile Asn Leu Arg Glu Thr Lys Ser Lys Pro Arg Glu

165 170 175 165 170 175

Ala Ser Ala Leu Phe Asp Gly Cys Tyr Leu Thr Phe Thr Asp Gly LysAla Ser Ala Leu Phe Asp Gly Cys Tyr Leu Thr Phe Thr Asp Gly Lys

180 185 190 180 185 190

Pro Ser Leu Thr Cys Glu Leu Phe Asp Ser Val Lys Ile Asp Ile AspPro Ser Leu Thr Cys Glu Leu Phe Asp Ser Val Lys Ile Asp Ile Asp

195 200 205 195 200 205

Leu Thr Cys Ser Ile Cys Leu Asp Thr Val Phe Asp Ser Val Ser LeuLeu Thr Cys Ser Ile Cys Leu Asp Thr Val Phe Asp Ser Val Ser Leu

210 215 220 210 215 220

Thr Cys Gly His Ile Phe Cys Tyr Thr Cys Ala Cys Ser Thr Ala SerThr Cys Gly His Ile Phe Cys Tyr Thr Cys Ala Cys Ser Thr Ala Ser

225 230 235 240225 230 235 240

Val Thr Ile Val Asp Gly Leu Lys Ala Ala Asn Pro Lys Glu Lys CysVal Thr Ile Val Asp Gly Leu Lys Ala Ala Asn Pro Lys Glu Lys Cys

245 250 255 245 250 255

Pro Leu Cys Arg Glu Gly Arg Val Tyr Glu Asp Ala Val His Leu GluPro Leu Cys Arg Glu Gly Arg Val Tyr Glu Asp Ala Val His Leu Glu

260 265 270 260 265 270

Glu Leu Asn Ile Leu Leu Gly Arg Ser Cys Arg Glu Tyr Trp Glu GlnGlu Leu Asn Ile Leu Leu Gly Arg Ser Cys Arg Glu Tyr Trp Glu Gln

275 280 285 275 280 285

Arg Leu Gln Met Glu Arg Val Glu Arg Val Lys Gln Val Lys Glu HisArg Leu Gln Met Glu Arg Val Glu Arg Val Lys Gln Val Lys Glu His

290 295 300 290 295 300

Trp Glu Thr Gln Cys Arg Ala Phe Met Gly IleTrp Glu Thr Gln Cys Arg Ala Phe Met Gly Ile

305 310 315305 310 315

<210> 3<210> 3

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

ggatcttcca gagatatgaa gttctgcaag acctaccagc 40ggatcttcca gagatatgaa gttctgcaag acctaccagc 40

<210> 4<210> 4

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

ctgccgttcg acgatttaga tgcccatgaa cgccctacac 40ctgccgttcg acgattaga tgcccatgaa cgccctacac 40

<210> 5<210> 5

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

catgcggcca catattctgc 20catgcggcca catattctgc 20

<210> 6<210> 6

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

tctgaagcct ttgctcccag 20tctgaagcct ttgctccccag 20

<210> 7<210> 7

<211> 19<211> 19

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

ggagttcaca gaggcagag 19ggagttcaca gaggcagag 19

<210> 8<210> 8

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

cacttacgca tcacatagca 20cacttacgca tcacatagca 20

<210> 9<210> 9

<211> 35<211> 35

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

ctagtctaga atgaagttct gcaagaccta ccagc 35ctagtctaga atgaagttct gcaagaccta ccagc 35

<210> 10<210> 10

<211> 31<211> 31

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

cggggtaccg atgcccatga acgccctaca c 31cggggtaccg atgcccatga acgccctaca c 31

<210> 11<210> 11

<211> 56<211> 56

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

ggggacaagt ttgtacaaaa aagcaggctc catgaagttc tgcaagacct accagc 56ggggacaagt ttgtacaaaa aagcaggctc catgaagttc tgcaagacct accagc 56

<210> 12<210> 12

<211> 55<211> 55

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

ggggaccact ttgtacaaga aagctgggtg ttagatgccc atgaacgccc tacac 55ggggaccact ttgtacaaga aagctgggtg ttagatgccc atgaacgccc tacac 55

<210> 13<210> 13

<211> 51<211> 51

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 13<400> 13

ggggacaagt ttgtacaaaa aagcaggctc cagtgtgcga tgggaccttt t 51ggggacaagt ttgtacaaaa aagcaggctc cagtgtgcga tgggaccttt t 51

<210> 14<210> 14

<211> 50<211> 50

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 14<400> 14

ggggaccact ttgtacaaga aagctgggtg ccatcaaaca gtgcggatgc 50ggggaccact ttgtacaaga aagctgggtg ccatcaaaca gtgcggatgc 50

<210> 15<210> 15

<211> 405<211> 405

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 15<400> 15

agtgtgcgat gggacctttt tcccttccct tctcaatgaa atgtcagata tagtagggtg 60agtgtgcgat gggacctttt tcccttccct tctcaatgaa atgtcagata tagtagggtg 60

ctttaatcag cgcgcgcagc aattgctgga actacatctt gcttctggct tcagaaagta 120ctttaatcag cgcgcgcagc aattgctgga actacatctt gcttctggct tcagaaagta 120

ctttctcatg ttgaaaggaa aattacacaa gaatcatact gctctaatcg aagaaggaaa 180ctttctcatg ttgaaaggaa aattacacaa gaatcatact gctctaatcg aagaaggaaa 180

agatctagtc atatatgcac tcataaattc catcgcaatt cgaaaaatct tgaagaaata 240agatctagtc atatatgcac tcataaattc catcgcaatt cgaaaaatct tgaagaaata 240

tgataagatt cattattcca agcaaggcca attattcaag tcgaaagtcc agaccatgca 300tgataagatt cattattcca agcaaggcca attattcaag tcgaaagtcc agaccatgca 300

caaggaaatt cttcaaagtc cctggctttg tgagcttatt gccttacaca ttaacttaag 360caaggaaatt cttcaaagtc cctggctttg tgagcttatt gccttacaca ttaacttaag 360

ggaaacaaaa tccaagccaa gggaggcatc cgcactgttt gatgg 405ggaaacaaaa tccaagccaa gggaggcatc cgcactgttt gatgg 405

<210> 16<210> 16

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 16<400> 16

tcagtaacat agatgacacc gc 22tcagtaacat agatgacacc gc 22

<210> 17<210> 17

<211> 55<211> 55

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 17<400> 17

ggggaccact ttgtacaaga aagctgggtg ttagatgccc atgaacgccc tacac 55ggggaccact ttgtacaaga aagctgggtg ttagatgccc atgaacgccc tacac 55

<210> 18<210> 18

<211> 18<211> 18

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 18<400> 18

atgagcccag aacgacgc 18atgagcccag aacgacgc 18

<210> 19<210> 19

<211> 19<211> 19

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 19<400> 19

acgtcatgcc agttcccgt 19acgtcatgcc agttcccgt 19

Claims (3)

1.大豆E3泛素连接酶基因GmNLA1在调节大豆的磷利用效率中的应用,所述的大豆E3泛素连接酶基因GmNLA1,其核苷酸序列为:SEQ ID NO.1。1. The application of the soybean E3 ubiquitin ligase gene GmNLA1 in regulating the phosphorus utilization efficiency of soybean, the nucleotide sequence of the soybean E3 ubiquitin ligase gene GmNLA1 is: SEQ ID NO.1. 2.根据权利要求1所述的应用,其特征在于,大豆毛状根中过表达GmNLA1,降低过表达毛状根中磷浓度。2. The application according to claim 1, characterized in that the overexpression of GmNLA1 in the hairy root of soybean reduces the concentration of phosphorus in the hairy root of overexpression. 3.根据权利要求1所述的应用,其特征在于,在大豆毛状根中利用RNA干扰技术沉默GmNLA1,提高干扰毛状根中磷浓度。3. The application according to claim 1, characterized in that RNA interference technology is used to silence GmNLA1 in soybean hairy roots to increase the concentration of phosphorus in the disturbed hairy roots.
CN201910424824.4A 2019-05-21 2019-05-21 Application of soybean E3 ubiquitin ligase GmNLA1 coding gene Active CN110241121B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910424824.4A CN110241121B (en) 2019-05-21 2019-05-21 Application of soybean E3 ubiquitin ligase GmNLA1 coding gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910424824.4A CN110241121B (en) 2019-05-21 2019-05-21 Application of soybean E3 ubiquitin ligase GmNLA1 coding gene

Publications (2)

Publication Number Publication Date
CN110241121A true CN110241121A (en) 2019-09-17
CN110241121B CN110241121B (en) 2022-03-29

Family

ID=67884687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910424824.4A Active CN110241121B (en) 2019-05-21 2019-05-21 Application of soybean E3 ubiquitin ligase GmNLA1 coding gene

Country Status (1)

Country Link
CN (1) CN110241121B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249395A (en) * 2021-05-14 2021-08-13 南京农业大学 Application of soybean agglutinin receptor kinase Rsc7-1 coding gene
CN116355948A (en) * 2023-03-27 2023-06-30 南京农业大学 Application of soybean E2 ubiquitin conjugated enzyme GmUBC2 coding gene

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314469A (en) * 2006-05-25 2007-12-06 Univ Of Tokushima Ubiquitin ligase inhibitor
US20090089894A1 (en) * 2007-04-12 2009-04-02 Iowa State University Research Foundation, Inc. Metacaspase II in engineering soybean for disease resistance
CN101501195A (en) * 2006-06-13 2009-08-05 圭尔夫大学 Nitrogen limitation adaptibility gene and protein and modulation thereof
CN101602800A (en) * 2009-07-16 2009-12-16 合肥工业大学 A protein that regulates plant tolerance to low phosphorus stress, its coding gene and application
CN102234328A (en) * 2010-04-29 2011-11-09 中国农业大学 Plant low phosphorus stress tolerance correlated protein AtLPT2, its coding gene and application
CN102317312A (en) * 2008-12-17 2012-01-11 巴斯夫植物科学有限公司 Plants having enhanced yield-related traits and/or abiotic stress tolerance and a method for making the same
CN104178496A (en) * 2013-05-27 2014-12-03 南开大学 Plant low-phosphorus response regulation and control unit and expression vector construction technology
CN105829536A (en) * 2013-08-22 2016-08-03 纳幕尔杜邦公司 Method for producing genetic modifications in the genome of plants without the incorporation of a selectable transgene marker, and compositions for use in such methods
WO2016181013A1 (en) * 2015-05-14 2016-11-17 Universidad Politécnica de Madrid Use of oligosaccharides as stimulators of plant growth in already germinated plants and method for obtaining said oligosaccharides
CN107058339A (en) * 2013-10-12 2017-08-18 中国农业科学院作物科学研究所 Soybean GmCIB1 genes and GmCRY2 genes and its regulation and control bloom and aging effect
JP2017216882A (en) * 2016-06-02 2017-12-14 国立大学法人金沢大学 Method for detecting presence of bone disorder, therapeutic agent for bone disorder, and screening method for therapeutic agent
CN107988248A (en) * 2017-11-14 2018-05-04 浙江大学 A kind of method of easy, efficient fusion His label SPX albumen pronucleus expressions, purifying and renaturation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314469A (en) * 2006-05-25 2007-12-06 Univ Of Tokushima Ubiquitin ligase inhibitor
CN101501195A (en) * 2006-06-13 2009-08-05 圭尔夫大学 Nitrogen limitation adaptibility gene and protein and modulation thereof
US20090089894A1 (en) * 2007-04-12 2009-04-02 Iowa State University Research Foundation, Inc. Metacaspase II in engineering soybean for disease resistance
CN102317312A (en) * 2008-12-17 2012-01-11 巴斯夫植物科学有限公司 Plants having enhanced yield-related traits and/or abiotic stress tolerance and a method for making the same
CN101602800A (en) * 2009-07-16 2009-12-16 合肥工业大学 A protein that regulates plant tolerance to low phosphorus stress, its coding gene and application
CN102234328A (en) * 2010-04-29 2011-11-09 中国农业大学 Plant low phosphorus stress tolerance correlated protein AtLPT2, its coding gene and application
CN104178496A (en) * 2013-05-27 2014-12-03 南开大学 Plant low-phosphorus response regulation and control unit and expression vector construction technology
CN105829536A (en) * 2013-08-22 2016-08-03 纳幕尔杜邦公司 Method for producing genetic modifications in the genome of plants without the incorporation of a selectable transgene marker, and compositions for use in such methods
CN107058339A (en) * 2013-10-12 2017-08-18 中国农业科学院作物科学研究所 Soybean GmCIB1 genes and GmCRY2 genes and its regulation and control bloom and aging effect
WO2016181013A1 (en) * 2015-05-14 2016-11-17 Universidad Politécnica de Madrid Use of oligosaccharides as stimulators of plant growth in already germinated plants and method for obtaining said oligosaccharides
JP2017216882A (en) * 2016-06-02 2017-12-14 国立大学法人金沢大学 Method for detecting presence of bone disorder, therapeutic agent for bone disorder, and screening method for therapeutic agent
CN107988248A (en) * 2017-11-14 2018-05-04 浙江大学 A kind of method of easy, efficient fusion His label SPX albumen pronucleus expressions, purifying and renaturation

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DAVID SECCO等: "The emerging importanca of the SPX domain-containing proteins in phosphate homeostasis", 《NEW PHYTOL》 *
JI YEON SUH等: "Arabidopsis RING E3ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions", 《BIOCHEM BIOPHYS RES COMMUN》 *
NCBI: "E3 ubiquitin-protein ligase BAH1 isoform X1[Glycine max]", 《GENBANK DATABASE》 *
WENKAI DU等: "Identification of loci and candidate gene GmSPX-RING1 responsible for phosphorus efficiency in soybean via genome-wide association analysis", 《BMC GENOMICS》 *
WENYUAN RUAN等: "Two RING –finger ubiquitin E3 ligase regulate the degradation of SPX4,an internal pjosphate sensor,for phosphate homeostasis and signaling in rice", 《MOL PLANT》 *
周红敏等: "水稻SUMO化E3连接酶SIZ1调控缺磷条件下根的发育和根构型形成", 《中国水稻科学》 *
李永刚等: "大豆与疫霉菌非亲和互作早期差异显示基因的表达分析", 《植物保护学报》 *
陈曙等: "玉米泛素结合酶基因家族的生物信息学及表达分析", 《南方农业学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249395A (en) * 2021-05-14 2021-08-13 南京农业大学 Application of soybean agglutinin receptor kinase Rsc7-1 coding gene
CN113249395B (en) * 2021-05-14 2022-04-29 南京农业大学 Application of soybean agglutinin receptor kinase Rsc7-1 coding gene
CN116355948A (en) * 2023-03-27 2023-06-30 南京农业大学 Application of soybean E2 ubiquitin conjugated enzyme GmUBC2 coding gene
CN116355948B (en) * 2023-03-27 2024-03-22 南京农业大学 Application of soybean E2 ubiquitin conjugating enzyme GmUBC2 encoding gene

Also Published As

Publication number Publication date
CN110241121B (en) 2022-03-29

Similar Documents

Publication Publication Date Title
CN110628808B (en) Arabidopsis AtTCP5 gene and application thereof in regulating plant height
CN105602911B (en) A kind of soybean PUB class E3 ubiquitin ligase GmPUB8 and its coding gene and application
CN108998470B (en) Application of soybean MYB32 transcription factor coding gene GmMYB32
CN110714013B (en) Application of soybean E2 ubiquitin-conjugating enzyme gene GmUBC1
CN107164391A (en) A kind of strawberry floral genes FvbHLH78 and its application
CN113150097B (en) A protein OsERF096 related to plant stress tolerance and its encoding gene and application
CN102925453B (en) Malic acid transporter gene GmALMT1 and application thereof
CN109576283B (en) Application of soybean GER protein coding gene GmGER12
CN111454972A (en) The cold resistance gene PtrBADH of Citrus aurantium and its application in genetic improvement of plant cold resistance
CN108118040A (en) Soybean GDPD protein coding genes GmGDPD1 and its application
CN110241121B (en) Application of soybean E3 ubiquitin ligase GmNLA1 coding gene
CN113481208B (en) Application of a wild soybean MADS-box family gene GsAGL62
CN113372423B (en) Application of wild soybean Bet _ v _1 family gene GsMLP328
CN108866084A (en) The application of one soybean E3 ubiquitin ligase family gene GmRNF1a
CN110468118B (en) The SUMO E3 ligase gene CpSIZ1 of Prunus chinensis and its application
CN105504033B (en) Rice cell cycle protein OsCYCP4;1 application and the method for improving rice tolerant to low-phosphorus stress
CN108841835B (en) Application of soybean ZF-HD protein coding gene GmZVHD 11
CN102559699A (en) CsCoL1 gene relative to cymbidium sinense photoperiod and application of CsCoL1 gene
CN110295175A (en) The application of one soybean NAC transcription factor family gene Glyma08g41995
CN104109192A (en) Wheat draught-resistant gene and use thereof
CN114525298B (en) Application of soybean protein GmFVE in regulation and control of salt tolerance of plants
CN105753955B (en) A soybean bHLH transcription factor and its encoding gene and application
CN105175522B (en) Crowtoe AP2/ERF transcription factors and its encoding gene and application
CN108610402A (en) Applications of the peanut annexin Gene A hANN6 in improving plant and microorganism high temperature resistance and Oxidative Stress
CN111676227B (en) Genetic engineering application of soybean ribosomal protein encoding gene GmRPL12

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant