CN110236482A - Integrated eye and brain visual function imaging system - Google Patents
Integrated eye and brain visual function imaging system Download PDFInfo
- Publication number
- CN110236482A CN110236482A CN201910471543.4A CN201910471543A CN110236482A CN 110236482 A CN110236482 A CN 110236482A CN 201910471543 A CN201910471543 A CN 201910471543A CN 110236482 A CN110236482 A CN 110236482A
- Authority
- CN
- China
- Prior art keywords
- visual
- eye
- imaging
- brain
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 103
- 210000004556 brain Anatomy 0.000 title claims abstract description 43
- 230000004382 visual function Effects 0.000 title claims abstract description 9
- 230000000007 visual effect Effects 0.000 claims abstract description 75
- 210000001747 pupil Anatomy 0.000 claims abstract description 25
- 230000017531 blood circulation Effects 0.000 claims abstract description 24
- 210000001525 retina Anatomy 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000004458 analytical method Methods 0.000 claims abstract description 17
- 210000003710 cerebral cortex Anatomy 0.000 claims abstract description 17
- 230000002207 retinal effect Effects 0.000 claims abstract description 14
- 238000005516 engineering process Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims abstract description 7
- 238000001228 spectrum Methods 0.000 claims abstract description 7
- 238000009792 diffusion process Methods 0.000 claims abstract description 3
- 238000010191 image analysis Methods 0.000 claims abstract description 3
- 230000004438 eyesight Effects 0.000 claims description 28
- 239000000523 sample Substances 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 15
- 230000003727 cerebral blood flow Effects 0.000 claims description 10
- 230000001054 cortical effect Effects 0.000 claims description 7
- 239000008280 blood Substances 0.000 claims description 5
- 210000004369 blood Anatomy 0.000 claims description 5
- 230000000763 evoking effect Effects 0.000 claims description 4
- 239000013307 optical fiber Substances 0.000 claims description 4
- 230000002490 cerebral effect Effects 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims 1
- 210000000857 visual cortex Anatomy 0.000 abstract description 11
- 210000005036 nerve Anatomy 0.000 abstract description 10
- 230000001537 neural effect Effects 0.000 abstract description 10
- 238000011160 research Methods 0.000 abstract description 8
- 230000007246 mechanism Effects 0.000 abstract description 2
- 230000004044 response Effects 0.000 abstract description 2
- 230000001360 synchronised effect Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 14
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 10
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 230000008035 nerve activity Effects 0.000 description 6
- 238000012014 optical coherence tomography Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000001179 pupillary effect Effects 0.000 description 6
- 210000005013 brain tissue Anatomy 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 239000000306 component Substances 0.000 description 4
- 230000004446 light reflex Effects 0.000 description 4
- 210000001328 optic nerve Anatomy 0.000 description 4
- 208000010412 Glaucoma Diseases 0.000 description 3
- 102000001554 Hemoglobins Human genes 0.000 description 3
- 108010054147 Hemoglobins Proteins 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 208000030533 eye disease Diseases 0.000 description 3
- 230000008904 neural response Effects 0.000 description 3
- 238000002610 neuroimaging Methods 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 208000002177 Cataract Diseases 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 206010025421 Macule Diseases 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 238000000701 chemical imaging Methods 0.000 description 2
- 238000007621 cluster analysis Methods 0.000 description 2
- 239000008358 core component Substances 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011503 in vivo imaging Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 210000004126 nerve fiber Anatomy 0.000 description 2
- 206010029864 nystagmus Diseases 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 210000004761 scalp Anatomy 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 238000004497 NIR spectroscopy Methods 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 230000007177 brain activity Effects 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 210000004884 grey matter Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000008338 local blood flow Effects 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000008557 oxygen metabolism Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000004256 retinal image Effects 0.000 description 1
- 210000001116 retinal neuron Anatomy 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000004885 white matter Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/102—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
- A61B3/1225—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
- A61B3/1225—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
- A61B3/1233—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation for measuring blood flow, e.g. at the retina
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
- A61B5/0042—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6803—Head-worn items, e.g. helmets, masks, headphones or goggles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2576/00—Medical imaging apparatus involving image processing or analysis
- A61B2576/02—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
- A61B2576/026—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Ophthalmology & Optometry (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Hematology (AREA)
- Neurology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明公开了一种一体化眼脑部视觉功能成像系统,包括:视觉刺激呈现设备,呈现包含多种刺激诱发范式的图片和视频;眼部视觉成像设备,是基于多光谱的视网膜和瞳孔成像设备;脑部视觉成像设备,是基于近红扩散相关谱技术的视觉脑皮层血流信号成像设备;协同工作站,包括成像采集控制模块和图像分析模块,用于协同控制眼部视觉成像设备和脑部视觉成像设备,并将获取到的多光谱视网膜、瞳孔图像和视觉脑皮层血流图像进行处理与分析。通过该系统能够实现眼部视网膜、瞳孔和大脑视觉皮层神经功能响应的同步记录,对多模态多参数的视觉生理信号进行联合分析,为视觉信息编解码、视觉重建机理研究、视觉神经调控定量评估受损定位等提供方法。
The invention discloses an integrated eye-brain visual function imaging system, which includes: a visual stimulus presentation device that presents pictures and videos containing multiple stimulus-induced paradigms; an eye visual imaging device that is based on multi-spectral retinal and pupil imaging equipment; brain visual imaging equipment, which is a visual cerebral cortex blood flow signal imaging equipment based on near-infrared diffusion correlation spectrum technology; a collaborative workstation, including an imaging acquisition control module and an image analysis module, for collaborative control of eye visual imaging equipment and brain The internal visual imaging equipment is used to process and analyze the acquired multi-spectral retinal, pupil images and visual cortex blood flow images. Through this system, the synchronous recording of neural function responses of the eye retina, pupil and brain visual cortex can be realized, and the joint analysis of multi-modal and multi-parameter visual physiological signals can be used for visual information encoding and decoding, visual reconstruction mechanism research, and quantitative visual nerve regulation. Provide methods for assessing damage location etc.
Description
技术领域technical field
本发明涉及医疗成像技术领域,特别是涉及一种一体化眼脑部视觉功能成像系统。The invention relates to the technical field of medical imaging, in particular to an integrated eye-brain visual function imaging system.
背景技术Background technique
由于视觉功能的重要性,国内外在视觉神经功能方面的研究一直是个热点。在大脑视觉神经功能成像方面,常用的设备有功能磁共振成像仪(fMRI)、脑电仪(EEG)、近红外脑功能成像仪(fNIRS)。fMRI的原理是利用动态磁共振成像来测量神经元活动所引发的血氧水平的改变。运用fMRI能实现对人类视觉系统相关脑皮层的功能定位、颜色识别、视觉加工等的研究,然而,fMRI的时间分辨率较低,不能测量瞬时的脑神经活动变化。EEG可以检测大脑神经活动产生的电信号,但是EEG测量的是头表面的电信号,由于脑神经活动的电传导会受到头颅组织的影响,测量空间的EEG信号会在一定程度上偏离真实的颅内脑神经电信号,因此通常需要联合功能磁共振成像才能实现脑活动的准确定位。fNIRS对现有的fMRI、EEG技术是一个非常有益的补充,是一种通过安全的近红外光来评估大脑皮层含氧血红蛋白和脱氧血红蛋白成分变化的功能性近红外光脑成像系统,但由于fNIRS测量的是缓慢变化的血氧代谢活动,因此仍不能准确记录神经活动过程。Due to the importance of visual function, research on visual nerve function has always been a hot spot at home and abroad. In terms of visual nerve functional imaging of the brain, commonly used devices include functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and near-infrared functional brain imager (fNIRS). The principle of fMRI is to use dynamic magnetic resonance imaging to measure changes in blood oxygen levels caused by neuronal activity. The use of fMRI can realize the research on the functional positioning, color recognition, and visual processing of the cortex related to the human visual system. However, the temporal resolution of fMRI is low, and it cannot measure instantaneous brain neural activity changes. EEG can detect the electrical signals generated by brain nerve activity, but EEG measures the electrical signals on the head surface. Since the electrical conduction of brain nerve activity will be affected by the skull tissue, the EEG signal in the measurement space will deviate from the real cranium to a certain extent. Neuroelectrical signals within the brain, therefore often require combined fMRI to achieve accurate localization of brain activity. fNIRS is a very beneficial supplement to the existing fMRI and EEG technologies. It is a functional near-infrared optical brain imaging system that evaluates the changes in the composition of oxygenated hemoglobin and deoxygenated hemoglobin in the cerebral cortex through safe near-infrared light. However, due to fNIRS What is measured is the slowly changing blood oxygen metabolism activity, so the neural activity process cannot be accurately recorded.
在眼部视觉神经功能成像方面,常用的设备有光学相干断层扫描技术(OCT)、眼底镜、瞳孔仪。OCT是一种非接触、高分辨率层析和生物显微镜成像设备,它可用于眼后段结构(包括视网膜、视网膜神经纤维层、黄斑和视盘)的活体上查看、轴向断层以及测量,是特别用作帮助检测和管理眼疾的诊断设备。眼底镜主要用于眼底视网膜成像,眼底镜不仅可以针对常见的白内障、青光眼等眼科疾病检查,而且可早期诊断高血压、糖尿病等全身系统性疾病,已经成为临床医学和现代科学研究的热门对象。瞳孔仪主要用于瞳孔对光反射、瞳孔传导阻滞、眼震测量以及眼动跟踪等领域,另外,其还是多种眼科仪器的精密对准核心组件。但是,这些设备仅限被用于静态眼部成像,无法连续、动态地对眼部进行成像,并且,无法定量测量瞳孔对光反射完整的神经回路。In terms of visual nerve function imaging of the eye, commonly used equipment includes optical coherence tomography (OCT), ophthalmoscope, and pupillometer. OCT is a non-contact, high-resolution tomographic and biomicroscopic imaging device that can be used for in vivo viewing, axial sectioning, and measurement of structures in the posterior segment of the eye, including the retina, retinal nerve fiber layer, macula, and optic disc. Especially useful as a diagnostic device to help detect and manage eye diseases. Ophthalmoscope is mainly used for fundus retinal imaging. Ophthalmoscope can not only check for common eye diseases such as cataract and glaucoma, but also can diagnose systemic diseases such as hypertension and diabetes early. It has become a popular object of clinical medicine and modern scientific research. The pupillometer is mainly used in the fields of pupillary light reflex, pupillary conduction block, nystagmus measurement, and eye tracking. In addition, it is also a core component for precision alignment of various ophthalmic instruments. However, these devices are limited to static eye imaging, and cannot continuously and dynamically image the eye, and cannot quantitatively measure the complete neural circuit of the pupillary light reflex.
综上分析,目前对视觉神经功能成像的都是采用一种成像设备,或采用多种成像设备分时、分部位对视觉神经功能进行成像,并在此基础上进行分析。其中,对视网膜神经元活动的监测多基于侵入式或离体测量的方式进行;而当前对眼底的研究多只针对视网膜及周边血管结构的明显病变,尚缺少对活体眼底神经活动的检测手段。然而,视觉加工是从眼部视网膜至大脑视觉皮层的动态神经反应,现有设备的简单组合无法对眼部视网膜和大脑视觉皮层的动态神经反应进行瞬时、动态的功能成像。本技术能够提供一种同时对眼部视网膜和大脑视觉皮层功能进行活体成像的方法,研制能够同时用于视网膜-视觉皮层同步功能成像的设备,为研究视觉重建机理、视觉神经调控定量评估、视觉受损定位等临床问题提供新方法,具有重要的科学研究价值和临床应用价值。To sum up, the imaging of optic nerve function currently uses one imaging device, or uses multiple imaging devices to image the optic nerve function in time and in different parts, and analyzes on this basis. Among them, the monitoring of retinal neuron activity is mostly based on invasive or in vitro measurement methods; while the current research on the fundus is mostly focused on the obvious lesions of the retina and surrounding vascular structures, and there is still a lack of detection methods for the neural activity of the living fundus. However, visual processing is a dynamic neural response from the retina of the eye to the visual cortex of the brain. The simple combination of existing devices cannot perform instantaneous and dynamic functional imaging of the dynamic neural responses of the retina of the eye and the visual cortex of the brain. This technology can provide a method for in vivo imaging of eye retina and brain visual cortex at the same time, and develop a device that can be used for synchronous functional imaging of retina-visual cortex at the same time. It provides a new method for clinical problems such as damage localization, and has important scientific research value and clinical application value.
发明内容Contents of the invention
本发明主要解决的技术问题是当前现有设备的简单组合无法对眼部视网膜和大脑视觉皮层的动态神经反应进行瞬时、动态的功能成像的问题。The technical problem mainly solved by the present invention is that the simple combination of current existing equipment cannot perform instantaneous and dynamic functional imaging on the dynamic neural responses of the retina of the eye and the visual cortex of the brain.
为解决上述技术问题,本发明采用的技术方案是:提供一种一体化眼脑部视觉功能成像系统,所述系统包括:In order to solve the above-mentioned technical problems, the technical solution adopted by the present invention is to provide an integrated eye-brain visual function imaging system, which includes:
视觉刺激呈现设备,所述视觉刺激呈现设备是包含多种刺激诱发范式的图片和视频呈现设备;A visual stimulus presentation device that is a picture and video presentation device that includes multiple stimulus evoking paradigms;
眼部视觉成像设备,所述眼部视觉成像设备是基于多光谱的眼部视网膜和瞳孔图像采集;Eye vision imaging equipment, the eye vision imaging equipment is based on multi-spectral eye retina and pupil image collection;
脑部视觉成像设备,所述脑部视觉成像设备是基于近红外扩散相关谱技术的视觉脑皮层血流信号采集;Brain visual imaging equipment, the brain visual imaging equipment is based on near-infrared diffusion correlation spectrum technology to collect visual cerebral cortex blood flow signals;
协同工作站,所述协同工作站包括成像采集控制模块和图像分析模块,用于协同控制所述眼部视觉成像设备和所述脑部视觉成像设备,并将获取到的所述多光谱眼部图像和所述视觉脑皮层血流信号进行数据处理。A collaborative workstation, the collaborative workstation includes an imaging acquisition control module and an image analysis module for cooperatively controlling the eye vision imaging device and the brain vision imaging device, and combining the acquired multi-spectral eye images and The visual cerebral cortex blood flow signal is subjected to data processing.
优选的是,视觉刺激呈现设备包括多种刺激诱发范式的图片和视频,并且保持与眼部成像设备和脑部成像设备的时间一致性。Preferably, the visual stimulus presentation device includes pictures and videos of multiple stimulus evoking paradigms, and maintains temporal consistency with the eye imaging device and the brain imaging device.
优选的是,所述眼部视觉成像设备包括多光谱光源模块、图像信号采集与控制模块、图像采集模块和多光谱光源控制模块。Preferably, the eye vision imaging device includes a multi-spectral light source module, an image signal acquisition and control module, an image acquisition module and a multi-spectral light source control module.
优选的是,所述图像采集模块包括准直透镜、中空反射镜、第一汇聚透镜、第二汇聚透镜、瞳孔相机和视网膜相机;所述多光谱光源模块发出的光经所述准直透镜准直后被所述中空反射镜反射,然后透射所述第一汇聚透镜照射到人眼的瞳孔和视网膜;瞳孔反射的光线进入所述瞳孔相机,视网膜反射的光线透射所述第一汇聚透镜,然后穿过所述中空反射镜中部再透射所述第二汇聚透镜,达到所述视网膜相机。Preferably, the image acquisition module includes a collimating lens, a hollow mirror, a first converging lens, a second converging lens, a pupil camera and a retinal camera; the light emitted by the multispectral light source module is collimated by the collimating lens It is directly reflected by the hollow mirror, and then transmitted through the first converging lens to irradiate the pupil and retina of the human eye; the light reflected by the pupil enters the pupil camera, and the light reflected by the retina transmits the first converging lens, and then Pass through the middle of the hollow mirror and transmit through the second converging lens to reach the retinal camera.
优选的是,所述多光谱光源控制模块包括多光谱控制单元、一键采集单元和环境光控制单元。Preferably, the multispectral light source control module includes a multispectral control unit, a one-key acquisition unit and an ambient light control unit.
优选的是,所述视觉刺激呈现设备包括左刺激显示模块和右刺激显示模块。Preferably, the visual stimulus presentation device includes a left stimulus display module and a right stimulus display module.
优选的是,所述脑部视觉成像设备包括脑血流号采集模块和数据处理模块,所述脑血流号采集模块包括多个光源和若干个探头,所述多个光源和所述若干个探头形成脑血流信号采集通道,所述数据处理模块用于对所述脑血流信号采集模块采集到的信号进行处理后得到所述视觉脑皮层血流信号的量化指标。Preferably, the brain vision imaging device includes a cerebral blood flow number acquisition module and a data processing module, the cerebral blood flow number acquisition module includes a plurality of light sources and several probes, and the plurality of light sources and the several The probe forms a cerebral blood flow signal collection channel, and the data processing module is used to process the signal collected by the cerebral blood flow signal collection module to obtain the quantitative index of the visual cerebral cortex blood flow signal.
优选的是,所述脑血流信号采集模块为图像采集帽,所述多个光源和若干个探头环绕分布在所述图像采集帽上。Preferably, the cerebral blood flow signal acquisition module is an image acquisition cap, and the plurality of light sources and several probes are distributed around the image acquisition cap.
优选的是,所述光源为近红外激光光源;所述光源包括4个,所述探头包括16个。4个光源和16个探头形成20个脑电信号采集通道。Preferably, the light sources are near-infrared laser light sources; the light sources include 4, and the probes include 16. 4 light sources and 16 probes form 20 EEG signal acquisition channels.
优选的是,所述探头包括近红外激光器、单光子探测器和单模/多模光纤。Preferably, the probe includes a near-infrared laser, a single-photon detector and a single-mode/multi-mode optical fiber.
优选的是,所述协同工作站包括成像采集控制模块和视觉成像分析模块,所述成像采集控制模块用于协同控制所述眼部成像设备和所述脑部视觉成像设备,所述视觉成像分析模块通过功能磁共振图像,提取出脑功能成像空间特征,结合所述多光谱眼部图像和所述视觉脑皮层血流信号进行多模态谱聚类分析。Preferably, the collaborative workstation includes an imaging acquisition control module and a visual imaging analysis module, the imaging acquisition control module is used to cooperatively control the eye imaging device and the brain visual imaging device, and the visual imaging analysis module Through the functional magnetic resonance image, the spatial features of the brain functional imaging are extracted, and the multi-modal spectrum clustering analysis is performed in combination with the multi-spectral eye image and the visual cerebral cortex blood flow signal.
本发明的有益效果是:区别于现有技术的情况,本发明通过一体化的神经功能成像系统,利用医用光学技术,同时采集眼部及脑部的视觉神经活动信号,提供更全面丰富的视觉神经功能检测信息;同时,本申请基于眼部视神经活动的动态多光谱成像技术和基于近红外光谱的视觉皮层脑电成像技术能够实现活体成像;本申请还利用协同工作站对一体采集的多光谱眼部图像和视觉脑皮层血流信号进行多态谱聚类分析及图像重建,从而能够提供更加精准的疾病分析。The beneficial effect of the present invention is: different from the situation of the prior art, the present invention uses the integrated neurological imaging system and utilizes medical optical technology to collect the visual nerve activity signals of the eyes and the brain at the same time to provide a more comprehensive and rich visual Nerve function detection information; at the same time, the dynamic multi-spectral imaging technology based on eye optic nerve activity and the visual cortex EEG imaging technology based on near-infrared spectrum in this application can realize in vivo imaging; Perform polymorphic spectrum clustering analysis and image reconstruction on internal images and visual cortical blood flow signals, so as to provide more accurate disease analysis.
附图说明Description of drawings
图1是本发明的一体化眼脑部视觉功能成像系统一实施方式的结构示意图;Fig. 1 is a structural schematic diagram of an embodiment of the integrated eye-brain visual function imaging system of the present invention;
图2是图1中眼部视觉成像设备的结构示意图;Fig. 2 is a structural schematic diagram of the eye vision imaging device in Fig. 1;
图3是图2中图像采集模块的光路结构示意图;Fig. 3 is a schematic diagram of the optical path structure of the image acquisition module in Fig. 2;
图4是图1脑部视觉成像设备的结构示意图;Fig. 4 is a schematic structural diagram of the brain vision imaging device in Fig. 1;
图5是图1协同工作站的结构示意图;Fig. 5 is a schematic structural diagram of the cooperative workstation in Fig. 1;
图6是图4中视觉成像分析模块对功能磁共振图像进行提取脑功能成像空间特征的算法流程示意图。FIG. 6 is a schematic flowchart of an algorithm for extracting spatial features of brain functional imaging by the visual imaging analysis module in FIG. 4 from functional magnetic resonance images.
具体实施方式Detailed ways
为使本领域的技术人员更好地理解本发明所提供的技术方案,下面结合附图和具体实施方式对本发明所提供的一种一体化眼脑部视觉功能成像系统进行详细阐述。In order for those skilled in the art to better understand the technical solutions provided by the present invention, an integrated eye-brain visual function imaging system provided by the present invention will be described in detail below in conjunction with the drawings and specific embodiments.
请参阅图1,本发明一体化眼脑部视觉功能成像系统一实施方式,包括视觉刺激呈现设备10、眼部视觉成像设备11、脑部视觉成像设备12和协同工作站13。Please refer to FIG. 1 , an embodiment of the integrated eye-brain visual function imaging system of the present invention includes a visual stimulation presentation device 10 , an eye visual imaging device 11 , a brain visual imaging device 12 and a collaborative workstation 13 .
具体地,视觉刺激呈现设备10内包括多种刺激诱发范式的图片和视频,并且保持与眼部成像设备和脑部成像设备的时间一致性。所述视觉刺激呈现设备10包括左刺激显示模块和右刺激显示模块。用于分别对使用者的左眼和右眼提供视觉刺激,瞳孔图像由眼部视觉成像设备11中的瞳孔相机1145采集。Specifically, the visual stimulus presentation device 10 includes pictures and videos of various stimulation-induced paradigms, and maintains time consistency with the eye imaging device and the brain imaging device. The visual stimulus presentation device 10 includes a left stimulus display module and a right stimulus display module. The pupil images are collected by the pupil camera 1145 in the eye vision imaging device 11 for providing visual stimulation to the user's left eye and right eye respectively.
眼部视觉成像设备11是基于动态视觉刺激的多光谱眼部图像采集。眼部视觉成像设备用于采集人眼瞳孔图像和视网膜图像。The eye vision imaging device 11 is based on the acquisition of multi-spectral eye images based on dynamic visual stimuli. Eye vision imaging equipment is used to collect images of the pupil and retina of the human eye.
当前对眼部视觉神经功能成像的设备主要有OCT、眼底镜、瞳孔仪。OCT是一种非接触、高分辨率层析和生物显微镜成像设备。它可用于眼后段结构(包括视网膜、视网膜神经纤维层、黄斑和视盘)的活体上查看、轴向断层以及测量,是特别用作帮助检测和管理眼疾(包括但不限于黄斑裂孔、黄斑囊样水肿、糖尿病性视网膜病变、老年性黄斑变性和青光眼)的诊断设备。该设备主要利用眼底不同组织所含的含氧/脱氧血红蛋白对不同光谱的吸收不同,对不同组织进行精确成像。由于神经元活动会引起局部血流/血氧变化,因此,基于OCT的多光谱成像技术可能有助于对眼底神经活动进行测量。眼底镜主要用于眼底视网膜成像,眼底镜不仅可以针对常见的白内障、青光眼等眼科疾病检查,而且可早期诊断高血压、糖尿病等全身系统性疾病,已经成为临床医学和现代科学研究的热门对象。瞳孔仪主要用于瞳孔对光反射、瞳孔传导阻滞、眼震测量以及眼动跟踪等领域,另外,其还是多种眼科仪器的精密对准核心组件。但是,这些设备仅限被用于静态眼部成像,无法连续、动态地对眼部进行成像,并且,无法定量测量瞳孔对光反射完整的神经回路。The current equipment for imaging the visual nerve function of the eye mainly includes OCT, ophthalmoscope, and pupillometer. OCT is a non-contact, high-resolution tomographic and biomicroscopic imaging device. It can be used for in vivo viewing, axial sectioning, and measurement of structures in the posterior segment of the eye, including the retina, retinal nerve fiber layer, macula, and optic disc. edema, diabetic retinopathy, age-related macular degeneration and glaucoma). The device mainly utilizes the oxygenated/deoxygenated hemoglobin contained in different tissues of the fundus to absorb different spectra to perform precise imaging on different tissues. Because neuronal activity can cause changes in local blood flow/blood oxygenation, OCT-based multispectral imaging techniques may be helpful for measuring fundus neural activity. Ophthalmoscope is mainly used for fundus retinal imaging. Ophthalmoscope can not only check for common eye diseases such as cataract and glaucoma, but also can diagnose systemic diseases such as hypertension and diabetes early. It has become a popular object of clinical medicine and modern scientific research. The pupillometer is mainly used in the fields of pupillary light reflex, pupillary conduction block, nystagmus measurement, and eye tracking. In addition, it is also a core component for precision alignment of various ophthalmic instruments. However, these devices are limited to static eye imaging, and cannot continuously and dynamically image the eye, and cannot quantitatively measure the complete neural circuit of the pupillary light reflex.
针对该问题,本发明创造性地提出了基于多光谱眼部视觉成像设备11,能够利用不同光谱监测眼部视网膜视神经活动如血氧饱和度等导致光学性质变化实现动态眼底及瞳孔功能成像。To solve this problem, the present invention creatively proposes a multi-spectral eye vision imaging device 11, which can use different spectra to monitor eye retinal optic nerve activities such as blood oxygen saturation, etc., resulting in changes in optical properties to achieve dynamic fundus and pupil function imaging.
脑部视觉成像设备12是基于近红外光谱的视觉脑皮层血流信号采集。此处的视觉脑皮层血流信号可选为视觉脑皮层血流信号。利用近红外光谱的刺激监测大脑皮层血流量。The brain visual imaging device 12 is based on the collection of blood flow signals of the visual cerebral cortex based on the near-infrared spectrum. The visual cerebral cortex blood flow signal here may be selected as the visual cerebral cortical blood flow signal. Monitoring cerebral cortical blood flow using near-infrared spectroscopy stimulation.
上述眼部视觉成像设备11可选为眼罩式形式,脑部视觉成像设备12可选为抹额形式或帽子形式,这两个设备集成为一体,能够减小体积,便于携带。The above-mentioned eye vision imaging device 11 may be in the form of an eye mask, and the brain vision imaging device 12 may be in the form of a forehead wipe or a hat. These two devices are integrated into one body, which can reduce the volume and be easy to carry.
协同工作站13,协同工作站13用于协同控制眼部视觉成像设备11和眼部视觉成像设备12,并将获取到的多光谱眼部图像和视觉脑皮层血流信号进行数据处理。The collaborative workstation 13 is used for collaboratively controlling the eye vision imaging device 11 and the eye vision imaging device 12, and performing data processing on the acquired multi-spectral eye images and visual cortical blood flow signals.
协同工作站13基于不同的研究目标,需要考虑多种刺激诱发范式和诱发呈现方式,并且保持刺激与成像的时间一致性。协同工作站13处理的是包括多光谱眼部图像和视觉脑皮层血流信号在内的复合的视觉神经活动信号,因此需要完成协同的光源1211控制、数据采集、数据传输、数据处理等功能,需要对眼部视觉成像设备11、眼部视觉成像设备12的多模态、多通道的各功能部件进行协调,是整个系统的协同枢纽。协同工作站13还要负责眼底、瞳孔、视觉脑皮层血流信号的定位、配准、融合等数据处理工作以及复杂的功能分析、记录与存储等工作。Based on different research goals, the collaborative workstation 13 needs to consider a variety of stimulus-induced paradigms and induced presentation methods, and maintain the temporal consistency of stimulation and imaging. What the cooperative workstation 13 processes is a composite visual nerve activity signal including multispectral eye images and visual cerebral cortex blood flow signals. Therefore, it is necessary to complete functions such as cooperative light source 1211 control, data collection, data transmission, and data processing. Coordinating the multi-modal and multi-channel functional components of the eye vision imaging device 11 and the eye vision imaging device 12 is the synergy hub of the entire system. The collaborative workstation 13 is also responsible for data processing such as positioning, registration, and fusion of fundus, pupil, and visual cortex blood flow signals, as well as complex functional analysis, recording, and storage.
通过上述方式,能够实现一体化的眼脑部神经功能成像,同时采集到的多光谱眼部图像(视网膜图像和瞳孔图像)和视觉脑皮层血流信号能够提供更全面丰富的视觉神经功能检测信息,基于空间配准和特定算法能显著提高疾病早期诊断的可靠性和及时性。Through the above method, integrated eye and brain nerve function imaging can be realized, and the multispectral eye images (retina image and pupil image) and visual cortex blood flow signals collected at the same time can provide more comprehensive and rich visual nerve function detection information , based on spatial registration and specific algorithms can significantly improve the reliability and timeliness of early diagnosis of diseases.
请参阅图2,该眼部视觉成像设备11包括多光谱光源模块113、图像信号采集与控制模块111、图像采集模块114和多光谱光源控制模块112。Please refer to FIG. 2 , the eye vision imaging device 11 includes a multispectral light source module 113 , an image signal acquisition and control module 111 , an image acquisition module 114 and a multispectral light source control module 112 .
请参阅图3,所述图像采集模块包括准直透镜1141、中空反射镜1142、第一汇聚透镜1143、第二汇聚透镜1144、瞳孔相机1145和视网膜相机1146;所述多光谱光源模块发出的光经所述准直透镜1141准直后被所述中空反射镜1142反射,然后透射所述第一汇聚透镜1143照射到人眼的瞳孔和视网膜;瞳孔反射的光线进入所述瞳孔相机1145,视网膜反射的光线透射所述第一汇聚透镜1143,然后穿过所述中空反射镜1142中部再透射所述第二汇聚透镜1144,达到所述视网膜相机1146。准直透镜1141、中空反射镜1142、第一汇聚透镜1143、第二汇聚透镜1144可集成设置在光学镜头内。中空反射镜1142中部设置缝隙,供视网膜反射光线通过。人眼的瞳孔图像通过瞳孔相机1145采集,视网膜图像通过视网膜相机1146采集。Referring to Fig. 3, the image acquisition module includes a collimating lens 1141, a hollow mirror 1142, a first converging lens 1143, a second converging lens 1144, a pupil camera 1145 and a retinal camera 1146; the light emitted by the multispectral light source module After being collimated by the collimating lens 1141, it is reflected by the hollow mirror 1142, and then transmitted through the first converging lens 1143 to irradiate the pupil and retina of the human eye; the light reflected by the pupil enters the pupil camera 1145, and the retina reflects The light transmits through the first converging lens 1143 , then passes through the middle of the hollow mirror 1142 and then transmits the second converging lens 1144 to reach the retinal camera 1146 . The collimating lens 1141 , the hollow mirror 1142 , the first converging lens 1143 , and the second converging lens 1144 can be integrated in the optical lens. A slit is set in the middle of the hollow mirror 1142 for the light reflected from the retina to pass through. The pupil image of the human eye is collected by the pupil camera 1145 , and the retinal image is collected by the retina camera 1146 .
上述多光谱光源控制模块111还可包括多光谱控制单元、一键采集单元和环境光控制单元,多光谱控制单元控制发出不同波长的单色激光。一键采集单元进行图像一键采集,环境光控制单元用于控制环境背景光。The above-mentioned multispectral light source control module 111 may also include a multispectral control unit, a one-key acquisition unit and an ambient light control unit, and the multispectral control unit controls the emission of monochromatic lasers of different wavelengths. The one-key acquisition unit performs one-key image acquisition, and the ambient light control unit is used to control the ambient background light.
在本发明另一具体的实施方式中,眼部视觉成像设备11还可包括显示装置,能够便于显示和观察采集的图像,显示装置可选为液晶屏。In another specific embodiment of the present invention, the eye vision imaging device 11 may further include a display device, which can facilitate display and observation of collected images, and the display device may be a liquid crystal screen.
该眼部视觉成像设备11可以请求协同工作站13来读取其采集结果,眼部视觉成像设备11与协同工作站13之间的数据通讯选用基于总线的USB、PCI-E传输方式。The eye vision imaging device 11 can request the collaborative workstation 13 to read the collection results, and the data communication between the eye vision imaging device 11 and the collaborative workstation 13 adopts bus-based USB and PCI-E transmission methods.
如图4所示,脑部视觉成像设备12包括脑电信号采集模块121和数据处理模块122,脑电信号采集模块121包括多个光源1211和若干个探头1212,多个光源1211和若干个探头1212形成脑电信号采集通道,数据处理模块122用于对脑电信号采集模块121采集到的信号进行处理后得到视觉脑皮层血流信号。其中,光源1211为近红外光源。As shown in Figure 4, the brain visual imaging device 12 includes an EEG signal acquisition module 121 and a data processing module 122, the EEG signal acquisition module 121 includes a plurality of light sources 1211 and several probes 1212, and a plurality of light sources 1211 and several probes 1212 forms an EEG signal collection channel, and the data processing module 122 is used to process the signals collected by the EEG signal collection module 121 to obtain visual cortical blood flow signals. Wherein, the light source 1211 is a near-infrared light source.
其中,脑电信号采集模块121为图像采集帽,多个光源1211和若干个探头1212环绕分布在图像采集帽上,多个光源1211可选为4个光源1211,若干个探头1212可选为16个探头1212,4个光源1211和16个探头1212形成20个脑电信号采集通道。Wherein, the EEG signal acquisition module 121 is an image acquisition cap, a plurality of light sources 1211 and several probes 1212 are distributed around the image acquisition cap, the plurality of light sources 1211 can be selected as 4 light sources 1211, and the number of probes 1212 can be selected as 16 Each probe 1212, 4 light sources 1211 and 16 probes 1212 form 20 EEG signal collection channels.
每个光源1211优选为近红外激光光源。也可选为近红外LED光源。Each light source 1211 is preferably a near-infrared laser light source. It can also be selected as a near-infrared LED light source.
所述探头1212包括近红外激光器、单光子探测器和单模/多模光纤。能够在相干激光照射下实现高速、精确的大脑皮层血流信号数据采集,上述光纤可选为单模光纤。The probe 1212 includes a near-infrared laser, a single-photon detector and a single-mode/multi-mode fiber. It can realize high-speed and accurate blood flow signal data acquisition in the cerebral cortex under coherent laser irradiation, and the above-mentioned optical fiber can be selected as a single-mode optical fiber.
如图5所示,协同工作站13包括成像采集控制模块131和视觉成像分析模块132,成像采集控制模块131用于协同控制眼部成像系统和眼部视觉成像设备12,视觉成像分析模块132通过从视频库中选取功能磁共振成像,提取出脑功能成像空间特征,结合多光谱眼部图像和视觉脑皮层血流信号进行多模态谱聚类分析。As shown in Figure 5, the collaborative workstation 13 includes an imaging acquisition control module 131 and a visual imaging analysis module 132, and the imaging acquisition control module 131 is used to cooperatively control the eye imaging system and the eye vision imaging device 12, and the visual imaging analysis module 132 passes from Functional magnetic resonance imaging was selected from the video library, the spatial features of brain functional imaging were extracted, and multi-modal spectral clustering analysis was performed combining multispectral eye images and visual cortical blood flow signals.
利用成像采集控制模块131能够实现眼部及脑部视觉神经功能成像采集系统的一体化控制,从而可以得到多模态的眼部图像及脑部电信号,这些图像和信号反映了视网膜和大脑皮层在视觉刺激诱发下的神经活动情况。由于动态多光谱眼部图像、近红外视觉脑皮层血流信号是分别在不同位置上采集的,为了构建三维视觉传导模型,需要进行视觉脑皮层血流信号、动态多光谱眼部图像的多模态聚类分析。Using the imaging acquisition control module 131 can realize the integrated control of the eye and brain visual nerve function imaging acquisition system, so that multi-modal eye images and brain electrical signals can be obtained. These images and signals reflect the retina and cerebral cortex. Neural activity evoked by visual stimuli. Since the dynamic multispectral eye images and near-infrared visual cortex blood flow signals are collected at different positions, in order to construct a three-dimensional visual conduction model, it is necessary to conduct multi-mode multi-modal analysis of the visual cerebral cortex blood flow signals and dynamic multispectral eye images. State cluster analysis.
通过多模态聚类分析能够深入挖掘多模态信息之间的相关性,为探讨和推断视觉神经功能的视、脑科学机理提供参考依据。Through multimodal cluster analysis, the correlation between multimodal information can be deeply excavated, and it can provide a reference for exploring and inferring the visual and brain science mechanism of visual nerve function.
具体地,如图6所示,首先要利用视觉成像分析模块132从视频库中选取功能磁共振图像,对功能磁共振图像进行三层分割后形成脑组织图像和头皮颅外颅内图像。对脑组织图像进行小脑去除后形成大脑组织图像,对大脑组织图像进行脑组织分割后形成灰质、白质、脑脊液图像,对大脑组织图像进行脑区分割后形成功能脑区图像,对灰质、白质、脑脊液图像和功能脑区图像进行表面重建和脑区划分后形成脑皮层表面图像;对头皮颅外颅内图像进行眼部分割后再结合脑皮层表面图像后形成脑区重建图像,完成对脑功能成像空间特征的提取。Specifically, as shown in FIG. 6 , firstly, the visual imaging analysis module 132 is used to select the fMRI image from the video library, and the fMRI image is divided into three layers to form a brain tissue image and an extracranial and intracranial image of the scalp. The cerebellum is removed from the brain tissue image to form a brain tissue image, the brain tissue image is segmented to form a gray matter, white matter, and cerebrospinal fluid image, and the brain tissue image is segmented to form a functional brain area image. Cerebrospinal fluid images and functional brain region images are surface reconstructed and brain region divided to form a surface image of the cerebral cortex; eye segmentation is performed on the extracranial and intracranial images of the scalp and then combined with the surface image of the cerebral cortex to form a reconstructed image of the brain region to complete the brain function analysis. Extraction of imaging spatial features.
然后基于特定的视觉实验范式,通过考察刺激呈现的位置和明亮程度,确定视网膜神经组织的局部感受野,并进一步依据同步采集的多光谱眼部图像和视觉脑皮层血流信号,建立两者间的感受野层次模型,并依据此模型,深入考察不同视觉特征在人脑视觉加工中的敏感程度,构建可量化的刺激-神经反应模型。Then, based on a specific visual experiment paradigm, by examining the location and brightness of the stimulus, the local receptive field of the retinal nerve tissue is determined, and further based on the synchronously collected multispectral eye images and the blood flow signal of the visual cortex, the relationship between the two is established. Based on this model, the sensitivity of different visual features in the visual processing of the human brain is deeply investigated, and a quantifiable stimulus-neural response model is constructed.
通过构建模型分析能够实现疾病的早期诊断和快速识别,提高疾病诊断的可靠性。Early diagnosis and rapid identification of diseases can be realized by constructing model analysis, and the reliability of disease diagnosis can be improved.
在本发明所提供的实施方式中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the embodiments provided in the present invention, it should be understood that the disclosed systems, devices and methods may be implemented in other ways. For example, the device implementations described above are only illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented. In another point, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
另外,在本发明各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in various embodiments of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes. .
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only the embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technologies fields, all of which are equally included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910471543.4A CN110236482B (en) | 2019-05-31 | 2019-05-31 | Integrated eye and brain visual function imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910471543.4A CN110236482B (en) | 2019-05-31 | 2019-05-31 | Integrated eye and brain visual function imaging system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110236482A true CN110236482A (en) | 2019-09-17 |
CN110236482B CN110236482B (en) | 2024-03-22 |
Family
ID=67885767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910471543.4A Active CN110236482B (en) | 2019-05-31 | 2019-05-31 | Integrated eye and brain visual function imaging system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110236482B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110812707A (en) * | 2019-11-25 | 2020-02-21 | 北京师范大学 | Brain imaging and light nerve regulation and control integrated device |
CN112641450A (en) * | 2020-12-28 | 2021-04-13 | 中国人民解放军战略支援部队信息工程大学 | Time-varying brain network reconstruction method for dynamic video target detection |
CN112674752A (en) * | 2020-12-30 | 2021-04-20 | 深圳市联影高端医疗装备创新研究院 | Functional magnetic resonance imaging method, device, equipment and storage medium |
CN113406663A (en) * | 2021-06-17 | 2021-09-17 | 王高 | Visual imaging system and method based on P300 and associated imaging |
CN114010148A (en) * | 2021-12-01 | 2022-02-08 | 艾视雅健康科技(苏州)有限公司 | Early glaucoma diagnosis device |
CN114601430A (en) * | 2022-03-23 | 2022-06-10 | 浙江大学 | Cortex function connection positioning device based on near-infrared light stimulation |
CN115336966A (en) * | 2022-06-27 | 2022-11-15 | 温州医科大学附属眼视光医院 | A dynamic functional retinal blood flow imaging device and imaging method based on angio-OCT |
CN115462757A (en) * | 2022-09-13 | 2022-12-13 | 重庆庆图光电有限公司 | Brain functional area imaging method based on high-sensitivity camera |
CN116186502A (en) * | 2023-04-27 | 2023-05-30 | 华南理工大学 | Multi-mode visual nerve function detection method and system thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008086412A (en) * | 2006-09-29 | 2008-04-17 | Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai | Retina image data acquisition/display device and retina image data acquisition/displaying method |
JP2010233978A (en) * | 2009-03-31 | 2010-10-21 | Nidek Co Ltd | Visual performance inspection device |
CN102499635A (en) * | 2011-10-26 | 2012-06-20 | 中国科学院光电技术研究所 | Line scanning-based fundus retina multispectral imaging system and method |
CN102657515A (en) * | 2012-05-10 | 2012-09-12 | 中国科学院长春光学精密机械与物理研究所 | Alignment light path device applied to retinal imaging system |
CN205625890U (en) * | 2016-03-29 | 2016-10-12 | 孙明斋 | High spectrum eye ground imaging system |
CN108670192A (en) * | 2018-04-21 | 2018-10-19 | 重庆贝奥新视野医疗设备有限公司 | A kind of multispectral eyeground imaging system and method for dynamic vision stimulation |
CN108882875A (en) * | 2015-12-14 | 2018-11-23 | 奥托-冯-格里克-马格德堡大学 | Equipment for neural blood vessel stimulation |
CN109431457A (en) * | 2018-12-21 | 2019-03-08 | 合肥奥比斯科技有限公司 | Multispectral eyeground imaging system |
CN211704590U (en) * | 2019-05-31 | 2020-10-20 | 中国科学院苏州生物医学工程技术研究所 | Integrated eye and brain visual function imaging system |
-
2019
- 2019-05-31 CN CN201910471543.4A patent/CN110236482B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008086412A (en) * | 2006-09-29 | 2008-04-17 | Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai | Retina image data acquisition/display device and retina image data acquisition/displaying method |
JP2010233978A (en) * | 2009-03-31 | 2010-10-21 | Nidek Co Ltd | Visual performance inspection device |
CN102499635A (en) * | 2011-10-26 | 2012-06-20 | 中国科学院光电技术研究所 | Line scanning-based fundus retina multispectral imaging system and method |
CN102657515A (en) * | 2012-05-10 | 2012-09-12 | 中国科学院长春光学精密机械与物理研究所 | Alignment light path device applied to retinal imaging system |
CN108882875A (en) * | 2015-12-14 | 2018-11-23 | 奥托-冯-格里克-马格德堡大学 | Equipment for neural blood vessel stimulation |
CN205625890U (en) * | 2016-03-29 | 2016-10-12 | 孙明斋 | High spectrum eye ground imaging system |
CN108670192A (en) * | 2018-04-21 | 2018-10-19 | 重庆贝奥新视野医疗设备有限公司 | A kind of multispectral eyeground imaging system and method for dynamic vision stimulation |
CN109431457A (en) * | 2018-12-21 | 2019-03-08 | 合肥奥比斯科技有限公司 | Multispectral eyeground imaging system |
CN211704590U (en) * | 2019-05-31 | 2020-10-20 | 中国科学院苏州生物医学工程技术研究所 | Integrated eye and brain visual function imaging system |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110812707A (en) * | 2019-11-25 | 2020-02-21 | 北京师范大学 | Brain imaging and light nerve regulation and control integrated device |
CN110812707B (en) * | 2019-11-25 | 2021-05-18 | 北京师范大学 | Brain imaging and light nerve regulation and control integrated device |
CN112641450A (en) * | 2020-12-28 | 2021-04-13 | 中国人民解放军战略支援部队信息工程大学 | Time-varying brain network reconstruction method for dynamic video target detection |
CN112674752A (en) * | 2020-12-30 | 2021-04-20 | 深圳市联影高端医疗装备创新研究院 | Functional magnetic resonance imaging method, device, equipment and storage medium |
CN113406663A (en) * | 2021-06-17 | 2021-09-17 | 王高 | Visual imaging system and method based on P300 and associated imaging |
CN113406663B (en) * | 2021-06-17 | 2024-03-12 | 王高 | Visual imaging system and method based on P300 and associated imaging |
CN114010148A (en) * | 2021-12-01 | 2022-02-08 | 艾视雅健康科技(苏州)有限公司 | Early glaucoma diagnosis device |
CN114601430A (en) * | 2022-03-23 | 2022-06-10 | 浙江大学 | Cortex function connection positioning device based on near-infrared light stimulation |
CN114601430B (en) * | 2022-03-23 | 2024-02-20 | 浙江大学 | A cortical functional connection positioning device based on near-infrared light stimulation |
CN115336966A (en) * | 2022-06-27 | 2022-11-15 | 温州医科大学附属眼视光医院 | A dynamic functional retinal blood flow imaging device and imaging method based on angio-OCT |
CN115462757A (en) * | 2022-09-13 | 2022-12-13 | 重庆庆图光电有限公司 | Brain functional area imaging method based on high-sensitivity camera |
CN116186502A (en) * | 2023-04-27 | 2023-05-30 | 华南理工大学 | Multi-mode visual nerve function detection method and system thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110236482B (en) | 2024-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110236482B (en) | Integrated eye and brain visual function imaging system | |
Rupawala et al. | Shining a light on awareness: a review of functional near-infrared spectroscopy for prolonged disorders of consciousness | |
Nelson et al. | Special report: noninvasive multi-parameter functional optical imaging of the eye | |
US7708403B2 (en) | Apparatus and method for diagnosis of optically identifiable ophthalmic conditions | |
Houck et al. | Through a glass darkly: some insights on change talk via magnetoencephalography. | |
BR112015008043B1 (en) | Physiological sensor device and method for providing a cognitive or sensory assessment of an individual | |
CN211704590U (en) | Integrated eye and brain visual function imaging system | |
ITFI20080081A1 (en) | PROCEDURE AND SYSTEM FOR THE RECORDING OF MULTIFOCAL ERG, PERG AND VEP ELECTROFUNCTIONAL REPLIES IN REAL TIME | |
Landa et al. | Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI) | |
US20210090253A1 (en) | Systems and methods for imaging disease biomarkers | |
Tan et al. | Correlation of visually evoked functional and blood flow changes in the rat retina measured with a combined OCT+ ERG system | |
Vij et al. | A systematic survey of advances in retinal imaging modalities for Alzheimer’s disease diagnosis | |
CN118633913A (en) | A cognitive function assessment system based on eye movement and near-infrared brain functional imaging | |
Leonard et al. | Fixational eye movements following concussion | |
Tirsi et al. | Pattern electroretinogram parameters are associated with optic nerve morphology in preperimetric glaucoma after adjusting for disc area | |
JP5147949B2 (en) | Biological light measurement device | |
US20230064792A1 (en) | Illumination of an eye fundus using non-scanning coherent light | |
Marino et al. | Current and novel multi-imaging modalities to assess retinal oxygenation and blood flow | |
Crossland et al. | The effect of age and fixation instability on retinotopic mapping of primary visual cortex | |
US12262947B1 (en) | Systems and methods for retinal imaging | |
Labounková et al. | Heart rate and age modulate retinal pulsatile patterns | |
Hanazono et al. | Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina | |
Yao et al. | Exploring the impact of 3D movie watching on the brain source activities and energy consumption by ESI and fNIRS | |
Ganekal | Retinal functional imager (RFI): non-invasive functional imaging of the retina | |
Gratton et al. | Fast optical signals: Principles, methods, and experimental results |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |